diffusers 0.31.0__py3-none-any.whl → 0.32.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +72 -26
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/METADATA +6 -6
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,969 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import VaeImageProcessor
23
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import FluxTransformer2DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+ from .pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+ >>> from diffusers import FluxFillPipeline
55
+ >>> from diffusers.utils import load_image
56
+
57
+ >>> image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup.png")
58
+ >>> mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")
59
+
60
+ >>> pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16)
61
+ >>> pipe.enable_model_cpu_offload() # save some VRAM by offloading the model to CPU
62
+
63
+ >>> image = pipe(
64
+ ... prompt="a white paper cup",
65
+ ... image=image,
66
+ ... mask_image=mask,
67
+ ... height=1632,
68
+ ... width=1232,
69
+ ... guidance_scale=30,
70
+ ... num_inference_steps=50,
71
+ ... max_sequence_length=512,
72
+ ... generator=torch.Generator("cpu").manual_seed(0),
73
+ ... ).images[0]
74
+ >>> image.save("flux_fill.png")
75
+ ```
76
+ """
77
+
78
+
79
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
80
+ def calculate_shift(
81
+ image_seq_len,
82
+ base_seq_len: int = 256,
83
+ max_seq_len: int = 4096,
84
+ base_shift: float = 0.5,
85
+ max_shift: float = 1.16,
86
+ ):
87
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
88
+ b = base_shift - m * base_seq_len
89
+ mu = image_seq_len * m + b
90
+ return mu
91
+
92
+
93
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
94
+ def retrieve_timesteps(
95
+ scheduler,
96
+ num_inference_steps: Optional[int] = None,
97
+ device: Optional[Union[str, torch.device]] = None,
98
+ timesteps: Optional[List[int]] = None,
99
+ sigmas: Optional[List[float]] = None,
100
+ **kwargs,
101
+ ):
102
+ r"""
103
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
104
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
105
+
106
+ Args:
107
+ scheduler (`SchedulerMixin`):
108
+ The scheduler to get timesteps from.
109
+ num_inference_steps (`int`):
110
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
111
+ must be `None`.
112
+ device (`str` or `torch.device`, *optional*):
113
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
114
+ timesteps (`List[int]`, *optional*):
115
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
116
+ `num_inference_steps` and `sigmas` must be `None`.
117
+ sigmas (`List[float]`, *optional*):
118
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
119
+ `num_inference_steps` and `timesteps` must be `None`.
120
+
121
+ Returns:
122
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
123
+ second element is the number of inference steps.
124
+ """
125
+ if timesteps is not None and sigmas is not None:
126
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
127
+ if timesteps is not None:
128
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
129
+ if not accepts_timesteps:
130
+ raise ValueError(
131
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
132
+ f" timestep schedules. Please check whether you are using the correct scheduler."
133
+ )
134
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
135
+ timesteps = scheduler.timesteps
136
+ num_inference_steps = len(timesteps)
137
+ elif sigmas is not None:
138
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
139
+ if not accept_sigmas:
140
+ raise ValueError(
141
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
142
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
143
+ )
144
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
145
+ timesteps = scheduler.timesteps
146
+ num_inference_steps = len(timesteps)
147
+ else:
148
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
149
+ timesteps = scheduler.timesteps
150
+ return timesteps, num_inference_steps
151
+
152
+
153
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
154
+ def retrieve_latents(
155
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
156
+ ):
157
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
158
+ return encoder_output.latent_dist.sample(generator)
159
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
160
+ return encoder_output.latent_dist.mode()
161
+ elif hasattr(encoder_output, "latents"):
162
+ return encoder_output.latents
163
+ else:
164
+ raise AttributeError("Could not access latents of provided encoder_output")
165
+
166
+
167
+ class FluxFillPipeline(
168
+ DiffusionPipeline,
169
+ FluxLoraLoaderMixin,
170
+ FromSingleFileMixin,
171
+ TextualInversionLoaderMixin,
172
+ ):
173
+ r"""
174
+ The Flux Fill pipeline for image inpainting/outpainting.
