diffusers 0.31.0__py3-none-any.whl → 0.32.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +72 -26
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/METADATA +6 -6
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,885 @@
1
+ # Copyright 2024 Lightricks and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...image_processor import PipelineImageInput
24
+ from ...loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
25
+ from ...models.autoencoders import AutoencoderKLLTXVideo
26
+ from ...models.transformers import LTXVideoTransformer3DModel
27
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
28
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
29
+ from ...utils.torch_utils import randn_tensor
30
+ from ...video_processor import VideoProcessor
31
+ from ..pipeline_utils import DiffusionPipeline
32
+ from .pipeline_output import LTXPipelineOutput
33
+
34
+
35
+ if is_torch_xla_available():
36
+ import torch_xla.core.xla_model as xm
37
+
38
+ XLA_AVAILABLE = True
39
+ else:
40
+ XLA_AVAILABLE = False
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```py
47
+ >>> import torch
48
+ >>> from diffusers import LTXImageToVideoPipeline
49
+ >>> from diffusers.utils import export_to_video, load_image
50
+
51
+ >>> pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16)
52
+ >>> pipe.to("cuda")
53
+
54
+ >>> image = load_image(
55
+ ... "https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png"
56
+ ... )
57
+ >>> prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene."
58
+ >>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
59
+
60
+ >>> video = pipe(
61
+ ... image=image,
62
+ ... prompt=prompt,
63
+ ... negative_prompt=negative_prompt,
64
+ ... width=704,
65
+ ... height=480,
66
+ ... num_frames=161,
67
+ ... num_inference_steps=50,
68
+ ... ).frames[0]
69
+ >>> export_to_video(video, "output.mp4", fps=24)
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
75
+ def calculate_shift(
76
+ image_seq_len,
77
+ base_seq_len: int = 256,
78
+ max_seq_len: int = 4096,
79
+ base_shift: float = 0.5,
80
+ max_shift: float = 1.16,
81
+ ):
82
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
83
+ b = base_shift - m * base_seq_len
84
+ mu = image_seq_len * m + b
85
+ return mu
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
89
+ def retrieve_timesteps(
90
+ scheduler,
91
+ num_inference_steps: Optional[int] = None,
92
+ device: Optional[Union[str, torch.device]] = None,
93
+ timesteps: Optional[List[int]] = None,
94
+ sigmas: Optional[List[float]] = None,
95
+ **kwargs,
96
+ ):
97
+ r"""
98
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
99
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
100
+
101
+ Args:
102
+ scheduler (`SchedulerMixin`):
103
+ The scheduler to get timesteps from.
104
+ num_inference_steps (`int`):
105
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
106
+ must be `None`.
107
+ device (`str` or `torch.device`, *optional*):
108
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
109
+ timesteps (`List[int]`, *optional*):
110
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
111
+ `num_inference_steps` and `sigmas` must be `None`.
112
+ sigmas (`List[float]`, *optional*):
113
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
114
+ `num_inference_steps` and `timesteps` must be `None`.
115
+
116
+ Returns:
117
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
118
+ second element is the number of inference steps.
119
+ """
120
+ if timesteps is not None and sigmas is not None:
121
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
122
+ if timesteps is not None:
123
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
124
+ if not accepts_timesteps:
125
+ raise ValueError(
126
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
127
+ f" timestep schedules. Please check whether you are using the correct scheduler."
128
+ )
129
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
130
+ timesteps = scheduler.timesteps
131
+ num_inference_steps = len(timesteps)
132
+ elif sigmas is not None:
133
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
134
+ if not accept_sigmas:
135
+ raise ValueError(
136
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
137
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
138
+ )
139
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
140
+ timesteps = scheduler.timesteps
141
+ num_inference_steps = len(timesteps)
142
+ else:
143
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ return timesteps, num_inference_steps
146
+
147
+
148
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
149
+ def retrieve_latents(
150
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
151
+ ):
152
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
153
+ return encoder_output.latent_dist.sample(generator)
154
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
155
+ return encoder_output.latent_dist.mode()
156
+ elif hasattr(encoder_output, "latents"):
157
+ return encoder_output.latents
158
+ else:
159
+ raise AttributeError("Could not access latents of provided encoder_output")
160
+
161
+
162
+ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
163
+ r"""
164
+ Pipeline for image-to-video generation.
