diffusers 0.31.0__py3-none-any.whl → 0.32.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +72 -26
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/METADATA +6 -6
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,945 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import FluxTransformer2DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+ from .pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+ >>> from controlnet_aux import CannyDetector
55
+ >>> from diffusers import FluxControlImg2ImgPipeline
56
+ >>> from diffusers.utils import load_image
57
+
58
+ >>> pipe = FluxControlImg2ImgPipeline.from_pretrained(
59
+ ... "black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16
60
+ ... ).to("cuda")
61
+
62
+ >>> prompt = "A robot made of exotic candies and chocolates of different kinds. Abstract background"
63
+ >>> image = load_image(
64
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/watercolor-painting.jpg"
65
+ ... )
66
+ >>> control_image = load_image(
67
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png"
68
+ ... )
69
+
70
+ >>> processor = CannyDetector()
71
+ >>> control_image = processor(
72
+ ... control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024
73
+ ... )
74
+
75
+ >>> image = pipe(
76
+ ... prompt=prompt,
77
+ ... image=image,
78
+ ... control_image=control_image,
79
+ ... strength=0.8,
80
+ ... height=1024,
81
+ ... width=1024,
82
+ ... num_inference_steps=50,
83
+ ... guidance_scale=30.0,
84
+ ... ).images[0]
85
+ >>> image.save("output.png")
86
+ ```
87
+ """
88
+
89
+
90
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
91
+ def calculate_shift(
92
+ image_seq_len,
93
+ base_seq_len: int = 256,
94
+ max_seq_len: int = 4096,
95
+ base_shift: float = 0.5,
96
+ max_shift: float = 1.16,
97
+ ):
98
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
99
+ b = base_shift - m * base_seq_len
100
+ mu = image_seq_len * m + b
101
+ return mu
102
+
103
+
104
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
105
+ def retrieve_latents(
106
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
107
+ ):
108
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
109
+ return encoder_output.latent_dist.sample(generator)
110
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
111
+ return encoder_output.latent_dist.mode()
112
+ elif hasattr(encoder_output, "latents"):
113
+ return encoder_output.latents
114
+ else:
115
+ raise AttributeError("Could not access latents of provided encoder_output")
116
+
117
+
118
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
119
+ def retrieve_timesteps(
120
+ scheduler,
121
+ num_inference_steps: Optional[int] = None,
122
+ device: Optional[Union[str, torch.device]] = None,
123
+ timesteps: Optional[List[int]] = None,
124
+ sigmas: Optional[List[float]] = None,
125
+ **kwargs,
126
+ ):
127
+ r"""
128
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
129
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
130
+
131
+ Args:
132
+ scheduler (`SchedulerMixin`):
133
+ The scheduler to get timesteps from.
134
+ num_inference_steps (`int`):
135
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
136
+ must be `None`.
137
+ device (`str` or `torch.device`, *optional*):
138
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
139
+ timesteps (`List[int]`, *optional*):
140
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
141
+ `num_inference_steps` and `sigmas` must be `None`.
142
+ sigmas (`List[float]`, *optional*):
143
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
144
+ `num_inference_steps` and `timesteps` must be `None`.
145
+
146
+ Returns:
147
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
148
+ second element is the number of inference steps.
149
+ """
150
+ if timesteps is not None and sigmas is not None:
151
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
152
+ if timesteps is not None:
153
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
154
+ if not accepts_timesteps:
155
+ raise ValueError(
156
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
157
+ f" timestep schedules. Please check whether you are using the correct scheduler."
158
+ )
159
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
160
+ timesteps = scheduler.timesteps
161
+ num_inference_steps = len(timesteps)
162
+ elif sigmas is not None:
163
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
164
+ if not accept_sigmas:
165
+ raise ValueError(
166
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
167
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
168
+ )
169
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
170
+ timesteps = scheduler.timesteps
171
+ num_inference_steps = len(timesteps)
172
+ else:
173
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
174
+ timesteps = scheduler.timesteps
175
+ return timesteps, num_inference_steps
176
+
177
+
178
+ class FluxControlImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
179
+ r"""
180
+ The Flux pipeline for image inpainting.