175
+
176
+ Reference: https://blackforestlabs.ai/flux-1-tools/
177
+
178
+ Args:
179
+ transformer ([`FluxTransformer2DModel`]):
180
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
181
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
182
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
183
+ vae ([`AutoencoderKL`]):
184
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
185
+ text_encoder ([`CLIPTextModel`]):
186
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
187
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
188
+ text_encoder_2 ([`T5EncoderModel`]):
189
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
190
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
191
+ tokenizer (`CLIPTokenizer`):
192
+ Tokenizer of class
193
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
194
+ tokenizer_2 (`T5TokenizerFast`):
195
+ Second Tokenizer of class
196
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
197
+ """
198
+
199
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
200
+ _optional_components = []
201
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
202
+
203
+ def __init__(
204
+ self,
205
+ scheduler: FlowMatchEulerDiscreteScheduler,
206
+ vae: AutoencoderKL,
207
+ text_encoder: CLIPTextModel,
208
+ tokenizer: CLIPTokenizer,
209
+ text_encoder_2: T5EncoderModel,
210
+ tokenizer_2: T5TokenizerFast,
211
+ transformer: FluxTransformer2DModel,
212
+ ):
213
+ super().__init__()
214
+
215
+ self.register_modules(
216
+ vae=vae,
217
+ text_encoder=text_encoder,
218
+ text_encoder_2=text_encoder_2,
219
+ tokenizer=tokenizer,
220
+ tokenizer_2=tokenizer_2,
221
+ transformer=transformer,
222
+ scheduler=scheduler,
223
+ )
224
+ self.vae_scale_factor = (
225
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
226
+ )
227
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
228
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
229
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
230
+ self.mask_processor = VaeImageProcessor(
231
+ vae_scale_factor=self.vae_scale_factor * 2,
232
+ vae_latent_channels=self.vae.config.latent_channels,
233
+ do_normalize=False,
234
+ do_binarize=True,
235
+ do_convert_grayscale=True,
236
+ )
237
+ self.tokenizer_max_length = (
238
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
239
+ )
240
+ self.default_sample_size = 128
241
+
242
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
243
+ def _get_t5_prompt_embeds(
244
+ self,
245
+ prompt: Union[str, List[str]] = None,
246
+ num_images_per_prompt: int = 1,
247
+ max_sequence_length: int = 512,
248
+ device: Optional[torch.device] = None,
249
+ dtype: Optional[torch.dtype] = None,
250
+ ):
251
+ device = device or self._execution_device
252
+ dtype = dtype or self.text_encoder.dtype
253
+
254
+ prompt = [prompt] if isinstance(prompt, str) else prompt
255
+ batch_size = len(prompt)
256
+
257
+ if isinstance(self, TextualInversionLoaderMixin):
258
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
259
+
260
+ text_inputs = self.tokenizer_2(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_sequence_length,
264
+ truncation=True,
265
+ return_length=False,
266
+ return_overflowing_tokens=False,
267
+ return_tensors="pt",
268
+ )
269
+ text_input_ids = text_inputs.input_ids
270
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
271
+
272
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
273
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
274
+ logger.warning(
275
+ "The following part of your input was truncated because `max_sequence_length` is set to "
276
+ f" {max_sequence_length} tokens: {removed_text}"
277
+ )
278
+
279
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
280
+
281
+ dtype = self.text_encoder_2.dtype
282
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
283
+
284
+ _, seq_len, _ = prompt_embeds.shape
285
+
286
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
287
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
288
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
289
+
290
+ return prompt_embeds
291
+
292
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
293
+ def _get_clip_prompt_embeds(
294
+ self,
295
+ prompt: Union[str, List[str]],
296
+ num_images_per_prompt: int = 1,
297
+ device: Optional[torch.device] = None,
298
+ ):
299
+ device = device or self._execution_device
300
+
301
+ prompt = [prompt] if isinstance(prompt, str) else prompt
302
+ batch_size = len(prompt)
303
+
304
+ if isinstance(self, TextualInversionLoaderMixin):
305
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
306
+
307
+ text_inputs = self.tokenizer(
308
+ prompt,
309
+ padding="max_length",
310
+ max_length=self.tokenizer_max_length,
311
+ truncation=True,
312
+ return_overflowing_tokens=False,
313
+ return_length=False,
