diffusers 0.31.0__py3-none-any.whl → 0.32.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +72 -26
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/METADATA +6 -6
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1790 @@
1
+ # Copyright 2024 Harutatsu Akiyama, Jinbin Bai, and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from transformers import (
23
+ CLIPImageProcessor,
24
+ CLIPTextModel,
25
+ CLIPTextModelWithProjection,
26
+ CLIPTokenizer,
27
+ CLIPVisionModelWithProjection,
28
+ )
29
+
30
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
31
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
32
+ from ...loaders import (
33
+ FromSingleFileMixin,
34
+ IPAdapterMixin,
35
+ StableDiffusionXLLoraLoaderMixin,
36
+ TextualInversionLoaderMixin,
37
+ )
38
+ from ...models import AutoencoderKL, ControlNetModel, ControlNetUnionModel, ImageProjection, UNet2DConditionModel
39
+ from ...models.attention_processor import (
40
+ AttnProcessor2_0,
41
+ XFormersAttnProcessor,
42
+ )
43
+ from ...models.lora import adjust_lora_scale_text_encoder
44
+ from ...schedulers import KarrasDiffusionSchedulers
45
+ from ...utils import (
46
+ USE_PEFT_BACKEND,
47
+ deprecate,
48
+ is_invisible_watermark_available,
49
+ logging,
50
+ replace_example_docstring,
51
+ scale_lora_layers,
52
+ unscale_lora_layers,
53
+ )
54
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
55
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
56
+ from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
57
+
58
+
59
+ if is_invisible_watermark_available():
60
+ from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
61
+
62
+
63
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
64
+
65
+
66
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
67
+ def retrieve_latents(
68
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
69
+ ):
70
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
71
+ return encoder_output.latent_dist.sample(generator)
72
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
73
+ return encoder_output.latent_dist.mode()
74
+ elif hasattr(encoder_output, "latents"):
75
+ return encoder_output.latents
76
+ else:
77
+ raise AttributeError("Could not access latents of provided encoder_output")
78
+
79
+
80
+ EXAMPLE_DOC_STRING = """
81
+ Examples:
82
+ ```py
83
+ from diffusers import StableDiffusionXLControlNetUnionInpaintPipeline, ControlNetUnionModel, AutoencoderKL
84
+ from diffusers.utils import load_image
85
+ import torch
86
+ import numpy as np
87
+ from PIL import Image
88
+
89
+ prompt = "A cat"
90
+ # download an image
91
+ image = load_image(
92
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint/overture-creations-5sI6fQgYIuo.png"
93
+ ).resize((1024, 1024))
94
+ mask = load_image(
95
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
96
+ ).resize((1024, 1024))
97
+ # initialize the models and pipeline
98
+ controlnet = ControlNetUnionModel.from_pretrained(
99
+ "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
100
+ )
101
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
102
+ pipe = StableDiffusionXLControlNetUnionInpaintPipeline.from_pretrained(
103
+ "stabilityai/stable-diffusion-xl-base-1.0",
104
+ controlnet=controlnet,
105
+ vae=vae,
106
+ torch_dtype=torch.float16,
107
+ variant="fp16",
108
+ )
109
+ pipe.enable_model_cpu_offload()
110
+ controlnet_img = image.copy()
111
+ controlnet_img_np = np.array(controlnet_img)
112
+ mask_np = np.array(mask)
113
+ controlnet_img_np[mask_np > 0] = 0
114
+ controlnet_img = Image.fromarray(controlnet_img_np)
115
+ # generate image
116
+ image = pipe(prompt, image=image, mask_image=mask, control_image=[controlnet_img], control_mode=[7]).images[0]
117
+ image.save("inpaint.png")
118
+ ```
119
+ """
120
+
121
+
122
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
123
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
124
+ r"""
125
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
126
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
127
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
128
+
129
+ Args:
130
+ noise_cfg (`torch.Tensor`):
131
+ The predicted noise tensor for the guided diffusion process.
132
+ noise_pred_text (`torch.Tensor`):
133
+ The predicted noise tensor for the text-guided diffusion process.
134
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
135
+ A rescale factor applied to the noise predictions.
136
+
137
+ Returns:
138
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
139
+ """
140
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
141
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
142
+ # rescale the results from guidance (fixes overexposure)
143
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
144
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
145
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
146
+ return noise_cfg
147
+
148
+
149
+ class StableDiffusionXLControlNetUnionInpaintPipeline(
150
+ DiffusionPipeline,
151
+ StableDiffusionMixin,
152
+ StableDiffusionXLLoraLoaderMixin,
153
+ FromSingleFileMixin,
154
+ IPAdapterMixin,
155
+ TextualInversionLoaderMixin,
156
+ ):
157
+ r"""
158
+ Pipeline for text-to-image generation using Stable Diffusion XL.
159
+
160
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
161
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
162
+
163
+ The pipeline also inherits the following loading methods:
164
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
165
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
166
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
167
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
168
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
169
+
170
+ Args:
171
+ vae ([`AutoencoderKL`]):
172
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
173
+ text_encoder ([`CLIPTextModel`]):
174
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
175
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
176
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
177
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
178
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
179
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
180
+ specifically the
181
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
182
+ variant.
183
+ tokenizer (`CLIPTokenizer`):
184
+ Tokenizer of class
185
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
186
+ tokenizer_2 (`CLIPTokenizer`):
187
+ Second Tokenizer of class
188
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
189
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
190
+ scheduler ([`SchedulerMixin`]):
191
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
192
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
193
+ """
194
+
195
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
196
+
197
+ _optional_components = [
198
+ "tokenizer",
199
+ "tokenizer_2",
200
+ "text_encoder",
201
+ "text_encoder_2",
202
+ "image_encoder",
203
+ "feature_extractor",
204
+ ]
205
+ _callback_tensor_inputs = [
206
+ "latents",
207
+ "prompt_embeds",
208
+ "add_text_embeds",
209
+ "add_time_ids",
210
+ "mask",
211
+ "masked_image_latents",
212
+ ]
213
+
214
+ def __init__(
215
+ self,
216
+ vae: AutoencoderKL,
217
+ text_encoder: CLIPTextModel,
218
+ text_encoder_2: CLIPTextModelWithProjection,
219
+ tokenizer: CLIPTokenizer,
220
+ tokenizer_2: CLIPTokenizer,
221
+ unet: UNet2DConditionModel,
222
+ controlnet: ControlNetUnionModel,
223
+ scheduler: KarrasDiffusionSchedulers,
224
+ requires_aesthetics_score: bool = False,
225
+ force_zeros_for_empty_prompt: bool = True,
226
+ add_watermarker: Optional[bool] = None,
227
+ feature_extractor: Optional[CLIPImageProcessor] = None,
228
+ image_encoder: Optional[CLIPVisionModelWithProjection] = None,
229
+ ):
230
+ super().__init__()
231
+
232
+ if not isinstance(controlnet, ControlNetUnionModel):
233
+ raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
234
+
235
+ self.register_modules(
236
+ vae=vae,
237
+ text_encoder=text_encoder,
238
+ text_encoder_2=text_encoder_2,
239
+ tokenizer=tokenizer,
240
+ tokenizer_2=tokenizer_2,
241
+ unet=unet,
242
+ controlnet=controlnet,
243
+ scheduler=scheduler,
244
+ feature_extractor=feature_extractor,
245
+ image_encoder=image_encoder,
246
+ )
247
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
248
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
249
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
250
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
251
+ self.mask_processor = VaeImageProcessor(
252
+ vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
253
+ )
254
+ self.control_image_processor = VaeImageProcessor(
255
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
256
+ )
257
+
258
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
259
+
260
+ if add_watermarker:
261
+ self.watermark = StableDiffusionXLWatermarker()
262
+ else:
263
+ self.watermark = None
264
+
265
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
266
+ def encode_prompt(
267
+ self,
268
+ prompt: str,
269
+ prompt_2: Optional[str] = None,
270
+ device: Optional[torch.device] = None,
271
+ num_images_per_prompt: int = 1,
272
+ do_classifier_free_guidance: bool = True,
273
+ negative_prompt: Optional[str] = None,
274
+ negative_prompt_2: Optional[str] = None,
275
+ prompt_embeds: Optional[torch.Tensor] = None,
276
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
277
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
278
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
279
+ lora_scale: Optional[float] = None,
280
+ clip_skip: Optional[int] = None,
281
+ ):
282
+ r"""
283
+ Encodes the prompt into text encoder hidden states.
