diffusers 0.31.0__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +74 -28
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/METADATA +69 -69
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,889 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import FluxTransformer2DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+ from .pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+ >>> from controlnet_aux import CannyDetector
55
+ >>> from diffusers import FluxControlPipeline
56
+ >>> from diffusers.utils import load_image
57
+
58
+ >>> pipe = FluxControlPipeline.from_pretrained(
59
+ ... "black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16
60
+ ... ).to("cuda")
61
+
62
+ >>> prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
63
+ >>> control_image = load_image(
64
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png"
65
+ ... )
66
+
67
+ >>> processor = CannyDetector()
68
+ >>> control_image = processor(
69
+ ... control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024
70
+ ... )
71
+
72
+ >>> image = pipe(
73
+ ... prompt=prompt,
74
+ ... control_image=control_image,
75
+ ... height=1024,
76
+ ... width=1024,
77
+ ... num_inference_steps=50,
78
+ ... guidance_scale=30.0,
79
+ ... ).images[0]
80
+ >>> image.save("output.png")
81
+ ```
82
+ """
83
+
84
+
85
+ def calculate_shift(
86
+ image_seq_len,
87
+ base_seq_len: int = 256,
88
+ max_seq_len: int = 4096,
89
+ base_shift: float = 0.5,
90
+ max_shift: float = 1.16,
91
+ ):
92
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
93
+ b = base_shift - m * base_seq_len
94
+ mu = image_seq_len * m + b
95
+ return mu
96
+
97
+
98
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
99
+ def retrieve_timesteps(
100
+ scheduler,
101
+ num_inference_steps: Optional[int] = None,
102
+ device: Optional[Union[str, torch.device]] = None,
103
+ timesteps: Optional[List[int]] = None,
104
+ sigmas: Optional[List[float]] = None,
105
+ **kwargs,
106
+ ):
107
+ r"""
108
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
109
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
110
+
111
+ Args:
112
+ scheduler (`SchedulerMixin`):
113
+ The scheduler to get timesteps from.
114
+ num_inference_steps (`int`):
115
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
116
+ must be `None`.
117
+ device (`str` or `torch.device`, *optional*):
118
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
119
+ timesteps (`List[int]`, *optional*):
120
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
121
+ `num_inference_steps` and `sigmas` must be `None`.
122
+ sigmas (`List[float]`, *optional*):
123
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
124
+ `num_inference_steps` and `timesteps` must be `None`.
125
+
126
+ Returns:
127
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
128
+ second element is the number of inference steps.
129
+ """
130
+ if timesteps is not None and sigmas is not None:
131
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
132
+ if timesteps is not None:
133
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
134
+ if not accepts_timesteps:
135
+ raise ValueError(
136
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
137
+ f" timestep schedules. Please check whether you are using the correct scheduler."
138
+ )
139
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
140
+ timesteps = scheduler.timesteps
141
+ num_inference_steps = len(timesteps)
142
+ elif sigmas is not None:
143
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
144
+ if not accept_sigmas:
145
+ raise ValueError(
146
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
147
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
148
+ )
149
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
150
+ timesteps = scheduler.timesteps
151
+ num_inference_steps = len(timesteps)
152
+ else:
153
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ return timesteps, num_inference_steps
156
+
157
+
158
+ class FluxControlPipeline(
159
+ DiffusionPipeline,
160
+ FluxLoraLoaderMixin,
161
+ FromSingleFileMixin,
162
+ TextualInversionLoaderMixin,
163
+ ):
164
+ r"""
165
+ The Flux pipeline for controllable text-to-image generation.