314
+ return_tensors="pt",
315
+ )
316
+
317
+ text_input_ids = text_inputs.input_ids
318
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
319
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
320
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
321
+ logger.warning(
322
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
323
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
324
+ )
325
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
326
+
327
+ # Use pooled output of CLIPTextModel
328
+ prompt_embeds = prompt_embeds.pooler_output
329
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
330
+
331
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
332
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
333
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
334
+
335
+ return prompt_embeds
336
+
337
+ def prepare_mask_latents(
338
+ self,
339
+ mask,
340
+ masked_image,
341
+ batch_size,
342
+ num_channels_latents,
343
+ num_images_per_prompt,
344
+ height,
345
+ width,
346
+ dtype,
347
+ device,
348
+ generator,
349
+ ):
350
+ # 1. calculate the height and width of the latents
351
+ # VAE applies 8x compression on images but we must also account for packing which requires
352
+ # latent height and width to be divisible by 2.
353
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
354
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
355
+
356
+ # 2. encode the masked image
357
+ if masked_image.shape[1] == num_channels_latents:
358
+ masked_image_latents = masked_image
359
+ else:
360
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
361
+
362
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
363
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
364
+
365
+ # 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
366
+ batch_size = batch_size * num_images_per_prompt
367
+ if mask.shape[0] < batch_size:
368
+ if not batch_size % mask.shape[0] == 0:
369
+ raise ValueError(
370
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
371
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
372
+ " of masks that you pass is divisible by the total requested batch size."
373
+ )
374
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
375
+ if masked_image_latents.shape[0] < batch_size:
376
+ if not batch_size % masked_image_latents.shape[0] == 0:
377
+ raise ValueError(
378
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
379
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
380
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
381
+ )
382
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
383
+
384
+ # 4. pack the masked_image_latents
385
+ # batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4
386
+ masked_image_latents = self._pack_latents(
387
+ masked_image_latents,
388
+ batch_size,
389
+ num_channels_latents,
390
+ height,
391
+ width,
392
+ )
393
+
394
+ # 5.resize mask to latents shape we we concatenate the mask to the latents
395
+ mask = mask[:, 0, :, :] # batch_size, 8 * height, 8 * width (mask has not been 8x compressed)
396
+ mask = mask.view(
397
+ batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor
398
+ ) # batch_size, height, 8, width, 8
399
+ mask = mask.permute(0, 2, 4, 1, 3) # batch_size, 8, 8, height, width
400
+ mask = mask.reshape(
401
+ batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width
402
+ ) # batch_size, 8*8, height, width
403
+
404
+ # 6. pack the mask:
405
+ # batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2
406
+ mask = self._pack_latents(
407
+ mask,
408
+ batch_size,
409
+ self.vae_scale_factor * self.vae_scale_factor,
410
+ height,
411
+ width,
412
+ )
413
+ mask = mask.to(device=device, dtype=dtype)
414
+
415
+ return mask, masked_image_latents
416
+
417
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
418
+ def encode_prompt(
419
+ self,
420
+ prompt: Union[str, List[str]],
421
+ prompt_2: Union[str, List[str]],
422
+ device: Optional[torch.device] = None,
423
+ num_images_per_prompt: int = 1,
424
+ prompt_embeds: Optional[torch.FloatTensor] = None,
425
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
426
+ max_sequence_length: int = 512,
427
+ lora_scale: Optional[float] = None,
428
+ ):
429
+ r"""
430
+
431
+ Args:
432
+ prompt (`str` or `List[str]`, *optional*):
433
+ prompt to be encoded
434
+ prompt_2 (`str` or `List[str]`, *optional*):
435
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
436
+ used in all text-encoders
437
+ device: (`torch.device`):
438
+ torch device
439
+ num_images_per_prompt (`int`):
440
+ number of images that should be generated per prompt
441
+ prompt_embeds (`torch.FloatTensor`, *optional*):
442
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
443
+ provided, text embeddings will be generated from `prompt` input argument.