284
+
285
+ Args:
286
+ prompt (`str` or `List[str]`, *optional*):
287
+ prompt to be encoded
288
+ prompt_2 (`str` or `List[str]`, *optional*):
289
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
290
+ used in both text-encoders
291
+ device: (`torch.device`):
292
+ torch device
293
+ num_images_per_prompt (`int`):
294
+ number of images that should be generated per prompt
295
+ do_classifier_free_guidance (`bool`):
296
+ whether to use classifier free guidance or not
297
+ negative_prompt (`str` or `List[str]`, *optional*):
298
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
299
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
300
+ less than `1`).
301
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
302
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
303
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
304
+ prompt_embeds (`torch.Tensor`, *optional*):
305
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
306
+ provided, text embeddings will be generated from `prompt` input argument.
307
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
308
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
309
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
310
+ argument.
311
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
312
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
313
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
314
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
315
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
316
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
317
+ input argument.
318
+ lora_scale (`float`, *optional*):
319
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
320
+ clip_skip (`int`, *optional*):
321
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
322
+ the output of the pre-final layer will be used for computing the prompt embeddings.
323
+ """
324
+ device = device or self._execution_device
325
+
326
+ # set lora scale so that monkey patched LoRA
327
+ # function of text encoder can correctly access it
328
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
329
+ self._lora_scale = lora_scale
330
+
331
+ # dynamically adjust the LoRA scale
332
+ if self.text_encoder is not None:
333
+ if not USE_PEFT_BACKEND:
334
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
335
+ else:
336
+ scale_lora_layers(self.text_encoder, lora_scale)
337
+
338
+ if self.text_encoder_2 is not None:
339
+ if not USE_PEFT_BACKEND:
340
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
341
+ else:
342
+ scale_lora_layers(self.text_encoder_2, lora_scale)
343
+
344
+ prompt = [prompt] if isinstance(prompt, str) else prompt
345
+
346
+ if prompt is not None:
347
+ batch_size = len(prompt)
348
+ else:
349
+ batch_size = prompt_embeds.shape[0]
350
+
351
+ # Define tokenizers and text encoders
352
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
353
+ text_encoders = (
354
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
355
+ )
356
+
357
+ if prompt_embeds is None:
358
+ prompt_2 = prompt_2 or prompt
359
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
360
+
361
+ # textual inversion: process multi-vector tokens if necessary
362
+ prompt_embeds_list = []
363
+ prompts = [prompt, prompt_2]
364
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
365
+ if isinstance(self, TextualInversionLoaderMixin):
366
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
367
+
368
+ text_inputs = tokenizer(
369
+ prompt,
370
+ padding="max_length",
371
+ max_length=tokenizer.model_max_length,
372
+ truncation=True,
373
+ return_tensors="pt",
374
+ )
375
+
376
+ text_input_ids = text_inputs.input_ids
377
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
378
+
379
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
380
+ text_input_ids, untruncated_ids
381
+ ):
382
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
383
+ logger.warning(
384
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
385
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
386
+ )
387
+
388
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
389
+
390
+ # We are only ALWAYS interested in the pooled output of the final text encoder
391
+ pooled_prompt_embeds = prompt_embeds[0]
392
+ if clip_skip is None:
393
+ prompt_embeds = prompt_embeds.hidden_states[-2]
394
+ else:
395
+ # "2" because SDXL always indexes from the penultimate layer.
396
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
397
+
398
+ prompt_embeds_list.append(prompt_embeds)
399
+
400
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
401
+
402
+ # get unconditional embeddings for classifier free guidance
403
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
404
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
405
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
406
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
407
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
408
+ negative_prompt = negative_prompt or ""
409
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
410
+
411
+ # normalize str to list
412
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
413
+ negative_prompt_2 = (
414
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
415
+ )
416
+
417
+ uncond_tokens: List[str]
418
+ if prompt is not None and type(prompt) is not type(negative_prompt):
419
+ raise TypeError(
420
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
421
+ f" {type(prompt)}."
422
+ )
423
+ elif batch_size != len(negative_prompt):
424
+ raise ValueError(
425
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
426
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
427
+ " the batch size of `prompt`."