165
+
166
+ Reference: https://github.com/Lightricks/LTX-Video
167
+
168
+ Args:
169
+ transformer ([`LTXVideoTransformer3DModel`]):
170
+ Conditional Transformer architecture to denoise the encoded video latents.
171
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
172
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
173
+ vae ([`AutoencoderKLLTXVideo`]):
174
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
175
+ text_encoder ([`T5EncoderModel`]):
176
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
177
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
178
+ tokenizer (`CLIPTokenizer`):
179
+ Tokenizer of class
180
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
181
+ tokenizer (`T5TokenizerFast`):
182
+ Second Tokenizer of class
183
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
184
+ """
185
+
186
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
187
+ _optional_components = []
188
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
189
+
190
+ def __init__(
191
+ self,
192
+ scheduler: FlowMatchEulerDiscreteScheduler,
193
+ vae: AutoencoderKLLTXVideo,
194
+ text_encoder: T5EncoderModel,
195
+ tokenizer: T5TokenizerFast,
196
+ transformer: LTXVideoTransformer3DModel,
197
+ ):
198
+ super().__init__()
199
+
200
+ self.register_modules(
201
+ vae=vae,
202
+ text_encoder=text_encoder,
203
+ tokenizer=tokenizer,
204
+ transformer=transformer,
205
+ scheduler=scheduler,
206
+ )
207
+
208
+ self.vae_spatial_compression_ratio = self.vae.spatial_compression_ratio if hasattr(self, "vae") else 32
209
+ self.vae_temporal_compression_ratio = self.vae.temporal_compression_ratio if hasattr(self, "vae") else 8
210
+ self.transformer_spatial_patch_size = self.transformer.config.patch_size if hasattr(self, "transformer") else 1
211
+ self.transformer_temporal_patch_size = (
212
+ self.transformer.config.patch_size_t if hasattr(self, "transformer") else 1
213
+ )
214
+
215
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
216
+ self.tokenizer_max_length = (
217
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 128
218
+ )
219
+
220
+ self.default_height = 512
221
+ self.default_width = 704
222
+ self.default_frames = 121
223
+
224
+ def _get_t5_prompt_embeds(
225
+ self,
226
+ prompt: Union[str, List[str]] = None,
227
+ num_videos_per_prompt: int = 1,
228
+ max_sequence_length: int = 128,
229
+ device: Optional[torch.device] = None,
230
+ dtype: Optional[torch.dtype] = None,
231
+ ):
232
+ device = device or self._execution_device
233
+ dtype = dtype or self.text_encoder.dtype
234
+
235
+ prompt = [prompt] if isinstance(prompt, str) else prompt
236
+ batch_size = len(prompt)
237
+
238
+ text_inputs = self.tokenizer(
239
+ prompt,
240
+ padding="max_length",
241
+ max_length=max_sequence_length,
242
+ truncation=True,
243
+ add_special_tokens=True,
244
+ return_tensors="pt",
245
+ )
246
+ text_input_ids = text_inputs.input_ids
247
+ prompt_attention_mask = text_inputs.attention_mask
248
+ prompt_attention_mask = prompt_attention_mask.bool().to(device)
249
+
250
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
251
+
252
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
253
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
254
+ logger.warning(
255
+ "The following part of your input was truncated because `max_sequence_length` is set to "
256
+ f" {max_sequence_length} tokens: {removed_text}"
257
+ )
258
+
259
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
260
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
261
+
262
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
263
+ _, seq_len, _ = prompt_embeds.shape
264
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
265
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
266
+
267
+ prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
268
+ prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
269
+
270
+ return prompt_embeds, prompt_attention_mask
271
+
272
+ # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt with 256->128
273
+ def encode_prompt(
274
+ self,
275
+ prompt: Union[str, List[str]],
276
+ negative_prompt: Optional[Union[str, List[str]]] = None,
277
+ do_classifier_free_guidance: bool = True,
278
+ num_videos_per_prompt: int = 1,
279
+ prompt_embeds: Optional[torch.Tensor] = None,
280
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
281
+ prompt_attention_mask: Optional[torch.Tensor] = None,
282
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
283
+ max_sequence_length: int = 128,
284
+ device: Optional[torch.device] = None,
285
+ dtype: Optional[torch.dtype] = None,
286
+ ):
287
+ r"""
288
+ Encodes the prompt into text encoder hidden states.