166
+
167
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
168
+
169
+ Args:
170
+ transformer ([`FluxTransformer2DModel`]):
171
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
172
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
173
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
174
+ vae ([`AutoencoderKL`]):
175
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
176
+ text_encoder ([`CLIPTextModel`]):
177
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
178
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
179
+ text_encoder_2 ([`T5EncoderModel`]):
180
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
181
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
182
+ tokenizer (`CLIPTokenizer`):
183
+ Tokenizer of class
184
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
185
+ tokenizer_2 (`T5TokenizerFast`):
186
+ Second Tokenizer of class
187
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
188
+ """
189
+
190
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
191
+ _optional_components = []
192
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
193
+
194
+ def __init__(
195
+ self,
196
+ scheduler: FlowMatchEulerDiscreteScheduler,
197
+ vae: AutoencoderKL,
198
+ text_encoder: CLIPTextModel,
199
+ tokenizer: CLIPTokenizer,
200
+ text_encoder_2: T5EncoderModel,
201
+ tokenizer_2: T5TokenizerFast,
202
+ transformer: FluxTransformer2DModel,
203
+ ):
204
+ super().__init__()
205
+
206
+ self.register_modules(
207
+ vae=vae,
208
+ text_encoder=text_encoder,
209
+ text_encoder_2=text_encoder_2,
210
+ tokenizer=tokenizer,
211
+ tokenizer_2=tokenizer_2,
212
+ transformer=transformer,
213
+ scheduler=scheduler,
214
+ )
215
+ self.vae_scale_factor = (
216
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
217
+ )
218
+ self.vae_latent_channels = (
219
+ self.vae.config.latent_channels if hasattr(self, "vae") and self.vae is not None else 16
220
+ )
221
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
222
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
223
+ self.image_processor = VaeImageProcessor(
224
+ vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=self.vae_latent_channels
225
+ )
226
+ self.tokenizer_max_length = (
227
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
228
+ )
229
+ self.default_sample_size = 128
230
+
231
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
232
+ def _get_t5_prompt_embeds(
233
+ self,
234
+ prompt: Union[str, List[str]] = None,
235
+ num_images_per_prompt: int = 1,
236
+ max_sequence_length: int = 512,
237
+ device: Optional[torch.device] = None,
238
+ dtype: Optional[torch.dtype] = None,
239
+ ):
240
+ device = device or self._execution_device
241
+ dtype = dtype or self.text_encoder.dtype
242
+
243
+ prompt = [prompt] if isinstance(prompt, str) else prompt
244
+ batch_size = len(prompt)
245
+
246
+ if isinstance(self, TextualInversionLoaderMixin):
247
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
248
+
249
+ text_inputs = self.tokenizer_2(
250
+ prompt,
251
+ padding="max_length",
252
+ max_length=max_sequence_length,
253
+ truncation=True,
254
+ return_length=False,
255
+ return_overflowing_tokens=False,
256
+ return_tensors="pt",
257
+ )
258
+ text_input_ids = text_inputs.input_ids
259
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
260
+
261
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
262
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
263
+ logger.warning(
264
+ "The following part of your input was truncated because `max_sequence_length` is set to "
265
+ f" {max_sequence_length} tokens: {removed_text}"
266
+ )
267
+
268
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
269
+
270
+ dtype = self.text_encoder_2.dtype
271
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
272
+
273
+ _, seq_len, _ = prompt_embeds.shape
274
+
275
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
276
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
277
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
278
+
279
+ return prompt_embeds
280
+
281
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
282
+ def _get_clip_prompt_embeds(
283
+ self,
284
+ prompt: Union[str, List[str]],
285
+ num_images_per_prompt: int = 1,
286
+ device: Optional[torch.device] = None,
287
+ ):
288
+ device = device or self._execution_device
289
+
290
+ prompt = [prompt] if isinstance(prompt, str) else prompt
291
+ batch_size = len(prompt)
292
+
293
+ if isinstance(self, TextualInversionLoaderMixin):
294
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
295
+
296
+ text_inputs = self.tokenizer(
297
+ prompt,
298
+ padding="max_length",
299
+ max_length=self.tokenizer_max_length,
300
+ truncation=True,
301
+ return_overflowing_tokens=False,
302
+ return_length=False,
303
+ return_tensors="pt",
304
+ )
305
+
306
+ text_input_ids = text_inputs.input_ids
307