428
+ )
429
+ else:
430
+ uncond_tokens = [negative_prompt, negative_prompt_2]
431
+
432
+ negative_prompt_embeds_list = []
433
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
434
+ if isinstance(self, TextualInversionLoaderMixin):
435
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
436
+
437
+ max_length = prompt_embeds.shape[1]
438
+ uncond_input = tokenizer(
439
+ negative_prompt,
440
+ padding="max_length",
441
+ max_length=max_length,
442
+ truncation=True,
443
+ return_tensors="pt",
444
+ )
445
+
446
+ negative_prompt_embeds = text_encoder(
447
+ uncond_input.input_ids.to(device),
448
+ output_hidden_states=True,
449
+ )
450
+ # We are only ALWAYS interested in the pooled output of the final text encoder
451
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
452
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
453
+
454
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
455
+
456
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
457
+
458
+ if self.text_encoder_2 is not None:
459
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
460
+ else:
461
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
462
+
463
+ bs_embed, seq_len, _ = prompt_embeds.shape
464
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
465
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
466
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
467
+
468
+ if do_classifier_free_guidance:
469
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
470
+ seq_len = negative_prompt_embeds.shape[1]
471
+
472
+ if self.text_encoder_2 is not None:
473
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
474
+ else:
475
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
476
+
477
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
478
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
479
+
480
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
481
+ bs_embed * num_images_per_prompt, -1
482
+ )
483
+ if do_classifier_free_guidance:
484
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
485
+ bs_embed * num_images_per_prompt, -1
486
+ )
487
+
488
+ if self.text_encoder is not None:
489
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
490
+ # Retrieve the original scale by scaling back the LoRA layers
491
+ unscale_lora_layers(self.text_encoder, lora_scale)
492
+
493
+ if self.text_encoder_2 is not None:
494
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
495
+ # Retrieve the original scale by scaling back the LoRA layers
496
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
497
+
498
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
499
+
500
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
501
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
502
+ dtype = next(self.image_encoder.parameters()).dtype
503
+
504
+ if not isinstance(image, torch.Tensor):
505
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
506
+
507
+ image = image.to(device=device, dtype=dtype)
508
+ if output_hidden_states:
509
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
510
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
511
+ uncond_image_enc_hidden_states = self.image_encoder(
512
+ torch.zeros_like(image), output_hidden_states=True
513
+ ).hidden_states[-2]
514
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
515
+ num_images_per_prompt, dim=0
516
+ )
517
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
518
+ else:
519
+ image_embeds = self.image_encoder(image).image_embeds
520
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
521
+ uncond_image_embeds = torch.zeros_like(image_embeds)
522
+
523
+ return image_embeds, uncond_image_embeds
524
+
525
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
526
+ def prepare_ip_adapter_image_embeds(
527
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
528
+ ):
529
+ image_embeds = []
530
+ if do_classifier_free_guidance:
531
+ negative_image_embeds = []
532
+ if ip_adapter_image_embeds is None:
533
+ if not isinstance(ip_adapter_image, list):
534
+ ip_adapter_image = [ip_adapter_image]
535
+
536
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
537
+ raise ValueError(
538
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
539
+ )
540
+
541
+ for single_ip_adapter_image, image_proj_layer in zip(
542
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
543
+ ):
544
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
545
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
546
+ single_ip_adapter_image, device, 1, output_hidden_state
547
+ )
548
+
549
+ image_embeds.append(single_image_embeds[None, :])
550
+ if do_classifier_free_guidance:
551
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
552
+ else:
553
+ for single_image_embeds in ip_adapter_image_embeds:
554
+ if do_classifier_free_guidance:
555
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
556
+ negative_image_embeds.append(single_negative_image_embeds)
557
+ image_embeds.append(single_image_embeds)
558
+
559
+ ip_adapter_image_embeds = []
560
+ for i, single_image_embeds in enumerate(image_embeds):
561
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
562
+ if do_classifier_free_guidance:
563
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
564
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
565
+
566
+ single_image_embeds = single_image_embeds.to(device=device)
567
+ ip_adapter_image_embeds.append(single_image_embeds)
568
+
569
+ return ip_adapter_image_embeds
570
+
571
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
572
+ def prepare_extra_step_kwargs(self, generator, eta):
573
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
574
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
575
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
576
+ # and should be between [0, 1]
577
+
578
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
579
+ extra_step_kwargs = {}
580
+ if accepts_eta:
581
+ extra_step_kwargs["eta"] = eta
582
+
583
+ # check if the scheduler accepts generator
584
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
585
+ if accepts_generator:
586
+ extra_step_kwargs["generator"] = generator
587
+ return extra_step_kwargs
588
+
589
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
590
+ def check_image(self, image, prompt, prompt_embeds):
591
+ image_is_pil = isinstance(image, PIL.Image.Image)
592
+ image_is_tensor = isinstance(image, torch.Tensor)
593
+ image_is_np = isinstance(image, np.ndarray)
594
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
595
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
596
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
597
+
598
+ if (
599
+ not image_is_pil
600
+ and not image_is_tensor
601
+ and not image_is_np
602
+ and not image_is_pil_list
603
+ and not image_is_tensor_list
604
+ and not image_is_np_list
605
+ ):
606
+ raise TypeError(
607
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
608
+ )
609
+
610
+ if image_is_pil:
611
+ image_batch_size = 1
612
+ else:
613
+ image_batch_size = len(image)
614
+
615
+ if prompt is not None and isinstance(prompt, str):
616
+ prompt_batch_size = 1
617
+ elif prompt is not None and isinstance(prompt, list):
618
+ prompt_batch_size = len(prompt)
619
+ elif prompt_embeds is not None:
620
+ prompt_batch_size = prompt_embeds.shape[0]
621
+
622
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
623
+ raise ValueError(
624
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
625
+ )
626
+
627
+ def check_inputs(
628
+ self,
629
+ prompt,
630
+ prompt_2,
631
+ image,
632
+ mask_image,
633
+ strength,
634
+ num_inference_steps,
635
+ callback_steps,
636
+ output_type,
637
+ negative_prompt=None,
638
+ negative_prompt_2=None,
639
+ prompt_embeds=None,
640
+ negative_prompt_embeds=None,
641
+ ip_adapter_image=None,
642
+ ip_adapter_image_embeds=None,
643
+ pooled_prompt_embeds=None,
644
+ negative_pooled_prompt_embeds=None,
645
+ controlnet_conditioning_scale=1.0,
646
+ control_guidance_start=0.0,
647
+ control_guidance_end=1.0,
648
+ callback_on_step_end_tensor_inputs=None,
649
+ padding_mask_crop=None,
650
+ ):
651
+ if strength < 0 or strength > 1:
652
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
653
+ if num_inference_steps is None:
654
+ raise ValueError("`num_inference_steps` cannot be None.")
655
+ elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
656
+ raise ValueError(
657
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
658
+ f" {type(num_inference_steps)}."
659
+ )
660
+
661
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
662
+ raise ValueError(
663
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
664
+ f" {type(callback_steps)}."
665
+ )
666
+
667
+ if callback_on_step_end_tensor_inputs is not None and not all(
668
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
669
+ ):
670
+ raise ValueError(
671
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
672
+ )
673
+
674
+ if prompt is not None and prompt_embeds is not None:
675
+ raise ValueError(
676
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
677
+ " only forward one of the two."
678
+ )
679
+ elif prompt_2 is not None and prompt_embeds is not None:
680
+ raise ValueError(
681
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
682
+ " only forward one of the two."
683
+ )
684
+ elif prompt is None and prompt_embeds is None:
685
+ raise ValueError(
686
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
687
+ )
688
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
689
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
690
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
691
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
692
+
693
+ if negative_prompt is not None and negative_prompt_embeds is not None:
694
+ raise ValueError(
695
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
696
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
697
+ )
698
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
699
+ raise ValueError(
700
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
701
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
702
+ )
703
+
704
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
705
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
706
+ raise ValueError(
707
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
708
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
709
+ f" {negative_prompt_embeds.shape}."
710
+ )
711
+
712
+ if padding_mask_crop is not None:
713
+ if not isinstance(image, PIL.Image.Image):
714
+ raise ValueError(
715
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
716
+ )
717
+ if not isinstance(mask_image, PIL.Image.Image):
718
+ raise ValueError(
719
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
720
+ f" {type(mask_image)}."