181
+
182
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
183
+
184
+ Args:
185
+ transformer ([`FluxTransformer2DModel`]):
186
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
187
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
188
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
189
+ vae ([`AutoencoderKL`]):
190
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
191
+ text_encoder ([`CLIPTextModel`]):
192
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
193
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
194
+ text_encoder_2 ([`T5EncoderModel`]):
195
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
196
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
197
+ tokenizer (`CLIPTokenizer`):
198
+ Tokenizer of class
199
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
200
+ tokenizer_2 (`T5TokenizerFast`):
201
+ Second Tokenizer of class
202
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
203
+ """
204
+
205
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
206
+ _optional_components = []
207
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
208
+
209
+ def __init__(
210
+ self,
211
+ scheduler: FlowMatchEulerDiscreteScheduler,
212
+ vae: AutoencoderKL,
213
+ text_encoder: CLIPTextModel,
214
+ tokenizer: CLIPTokenizer,
215
+ text_encoder_2: T5EncoderModel,
216
+ tokenizer_2: T5TokenizerFast,
217
+ transformer: FluxTransformer2DModel,
218
+ ):
219
+ super().__init__()
220
+
221
+ self.register_modules(
222
+ vae=vae,
223
+ text_encoder=text_encoder,
224
+ text_encoder_2=text_encoder_2,
225
+ tokenizer=tokenizer,
226
+ tokenizer_2=tokenizer_2,
227
+ transformer=transformer,
228
+ scheduler=scheduler,
229
+ )
230
+ self.vae_scale_factor = (
231
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
232
+ )
233
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
234
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
235
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
236
+ self.tokenizer_max_length = (
237
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
238
+ )
239
+ self.default_sample_size = 128
240
+
241
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
242
+ def _get_t5_prompt_embeds(
243
+ self,
244
+ prompt: Union[str, List[str]] = None,
245
+ num_images_per_prompt: int = 1,
246
+ max_sequence_length: int = 512,
247
+ device: Optional[torch.device] = None,
248
+ dtype: Optional[torch.dtype] = None,
249
+ ):
250
+ device = device or self._execution_device
251
+ dtype = dtype or self.text_encoder.dtype
252
+
253
+ prompt = [prompt] if isinstance(prompt, str) else prompt
254
+ batch_size = len(prompt)
255
+
256
+ if isinstance(self, TextualInversionLoaderMixin):
257
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
258
+
259
+ text_inputs = self.tokenizer_2(
260
+ prompt,
261
+ padding="max_length",
262
+ max_length=max_sequence_length,
263
+ truncation=True,
264
+ return_length=False,
265
+ return_overflowing_tokens=False,
266
+ return_tensors="pt",
267
+ )
268
+ text_input_ids = text_inputs.input_ids
269
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
270
+
271
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
272
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
273
+ logger.warning(
274
+ "The following part of your input was truncated because `max_sequence_length` is set to "
275
+ f" {max_sequence_length} tokens: {removed_text}"
276
+ )
277
+
278
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
279
+
280
+ dtype = self.text_encoder_2.dtype
281
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
282
+
283
+ _, seq_len, _ = prompt_embeds.shape
284
+
285
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
286
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
287
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
288
+
289
+ return prompt_embeds
290
+
291
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
292
+ def _get_clip_prompt_embeds(
293
+ self,
294
+ prompt: Union[str, List[str]],
295
+ num_images_per_prompt: int = 1,
296
+ device: Optional[torch.device] = None,
297
+ ):
298
+ device = device or self._execution_device
299
+
300
+ prompt = [prompt] if isinstance(prompt, str) else prompt
301
+ batch_size = len(prompt)
302
+
303
+ if isinstance(self, TextualInversionLoaderMixin):
304
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
305
+
306
+ text_inputs = self.tokenizer(
307
+ prompt,
308
+ padding="max_length",
309
+ max_length=self.tokenizer_max_length,
310
+ truncation=True,
311
+ return_overflowing_tokens=False,
312
+ return_length=False,
313
+ return_tensors="pt",
314
+ )
315
+
316
+ text_input_ids = text_inputs.input_ids
317
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
318
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
319
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
320
+ logger.warning(
321
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
322
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
323
+ )
324
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
325
+
326
+ # Use pooled output of CLIPTextModel
327
+ prompt_embeds = prompt_embeds.pooler_output
328
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
329
+
330
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
331
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
332
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
333
+
334
+ return prompt_embeds
335
+
336
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
337
+ def encode_prompt(
338
+ self,
339
+ prompt: Union[str, List[str]],
340
+ prompt_2: Union[str, List[str]],
341
+ device: Optional[torch.device] = None,
342
+ num_images_per_prompt: int = 1,
343
+ prompt_embeds: Optional[torch.FloatTensor] = None,
344
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
345
+ max_sequence_length: int = 512,
346
+ lora_scale: Optional[float] = None,
347
+ ):
348
+ r"""
349
+
350
+ Args:
351
+ prompt (`str` or `List[str]`, *optional*):
352
+ prompt to be encoded
353
+ prompt_2 (`str` or `List[str]`, *optional*):
354
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
355
+ used in all text-encoders
356
+ device: (`torch.device`):
357
+ torch device
358
+ num_images_per_prompt (`int`):
359
+ number of images that should be generated per prompt
360
+ prompt_embeds (`torch.FloatTensor`, *optional*):
361
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
362
+ provided, text embeddings will be generated from `prompt` input argument.