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
308
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
309
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
310
+ logger.warning(
311
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
312
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
313
+ )
314
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
315
+
316
+ # Use pooled output of CLIPTextModel
317
+ prompt_embeds = prompt_embeds.pooler_output
318
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
319
+
320
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
321
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
322
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
323
+
324
+ return prompt_embeds
325
+
326
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
327
+ def encode_prompt(
328
+ self,
329
+ prompt: Union[str, List[str]],
330
+ prompt_2: Union[str, List[str]],
331
+ device: Optional[torch.device] = None,
332
+ num_images_per_prompt: int = 1,
333
+ prompt_embeds: Optional[torch.FloatTensor] = None,
334
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
335
+ max_sequence_length: int = 512,
336
+ lora_scale: Optional[float] = None,
337
+ ):
338
+ r"""
339
+
340
+ Args:
341
+ prompt (`str` or `List[str]`, *optional*):
342
+ prompt to be encoded
343
+ prompt_2 (`str` or `List[str]`, *optional*):
344
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
345
+ used in all text-encoders
346
+ device: (`torch.device`):
347
+ torch device
348
+ num_images_per_prompt (`int`):
349
+ number of images that should be generated per prompt
350
+ prompt_embeds (`torch.FloatTensor`, *optional*):
351
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
352
+ provided, text embeddings will be generated from `prompt` input argument.
353
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
354
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
355
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
356
+ lora_scale (`float`, *optional*):
357
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
358
+ """
359
+ device = device or self._execution_device
360
+
361
+ # set lora scale so that monkey patched LoRA
362
+ # function of text encoder can correctly access it
363
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
364
+ self._lora_scale = lora_scale
365
+
366
+ # dynamically adjust the LoRA scale
367
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
368
+ scale_lora_layers(self.text_encoder, lora_scale)
369
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
370
+ scale_lora_layers(self.text_encoder_2, lora_scale)
371
+
372
+ prompt = [prompt] if isinstance(prompt, str) else prompt
373
+
374
+ if prompt_embeds is None:
375
+ prompt_2 = prompt_2 or prompt
376
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
377
+
378
+ # We only use the pooled prompt output from the CLIPTextModel
379
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
380
+ prompt=prompt,
381
+ device=device,
382
+ num_images_per_prompt=num_images_per_prompt,
383
+ )
384
+ prompt_embeds = self._get_t5_prompt_embeds(
385
+ prompt=prompt_2,
386
+ num_images_per_prompt=num_images_per_prompt,
387
+ max_sequence_length=max_sequence_length,
388
+ device=device,
389
+ )
390
+
391
+ if self.text_encoder is not None:
392
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
393
+ # Retrieve the original scale by scaling back the LoRA layers
394
+ unscale_lora_layers(self.text_encoder, lora_scale)
395
+
396
+ if self.text_encoder_2 is not None:
397
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
398
+ # Retrieve the original scale by scaling back the LoRA layers
399
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
400
+
401
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
402
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
403
+
404
+ return prompt_embeds, pooled_prompt_embeds, text_ids
405
+
406
+ def check_inputs(
407
+ self,
408
+ prompt,
409
+ prompt_2,
410
+ height,
411
+ width,
412
+ prompt_embeds=None,
413
+ pooled_prompt_embeds=None,
414
+ callback_on_step_end_tensor_inputs=None,
415
+ max_sequence_length=None,
416
+ ):
417
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
418
+ logger.warning(
419
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
420
+ )
421
+
422
+ if callback_on_step_end_tensor_inputs is not None and not all(
423
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
424
+ ):
425
+ raise ValueError(
426
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
427
+ )
428
+
429
+ if prompt is not None and prompt_embeds is not None:
430
+ raise ValueError(
431
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
432
+ " only forward one of the two."
433
+ )
434
+ elif prompt_2 is not None and prompt_embeds is not None:
435
+ raise ValueError(
436
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
437
+ " only forward one of the two."