721
+ )
722
+ if output_type != "pil":
723
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
724
+
725
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
726
+ raise ValueError(
727
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
728
+ )
729
+
730
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
731
+ raise ValueError(
732
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
733
+ )
734
+
735
+ # Check `image`
736
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
737
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
738
+ )
739
+ if (
740
+ isinstance(self.controlnet, ControlNetModel)
741
+ or is_compiled
742
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
743
+ ):
744
+ self.check_image(image, prompt, prompt_embeds)
745
+ elif (
746
+ isinstance(self.controlnet, ControlNetUnionModel)
747
+ or is_compiled
748
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
749
+ ):
750
+ self.check_image(image, prompt, prompt_embeds)
751
+
752
+ else:
753
+ assert False
754
+
755
+ # Check `controlnet_conditioning_scale`
756
+ if (
757
+ isinstance(self.controlnet, ControlNetModel)
758
+ or is_compiled
759
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
760
+ ):
761
+ if not isinstance(controlnet_conditioning_scale, float):
762
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
763
+
764
+ elif (
765
+ isinstance(self.controlnet, ControlNetUnionModel)
766
+ or is_compiled
767
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
768
+ ):
769
+ if not isinstance(controlnet_conditioning_scale, float):
770
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
771
+
772
+ else:
773
+ assert False
774
+
775
+ if not isinstance(control_guidance_start, (tuple, list)):
776
+ control_guidance_start = [control_guidance_start]
777
+
778
+ if not isinstance(control_guidance_end, (tuple, list)):
779
+ control_guidance_end = [control_guidance_end]
780
+
781
+ if len(control_guidance_start) != len(control_guidance_end):
782
+ raise ValueError(
783
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
784
+ )
785
+
786
+ for start, end in zip(control_guidance_start, control_guidance_end):
787
+ if start >= end:
788
+ raise ValueError(
789
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
790
+ )
791
+ if start < 0.0:
792
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
793
+ if end > 1.0:
794
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
795
+
796
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
797
+ raise ValueError(
798
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
799
+ )
800
+
801
+ if ip_adapter_image_embeds is not None:
802
+ if not isinstance(ip_adapter_image_embeds, list):
803
+ raise ValueError(
804
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
805
+ )
806
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
807
+ raise ValueError(
808
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
809
+ )
810
+
811
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline.prepare_control_image
812
+ def prepare_control_image(
813
+ self,
814
+ image,
815
+ width,
816
+ height,
817
+ batch_size,
818
+ num_images_per_prompt,
819
+ device,
820
+ dtype,
821
+ crops_coords,
822
+ resize_mode,
823
+ do_classifier_free_guidance=False,
824
+ guess_mode=False,
825
+ ):
826
+ image = self.control_image_processor.preprocess(
827
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
828
+ ).to(dtype=torch.float32)
829
+ image_batch_size = image.shape[0]
830
+
831
+ if image_batch_size == 1:
832
+ repeat_by = batch_size
833
+ else:
834
+ # image batch size is the same as prompt batch size
835
+ repeat_by = num_images_per_prompt
836
+
837
+ image = image.repeat_interleave(repeat_by, dim=0)
838
+
839
+ image = image.to(device=device, dtype=dtype)
840
+
841
+ if do_classifier_free_guidance and not guess_mode:
842
+ image = torch.cat([image] * 2)
843
+
844
+ return image
845
+
846
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline.prepare_latents
847
+ def prepare_latents(
848
+ self,
849
+ batch_size,
850
+ num_channels_latents,
851
+ height,
852
+ width,
853
+ dtype,
854
+ device,
855
+ generator,
856
+ latents=None,
857
+ image=None,
858
+ timestep=None,
859
+ is_strength_max=True,
860
+ add_noise=True,
861
+ return_noise=False,
862
+ return_image_latents=False,
863
+ ):
864
+ shape = (
865
+ batch_size,
866
+ num_channels_latents,
867
+ int(height) // self.vae_scale_factor,
868
+ int(width) // self.vae_scale_factor,
869
+ )
870
+ if isinstance(generator, list) and len(generator) != batch_size:
871
+ raise ValueError(
872
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
873
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
874
+ )
875
+
876
+ if (image is None or timestep is None) and not is_strength_max:
877
+ raise ValueError(
878
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
879
+ "However, either the image or the noise timestep has not been provided."
880
+ )
881
+
882
+ if return_image_latents or (latents is None and not is_strength_max):
883
+ image = image.to(device=device, dtype=dtype)
884
+
885
+ if image.shape[1] == 4:
886
+ image_latents = image
887
+ else:
888
+ image_latents = self._encode_vae_image(image=image, generator=generator)
889
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
890
+
891
+ if latents is None and add_noise:
892
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
893
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
894
+ latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
895
+ # if pure noise then scale the initial latents by the Scheduler's init sigma
896
+ latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
897
+ elif add_noise:
898
+ noise = latents.to(device)
899
+ latents = noise * self.scheduler.init_noise_sigma
900
+ else:
901
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
902
+ latents = image_latents.to(device)
903
+
904
+ outputs = (latents,)
905
+
906
+ if return_noise:
907
+ outputs += (noise,)
908
+
909
+ if return_image_latents:
910
+ outputs += (image_latents,)
911
+
912
+ return outputs
913
+
914
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline._encode_vae_image
915
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
916
+ dtype = image.dtype
917
+ if self.vae.config.force_upcast:
918
+ image = image.float()
919
+ self.vae.to(dtype=torch.float32)
920
+
921
+ if isinstance(generator, list):
922
+ image_latents = [
923
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
924
+ for i in range(image.shape[0])
925
+ ]
926
+ image_latents = torch.cat(image_latents, dim=0)
927
+ else:
928
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
929
+
930
+ if self.vae.config.force_upcast:
931
+ self.vae.to(dtype)
932
+
933
+ image_latents = image_latents.to(dtype)
934
+ image_latents = self.vae.config.scaling_factor * image_latents
935
+
936
+ return image_latents
937
+
938
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline.prepare_mask_latents
939
+ def prepare_mask_latents(
940
+ self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
941
+ ):
942
+ # resize the mask to latents shape as we concatenate the mask to the latents
943
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
944
+ # and half precision
945
+ mask = torch.nn.functional.interpolate(
946
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
947
+ )
948
+ mask = mask.to(device=device, dtype=dtype)
949
+
950
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
951
+ if mask.shape[0] < batch_size:
952
+ if not batch_size % mask.shape[0] == 0:
953
+ raise ValueError(
954
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
955
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
956
+ " of masks that you pass is divisible by the total requested batch size."