289
+
290
+ Args:
291
+ prompt (`str` or `List[str]`, *optional*):
292
+ prompt to be encoded
293
+ negative_prompt (`str` or `List[str]`, *optional*):
294
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
295
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
296
+ less than `1`).
297
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
298
+ Whether to use classifier free guidance or not.
299
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
300
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
301
+ prompt_embeds (`torch.Tensor`, *optional*):
302
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
303
+ provided, text embeddings will be generated from `prompt` input argument.
304
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
305
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
306
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
307
+ argument.
308
+ device: (`torch.device`, *optional*):
309
+ torch device
310
+ dtype: (`torch.dtype`, *optional*):
311
+ torch dtype
312
+ """
313
+ device = device or self._execution_device
314
+
315
+ prompt = [prompt] if isinstance(prompt, str) else prompt
316
+ if prompt is not None:
317
+ batch_size = len(prompt)
318
+ else:
319
+ batch_size = prompt_embeds.shape[0]
320
+
321
+ if prompt_embeds is None:
322
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
323
+ prompt=prompt,
324
+ num_videos_per_prompt=num_videos_per_prompt,
325
+ max_sequence_length=max_sequence_length,
326
+ device=device,
327
+ dtype=dtype,
328
+ )
329
+
330
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
331
+ negative_prompt = negative_prompt or ""
332
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
333
+
334
+ if prompt is not None and type(prompt) is not type(negative_prompt):
335
+ raise TypeError(
336
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
337
+ f" {type(prompt)}."
338
+ )
339
+ elif batch_size != len(negative_prompt):
340
+ raise ValueError(
341
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
342
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
343
+ " the batch size of `prompt`."
344
+ )
345
+
346
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
347
+ prompt=negative_prompt,
348
+ num_videos_per_prompt=num_videos_per_prompt,
349
+ max_sequence_length=max_sequence_length,
350
+ device=device,
351
+ dtype=dtype,
352
+ )
353
+
354
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
355
+
356
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline.check_inputs
357
+ def check_inputs(
358
+ self,
359
+ prompt,
360
+ height,
361
+ width,
362
+ callback_on_step_end_tensor_inputs=None,
363
+ prompt_embeds=None,
364
+ negative_prompt_embeds=None,
365
+ prompt_attention_mask=None,
366
+ negative_prompt_attention_mask=None,
367
+ ):
368
+ if height % 32 != 0 or width % 32 != 0:
369
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
370
+
371
+ if callback_on_step_end_tensor_inputs is not None and not all(
372
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
373
+ ):
374
+ raise ValueError(
375
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
376
+ )
377
+
378
+ if prompt is not None and prompt_embeds is not None:
379
+ raise ValueError(
380
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
381
+ " only forward one of the two."
382
+ )
383
+ elif prompt is None and prompt_embeds is None:
384
+ raise ValueError(
385
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
386
+ )
387
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
388
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
389
+
390
+ if prompt_embeds is not None and prompt_attention_mask is None:
391
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
392
+
393
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
394
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
395
+
396
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
397
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
398
+ raise ValueError(
399
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
400
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
401
+ f" {negative_prompt_embeds.shape}."
402
+ )
403
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
404
+ raise ValueError(
405
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
406
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
407
+ f" {negative_prompt_attention_mask.shape}."