438
+ )
439
+ elif prompt is None and prompt_embeds is None:
440
+ raise ValueError(
441
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
442
+ )
443
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
444
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
445
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
446
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
447
+
448
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
449
+ raise ValueError(
450
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
451
+ )
452
+
453
+ if max_sequence_length is not None and max_sequence_length > 512:
454
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
455
+
456
+ @staticmethod
457
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
458
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
459
+ latent_image_ids = torch.zeros(height, width, 3)
460
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
461
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
462
+
463
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
464
+
465
+ latent_image_ids = latent_image_ids.reshape(
466
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
467
+ )
468
+
469
+ return latent_image_ids.to(device=device, dtype=dtype)
470
+
471
+ @staticmethod
472
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
473
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
474
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
475
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
476
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
477
+
478
+ return latents
479
+
480
+ @staticmethod
481
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
482
+ def _unpack_latents(latents, height, width, vae_scale_factor):
483
+ batch_size, num_patches, channels = latents.shape
484
+
485
+ # VAE applies 8x compression on images but we must also account for packing which requires
486
+ # latent height and width to be divisible by 2.
487
+ height = 2 * (int(height) // (vae_scale_factor * 2))
488
+ width = 2 * (int(width) // (vae_scale_factor * 2))
489
+
490
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
491
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
492
+
493
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
494
+
495
+ return latents
496
+
497
+ def enable_vae_slicing(self):
498
+ r"""
499
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
500
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
501
+ """
502
+ self.vae.enable_slicing()
503
+
504
+ def disable_vae_slicing(self):
505
+ r"""
506
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
507
+ computing decoding in one step.
508
+ """
509
+ self.vae.disable_slicing()
510
+
511
+ def enable_vae_tiling(self):
512
+ r"""
513
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
514
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
515
+ processing larger images.
516
+ """
517
+ self.vae.enable_tiling()
518
+
519
+ def disable_vae_tiling(self):
520
+ r"""
521
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
522
+ computing decoding in one step.
523
+ """
524
+ self.vae.disable_tiling()
525
+
526
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
527
+ def prepare_latents(
528
+ self,
529
+ batch_size,
530
+ num_channels_latents,
531
+ height,
532
+ width,
533
+ dtype,
534
+ device,
535
+ generator,
536
+ latents=None,
537
+ ):
538
+ # VAE applies 8x compression on images but we must also account for packing which requires
539
+ # latent height and width to be divisible by 2.
540
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
541
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
542
+
543
+ shape = (batch_size, num_channels_latents, height, width)
544
+
545
+ if latents is not None:
546
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
547
+ return latents.to(device=device, dtype=dtype), latent_image_ids
548
+
549
+ if isinstance(generator, list) and len(generator) != batch_size:
550
+ raise ValueError(
551
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
552
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
553
+ )
554
+
555
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
556
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
557
+
558
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
559
+
560
+ return latents, latent_image_ids
561
+
562
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
563
+ def prepare_image(
564
+ self,
565
+ image,
566
+ width,
567
+ height,
568
+ batch_size,
569
+ num_images_per_prompt,
570
+ device,
571
+ dtype,
572
+ do_classifier_free_guidance=False,
573
+ guess_mode=False,
574
+ ):
575
+ if isinstance(image, torch.Tensor):
576
+ pass
577
+ else:
578
+ image = self.image_processor.preprocess(image, height=height, width=width)
579
+
580
+ image_batch_size = image.shape[0]
581
+
582
+ if image_batch_size == 1:
583
+ repeat_by = batch_size
584
+ else:
585
+ # image batch size is the same as prompt batch size
586
+ repeat_by = num_images_per_prompt
587
+
588
+ image = image.repeat_interleave(repeat_by, dim=0)
589
+
590
+ image = image.to(device=device, dtype=dtype)
591
+
592
+ if do_classifier_free_guidance and not guess_mode:
593
+ image = torch.cat([image] * 2)
594
+
595
+ return image
596
+
597
+ @property
598