957
+ )
958
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
959
+
960
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
961
+
962
+ masked_image_latents = None
963
+ if masked_image is not None:
964
+ masked_image = masked_image.to(device=device, dtype=dtype)
965
+ masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
966
+ if masked_image_latents.shape[0] < batch_size:
967
+ if not batch_size % masked_image_latents.shape[0] == 0:
968
+ raise ValueError(
969
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
970
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
971
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
972
+ )
973
+ masked_image_latents = masked_image_latents.repeat(
974
+ batch_size // masked_image_latents.shape[0], 1, 1, 1
975
+ )
976
+
977
+ masked_image_latents = (
978
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
979
+ )
980
+
981
+ # aligning device to prevent device errors when concating it with the latent model input
982
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
983
+
984
+ return mask, masked_image_latents
985
+
986
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
987
+ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
988
+ # get the original timestep using init_timestep
989
+ if denoising_start is None:
990
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
991
+ t_start = max(num_inference_steps - init_timestep, 0)
992
+
993
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
994
+ if hasattr(self.scheduler, "set_begin_index"):
995
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
996
+
997
+ return timesteps, num_inference_steps - t_start
998
+
999
+ else:
1000
+ # Strength is irrelevant if we directly request a timestep to start at;
1001
+ # that is, strength is determined by the denoising_start instead.
1002
+ discrete_timestep_cutoff = int(
1003
+ round(
1004
+ self.scheduler.config.num_train_timesteps
1005
+ - (denoising_start * self.scheduler.config.num_train_timesteps)
1006
+ )
1007
+ )
1008
+
1009
+ num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item()
1010
+ if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
1011
+ # if the scheduler is a 2nd order scheduler we might have to do +1
1012
+ # because `num_inference_steps` might be even given that every timestep
1013
+ # (except the highest one) is duplicated. If `num_inference_steps` is even it would
1014
+ # mean that we cut the timesteps in the middle of the denoising step
1015
+ # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
1016
+ # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
1017
+ num_inference_steps = num_inference_steps + 1
1018
+
1019
+ # because t_n+1 >= t_n, we slice the timesteps starting from the end
1020
+ t_start = len(self.scheduler.timesteps) - num_inference_steps
1021
+ timesteps = self.scheduler.timesteps[t_start:]
1022
+ if hasattr(self.scheduler, "set_begin_index"):
1023
+ self.scheduler.set_begin_index(t_start)
1024
+ return timesteps, num_inference_steps
1025
+
1026
+ def _get_add_time_ids(
1027
+ self,
1028
+ original_size,
1029
+ crops_coords_top_left,
1030
+ target_size,
1031
+ aesthetic_score,
1032
+ negative_aesthetic_score,
1033
+ dtype,
1034
+ text_encoder_projection_dim=None,
1035
+ ):
1036
+ if self.config.requires_aesthetics_score:
1037
+ add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
1038
+ add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,))
1039
+ else:
1040
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
1041
+ add_neg_time_ids = list(original_size + crops_coords_top_left + target_size)
1042
+
1043
+ passed_add_embed_dim = (
1044
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
1045
+ )
1046
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
1047
+
1048
+ if (
1049
+ expected_add_embed_dim > passed_add_embed_dim
1050
+ and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
1051
+ ):
1052
+ raise ValueError(
1053
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
1054
+ )
1055
+ elif (
1056
+ expected_add_embed_dim < passed_add_embed_dim
1057
+ and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
1058
+ ):
1059
+ raise ValueError(
1060
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
1061
+ )
1062
+ elif expected_add_embed_dim != passed_add_embed_dim:
1063
+ raise ValueError(
1064
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
1065
+ )
1066
+
1067
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
1068
+ add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
1069
+
1070
+ return add_time_ids, add_neg_time_ids
1071
+
1072
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
1073
+ def upcast_vae(self):
1074
+ dtype = self.vae.dtype
1075
+ self.vae.to(dtype=torch.float32)
1076
+ use_torch_2_0_or_xformers = isinstance(
1077
+ self.vae.decoder.mid_block.attentions[0].processor,
1078
+ (
1079
+ AttnProcessor2_0,
1080
+ XFormersAttnProcessor,
1081
+ ),
1082
+ )
1083
+ # if xformers or torch_2_0 is used attention block does not need
1084
+ # to be in float32 which can save lots of memory
1085
+ if use_torch_2_0_or_xformers:
1086
+ self.vae.post_quant_conv.to(dtype)
1087
+ self.vae.decoder.conv_in.to(dtype)
1088
+ self.vae.decoder.mid_block.to(dtype)
1089
+
1090
+ @property
1091
+ def guidance_scale(self):
1092
+ return self._guidance_scale
1093
+
1094
+ @property
1095
+ def clip_skip(self):
1096
+ return self._clip_skip
1097
+
1098
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1099
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1100
+ # corresponds to doing no classifier free guidance.
1101
+ @property
1102
+ def do_classifier_free_guidance(self):
1103
+ return self._guidance_scale > 1
1104
+
1105
+ @property
1106
+ def cross_attention_kwargs(self):
1107
+ return self._cross_attention_kwargs
1108
+
1109
+ @property
1110
+ def num_timesteps(self):
1111
+ return self._num_timesteps
1112
+
1113
+ @property
1114
+ def interrupt(self):
1115
+ return self._interrupt
1116
+
1117
+ @torch.no_grad()
1118
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
1119
+ def __call__(
1120
+ self,
1121
+ prompt: Union[str, List[str]] = None,
1122
+ prompt_2: Optional[Union[str, List[str]]] = None,
1123
+ image: PipelineImageInput = None,
1124
+ mask_image: PipelineImageInput = None,
1125
+ control_image: PipelineImageInput = None,
1126
+ height: Optional[int] = None,
1127
+ width: Optional[int] = None,
1128
+ padding_mask_crop: Optional[int] = None,
1129
+ strength: float = 0.9999,
1130
+ num_inference_steps: int = 50,
1131
+ denoising_start: Optional[float] = None,
1132
+ denoising_end: Optional[float] = None,
1133
+ guidance_scale: float = 5.0,
1134
+ negative_prompt: Optional[Union[str, List[str]]] = None,
1135
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
1136
+ num_images_per_prompt: Optional[int] = 1,
1137
+ eta: float = 0.0,
1138
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1139
+ latents: Optional[torch.Tensor] = None,
1140
+ prompt_embeds: Optional[torch.Tensor] = None,
1141
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1142
+ ip_adapter_image: Optional[PipelineImageInput] = None,
1143
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1144
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1145
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1146
+ output_type: Optional[str] = "pil",
1147
+ return_dict: bool = True,
1148
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1149
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
1150
+ guess_mode: bool = False,
1151
+ control_guidance_start: Union[float, List[float]] = 0.0,
1152
+ control_guidance_end: Union[float, List[float]] = 1.0,
1153
+ control_mode: Optional[Union[int, List[int]]] = None,
1154
+ guidance_rescale: float = 0.0,
1155
+ original_size: Tuple[int, int] = None,
1156
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1157
+ target_size: Tuple[int, int] = None,
1158
+ aesthetic_score: float = 6.0,
1159
+ negative_aesthetic_score: float = 2.5,
1160
+ clip_skip: Optional[int] = None,
1161
+ callback_on_step_end: Optional[
1162
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
1163
+ ] = None,
1164
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
1165
+ **kwargs,
1166
+ ):
1167
+ r"""
1168
+ Function invoked when calling the pipeline for generation.