408
+ )
409
+
410
+ @staticmethod
411
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents
412
+ def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
413
+ # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
414
+ # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
415
+ # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
416
+ # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
417
+ batch_size, num_channels, num_frames, height, width = latents.shape
418
+ post_patch_num_frames = num_frames // patch_size_t
419
+ post_patch_height = height // patch_size
420
+ post_patch_width = width // patch_size
421
+ latents = latents.reshape(
422
+ batch_size,
423
+ -1,
424
+ post_patch_num_frames,
425
+ patch_size_t,
426
+ post_patch_height,
427
+ patch_size,
428
+ post_patch_width,
429
+ patch_size,
430
+ )
431
+ latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
432
+ return latents
433
+
434
+ @staticmethod
435
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents
436
+ def _unpack_latents(
437
+ latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
438
+ ) -> torch.Tensor:
439
+ # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
440
+ # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
441
+ # what happens in the `_pack_latents` method.
442
+ batch_size = latents.size(0)
443
+ latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
444
+ latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
445
+ return latents
446
+
447
+ @staticmethod
448
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
449
+ def _normalize_latents(
450
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
451
+ ) -> torch.Tensor:
452
+ # Normalize latents across the channel dimension [B, C, F, H, W]
453
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
454
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
455
+ latents = (latents - latents_mean) * scaling_factor / latents_std
456
+ return latents
457
+
458
+ @staticmethod
459
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents
460
+ def _denormalize_latents(
461
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
462
+ ) -> torch.Tensor:
463
+ # Denormalize latents across the channel dimension [B, C, F, H, W]
464
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
465
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
466
+ latents = latents * latents_std / scaling_factor + latents_mean
467
+ return latents
468
+
469
+ def prepare_latents(
470
+ self,
471
+ image: Optional[torch.Tensor] = None,
472
+ batch_size: int = 1,
473
+ num_channels_latents: int = 128,
474
+ height: int = 512,
475
+ width: int = 704,
476
+ num_frames: int = 161,
477
+ dtype: Optional[torch.dtype] = None,
478
+ device: Optional[torch.device] = None,
479
+ generator: Optional[torch.Generator] = None,
480
+ latents: Optional[torch.Tensor] = None,
481
+ ) -> torch.Tensor:
482
+ height = height // self.vae_spatial_compression_ratio
483
+ width = width // self.vae_spatial_compression_ratio
484
+ num_frames = (
485
+ (num_frames - 1) // self.vae_temporal_compression_ratio + 1 if latents is None else latents.size(2)
486
+ )
487
+
488
+ shape = (batch_size, num_channels_latents, num_frames, height, width)
489
+ mask_shape = (batch_size, 1, num_frames, height, width)
490
+
491
+ if latents is not None:
492
+ conditioning_mask = latents.new_zeros(shape)
493
+ conditioning_mask[:, :, 0] = 1.0
494
+ conditioning_mask = self._pack_latents(
495
+ conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
496
+ )
497
+ return latents.to(device=device, dtype=dtype), conditioning_mask
498
+
499
+ if isinstance(generator, list):
500
+ if len(generator) != batch_size:
501
+ raise ValueError(
502
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
503
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
504
+ )
505
+
506
+ init_latents = [
507
+ retrieve_latents(self.vae.encode(image[i].unsqueeze(0).unsqueeze(2)), generator[i])
508
+ for i in range(batch_size)
509
+ ]
510
+ else:
511
+ init_latents = [
512
+ retrieve_latents(self.vae.encode(img.unsqueeze(0).unsqueeze(2)), generator) for img in image
513
+ ]
514
+
515
+ init_latents = torch.cat(init_latents, dim=0).to(dtype)
516
+ init_latents = self._normalize_latents(init_latents, self.vae.latents_mean, self.vae.latents_std)
517
+ init_latents = init_latents.repeat(1, 1, num_frames, 1, 1)
518
+ conditioning_mask = torch.zeros(mask_shape, device=device, dtype=dtype)
519
+ conditioning_mask[:, :, 0] = 1.0
520
+
521
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
522
+ latents = init_latents * conditioning_mask + noise * (1 - conditioning_mask)
523
+
524
+ conditioning_mask = self._pack_latents(
525
+ conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
526
+ ).squeeze(-1)
527
+ latents = self._pack_latents(
528
+ latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
529
+ )
530
+
531
+ return latents, conditioning_mask
532
+
533
+ @property
534
+ def guidance_scale(self):
535
+ return self._guidance_scale
536
+
537
+ @property
538
+ def do_classifier_free_guidance(self):
539