363
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
364
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
365
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
366
+ lora_scale (`float`, *optional*):
367
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
368
+ """
369
+ device = device or self._execution_device
370
+
371
+ # set lora scale so that monkey patched LoRA
372
+ # function of text encoder can correctly access it
373
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
374
+ self._lora_scale = lora_scale
375
+
376
+ # dynamically adjust the LoRA scale
377
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
378
+ scale_lora_layers(self.text_encoder, lora_scale)
379
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
380
+ scale_lora_layers(self.text_encoder_2, lora_scale)
381
+
382
+ prompt = [prompt] if isinstance(prompt, str) else prompt
383
+
384
+ if prompt_embeds is None:
385
+ prompt_2 = prompt_2 or prompt
386
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
387
+
388
+ # We only use the pooled prompt output from the CLIPTextModel
389
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
390
+ prompt=prompt,
391
+ device=device,
392
+ num_images_per_prompt=num_images_per_prompt,
393
+ )
394
+ prompt_embeds = self._get_t5_prompt_embeds(
395
+ prompt=prompt_2,
396
+ num_images_per_prompt=num_images_per_prompt,
397
+ max_sequence_length=max_sequence_length,
398
+ device=device,
399
+ )
400
+
401
+ if self.text_encoder is not None:
402
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
403
+ # Retrieve the original scale by scaling back the LoRA layers
404
+ unscale_lora_layers(self.text_encoder, lora_scale)
405
+
406
+ if self.text_encoder_2 is not None:
407
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
408
+ # Retrieve the original scale by scaling back the LoRA layers
409
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
410
+
411
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
412
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
413
+
414
+ return prompt_embeds, pooled_prompt_embeds, text_ids
415
+
416
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
417
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
418
+ if isinstance(generator, list):
419
+ image_latents = [
420
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
421
+ for i in range(image.shape[0])
422
+ ]
423
+ image_latents = torch.cat(image_latents, dim=0)
424
+ else:
425
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
426
+
427
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
428
+
429
+ return image_latents
430
+
431
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
432
+ def get_timesteps(self, num_inference_steps, strength, device):
433
+ # get the original timestep using init_timestep
434
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
435
+
436
+ t_start = int(max(num_inference_steps - init_timestep, 0))
437
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
438
+ if hasattr(self.scheduler, "set_begin_index"):
439
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
440
+
441
+ return timesteps, num_inference_steps - t_start
442
+
443
+ # Copied from diffusers.pipelines.flux.pipeline_flux_img2img.FluxImg2ImgPipeline.check_inputs
444
+ def check_inputs(
445
+ self,
446
+ prompt,
447
+ prompt_2,
448
+ strength,
449
+ height,
450
+ width,
451
+ prompt_embeds=None,
452
+ pooled_prompt_embeds=None,
453
+ callback_on_step_end_tensor_inputs=None,
454
+ max_sequence_length=None,
455
+ ):
456
+ if strength < 0 or strength > 1:
457
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
458
+
459
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
460
+ logger.warning(
461
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
462
+ )
463
+
464
+ if callback_on_step_end_tensor_inputs is not None and not all(
465
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
466
+ ):
467
+ raise ValueError(
468
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
469
+ )
470
+
471
+ if prompt is not None and prompt_embeds is not None:
472
+ raise ValueError(
473
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
474
+ " only forward one of the two."
475
+ )
476
+ elif prompt_2 is not None and prompt_embeds is not None:
477
+ raise ValueError(
478
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
479
+ " only forward one of the two."