1169
+
1170
+ Args:
1171
+ prompt (`str` or `List[str]`, *optional*):
1172
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1173
+ instead.
1174
+ prompt_2 (`str` or `List[str]`, *optional*):
1175
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
1176
+ used in both text-encoders
1177
+ image (`PIL.Image.Image`):
1178
+ `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
1179
+ be masked out with `mask_image` and repainted according to `prompt`.
1180
+ mask_image (`PIL.Image.Image`):
1181
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
1182
+ repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
1183
+ to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
1184
+ instead of 3, so the expected shape would be `(B, H, W, 1)`.
1185
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
1186
+ The height in pixels of the generated image.
1187
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
1188
+ The width in pixels of the generated image.
1189
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
1190
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
1191
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
1192
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
1193
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
1194
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
1195
+ the image is large and contain information irrelevant for inpainting, such as background.
1196
+ strength (`float`, *optional*, defaults to 0.9999):
1197
+ Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
1198
+ between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
1199
+ `strength`. The number of denoising steps depends on the amount of noise initially added. When
1200
+ `strength` is 1, added noise will be maximum and the denoising process will run for the full number of
1201
+ iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
1202
+ portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
1203
+ integer, the value of `strength` will be ignored.
1204
+ num_inference_steps (`int`, *optional*, defaults to 50):
1205
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1206
+ expense of slower inference.
1207
+ denoising_start (`float`, *optional*):
1208
+ When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
1209
+ bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
1210
+ it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
1211
+ strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
1212
+ is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
1213
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
1214
+ denoising_end (`float`, *optional*):
1215
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
1216
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
1217
+ still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
1218
+ denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
1219
+ final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
1220
+ forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
1221
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
1222
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1223
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1224
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
1225
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1226
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1227
+ usually at the expense of lower image quality.
1228
+ negative_prompt (`str` or `List[str]`, *optional*):
1229
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1230
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1231
+ less than `1`).
1232
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1233
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
1234
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
1235
+ prompt_embeds (`torch.Tensor`, *optional*):
1236
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1237
+ provided, text embeddings will be generated from `prompt` input argument.
1238
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1239
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1240
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1241
+ argument.
1242
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1243
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1244
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1245
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1246
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1247
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1248
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1249
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1250
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
1251
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1252
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1253
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1254
+ input argument.
1255
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1256
+ The number of images to generate per prompt.
1257
+ eta (`float`, *optional*, defaults to 0.0):
1258
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
1259
+ [`schedulers.DDIMScheduler`], will be ignored for others.
1260
+ generator (`torch.Generator`, *optional*):
1261
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1262
+ to make generation deterministic.
1263
+ latents (`torch.Tensor`, *optional*):
1264
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1265
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1266
+ tensor will ge generated by sampling using the supplied random `generator`.
1267
+ output_type (`str`, *optional*, defaults to `"pil"`):
1268
+ The output format of the generate image. Choose between
1269
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
1270
+ return_dict (`bool`, *optional*, defaults to `True`):
1271
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1272
+ plain tuple.
1273
+ cross_attention_kwargs (`dict`, *optional*):
1274
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1275
+ `self.processor` in
1276
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1277
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1278
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1279
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
1280
+ explained in section 2.2 of
1281
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1282
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1283
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1284
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1285
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1286
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1287
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1288
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1289
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
1290
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1291
+ aesthetic_score (`float`, *optional*, defaults to 6.0):
1292
+ Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
1293
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1294
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1295
+ negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
1296
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1297
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
1298
+ simulate an aesthetic score of the generated image by influencing the negative text condition.
1299
+ clip_skip (`int`, *optional*):
1300
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1301
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1302
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1303
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1304
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1305
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1306
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1307
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1308
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1309
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1310
+ `._callback_tensor_inputs` attribute of your pipeline class.
1311
+
1312
+ Examples:
1313
+
1314
+ Returns:
1315
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
1316
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
1317
+ `tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
1318
+ """
1319
+
1320
+ callback = kwargs.pop("callback", None)
1321
+ callback_steps = kwargs.pop("callback_steps", None)
1322
+
1323
+ if callback is not None:
1324
+ deprecate(
1325
+ "callback",
1326
+ "1.0.0",
1327
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1328
+ )
1329
+ if callback_steps is not None:
1330
+ deprecate(
1331
+ "callback_steps",
1332
+ "1.0.0",
1333
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1334
+ )
1335
+
1336
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1337
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1338
+
1339
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1340
+
1341
+ # align format for control guidance
1342
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1343
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1344
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1345
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1346
+
1347
+ # # 0.0 Default height and width to unet
1348
+ # height = height or self.unet.config.sample_size * self.vae_scale_factor
1349