+ return self._guidance_scale > 1.0
540
+
541
+ @property
542
+ def num_timesteps(self):
543
+ return self._num_timesteps
544
+
545
+ @property
546
+ def attention_kwargs(self):
547
+ return self._attention_kwargs
548
+
549
+ @property
550
+ def interrupt(self):
551
+ return self._interrupt
552
+
553
+ @torch.no_grad()
554
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
555
+ def __call__(
556
+ self,
557
+ image: PipelineImageInput = None,
558
+ prompt: Union[str, List[str]] = None,
559
+ negative_prompt: Optional[Union[str, List[str]]] = None,
560
+ height: int = 512,
561
+ width: int = 704,
562
+ num_frames: int = 161,
563
+ frame_rate: int = 25,
564
+ num_inference_steps: int = 50,
565
+ timesteps: List[int] = None,
566
+ guidance_scale: float = 3,
567
+ num_videos_per_prompt: Optional[int] = 1,
568
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
569
+ latents: Optional[torch.Tensor] = None,
570
+ prompt_embeds: Optional[torch.Tensor] = None,
571
+ prompt_attention_mask: Optional[torch.Tensor] = None,
572
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
573
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
574
+ decode_timestep: Union[float, List[float]] = 0.0,
575
+ decode_noise_scale: Optional[Union[float, List[float]]] = None,
576
+ output_type: Optional[str] = "pil",
577
+ return_dict: bool = True,
578
+ attention_kwargs: Optional[Dict[str, Any]] = None,
579
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
580
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
581
+ max_sequence_length: int = 128,
582
+ ):
583
+ r"""
584
+ Function invoked when calling the pipeline for generation.
585
+
586
+ Args:
587
+ image (`PipelineImageInput`):
588
+ The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
589
+ prompt (`str` or `List[str]`, *optional*):
590
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
591
+ instead.
592
+ height (`int`, defaults to `512`):
593
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
594
+ width (`int`, defaults to `704`):
595
+ The width in pixels of the generated image. This is set to 848 by default for the best results.
596
+ num_frames (`int`, defaults to `161`):
597
+ The number of video frames to generate
598
+ num_inference_steps (`int`, *optional*, defaults to 50):
599
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
600
+ expense of slower inference.
601
+ timesteps (`List[int]`, *optional*):
602
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
603
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
604
+ passed will be used. Must be in descending order.
605
+ guidance_scale (`float`, defaults to `3 `):
606
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
607
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
608
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
609
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
610
+ usually at the expense of lower image quality.
611
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
612
+ The number of videos to generate per prompt.
613
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
614
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
615
+ to make generation deterministic.
616
+ latents (`torch.Tensor`, *optional*):
617
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
618
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
619
+ tensor will ge generated by sampling using the supplied random `generator`.
620
+ prompt_embeds (`torch.Tensor`, *optional*):
621
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
622
+ provided, text embeddings will be generated from `prompt` input argument.
623
+ prompt_attention_mask (`torch.Tensor`, *optional*):
624
+ Pre-generated attention mask for text embeddings.
625
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
626
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
627
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
628
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
629
+ Pre-generated attention mask for negative text embeddings.
630
+ decode_timestep (`float`, defaults to `0.0`):
631
+ The timestep at which generated video is decoded.
632
+ decode_noise_scale (`float`, defaults to `None`):
633
+ The interpolation factor between random noise and denoised latents at the decode timestep.
634
+ output_type (`str`, *optional*, defaults to `"pil"`):
635
+ The output format of the generate image. Choose between
636
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
637
+ return_dict (`bool`, *optional*, defaults to `True`):
638
+ Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
639
+ attention_kwargs (`dict`, *optional*):
640
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
641
+ `self.processor` in
642
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
643
+ callback_on_step_end (`Callable`, *optional*):
644
+ A function that calls at the end of each denoising steps during the inference. The function is called
645
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
646
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
647
+ `callback_on_step_end_tensor_inputs`.