444
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
445
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
446
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
447
+ lora_scale (`float`, *optional*):
448
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
449
+ """
450
+ device = device or self._execution_device
451
+
452
+ # set lora scale so that monkey patched LoRA
453
+ # function of text encoder can correctly access it
454
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
455
+ self._lora_scale = lora_scale
456
+
457
+ # dynamically adjust the LoRA scale
458
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
459
+ scale_lora_layers(self.text_encoder, lora_scale)
460
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
461
+ scale_lora_layers(self.text_encoder_2, lora_scale)
462
+
463
+ prompt = [prompt] if isinstance(prompt, str) else prompt
464
+
465
+ if prompt_embeds is None:
466
+ prompt_2 = prompt_2 or prompt
467
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
468
+
469
+ # We only use the pooled prompt output from the CLIPTextModel
470
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
471
+ prompt=prompt,
472
+ device=device,
473
+ num_images_per_prompt=num_images_per_prompt,
474
+ )
475
+ prompt_embeds = self._get_t5_prompt_embeds(
476
+ prompt=prompt_2,
477
+ num_images_per_prompt=num_images_per_prompt,
478
+ max_sequence_length=max_sequence_length,
479
+ device=device,
480
+ )
481
+
482
+ if self.text_encoder is not None:
483
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
484
+ # Retrieve the original scale by scaling back the LoRA layers
485
+ unscale_lora_layers(self.text_encoder, lora_scale)
486
+
487
+ if self.text_encoder_2 is not None:
488
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
489
+ # Retrieve the original scale by scaling back the LoRA layers
490
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
491
+
492
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
493
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
494
+
495
+ return prompt_embeds, pooled_prompt_embeds, text_ids
496
+
497
+ def check_inputs(
498
+ self,
499
+ prompt,
500
+ prompt_2,
501
+ height,
502
+ width,
503
+ prompt_embeds=None,
504
+ pooled_prompt_embeds=None,
505
+ callback_on_step_end_tensor_inputs=None,
506
+ max_sequence_length=None,
507
+ image=None,
508
+ mask_image=None,
509
+ masked_image_latents=None,
510
+ ):
511
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
512
+ logger.warning(
513
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
514
+ )
515
+
516
+ if callback_on_step_end_tensor_inputs is not None and not all(
517
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
518
+ ):
519
+ raise ValueError(
520
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
521
+ )
522
+
523
+ if prompt is not None and prompt_embeds is not None:
524
+ raise ValueError(
525
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
526
+ " only forward one of the two."
527
+ )
528
+ elif prompt_2 is not None and prompt_embeds is not None:
529
+ raise ValueError(
530
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
531
+ " only forward one of the two."
532
+ )
533
+ elif prompt is None and prompt_embeds is None:
534
+ raise ValueError(
535
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
536
+ )
537
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
538
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
539
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
540
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
541
+
542
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
543
+ raise ValueError(
544
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
545
+ )
546
+
547
+ if max_sequence_length is not None and max_sequence_length > 512:
548
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
549
+
550
+ if image is not None and masked_image_latents is not None:
551
+ raise ValueError(
552
+ "Please provide either `image` or `masked_image_latents`, `masked_image_latents` should not be passed."
553
+ )
554
+
555
+ if image is not None and mask_image is None:
556
+ raise ValueError("Please provide `mask_image` when passing `image`.")