+ def guidance_scale(self):
599
+ return self._guidance_scale
600
+
601
+ @property
602
+ def joint_attention_kwargs(self):
603
+ return self._joint_attention_kwargs
604
+
605
+ @property
606
+ def num_timesteps(self):
607
+ return self._num_timesteps
608
+
609
+ @property
610
+ def interrupt(self):
611
+ return self._interrupt
612
+
613
+ @torch.no_grad()
614
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
615
+ def __call__(
616
+ self,
617
+ prompt: Union[str, List[str]] = None,
618
+ prompt_2: Optional[Union[str, List[str]]] = None,
619
+ control_image: PipelineImageInput = None,
620
+ height: Optional[int] = None,
621
+ width: Optional[int] = None,
622
+ num_inference_steps: int = 28,
623
+ sigmas: Optional[List[float]] = None,
624
+ guidance_scale: float = 3.5,
625
+ num_images_per_prompt: Optional[int] = 1,
626
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
627
+ latents: Optional[torch.FloatTensor] = None,
628
+ prompt_embeds: Optional[torch.FloatTensor] = None,
629
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
630
+ output_type: Optional[str] = "pil",
631
+ return_dict: bool = True,
632
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
633
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
634
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
635
+ max_sequence_length: int = 512,
636
+ ):
637
+ r"""
638
+ Function invoked when calling the pipeline for generation.
639
+
640
+ Args:
641
+ prompt (`str` or `List[str]`, *optional*):
642
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
643
+ instead.
644
+ prompt_2 (`str` or `List[str]`, *optional*):
645
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
646
+ will be used instead
647
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
648
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
649
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
650
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
651
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
652
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
653
+ images must be passed as a list such that each element of the list can be correctly batched for input
654
+ to a single ControlNet.
655
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
656
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
657
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
658
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
659
+ num_inference_steps (`int`, *optional*, defaults to 50):
660
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
661
+ expense of slower inference.
662
+ sigmas (`List[float]`, *optional*):
663
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
664
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
665
+ will be used.
666
+ guidance_scale (`float`, *optional*, defaults to 7.0):
667
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
668
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
669
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
670
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
671
+ usually at the expense of lower image quality.
672
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
673
+ The number of images to generate per prompt.
674
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
675
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
676
+ to make generation deterministic.
677
+ latents (`torch.FloatTensor`, *optional*):
678
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
679
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
680
+ tensor will ge generated by sampling using the supplied random `generator`.
681
+ prompt_embeds (`torch.FloatTensor`, *optional*):
682
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
683
+ provided, text embeddings will be generated from `prompt` input argument.
684
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
685
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
686
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
687
+ output_type (`str`, *optional*, defaults to `"pil"`):
688
+ The output format of the generate image. Choose between
689
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
690
+ return_dict (`bool`, *optional*, defaults to `True`):
691
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
692
+ joint_attention_kwargs (`dict`, *optional*):
693
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
694
+ `self.processor` in
695
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
696
+ callback_on_step_end (`Callable`, *optional*):
697
+ A function that calls at the end of each denoising steps during the inference. The function is called
698
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
699
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
700
+ `callback_on_step_end_tensor_inputs`.
701
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
702
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
703
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
704
+ `._callback_tensor_inputs` attribute of your pipeline class.
705
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
706
+
707
+ Examples:
708
+
709
+ Returns:
710
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
711
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
712
+ images.