648
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
649
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
650
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
651
+ `._callback_tensor_inputs` attribute of your pipeline class.
652
+ max_sequence_length (`int` defaults to `128 `):
653
+ Maximum sequence length to use with the `prompt`.
654
+
655
+ Examples:
656
+
657
+ Returns:
658
+ [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
659
+ If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
660
+ returned where the first element is a list with the generated images.
661
+ """
662
+
663
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
664
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
665
+
666
+ # 1. Check inputs. Raise error if not correct
667
+ self.check_inputs(
668
+ prompt=prompt,
669
+ height=height,
670
+ width=width,
671
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
672
+ prompt_embeds=prompt_embeds,
673
+ negative_prompt_embeds=negative_prompt_embeds,
674
+ prompt_attention_mask=prompt_attention_mask,
675
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
676
+ )
677
+
678
+ self._guidance_scale = guidance_scale
679
+ self._attention_kwargs = attention_kwargs
680
+ self._interrupt = False
681
+
682
+ # 2. Define call parameters
683
+ if prompt is not None and isinstance(prompt, str):
684
+ batch_size = 1
685
+ elif prompt is not None and isinstance(prompt, list):
686
+ batch_size = len(prompt)
687
+ else:
688
+ batch_size = prompt_embeds.shape[0]
689
+
690
+ device = self._execution_device
691
+
692
+ # 3. Prepare text embeddings
693
+ (
694
+ prompt_embeds,
695
+ prompt_attention_mask,
696
+ negative_prompt_embeds,
697
+ negative_prompt_attention_mask,
698
+ ) = self.encode_prompt(
699
+ prompt=prompt,
700
+ negative_prompt=negative_prompt,
701
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
702
+ num_videos_per_prompt=num_videos_per_prompt,
703
+ prompt_embeds=prompt_embeds,
704
+ negative_prompt_embeds=negative_prompt_embeds,
705
+ prompt_attention_mask=prompt_attention_mask,
706
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
707
+ max_sequence_length=max_sequence_length,
708
+ device=device,
709
+ )
710
+ if self.do_classifier_free_guidance:
711
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
712
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
713
+
714
+ # 4. Prepare latent variables
715
+ if latents is None:
716
+ image = self.video_processor.preprocess(image, height=height, width=width)
717
+ image = image.to(device=device, dtype=prompt_embeds.dtype)
718
+
719
+ num_channels_latents = self.transformer.config.in_channels
720
+ latents, conditioning_mask = self.prepare_latents(
721
+ image,
722
+ batch_size * num_videos_per_prompt,
723
+ num_channels_latents,
724
+ height,
725
+ width,
726
+ num_frames,
727
+ torch.float32,
728
+ device,
729
+ generator,
730
+ latents,
731
+ )
732
+
733
+ if self.do_classifier_free_guidance:
734
+ conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
735
+
736
+ # 5. Prepare timesteps
737
+ latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
738
+ latent_height = height // self.vae_spatial_compression_ratio
739
+ latent_width = width // self.vae_spatial_compression_ratio
740
+ video_sequence_length = latent_num_frames * latent_height * latent_width
741
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
742
+ mu = calculate_shift(
743
+ video_sequence_length,
744
+ self.scheduler.config.base_image_seq_len,
745
+ self.scheduler.config.max_image_seq_len,
746
+ self.scheduler.config.base_shift,
747
+ self.scheduler.config.max_shift,
748
+ )
749
+ timesteps, num_inference_steps = retrieve_timesteps(
750
+ self.scheduler,
751
+ num_inference_steps,
752
+ device,
753
+ timesteps,
754
+ sigmas=sigmas,
755
+ mu=mu,
756
+ )
757
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
758
+ self._num_timesteps = len(timesteps)
759
+
760
+ # 6. Prepare micro-conditions
761
+ latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio
762
+ rope_interpolation_scale = (
763
+ 1 / latent_frame_rate,
