diffusers 0.31.0__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +74 -28
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/METADATA +69 -69
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,884 @@
1
+ # Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ import inspect
17
+ import re
18
+ import urllib.parse as ul
19
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import PixArtImageProcessor
26
+ from ...loaders import SanaLoraLoaderMixin
27
+ from ...models import AutoencoderDC, SanaTransformer2DModel
28
+ from ...schedulers import DPMSolverMultistepScheduler
29
+ from ...utils import (
30
+ BACKENDS_MAPPING,
31
+ USE_PEFT_BACKEND,
32
+ is_bs4_available,
33
+ is_ftfy_available,
34
+ logging,
35
+ replace_example_docstring,
36
+ scale_lora_layers,
37
+ unscale_lora_layers,
38
+ )
39
+ from ...utils.torch_utils import randn_tensor
40
+ from ..pipeline_utils import DiffusionPipeline
41
+ from ..pixart_alpha.pipeline_pixart_alpha import (
42
+ ASPECT_RATIO_512_BIN,
43
+ ASPECT_RATIO_1024_BIN,
44
+ )
45
+ from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
46
+ from .pipeline_output import SanaPipelineOutput
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+ if is_bs4_available():
52
+ from bs4 import BeautifulSoup
53
+
54
+ if is_ftfy_available():
55
+ import ftfy
56
+
57
+
58
+ EXAMPLE_DOC_STRING = """
59
+ Examples:
60
+ ```py
61
+ >>> import torch
62
+ >>> from diffusers import SanaPipeline
63
+
64
+ >>> pipe = SanaPipeline.from_pretrained(
65
+ ... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32
66
+ ... )
67
+ >>> pipe.to("cuda")
68
+ >>> pipe.text_encoder.to(torch.bfloat16)
69
+ >>> pipe.transformer = pipe.transformer.to(torch.bfloat16)
70
+
71
+ >>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
72
+ >>> image[0].save("output.png")
73
+ ```
74
+ """
75
+
76
+
77
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
78
+ def retrieve_timesteps(
79
+ scheduler,
80
+ num_inference_steps: Optional[int] = None,
81
+ device: Optional[Union[str, torch.device]] = None,
82
+ timesteps: Optional[List[int]] = None,
83
+ sigmas: Optional[List[float]] = None,
84
+ **kwargs,
85
+ ):
86
+ r"""
87
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
88
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
89
+
90
+ Args:
91
+ scheduler (`SchedulerMixin`):
92
+ The scheduler to get timesteps from.
93
+ num_inference_steps (`int`):
94
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
95
+ must be `None`.
96
+ device (`str` or `torch.device`, *optional*):
97
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
98
+ timesteps (`List[int]`, *optional*):
99
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
100
+ `num_inference_steps` and `sigmas` must be `None`.
101
+ sigmas (`List[float]`, *optional*):
102
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
103
+ `num_inference_steps` and `timesteps` must be `None`.
104
+
105
+ Returns:
106
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
107
+ second element is the number of inference steps.
108
+ """
109
+ if timesteps is not None and sigmas is not None:
110
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
111
+ if timesteps is not None:
112
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
113
+ if not accepts_timesteps:
114
+ raise ValueError(
115
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
116
+ f" timestep schedules. Please check whether you are using the correct scheduler."
117
+ )
118
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
119
+ timesteps = scheduler.timesteps
120
+ num_inference_steps = len(timesteps)
121
+ elif sigmas is not None:
122
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
123
+ if not accept_sigmas:
124
+ raise ValueError(
125
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
126
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
127
+ )
128
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
129
+ timesteps = scheduler.timesteps
130
+ num_inference_steps = len(timesteps)
131
+ else:
132
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
133
+ timesteps = scheduler.timesteps
134
+ return timesteps, num_inference_steps
135
+
136
+
137
+ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
138
+ r"""
139
+ Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
140
+ """
141
+
142
+ # fmt: off
143
+ bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
144
+ # fmt: on
145
+
146
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
147
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
148
+
149
+ def __init__(
150
+ self,
151
+ tokenizer: AutoTokenizer,
152
+ text_encoder: AutoModelForCausalLM,
153
+ vae: AutoencoderDC,
154
+ transformer: SanaTransformer2DModel,
155
+ scheduler: DPMSolverMultistepScheduler,
156
+ ):
157
+ super().__init__()
158
+
159
+ self.register_modules(
160
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
161
+ )
162
+
163
+ self.vae_scale_factor = (
164
+ 2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
165
+ if hasattr(self, "vae") and self.vae is not None
166
+ else 32
167
+ )
168
+ self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
169
+
170
+ def encode_prompt(
171
+ self,
172
+ prompt: Union[str, List[str]],
173
+ do_classifier_free_guidance: bool = True,
174
+ negative_prompt: str = "",
175
+ num_images_per_prompt: int = 1,
176
+ device: Optional[torch.device] = None,
177
+ prompt_embeds: Optional[torch.Tensor] = None,
178
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
179
+ prompt_attention_mask: Optional[torch.Tensor] = None,
180
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
181
+ clean_caption: bool = False,
182
+ max_sequence_length: int = 300,
183
+ complex_human_instruction: Optional[List[str]] = None,
184
+ lora_scale: Optional[float] = None,
185
+ ):
186
+ r"""
187
+ Encodes the prompt into text encoder hidden states.