557
+
558
+ @staticmethod
559
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
560
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
561
+ latent_image_ids = torch.zeros(height, width, 3)
562
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
563
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
564
+
565
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
566
+
567
+ latent_image_ids = latent_image_ids.reshape(
568
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
569
+ )
570
+
571
+ return latent_image_ids.to(device=device, dtype=dtype)
572
+
573
+ @staticmethod
574
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
575
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
576
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
577
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
578
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
579
+
580
+ return latents
581
+
582
+ @staticmethod
583
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
584
+ def _unpack_latents(latents, height, width, vae_scale_factor):
585
+ batch_size, num_patches, channels = latents.shape
586
+
587
+ # VAE applies 8x compression on images but we must also account for packing which requires
588
+ # latent height and width to be divisible by 2.
589
+ height = 2 * (int(height) // (vae_scale_factor * 2))
590
+ width = 2 * (int(width) // (vae_scale_factor * 2))
591
+
592
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
593
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
594
+
595
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
596
+
597
+ return latents
598
+
599
+ def enable_vae_slicing(self):
600
+ r"""
601
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
602
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
603
+ """
604
+ self.vae.enable_slicing()
605
+
606
+ def disable_vae_slicing(self):
607
+ r"""
608
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
609
+ computing decoding in one step.
610
+ """
611
+ self.vae.disable_slicing()
612
+
613
+ def enable_vae_tiling(self):
614
+ r"""
615
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
616
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
617
+ processing larger images.
618
+ """
619
+ self.vae.enable_tiling()
620
+
621
+ def disable_vae_tiling(self):
622
+ r"""
623
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
624
+ computing decoding in one step.
625
+ """
626
+ self.vae.disable_tiling()
627
+
628
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
629
+ def prepare_latents(
630
+ self,
631
+ batch_size,
632
+ num_channels_latents,
633
+ height,
634
+ width,
635
+ dtype,
636
+ device,
637
+ generator,
638
+ latents=None,
639
+ ):
640
+ # VAE applies 8x compression on images but we must also account for packing which requires
641
+ # latent height and width to be divisible by 2.
642
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
643
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
644
+
645
+ shape = (batch_size, num_channels_latents, height, width)
646
+
647
+ if latents is not None:
648
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
649
+ return latents.to(device=device, dtype=dtype), latent_image_ids
650
+
651
+ if isinstance(generator, list) and len(generator) != batch_size:
652
+ raise ValueError(
653
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
654
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
655
+ )
656
+
657
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
658
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
659
+
660
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
661
+
662
+ return latents, latent_image_ids
663
+
664
+ @property
665
+ def guidance_scale(self):
666
+ return self._guidance_scale
667
+
668
+ @property
669
+ def joint_attention_kwargs(self):
670
+ return self._joint_attention_kwargs
671
+
672
+ @property
673
+ def num_timesteps(self):
674
+ return self._num_timesteps
675
+
676
+ @property
677
+ def interrupt(self):
678
+ return self._interrupt
679
+
680
+ @torch.no_grad()
681
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
682
+ def __call__(
683
+ self,
684
+ prompt: Union[str, List[str]] = None,
685
+ prompt_2: Optional[Union[str, List[str]]] = None,
686
+ image: Optional[torch.FloatTensor] = None,
687
+ mask_image: Optional[torch.FloatTensor] = None,
688
+ masked_image_latents: Optional[torch.FloatTensor] = None,
689
+ height: Optional[int] = None,
690
+ width: Optional[int] = None,
691
+ num_inference_steps: int = 50,
692
+ sigmas: Optional[List[float]] = None,
693
+ guidance_scale: float = 30.0,
694
+ num_images_per_prompt: Optional[int] = 1,
695
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
696
+ latents: Optional[torch.FloatTensor] = None,
697
+ prompt_embeds: Optional[torch.FloatTensor] = None,
698
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
699
+ output_type: Optional[str] = "pil",
700
+ return_dict: bool = True,
701
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
702
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
703
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
704
+ max_sequence_length: int = 512,
705
+ ):
706
+ r"""
707
+ Function invoked when calling the pipeline for generation.
708
+
709
+ Args:
710
+ prompt (`str` or `List[str]`, *optional*):
711
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
712
+ instead.
713
+ prompt_2 (`str` or `List[str]`, *optional*):
714
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
715
+ will be used instead
716
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
717
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
718
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
719
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
720
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`.