764
+ self.vae_spatial_compression_ratio,
765
+ self.vae_spatial_compression_ratio,
766
+ )
767
+
768
+ # 7. Denoising loop
769
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
770
+ for i, t in enumerate(timesteps):
771
+ if self.interrupt:
772
+ continue
773
+
774
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
775
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
776
+
777
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
778
+ timestep = t.expand(latent_model_input.shape[0])
779
+ timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)
780
+
781
+ noise_pred = self.transformer(
782
+ hidden_states=latent_model_input,
783
+ encoder_hidden_states=prompt_embeds,
784
+ timestep=timestep,
785
+ encoder_attention_mask=prompt_attention_mask,
786
+ num_frames=latent_num_frames,
787
+ height=latent_height,
788
+ width=latent_width,
789
+ rope_interpolation_scale=rope_interpolation_scale,
790
+ attention_kwargs=attention_kwargs,
791
+ return_dict=False,
792
+ )[0]
793
+ noise_pred = noise_pred.float()
794
+
795
+ if self.do_classifier_free_guidance:
796
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
797
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
798
+ timestep, _ = timestep.chunk(2)
799
+
800
+ # compute the previous noisy sample x_t -> x_t-1
801
+ noise_pred = self._unpack_latents(
802
+ noise_pred,
803
+ latent_num_frames,
804
+ latent_height,
805
+ latent_width,
806
+ self.transformer_spatial_patch_size,
807
+ self.transformer_temporal_patch_size,
808
+ )
809
+ latents = self._unpack_latents(
810
+ latents,
811
+ latent_num_frames,
812
+ latent_height,
813
+ latent_width,
814
+ self.transformer_spatial_patch_size,
815
+ self.transformer_temporal_patch_size,
816
+ )
817
+
818
+ noise_pred = noise_pred[:, :, 1:]
819
+ noise_latents = latents[:, :, 1:]
820
+ pred_latents = self.scheduler.step(noise_pred, t, noise_latents, return_dict=False)[0]
821
+
822
+ latents = torch.cat([latents[:, :, :1], pred_latents], dim=2)
823
+ latents = self._pack_latents(
824
+ latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
825
+ )
826
+
827
+ if callback_on_step_end is not None:
828
+ callback_kwargs = {}
829
+ for k in callback_on_step_end_tensor_inputs:
830
+ callback_kwargs[k] = locals()[k]
831
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
832
+
833
+ latents = callback_outputs.pop("latents", latents)
834
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
835
+
836
+ # call the callback, if provided
837
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
838
+ progress_bar.update()
839
+
840
+ if XLA_AVAILABLE:
841
+ xm.mark_step()
842
+
843
+ if output_type == "latent":
844
+ video = latents
845
+ else:
846
+ latents = self._unpack_latents(
847
+ latents,
848
+ latent_num_frames,
849
+ latent_height,
850
+ latent_width,
851
+ self.transformer_spatial_patch_size,
852
+ self.transformer_temporal_patch_size,
853
+ )
854
+ latents = self._denormalize_latents(
855
+ latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
856
+ )
857
+ latents = latents.to(prompt_embeds.dtype)
858
+
859
+ if not self.vae.config.timestep_conditioning:
860
+ timestep = None
861
+ else:
862
+ noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
863
+ if not isinstance(decode_timestep, list):
864
+ decode_timestep = [decode_timestep] * batch_size
865
+ if decode_noise_scale is None:
866
+ decode_noise_scale = decode_timestep
867
+ elif not isinstance(decode_noise_scale, list):
868
+ decode_noise_scale = [decode_noise_scale] * batch_size
869
+
870
+ timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
871
+ decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
872
+ :, None, None, None, None
873
+ ]
874
+ latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
875
+
876
+ video = self.vae.decode(latents, timestep, return_dict=False)[0]
877
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
878
+
879
+ # Offload all models
880
+ self.maybe_free_model_hooks()
881
+
882
+ if not return_dict:
883
+ return (video,)
884
+
885
+ return LTXPipelineOutput(frames=video)