188
+
189
+ Args:
190
+ prompt (`str` or `List[str]`, *optional*):
191
+ prompt to be encoded
192
+ negative_prompt (`str` or `List[str]`, *optional*):
193
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
194
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
195
+ PixArt-Alpha, this should be "".
196
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
197
+ whether to use classifier free guidance or not
198
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
199
+ number of images that should be generated per prompt
200
+ device: (`torch.device`, *optional*):
201
+ torch device to place the resulting embeddings on
202
+ prompt_embeds (`torch.Tensor`, *optional*):
203
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
204
+ provided, text embeddings will be generated from `prompt` input argument.
205
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
206
+ Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
207
+ clean_caption (`bool`, defaults to `False`):
208
+ If `True`, the function will preprocess and clean the provided caption before encoding.
209
+ max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
210
+ complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
211
+ If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
212
+ the prompt.
213
+ """
214
+
215
+ if device is None:
216
+ device = self._execution_device
217
+
218
+ # set lora scale so that monkey patched LoRA
219
+ # function of text encoder can correctly access it
220
+ if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
221
+ self._lora_scale = lora_scale
222
+
223
+ # dynamically adjust the LoRA scale
224
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
225
+ scale_lora_layers(self.text_encoder, lora_scale)
226
+
227
+ if prompt is not None and isinstance(prompt, str):
228
+ batch_size = 1
229
+ elif prompt is not None and isinstance(prompt, list):
230
+ batch_size = len(prompt)
231
+ else:
232
+ batch_size = prompt_embeds.shape[0]
233
+
234
+ self.tokenizer.padding_side = "right"
235
+
236
+ # See Section 3.1. of the paper.
237
+ max_length = max_sequence_length
238
+ select_index = [0] + list(range(-max_length + 1, 0))
239
+
240
+ if prompt_embeds is None:
241
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
242
+
243
+ # prepare complex human instruction
244
+ if not complex_human_instruction:
245
+ max_length_all = max_length
246
+ else:
247
+ chi_prompt = "\n".join(complex_human_instruction)
248
+ prompt = [chi_prompt + p for p in prompt]
249
+ num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
250
+ max_length_all = num_chi_prompt_tokens + max_length - 2
251
+
252
+ text_inputs = self.tokenizer(
253
+ prompt,
254
+ padding="max_length",
255
+ max_length=max_length_all,
256
+ truncation=True,
257
+ add_special_tokens=True,
258
+ return_tensors="pt",
259
+ )
260
+ text_input_ids = text_inputs.input_ids
261
+
262
+ prompt_attention_mask = text_inputs.attention_mask
263
+ prompt_attention_mask = prompt_attention_mask.to(device)
264
+
265
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
266
+ prompt_embeds = prompt_embeds[0][:, select_index]
267
+ prompt_attention_mask = prompt_attention_mask[:, select_index]
268
+
269
+ if self.transformer is not None:
270
+ dtype = self.transformer.dtype
271
+ elif self.text_encoder is not None:
272
+ dtype = self.text_encoder.dtype
273
+ else:
274
+ dtype = None
275
+
276
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
277
+
278
+ bs_embed, seq_len, _ = prompt_embeds.shape
279
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
280
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
281
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
282
+ prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
283
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
284
+
285
+ # get unconditional embeddings for classifier free guidance
286
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
287
+ uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
288
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
289
+ max_length = prompt_embeds.shape[1]
290
+ uncond_input = self.tokenizer(
291
+ uncond_tokens,
292
+ padding="max_length",
293
+ max_length=max_length,
294
+ truncation=True,
295
+ return_attention_mask=True,
296
+ add_special_tokens=True,
297
+ return_tensors="pt",
298
+ )
299
+ negative_prompt_attention_mask = uncond_input.attention_mask
300
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
301
+
302
+ negative_prompt_embeds = self.text_encoder(
303
+ uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
304
+ )
305
+ negative_prompt_embeds = negative_prompt_embeds[0]
306
+
307
+ if do_classifier_free_guidance:
308
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
309
+ seq_len = negative_prompt_embeds.shape[1]
310
+
311
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
312
+
313
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
314
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
315
+
316
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
317
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
318
+ else:
319
+ negative_prompt_embeds = None
320
+ negative_prompt_attention_mask = None
321
+
322
+ if self.text_encoder is not None:
323
+ if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
324
+ # Retrieve the original scale by scaling back the LoRA layers
325
+ unscale_lora_layers(self.text_encoder, lora_scale)
326
+
327
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
328
+
329
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
330
+ def prepare_extra_step_kwargs(self, generator, eta):
331
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
332
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
333
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
334
+ # and should be between [0, 1]
335
+
336
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
337
+ extra_step_kwargs = {}
338
+ if accepts_eta:
339
+ extra_step_kwargs["eta"] = eta
340
+
341
+ # check if the scheduler accepts generator
342
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
343
+ if accepts_generator:
344
+ extra_step_kwargs["generator"] = generator
345
+ return extra_step_kwargs
346
+
347
+ def check_inputs(
348
+ self,
349
+ prompt,
350
+ height,
351
+ width,
352
+ callback_on_step_end_tensor_inputs=None,
353
+ negative_prompt=None,
354
+ prompt_embeds=None,
355
+ negative_prompt_embeds=None,
356
+ prompt_attention_mask=None,
357
+ negative_prompt_attention_mask=None,
358
+ ):
359
+ if height % 32 != 0 or width % 32 != 0:
360
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
361
+
362
+ if callback_on_step_end_tensor_inputs is not None and not all(
363
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
364
+ ):
365
+ raise ValueError(
366
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
367
+ )
368
+
369
+ if prompt is not None and prompt_embeds is not None:
370
+ raise ValueError(
371
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
372
+ " only forward one of the two."
373
+ )
374
+ elif prompt is None and prompt_embeds is None:
375
+ raise ValueError(
376
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
377
+ )
378
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
379
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
380
+
381
+ if prompt is not None and negative_prompt_embeds is not None:
382
+ raise ValueError(
383
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
384
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
385
+ )
386
+
387
+ if negative_prompt is not None and negative_prompt_embeds is not None:
388
+ raise ValueError(
389
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
390
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
391
+ )
392
+
393
+ if prompt_embeds is not None and prompt_attention_mask is None:
394
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
395
+
396
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
397
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
398
+
399
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
400
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
401
+ raise ValueError(
402
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
403
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
404
+ f" {negative_prompt_embeds.shape}."
405
+ )
406
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
407
+ raise ValueError(
408
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
409
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
410
+ f" {negative_prompt_attention_mask.shape}."
411
+ )
412
+
413
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
414
+ def _text_preprocessing(self, text, clean_caption=False):
415
+ if clean_caption and not is_bs4_available():
416
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
417
+ logger.warning("Setting `clean_caption` to False...")
418
+ clean_caption = False
419
+
420
+ if clean_caption and not is_ftfy_available():
421
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
422
+ logger.warning("Setting `clean_caption` to False...")