480
+ )
481
+ elif prompt is None and prompt_embeds is None:
482
+ raise ValueError(
483
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
484
+ )
485
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
486
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
487
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
488
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
489
+
490
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
491
+ raise ValueError(
492
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
493
+ )
494
+
495
+ if max_sequence_length is not None and max_sequence_length > 512:
496
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
497
+
498
+ @staticmethod
499
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
500
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
501
+ latent_image_ids = torch.zeros(height, width, 3)
502
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
503
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
504
+
505
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
506
+
507
+ latent_image_ids = latent_image_ids.reshape(
508
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
509
+ )
510
+
511
+ return latent_image_ids.to(device=device, dtype=dtype)
512
+
513
+ @staticmethod
514
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
515
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
516
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
517
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
518
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
519
+
520
+ return latents
521
+
522
+ @staticmethod
523
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
524
+ def _unpack_latents(latents, height, width, vae_scale_factor):
525
+ batch_size, num_patches, channels = latents.shape
526
+
527
+ # VAE applies 8x compression on images but we must also account for packing which requires
528
+ # latent height and width to be divisible by 2.
529
+ height = 2 * (int(height) // (vae_scale_factor * 2))
530
+ width = 2 * (int(width) // (vae_scale_factor * 2))
531
+
532
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
533
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
534
+
535
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
536
+
537
+ return latents
538
+
539
+ # Copied from diffusers.pipelines.flux.pipeline_flux_img2img.FluxImg2ImgPipeline.prepare_latents
540
+ def prepare_latents(
541
+ self,
542
+ image,
543
+ timestep,
544
+ batch_size,
545
+ num_channels_latents,
546
+ height,
547
+ width,
548
+ dtype,
549
+ device,
550
+ generator,
551
+ latents=None,
552
+ ):
553
+ if isinstance(generator, list) and len(generator) != batch_size:
554
+ raise ValueError(
555
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
556
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
557
+ )
558
+
559
+ # VAE applies 8x compression on images but we must also account for packing which requires
560
+ # latent height and width to be divisible by 2.
561
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
562
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
563
+ shape = (batch_size, num_channels_latents, height, width)
564
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
565
+
566
+ if latents is not None:
567
+ return latents.to(device=device, dtype=dtype), latent_image_ids
568
+
569
+ image = image.to(device=device, dtype=dtype)
570
+ image_latents = self._encode_vae_image(image=image, generator=generator)
571
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
572
+ # expand init_latents for batch_size
573
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
574
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
575
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
576
+ raise ValueError(
577
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
578
+ )
579
+ else:
580
+ image_latents = torch.cat([image_latents], dim=0)
581
+
582
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
583
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
584
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
585
+ return latents, latent_image_ids
586
+
587
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
588
+ def prepare_image(
589
+ self,
590
+ image,
591
+ width,
592
+ height,
593
+ batch_size,
594
+ num_images_per_prompt,
595
+ device,
596
+ dtype,
597
+ do_classifier_free_guidance=False,
598
+ guess_mode=False,
599
+ ):
600
+ if isinstance(image, torch.Tensor):
601
+ pass
602
+ else:
603
+ image = self.image_processor.preprocess(image, height=height, width=width)
604
+
605
+ image_batch_size = image.shape[0]
606
+
607
+ if image_batch_size == 1:
608
+ repeat_by = batch_size
609
+ else:
610
+ # image batch size is the same as prompt batch size
611
+ repeat_by = num_images_per_prompt
612
+
613
+ image = image.repeat_interleave(repeat_by, dim=0)
614
+
615
+ image = image.to(device=device, dtype=dtype)
616
+
617
+ if do_classifier_free_guidance and not guess_mode:
618
+ image = torch.cat([image] * 2)
619
+
620
+ return image
621
+
622
+ @property
623
+ def guidance_scale(self):
624
+ return self._guidance_scale
625
+
626
+ @property
627
+ def joint_attention_kwargs(self):
628
+ return self._joint_attention_kwargs
629
+
630
+ @property
631
+ def num_timesteps(self):
632
+ return self._num_timesteps
633
+
634
+ @property
635
+ def interrupt(self):
636
+ return self._interrupt
637
+
638
+ @torch.no_grad()
639
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
640
+ def __call__(
641
+ self,
642
+ prompt: Union[str, List[str]] = None,
643
+ prompt_2: Optional[Union[str, List[str]]] = None,
644
+ image: PipelineImageInput = None,
645
+ control_image: PipelineImageInput = None,
646
+ height: Optional[int] = None,
647
+ width: Optional[int] = None,
648
+ strength: float = 0.6,
649
+ num_inference_steps: int = 28,
650
+ sigmas: Optional[List[float]] = None,
651
+ guidance_scale: float = 7.0,
652
+ num_images_per_prompt: Optional[int] = 1,
653
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
654
+ latents: Optional[torch.FloatTensor] = None,
655
+ prompt_embeds: Optional[torch.FloatTensor] = None,
656
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
657
+ output_type: Optional[str] = "pil",
658
+ return_dict: bool = True,
659
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
660
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
661
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
662
+ max_sequence_length: int = 512,
663
+ ):
664
+ r"""
665
+ Function invoked when calling the pipeline for generation.