721
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
722
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
723
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
724
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
725
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
726
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
727
+ 1)`, or `(H, W)`.
728
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
729
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
730
+ latents tensor will ge generated by `mask_image`.
731
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
732
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
733
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
734
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
735
+ num_inference_steps (`int`, *optional*, defaults to 50):
736
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
737
+ expense of slower inference.
738
+ sigmas (`List[float]`, *optional*):
739
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
740
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
741
+ will be used.
742
+ guidance_scale (`float`, *optional*, defaults to 7.0):
743
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
744
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
745
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
746
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
747
+ usually at the expense of lower image quality.
748
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
749
+ The number of images to generate per prompt.
750
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
751
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
752
+ to make generation deterministic.
753
+ latents (`torch.FloatTensor`, *optional*):
754
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
755
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
756
+ tensor will ge generated by sampling using the supplied random `generator`.
757
+ prompt_embeds (`torch.FloatTensor`, *optional*):
758
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
759
+ provided, text embeddings will be generated from `prompt` input argument.
760
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
761
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
762
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
763
+ output_type (`str`, *optional*, defaults to `"pil"`):
764
+ The output format of the generate image. Choose between
765
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
766
+ return_dict (`bool`, *optional*, defaults to `True`):
767
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
768
+ joint_attention_kwargs (`dict`, *optional*):
769
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
770
+ `self.processor` in
771
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
772
+ callback_on_step_end (`Callable`, *optional*):
773
+ A function that calls at the end of each denoising steps during the inference. The function is called
774
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
775
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
776
+ `callback_on_step_end_tensor_inputs`.
777
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
778
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
779
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
780
+ `._callback_tensor_inputs` attribute of your pipeline class.
781
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
782
+
783
+ Examples:
784
+
785
+ Returns:
786
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
787
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
788
+ images.
789
+ """
790
+
791
+ height = height or self.default_sample_size * self.vae_scale_factor
792
+ width = width or self.default_sample_size * self.vae_scale_factor
793
+
794
+ # 1. Check inputs. Raise error if not correct
795
+ self.check_inputs(
796
+ prompt,
797
+ prompt_2,
798
+ height,
799
+ width,
800
+ prompt_embeds=prompt_embeds,
801
+ pooled_prompt_embeds=pooled_prompt_embeds,
802
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
803
+ max_sequence_length=max_sequence_length,
804
+ image=image,
805
+ mask_image=mask_image,
806
+ masked_image_latents=masked_image_latents,
807
+ )
808
+
809
+ self._guidance_scale = guidance_scale
810
+ self._joint_attention_kwargs = joint_attention_kwargs
811
+ self._interrupt = False
812
+
813
+ # 2. Define call parameters
814
+ if prompt is not None and isinstance(prompt, str):
815
+ batch_size = 1
816
+ elif prompt is not None and isinstance(prompt, list):
817
+ batch_size = len(prompt)
818
+ else:
819
+ batch_size = prompt_embeds.shape[0]
820
+
821
+ device = self._execution_device
822
+