+ # width = width or self.unet.config.sample_size * self.vae_scale_factor
1350
+
1351
+ # 0.1 align format for control guidance
1352
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1353
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1354
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1355
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1356
+
1357
+ if not isinstance(control_image, list):
1358
+ control_image = [control_image]
1359
+
1360
+ if not isinstance(control_mode, list):
1361
+ control_mode = [control_mode]
1362
+
1363
+ if len(control_image) != len(control_mode):
1364
+ raise ValueError("Expected len(control_image) == len(control_type)")
1365
+
1366
+ num_control_type = controlnet.config.num_control_type
1367
+
1368
+ # 1. Check inputs
1369
+ control_type = [0 for _ in range(num_control_type)]
1370
+ for _image, control_idx in zip(control_image, control_mode):
1371
+ control_type[control_idx] = 1
1372
+ self.check_inputs(
1373
+ prompt,
1374
+ prompt_2,
1375
+ _image,
1376
+ mask_image,
1377
+ strength,
1378
+ num_inference_steps,
1379
+ callback_steps,
1380
+ output_type,
1381
+ negative_prompt,
1382
+ negative_prompt_2,
1383
+ prompt_embeds,
1384
+ negative_prompt_embeds,
1385
+ ip_adapter_image,
1386
+ ip_adapter_image_embeds,
1387
+ pooled_prompt_embeds,
1388
+ negative_pooled_prompt_embeds,
1389
+ controlnet_conditioning_scale,
1390
+ control_guidance_start,
1391
+ control_guidance_end,
1392
+ callback_on_step_end_tensor_inputs,
1393
+ padding_mask_crop,
1394
+ )
1395
+
1396
+ control_type = torch.Tensor(control_type)
1397
+
1398
+ self._guidance_scale = guidance_scale
1399
+ self._clip_skip = clip_skip
1400
+ self._cross_attention_kwargs = cross_attention_kwargs
1401
+ self._interrupt = False
1402
+
1403
+ # 2. Define call parameters
1404
+ if prompt is not None and isinstance(prompt, str):
1405
+ batch_size = 1
1406
+ elif prompt is not None and isinstance(prompt, list):
1407
+ batch_size = len(prompt)
1408
+ else:
1409
+ batch_size = prompt_embeds.shape[0]
1410
+
1411
+ device = self._execution_device
1412
+
1413
+ # 3. Encode input prompt
1414
+ text_encoder_lora_scale = (
1415
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1416
+ )
1417
+
1418
+ (
1419
+ prompt_embeds,
1420
+ negative_prompt_embeds,
1421
+ pooled_prompt_embeds,
1422
+ negative_pooled_prompt_embeds,
1423
+ ) = self.encode_prompt(
1424
+ prompt=prompt,
1425
+ prompt_2=prompt_2,
1426
+ device=device,
1427
+ num_images_per_prompt=num_images_per_prompt,
1428
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1429
+ negative_prompt=negative_prompt,
1430
+ negative_prompt_2=negative_prompt_2,
1431
+ prompt_embeds=prompt_embeds,
1432
+ negative_prompt_embeds=negative_prompt_embeds,
1433
+ pooled_prompt_embeds=pooled_prompt_embeds,
1434
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1435
+ lora_scale=text_encoder_lora_scale,
1436
+ clip_skip=self.clip_skip,
1437
+ )
1438
+
1439
+ # 3.1 Encode ip_adapter_image
1440
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1441
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1442
+ ip_adapter_image,
1443
+ ip_adapter_image_embeds,
1444
+ device,
1445
+ batch_size * num_images_per_prompt,
1446
+ self.do_classifier_free_guidance,
1447
+ )
1448
+
1449
+ # 4. set timesteps
1450
+ def denoising_value_valid(dnv):
1451
+ return isinstance(dnv, float) and 0 < dnv < 1
1452
+
1453
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1454
+ timesteps, num_inference_steps = self.get_timesteps(
1455
+ num_inference_steps,
1456
+ strength,
1457
+ device,
1458
+ denoising_start=denoising_start if denoising_value_valid(denoising_start) else None,
1459
+ )
1460
+ # check that number of inference steps is not < 1 - as this doesn't make sense
1461
+ if num_inference_steps < 1:
1462
+ raise ValueError(
1463
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1464
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1465
+ )
1466
+ # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
1467
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1468
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
1469
+ is_strength_max = strength == 1.0
1470
+ self._num_timesteps = len(timesteps)
1471
+
1472
+ # 5. Preprocess mask and image - resizes image and mask w.r.t height and width
1473
+ # 5.1 Prepare init image
1474
+ if padding_mask_crop is not None:
1475
+ height, width = self.image_processor.get_default_height_width(image, height, width)
1476
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1477
+ resize_mode = "fill"
1478
+ else:
1479
+ crops_coords = None
1480
+ resize_mode = "default"
1481
+
1482
+ original_image = image
1483
+ init_image = self.image_processor.preprocess(
1484
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1485
+ )
1486
+ init_image = init_image.to(dtype=torch.float32)
1487
+
1488
+ # 5.2 Prepare control images
1489
+ for idx, _ in enumerate(control_image):
1490
+ control_image[idx] = self.prepare_control_image(
1491
+ image=control_image[idx],
1492
+ width=width,
1493
+ height=height,
1494
+ batch_size=batch_size * num_images_per_prompt,
1495
+ num_images_per_prompt=num_images_per_prompt,
1496
+ device=device,
1497
+ dtype=controlnet.dtype,
1498
+ crops_coords=crops_coords,
1499
+ resize_mode=resize_mode,
1500
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1501
+ guess_mode=guess_mode,
1502
+ )
1503
+ height, width = control_image[idx].shape[-2:]
1504
+
1505
+ # 5.3 Prepare mask
1506
+ mask = self.mask_processor.preprocess(
1507
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1508
+ )
1509
+
1510
+ masked_image = init_image * (mask < 0.5)
1511
+ _, _, height, width = init_image.shape
1512
+
1513
+ # 6. Prepare latent variables
1514
+ num_channels_latents = self.vae.config.latent_channels
1515
+ num_channels_unet = self.unet.config.in_channels
1516
+ return_image_latents = num_channels_unet == 4
1517
+
1518
+ add_noise = True if denoising_start is None else False
1519
+ latents_outputs = self.prepare_latents(
1520
+ batch_size * num_images_per_prompt,
1521
+ num_channels_latents,
1522
+ height,
1523
+ width,
1524
+ prompt_embeds.dtype,
1525
+ device,
1526
+ generator,
1527
+ latents,
1528
+ image=init_image,
1529
+ timestep=latent_timestep,
1530
+ is_strength_max=is_strength_max,
1531
+ add_noise=add_noise,
1532
+ return_noise=True,
1533
+ return_image_latents=return_image_latents,
1534
+ )
1535
+
1536
+ if return_image_latents:
1537
+ latents, noise, image_latents = latents_outputs
1538
+ else:
1539
+ latents, noise = latents_outputs
1540
+
1541
+ # 7. Prepare mask latent variables
1542
+ mask, _ = self.prepare_mask_latents(
1543
+ mask,
1544
+ masked_image,
1545
+ batch_size * num_images_per_prompt,
1546
+ height,
1547
+ width,
1548
+ prompt_embeds.dtype,
1549
+ device,
1550
+ generator,
1551
+ self.do_classifier_free_guidance,
1552
+ )
1553
+
1554
+ # 8. Check that sizes of mask, masked image and latents match
1555
+ if num_channels_unet != 4:
1556
+ raise ValueError(
1557
+ f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
1558
+ )
1559
+ # 8.1 Prepare extra step kwargs.
1560
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1561
+
1562
+ # 8.2 Create tensor stating which controlnets to keep
1563
+ controlnet_keep = []
1564
+ for i in range(len(timesteps)):
1565
+ controlnet_keep.append(
1566
+ 1.0
1567
+ - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
1568
+ )
1569
+
1570
+ # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1571
+ height, width = latents.shape[-2:]
1572
+ height = height * self.vae_scale_factor
1573
+ width = width * self.vae_scale_factor
1574
+
1575
+ original_size = original_size or (height, width)
1576
+ target_size = target_size or (height, width)
1577
+ for _image in control_image:
1578
+ if isinstance(_image, torch.Tensor):
1579
+ original_size = original_size or _image.shape[-2:]
1580
+
1581
+ # 10. Prepare added time ids & embeddings
1582
+ add_text_embeds = pooled_prompt_embeds
1583
+ if self.text_encoder_2 is None:
1584
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1585
+ else:
1586
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1587
+
1588
+ add_time_ids, add_neg_time_ids = self._get_add_time_ids(
1589
+ original_size,
1590
+ crops_coords_top_left,
1591
+ target_size,
1592
+ aesthetic_score,
1593
+ negative_aesthetic_score,
1594
+ dtype=prompt_embeds.dtype,
1595
+ text_encoder_projection_dim=text_encoder_projection_dim,
1596
+ )
1597
+ add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1598
+
1599
+ if self.do_classifier_free_guidance:
1600
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1601
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1602
+ add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1603
+ add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
1604
+
1605
+ prompt_embeds = prompt_embeds.to(device)
1606
+ add_text_embeds = add_text_embeds.to(device)
1607
+ add_time_ids = add_time_ids.to(device)
1608
+
1609
+ # 11. Denoising loop
1610
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1611
+
1612
+ if (
1613
+ denoising_end is not None
1614
+ and denoising_start is not None
1615
+ and denoising_value_valid(denoising_end)
1616
+ and denoising_value_valid(denoising_start)
1617
+ and denoising_start >= denoising_end
1618
+ ):
1619
+ raise ValueError(
1620
+ f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: "
1621
+ + f" {denoising_end} when using type float."