666
+
667
+ Args:
668
+ prompt (`str` or `List[str]`, *optional*):
669
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
670
+ instead.
671
+ prompt_2 (`str` or `List[str]`, *optional*):
672
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
673
+ will be used instead
674
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
675
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
676
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
677
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
678
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
679
+ latents as `image`, but if passing latents directly it is not encoded again.
680
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
681
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
682
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
683
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
684
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
685
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
686
+ images must be passed as a list such that each element of the list can be correctly batched for input
687
+ to a single ControlNet.
688
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
689
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
690
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
691
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
692
+ strength (`float`, *optional*, defaults to 1.0):
693
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
694
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
695
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
696
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
697
+ essentially ignores `image`.
698
+ num_inference_steps (`int`, *optional*, defaults to 50):
699
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
700
+ expense of slower inference.
701
+ sigmas (`List[float]`, *optional*):
702
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
703
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
704
+ will be used.
705
+ guidance_scale (`float`, *optional*, defaults to 7.0):
706
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
707
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
708
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
709
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
710
+ usually at the expense of lower image quality.
711
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
712
+ The number of images to generate per prompt.
713
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
714
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
715
+ to make generation deterministic.
716
+ latents (`torch.FloatTensor`, *optional*):
717
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
718
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
719
+ tensor will ge generated by sampling using the supplied random `generator`.
720
+ prompt_embeds (`torch.FloatTensor`, *optional*):
721
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
722
+ provided, text embeddings will be generated from `prompt` input argument.
723
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
724
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
725
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
726
+ output_type (`str`, *optional*, defaults to `"pil"`):
727
+ The output format of the generate image. Choose between
728
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
729
+ return_dict (`bool`, *optional*, defaults to `True`):
730
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
731
+ joint_attention_kwargs (`dict`, *optional*):
732
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
733
+ `self.processor` in
734
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
735
+ callback_on_step_end (`Callable`, *optional*):
736
+ A function that calls at the end of each denoising steps during the inference. The function is called
737
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
738
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
739
+ `callback_on_step_end_tensor_inputs`.
740
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
741
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
742
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
743
+ `._callback_tensor_inputs` attribute of your pipeline class.
744
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
745
+
746
+ Examples:
747
+
748
+ Returns:
749
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
750
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
751
+ images.
752
+ """
753
+
754
+ height = height or self.default_sample_size * self.vae_scale_factor
755
+ width = width or self.default_sample_size * self.vae_scale_factor
756
+
757
+ # 1. Check inputs. Raise error if not correct
758
+ self.check_inputs(
759
+ prompt,
760
+ prompt_2,
761
+ strength,
762
+ height,
763
+ width,
764
+ prompt_embeds=prompt_embeds,
765
+ pooled_prompt_embeds=pooled_prompt_embeds,
766
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
767
+ max_sequence_length=max_sequence_length,
768
+ )
769
+
770
+ self._guidance_scale = guidance_scale
771
+ self._joint_attention_kwargs = joint_attention_kwargs
772
+ self._interrupt = False
773
+
774
+ # 2. Preprocess image
775
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
776