823
+ # 3. Prepare prompt embeddings
824
+ lora_scale = (
825
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
826
+ )
827
+ (
828
+ prompt_embeds,
829
+ pooled_prompt_embeds,
830
+ text_ids,
831
+ ) = self.encode_prompt(
832
+ prompt=prompt,
833
+ prompt_2=prompt_2,
834
+ prompt_embeds=prompt_embeds,
835
+ pooled_prompt_embeds=pooled_prompt_embeds,
836
+ device=device,
837
+ num_images_per_prompt=num_images_per_prompt,
838
+ max_sequence_length=max_sequence_length,
839
+ lora_scale=lora_scale,
840
+ )
841
+
842
+ # 4. Prepare latent variables
843
+ num_channels_latents = self.vae.config.latent_channels
844
+ latents, latent_image_ids = self.prepare_latents(
845
+ batch_size * num_images_per_prompt,
846
+ num_channels_latents,
847
+ height,
848
+ width,
849
+ prompt_embeds.dtype,
850
+ device,
851
+ generator,
852
+ latents,
853
+ )
854
+
855
+ # 5. Prepare mask and masked image latents
856
+ if masked_image_latents is not None:
857
+ masked_image_latents = masked_image_latents.to(latents.device)
858
+ else:
859
+ image = self.image_processor.preprocess(image, height=height, width=width)
860
+ mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width)
861
+
862
+ masked_image = image * (1 - mask_image)
863
+ masked_image = masked_image.to(device=device, dtype=prompt_embeds.dtype)
864
+
865
+ height, width = image.shape[-2:]
866
+ mask, masked_image_latents = self.prepare_mask_latents(
867
+ mask_image,
868
+ masked_image,
869
+ batch_size,
870
+ num_channels_latents,
871
+ num_images_per_prompt,
872
+ height,
873
+ width,
874
+ prompt_embeds.dtype,
875
+ device,
876
+ generator,
877
+ )
878
+ masked_image_latents = torch.cat((masked_image_latents, mask), dim=-1)
879
+
880
+ # 6. Prepare timesteps
881
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
882
+ image_seq_len = latents.shape[1]
883
+ mu = calculate_shift(
884
+ image_seq_len,
885
+ self.scheduler.config.base_image_seq_len,
886
+ self.scheduler.config.max_image_seq_len,
887
+ self.scheduler.config.base_shift,
888
+ self.scheduler.config.max_shift,
889
+ )
890
+ timesteps, num_inference_steps = retrieve_timesteps(
891
+ self.scheduler,
892
+ num_inference_steps,
893
+ device,
894
+ sigmas=sigmas,
895
+ mu=mu,
896
+ )
897
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
898
+ self._num_timesteps = len(timesteps)
899
+
900
+ # handle guidance
901
+ if self.transformer.config.guidance_embeds:
902
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
903
+ guidance = guidance.expand(latents.shape[0])
904
+ else:
905
+ guidance = None
906
+
907
+ # 7. Denoising loop
908
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
909
+ for i, t in enumerate(timesteps):
910
+ if self.interrupt:
911
+ continue
912
+
913
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
914
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
915
+
916
+ noise_pred = self.transformer(
917
+ hidden_states=torch.cat((latents, masked_image_latents), dim=2),
918
+ timestep=timestep / 1000,
919
+ guidance=guidance,
920
+ pooled_projections=pooled_prompt_embeds,
921
+ encoder_hidden_states=prompt_embeds,
922
+ txt_ids=text_ids,
923
+ img_ids=latent_image_ids,
924
+ joint_attention_kwargs=self.joint_attention_kwargs,
925
+ return_dict=False,
926
+ )[0]
927
+
928
+ # compute the previous noisy sample x_t -> x_t-1
929
+ latents_dtype = latents.dtype
930
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
931
+
932
+ if latents.dtype != latents_dtype:
933
+ if torch.backends.mps.is_available():
934
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
935
+ latents = latents.to(latents_dtype)
936
+
937
+ if callback_on_step_end is not None:
938
+ callback_kwargs = {}
939
+ for k in callback_on_step_end_tensor_inputs:
940
+ callback_kwargs[k] = locals()[k]
941
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
942
+
943
+ latents = callback_outputs.pop("latents", latents)
944
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
945
+
946
+ # call the callback, if provided
947
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
948
+ progress_bar.update()
949
+
950
+ if XLA_AVAILABLE:
951
+ xm.mark_step()
952
+
953
+ # 8. Post-process the image
954
+ if output_type == "latent":
955
+ image = latents
956
+
957
+ else:
958
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
959
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
960
+ image = self.vae.decode(latents, return_dict=False)[0]
961
+ image = self.image_processor.postprocess(image, output_type=output_type)
962
+
963
+ # Offload all models
964
+ self.maybe_free_model_hooks()
965
+
966
+ if not return_dict:
967
+ return (image,)
968
+
969
+ return FluxPipelineOutput(images=image)