423
+ clean_caption = False
424
+
425
+ if not isinstance(text, (tuple, list)):
426
+ text = [text]
427
+
428
+ def process(text: str):
429
+ if clean_caption:
430
+ text = self._clean_caption(text)
431
+ text = self._clean_caption(text)
432
+ else:
433
+ text = text.lower().strip()
434
+ return text
435
+
436
+ return [process(t) for t in text]
437
+
438
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
439
+ def _clean_caption(self, caption):
440
+ caption = str(caption)
441
+ caption = ul.unquote_plus(caption)
442
+ caption = caption.strip().lower()
443
+ caption = re.sub("<person>", "person", caption)
444
+ # urls:
445
+ caption = re.sub(
446
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
447
+ "",
448
+ caption,
449
+ ) # regex for urls
450
+ caption = re.sub(
451
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
452
+ "",
453
+ caption,
454
+ ) # regex for urls
455
+ # html:
456
+ caption = BeautifulSoup(caption, features="html.parser").text
457
+
458
+ # @<nickname>
459
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
460
+
461
+ # 31C0—31EF CJK Strokes
462
+ # 31F0—31FF Katakana Phonetic Extensions
463
+ # 3200—32FF Enclosed CJK Letters and Months
464
+ # 3300—33FF CJK Compatibility
465
+ # 3400—4DBF CJK Unified Ideographs Extension A
466
+ # 4DC0—4DFF Yijing Hexagram Symbols
467
+ # 4E00—9FFF CJK Unified Ideographs
468
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
469
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
470
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
471
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
472
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
473
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
474
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
475
+ #######################################################
476
+
477
+ # все виды тире / all types of dash --> "-"
478
+ caption = re.sub(
479
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
480
+ "-",
481
+ caption,
482
+ )
483
+
484
+ # кавычки к одному стандарту
485
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
486
+ caption = re.sub(r"[‘’]", "'", caption)
487
+
488
+ # &quot;
489
+ caption = re.sub(r"&quot;?", "", caption)
490
+ # &amp
491
+ caption = re.sub(r"&amp", "", caption)
492
+
493
+ # ip adresses:
494
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
495
+
496
+ # article ids:
497
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
498
+
499
+ # \n
500
+ caption = re.sub(r"\\n", " ", caption)
501
+
502
+ # "#123"
503
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
504
+ # "#12345.."
505
+ caption = re.sub(r"#\d{5,}\b", "", caption)
506
+ # "123456.."
507
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
508
+ # filenames:
509
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
510
+
511
+ #
512
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
513
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
514
+
515
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
516
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
517
+
518
+ # this-is-my-cute-cat / this_is_my_cute_cat
519
+ regex2 = re.compile(r"(?:\-|\_)")
520
+ if len(re.findall(regex2, caption)) > 3:
521
+ caption = re.sub(regex2, " ", caption)
522
+
523
+ caption = ftfy.fix_text(caption)
524
+ caption = html.unescape(html.unescape(caption))
525
+
526
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
527
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
528
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
529
+
530
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
531
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
532
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
533
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
534
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
535
+
536
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
537
+
538
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
539
+
540
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
541
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
542
+ caption = re.sub(r"\s+", " ", caption)
543
+
544
+ caption.strip()
545
+
546
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
547
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
548
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
549
+ caption = re.sub(r"^\.\S+$", "", caption)
550
+
551
+ return caption.strip()
552
+
553
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
554
+ if latents is not None:
555
+ return latents.to(device=device, dtype=dtype)
556
+
557
+ shape = (
558
+ batch_size,
559
+ num_channels_latents,
560
+ int(height) // self.vae_scale_factor,
561
+ int(width) // self.vae_scale_factor,
562
+ )
563
+ if isinstance(generator, list) and len(generator) != batch_size:
564
+ raise ValueError(
565
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
566
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
567
+ )
568
+
569
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
570
+ return latents
571
+
572
+ @property
573
+ def guidance_scale(self):
574
+ return self._guidance_scale
575
+
576
+ @property
577
+ def attention_kwargs(self):
578
+ return self._attention_kwargs
579
+
580
+ @property
581
+ def do_classifier_free_guidance(self):
582
+ return self._guidance_scale > 1.0
583
+
584
+ @property
585
+ def num_timesteps(self):
586
+ return self._num_timesteps
587
+
588
+ @property
589
+ def interrupt(self):
590
+ return self._interrupt
591
+
592
+ @torch.no_grad()
593
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
594
+ def __call__(
595
+ self,
596
+ prompt: Union[str, List[str]] = None,
597
+ negative_prompt: str = "",
598
+ num_inference_steps: int = 20,
599
+ timesteps: List[int] = None,
600
+ sigmas: List[float] = None,
601
+ guidance_scale: float = 4.5,
602
+ num_images_per_prompt: Optional[int] = 1,
603
+ height: int = 1024,
604
+ width: int = 1024,
605
+ eta: float = 0.0,
606
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
607
+ latents: Optional[torch.Tensor] = None,
608
+ prompt_embeds: Optional[torch.Tensor] = None,
609
+ prompt_attention_mask: Optional[torch.Tensor] = None,
610
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
611
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
612
+ output_type: Optional[str] = "pil",
613
+ return_dict: bool = True,
614
+ clean_caption: bool = True,
615
+ use_resolution_binning: bool = True,
616
+ attention_kwargs: Optional[Dict[str, Any]] = None,
617
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
618
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
619
+ max_sequence_length: int = 300,
620
+ complex_human_instruction: List[str] = [
621
+ "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
622
+ "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
623
+ "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
624
+ "Here are examples of how to transform or refine prompts:",
625
+ "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
626
+ "- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
627
+ "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
628
+ "User Prompt: ",
629
+ ],
630
+ ) -> Union[SanaPipelineOutput, Tuple]:
631
+ """
632
+ Function invoked when calling the pipeline for generation.