+ init_image = init_image.to(dtype=torch.float32)
777
+
778
+ # 3. Define call parameters
779
+ if prompt is not None and isinstance(prompt, str):
780
+ batch_size = 1
781
+ elif prompt is not None and isinstance(prompt, list):
782
+ batch_size = len(prompt)
783
+ else:
784
+ batch_size = prompt_embeds.shape[0]
785
+
786
+ device = self._execution_device
787
+
788
+ # 3. Prepare text embeddings
789
+ lora_scale = (
790
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
791
+ )
792
+ (
793
+ prompt_embeds,
794
+ pooled_prompt_embeds,
795
+ text_ids,
796
+ ) = self.encode_prompt(
797
+ prompt=prompt,
798
+ prompt_2=prompt_2,
799
+ prompt_embeds=prompt_embeds,
800
+ pooled_prompt_embeds=pooled_prompt_embeds,
801
+ device=device,
802
+ num_images_per_prompt=num_images_per_prompt,
803
+ max_sequence_length=max_sequence_length,
804
+ lora_scale=lora_scale,
805
+ )
806
+
807
+ # 4.Prepare timesteps
808
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
809
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
810
+ mu = calculate_shift(
811
+ image_seq_len,
812
+ self.scheduler.config.base_image_seq_len,
813
+ self.scheduler.config.max_image_seq_len,
814
+ self.scheduler.config.base_shift,
815
+ self.scheduler.config.max_shift,
816
+ )
817
+ timesteps, num_inference_steps = retrieve_timesteps(
818
+ self.scheduler,
819
+ num_inference_steps,
820
+ device,
821
+ sigmas=sigmas,
822
+ mu=mu,
823
+ )
824
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
825
+
826
+ if num_inference_steps < 1:
827
+ raise ValueError(
828
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
829
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
830
+ )
831
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
832
+
833
+ # 5. Prepare latent variables
834
+ num_channels_latents = self.transformer.config.in_channels // 8
835
+
836
+ control_image = self.prepare_image(
837
+ image=control_image,
838
+ width=width,
839
+ height=height,
840
+ batch_size=batch_size * num_images_per_prompt,
841
+ num_images_per_prompt=num_images_per_prompt,
842
+ device=device,
843
+ dtype=self.vae.dtype,
844
+ )
845
+
846
+ if control_image.ndim == 4:
847
+ control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator)
848
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
849
+
850
+ height_control_image, width_control_image = control_image.shape[2:]
851
+ control_image = self._pack_latents(
852
+ control_image,
853
+ batch_size * num_images_per_prompt,
854
+ num_channels_latents,
855
+ height_control_image,
856
+ width_control_image,
857
+ )
858
+
859
+ latents, latent_image_ids = self.prepare_latents(
860
+ init_image,
861
+ latent_timestep,
862
+ batch_size * num_images_per_prompt,
863
+ num_channels_latents,
864
+ height,
865
+ width,
866
+ prompt_embeds.dtype,
867
+ device,
868
+ generator,
869
+ latents,
870
+ )
871
+
872
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
873
+ self._num_timesteps = len(timesteps)
874
+
875
+ # handle guidance
876
+ if self.transformer.config.guidance_embeds:
877
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
878
+ guidance = guidance.expand(latents.shape[0])
879
+ else:
880
+ guidance = None
881
+
882
+ # 6. Denoising loop
883
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
884
+ for i, t in enumerate(timesteps):
885
+ if self.interrupt:
886
+ continue
887
+
888
+ latent_model_input = torch.cat([latents, control_image], dim=2)
889
+
890
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
891
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
892
+
893
+ noise_pred = self.transformer(
894
+ hidden_states=latent_model_input,
895
+ timestep=timestep / 1000,
896
+ guidance=guidance,
897
+ pooled_projections=pooled_prompt_embeds,
898
+ encoder_hidden_states=prompt_embeds,
899
+ txt_ids=text_ids,
900
+ img_ids=latent_image_ids,
901
+ joint_attention_kwargs=self.joint_attention_kwargs,
902
+ return_dict=False,
903
+ )[0]
904
+
905
+ # compute the previous noisy sample x_t -> x_t-1
906
+ latents_dtype = latents.dtype
907
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
908
+
909
+ if latents.dtype != latents_dtype:
910
+ if torch.backends.mps.is_available():
911
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
912
+ latents = latents.to(latents_dtype)
913
+
914
+ if callback_on_step_end is not None:
915
+ callback_kwargs = {}
916
+ for k in callback_on_step_end_tensor_inputs:
917
+ callback_kwargs[k] = locals()[k]
918
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
919
+
920
+ latents = callback_outputs.pop("latents", latents)
921
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
922
+
923
+ # call the callback, if provided
924
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
925
+ progress_bar.update()
926
+
927
+ if XLA_AVAILABLE:
928
+ xm.mark_step()
929
+
930
+ if output_type == "latent":
931
+ image = latents
932
+
933
+ else:
934
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
935
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
936
+ image = self.vae.decode(latents, return_dict=False)[0]
937
+ image = self.image_processor.postprocess(image, output_type=output_type)
938
+
939
+ # Offload all models
940
+ self.maybe_free_model_hooks()
941
+
942
+ if not return_dict:
943
+ return (image,)
944
+
945
+ return FluxPipelineOutput(images=image)