1622
+ )
1623
+ elif denoising_end is not None and denoising_value_valid(denoising_end):
1624
+ discrete_timestep_cutoff = int(
1625
+ round(
1626
+ self.scheduler.config.num_train_timesteps
1627
+ - (denoising_end * self.scheduler.config.num_train_timesteps)
1628
+ )
1629
+ )
1630
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1631
+ timesteps = timesteps[:num_inference_steps]
1632
+
1633
+ control_type = (
1634
+ control_type.reshape(1, -1)
1635
+ .to(device, dtype=prompt_embeds.dtype)
1636
+ .repeat(batch_size * num_images_per_prompt * 2, 1)
1637
+ )
1638
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1639
+ for i, t in enumerate(timesteps):
1640
+ if self.interrupt:
1641
+ continue
1642
+
1643
+ # expand the latents if we are doing classifier free guidance
1644
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1645
+
1646
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1647
+
1648
+ added_cond_kwargs = {
1649
+ "text_embeds": add_text_embeds,
1650
+ "time_ids": add_time_ids,
1651
+ }
1652
+
1653
+ # controlnet(s) inference
1654
+ if guess_mode and self.do_classifier_free_guidance:
1655
+ # Infer ControlNet only for the conditional batch.
1656
+ control_model_input = latents
1657
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1658
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1659
+ controlnet_added_cond_kwargs = {
1660
+ "text_embeds": add_text_embeds.chunk(2)[1],
1661
+ "time_ids": add_time_ids.chunk(2)[1],
1662
+ }
1663
+ else:
1664
+ control_model_input = latent_model_input
1665
+ controlnet_prompt_embeds = prompt_embeds
1666
+ controlnet_added_cond_kwargs = added_cond_kwargs
1667
+
1668
+ if isinstance(controlnet_keep[i], list):
1669
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1670
+ else:
1671
+ controlnet_cond_scale = controlnet_conditioning_scale
1672
+ if isinstance(controlnet_cond_scale, list):
1673
+ controlnet_cond_scale = controlnet_cond_scale[0]
1674
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1675
+
1676
+ # # Resize control_image to match the size of the input to the controlnet
1677
+ # if control_image.shape[-2:] != control_model_input.shape[-2:]:
1678
+ # control_image = F.interpolate(control_image, size=control_model_input.shape[-2:], mode="bilinear", align_corners=False)
1679
+
1680
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1681
+ control_model_input,
1682
+ t,
1683
+ encoder_hidden_states=controlnet_prompt_embeds,
1684
+ controlnet_cond=control_image,
1685
+ control_type=control_type,
1686
+ control_type_idx=control_mode,
1687
+ conditioning_scale=cond_scale,
1688
+ guess_mode=guess_mode,
1689
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1690
+ return_dict=False,
1691
+ )
1692
+
1693
+ if guess_mode and self.do_classifier_free_guidance:
1694
+ # Inferred ControlNet only for the conditional batch.
1695
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1696
+ # add 0 to the unconditional batch to keep it unchanged.
1697
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1698
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1699
+
1700
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1701
+ added_cond_kwargs["image_embeds"] = image_embeds
1702
+
1703
+ # predict the noise residual
1704
+ noise_pred = self.unet(
1705
+ latent_model_input,
1706
+ t,
1707
+ encoder_hidden_states=prompt_embeds,
1708
+ cross_attention_kwargs=self.cross_attention_kwargs,
1709
+ down_block_additional_residuals=down_block_res_samples,
1710
+ mid_block_additional_residual=mid_block_res_sample,
1711
+ added_cond_kwargs=added_cond_kwargs,
1712
+ return_dict=False,
1713
+ )[0]
1714
+
1715
+ # perform guidance
1716
+ if self.do_classifier_free_guidance:
1717
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1718
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1719
+
1720
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
1721
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1722
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
1723
+
1724
+ # compute the previous noisy sample x_t -> x_t-1
1725
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1726
+
1727
+ init_latents_proper = image_latents
1728
+ if self.do_classifier_free_guidance:
1729
+ init_mask, _ = mask.chunk(2)
1730
+ else:
1731
+ init_mask = mask
1732
+
1733
+ if i < len(timesteps) - 1:
1734
+ noise_timestep = timesteps[i + 1]
1735
+ init_latents_proper = self.scheduler.add_noise(
1736
+ init_latents_proper, noise, torch.tensor([noise_timestep])
1737
+ )
1738
+
1739
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1740
+
1741
+ if callback_on_step_end is not None:
1742
+ callback_kwargs = {}
1743
+ for k in callback_on_step_end_tensor_inputs:
1744
+ callback_kwargs[k] = locals()[k]
1745
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1746
+
1747
+ latents = callback_outputs.pop("latents", latents)
1748
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1749
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1750
+
1751
+ # call the callback, if provided
1752
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1753
+ progress_bar.update()
1754
+ if callback is not None and i % callback_steps == 0:
1755
+ step_idx = i // getattr(self.scheduler, "order", 1)
1756
+ callback(step_idx, t, latents)
1757
+
1758
+ # make sure the VAE is in float32 mode, as it overflows in float16
1759
+ if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
1760
+ self.upcast_vae()
1761
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1762
+
1763
+ # If we do sequential model offloading, let's offload unet and controlnet
1764
+ # manually for max memory savings
1765
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1766
+ self.unet.to("cpu")
1767
+ self.controlnet.to("cpu")
1768
+ torch.cuda.empty_cache()
1769
+
1770
+ if not output_type == "latent":
1771
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1772
+ else:
1773
+ return StableDiffusionXLPipelineOutput(images=latents)
1774
+
1775
+ # apply watermark if available
1776
+ if self.watermark is not None:
1777
+ image = self.watermark.apply_watermark(image)
1778
+
1779
+ image = self.image_processor.postprocess(image, output_type=output_type)
1780
+
1781
+ if padding_mask_crop is not None:
1782
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1783
+
1784
+ # Offload all models
1785
+ self.maybe_free_model_hooks()
1786
+
1787
+ if not return_dict:
1788
+ return (image,)
1789
+
1790
+ return StableDiffusionXLPipelineOutput(images=image)