633
+
634
+ Args:
635
+ prompt (`str` or `List[str]`, *optional*):
636
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
637
+ instead.
638
+ negative_prompt (`str` or `List[str]`, *optional*):
639
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
640
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
641
+ less than `1`).
642
+ num_inference_steps (`int`, *optional*, defaults to 20):
643
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
644
+ expense of slower inference.
645
+ timesteps (`List[int]`, *optional*):
646
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
647
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
648
+ passed will be used. Must be in descending order.
649
+ sigmas (`List[float]`, *optional*):
650
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
651
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
652
+ will be used.
653
+ guidance_scale (`float`, *optional*, defaults to 4.5):
654
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
655
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
656
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
657
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
658
+ usually at the expense of lower image quality.
659
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
660
+ The number of images to generate per prompt.
661
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
662
+ The height in pixels of the generated image.
663
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
664
+ The width in pixels of the generated image.
665
+ eta (`float`, *optional*, defaults to 0.0):
666
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
667
+ [`schedulers.DDIMScheduler`], will be ignored for others.
668
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
669
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
670
+ to make generation deterministic.
671
+ latents (`torch.Tensor`, *optional*):
672
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
673
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
674
+ tensor will ge generated by sampling using the supplied random `generator`.
675
+ prompt_embeds (`torch.Tensor`, *optional*):
676
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
677
+ provided, text embeddings will be generated from `prompt` input argument.
678
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
679
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
680
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
681
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
682
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
683
+ Pre-generated attention mask for negative text embeddings.
684
+ output_type (`str`, *optional*, defaults to `"pil"`):
685
+ The output format of the generate image. Choose between
686
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
687
+ return_dict (`bool`, *optional*, defaults to `True`):
688
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
689
+ attention_kwargs:
690
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
691
+ `self.processor` in
692
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
693
+ clean_caption (`bool`, *optional*, defaults to `True`):
694
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
695
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
696
+ prompt.
697
+ use_resolution_binning (`bool` defaults to `True`):
698
+ If set to `True`, the requested height and width are first mapped to the closest resolutions using
699
+ `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
700
+ the requested resolution. Useful for generating non-square images.
701
+ callback_on_step_end (`Callable`, *optional*):
702
+ A function that calls at the end of each denoising steps during the inference. The function is called
703
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
704
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
705
+ `callback_on_step_end_tensor_inputs`.
706
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
707
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
708
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
709
+ `._callback_tensor_inputs` attribute of your pipeline class.
710
+ max_sequence_length (`int` defaults to `300`):
711
+ Maximum sequence length to use with the `prompt`.
712
+ complex_human_instruction (`List[str]`, *optional*):
713
+ Instructions for complex human attention:
714
+ https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
715
+
716
+ Examples:
717
+
718
+ Returns:
719
+ [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
720
+ If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
721
+ otherwise a `tuple` is returned where the first element is a list with the generated images
722
+ """
723
+
724
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
725
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
726
+
727
+ # 1. Check inputs. Raise error if not correct
728
+ if use_resolution_binning:
729
+ if self.transformer.config.sample_size == 64:
730
+ aspect_ratio_bin = ASPECT_RATIO_2048_BIN
731
+ elif self.transformer.config.sample_size == 32:
732
+ aspect_ratio_bin = ASPECT_RATIO_1024_BIN
733
+ elif self.transformer.config.sample_size == 16:
734
+ aspect_ratio_bin = ASPECT_RATIO_512_BIN
735
+ else:
736
+ raise ValueError("Invalid sample size")
737
+ orig_height, orig_width = height, width
738
+ height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
739
+
740
+ self.check_inputs(
741
+ prompt,
742
+ height,
743
+ width,
744
+ callback_on_step_end_tensor_inputs,
745
+ negative_prompt,
746
+ prompt_embeds,
747
+ negative_prompt_embeds,
748
+ prompt_attention_mask,
749
+ negative_prompt_attention_mask,
750
+ )
751
+
752
+ self._guidance_scale = guidance_scale
753
+ self._attention_kwargs = attention_kwargs
754
+ self._interrupt = False
755
+
756
+ # 2. Default height and width to transformer
757
+ if prompt is not None and isinstance(prompt, str):
758
+ batch_size = 1
759
+ elif prompt is not None and isinstance(prompt, list):
760
+ batch_size = len(prompt)
761
+ else:
762
+ batch_size = prompt_embeds.shape[0]
763
+
764
+ device = self._execution_device
765
+ lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
766
+
767
+ # 3. Encode input prompt
768
+ (
769
+ prompt_embeds,
770
+ prompt_attention_mask,
771
+ negative_prompt_embeds,
772
+ negative_prompt_attention_mask,
773
+ ) = self.encode_prompt(
774
+ prompt,
775
+ self.do_classifier_free_guidance,
776
+ negative_prompt=negative_prompt,
777
+ num_images_per_prompt=num_images_per_prompt,
778
+ device=device,
779
+ prompt_embeds=prompt_embeds,
780
+ negative_prompt_embeds=negative_prompt_embeds,
781
+ prompt_attention_mask=prompt_attention_mask,
782
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
783
+ clean_caption=clean_caption,
784
+ max_sequence_length=max_sequence_length,
785
+ complex_human_instruction=complex_human_instruction,
786
+ lora_scale=lora_scale,
787
+ )
788
+ if self.do_classifier_free_guidance:
789
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
790
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
791
+
792
+ # 4. Prepare timesteps
793
+ timesteps, num_inference_steps = retrieve_timesteps(
794
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
795
+ )
796
+
797
+ # 5. Prepare latents.
798
+ latent_channels = self.transformer.config.in_channels
799
+ latents = self.prepare_latents(
800
+ batch_size * num_images_per_prompt,
801
+ latent_channels,
802
+ height,
803
+ width,
804
+ torch.float32,
805
+ device,
806
+ generator,
807
+ latents,
808
+ )
809
+
810
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
811
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
812
+
813
+ # 7. Denoising loop
814
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
815
+ self._num_timesteps = len(timesteps)
816
+
817
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
818
+ for i, t in enumerate(timesteps):
819
+ if self.interrupt:
820
+ continue
821
+
822
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
823
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
824
+
825
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
826
+ timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
827
+
828
+ # predict noise model_output
829
+ noise_pred = self.transformer(
830
+ latent_model_input,
831
+ encoder_hidden_states=prompt_embeds,
832
+ encoder_attention_mask=prompt_attention_mask,
833
+ timestep=timestep,
834
+ return_dict=False,
835
+ attention_kwargs=self.attention_kwargs,
836
+ )[0]
837
+ noise_pred = noise_pred.float()
838
+
839
+ # perform guidance
840
+ if self.do_classifier_free_guidance:
841
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
842
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
843
+
844
+ # learned sigma
845
+ if self.transformer.config.out_channels // 2 == latent_channels:
846
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
847
+ else:
848
+ noise_pred = noise_pred
849
+
850
+ # compute previous image: x_t -> x_t-1
851
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
852
+
853
+ if callback_on_step_end is not None:
854
+ callback_kwargs = {}
855
+ for k in callback_on_step_end_tensor_inputs:
856
+ callback_kwargs[k] = locals()[k]
857
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
858
+
859
+ latents = callback_outputs.pop("latents", latents)
860
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
861
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
862
+
863
+ # call the callback, if provided
864
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
865
+ progress_bar.update()
866
+
867
+ if output_type == "latent":
868
+ image = latents
869
+ else:
870
+ latents = latents.to(self.vae.dtype)
871
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
872
+ if use_resolution_binning:
873
+ image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
874
+
875
+ if not output_type == "latent":
876
+ image = self.image_processor.postprocess(image, output_type=output_type)
877
+
878
+ # Offload all models
879
+ self.maybe_free_model_hooks()
880
+
881
+ if not return_dict:
882
+ return (image,)
883
+
884
+ return SanaPipelineOutput(images=image)