713
+ """
714
+
715
+ height = height or self.default_sample_size * self.vae_scale_factor
716
+ width = width or self.default_sample_size * self.vae_scale_factor
717
+
718
+ # 1. Check inputs. Raise error if not correct
719
+ self.check_inputs(
720
+ prompt,
721
+ prompt_2,
722
+ height,
723
+ width,
724
+ prompt_embeds=prompt_embeds,
725
+ pooled_prompt_embeds=pooled_prompt_embeds,
726
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
727
+ max_sequence_length=max_sequence_length,
728
+ )
729
+
730
+ self._guidance_scale = guidance_scale
731
+ self._joint_attention_kwargs = joint_attention_kwargs
732
+ self._interrupt = False
733
+
734
+ # 2. Define call parameters
735
+ if prompt is not None and isinstance(prompt, str):
736
+ batch_size = 1
737
+ elif prompt is not None and isinstance(prompt, list):
738
+ batch_size = len(prompt)
739
+ else:
740
+ batch_size = prompt_embeds.shape[0]
741
+
742
+ device = self._execution_device
743
+
744
+ # 3. Prepare text embeddings
745
+ lora_scale = (
746
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
747
+ )
748
+ (
749
+ prompt_embeds,
750
+ pooled_prompt_embeds,
751
+ text_ids,
752
+ ) = self.encode_prompt(
753
+ prompt=prompt,
754
+ prompt_2=prompt_2,
755
+ prompt_embeds=prompt_embeds,
756
+ pooled_prompt_embeds=pooled_prompt_embeds,
757
+ device=device,
758
+ num_images_per_prompt=num_images_per_prompt,
759
+ max_sequence_length=max_sequence_length,
760
+ lora_scale=lora_scale,
761
+ )
762
+
763
+ # 4. Prepare latent variables
764
+ num_channels_latents = self.transformer.config.in_channels // 8
765
+
766
+ control_image = self.prepare_image(
767
+ image=control_image,
768
+ width=width,
769
+ height=height,
770
+ batch_size=batch_size * num_images_per_prompt,
771
+ num_images_per_prompt=num_images_per_prompt,
772
+ device=device,
773
+ dtype=self.vae.dtype,
774
+ )
775
+
776
+ if control_image.ndim == 4:
777
+ control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator)
778
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
779
+
780
+ height_control_image, width_control_image = control_image.shape[2:]
781
+ control_image = self._pack_latents(
782
+ control_image,
783
+ batch_size * num_images_per_prompt,
784
+ num_channels_latents,
785
+ height_control_image,
786
+ width_control_image,
787
+ )
788
+
789
+ latents, latent_image_ids = self.prepare_latents(
790
+ batch_size * num_images_per_prompt,
791
+ num_channels_latents,
792
+ height,
793
+ width,
794
+ prompt_embeds.dtype,
795
+ device,
796
+ generator,
797
+ latents,
798
+ )
799
+
800
+ # 5. Prepare timesteps
801
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
802
+ image_seq_len = latents.shape[1]
803
+ mu = calculate_shift(
804
+ image_seq_len,
805
+ self.scheduler.config.base_image_seq_len,
806
+ self.scheduler.config.max_image_seq_len,
807
+ self.scheduler.config.base_shift,
808
+ self.scheduler.config.max_shift,
809
+ )
810
+ timesteps, num_inference_steps = retrieve_timesteps(
811
+ self.scheduler,
812
+ num_inference_steps,
813
+ device,
814
+ sigmas=sigmas,
815
+ mu=mu,
816
+ )
817
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
818
+ self._num_timesteps = len(timesteps)
819
+
820
+ # handle guidance
821
+ if self.transformer.config.guidance_embeds:
822
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
823
+ guidance = guidance.expand(latents.shape[0])
824
+ else:
825
+ guidance = None
826
+
827
+ # 6. Denoising loop
828
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
829
+ for i, t in enumerate(timesteps):
830
+ if self.interrupt:
831
+ continue
832
+
833
+ latent_model_input = torch.cat([latents, control_image], dim=2)
834
+
835
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
836
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
837
+
838
+ noise_pred = self.transformer(
839
+ hidden_states=latent_model_input,
840
+ timestep=timestep / 1000,
841
+ guidance=guidance,
842
+ pooled_projections=pooled_prompt_embeds,
843
+ encoder_hidden_states=prompt_embeds,
844
+ txt_ids=text_ids,
845
+ img_ids=latent_image_ids,
846
+ joint_attention_kwargs=self.joint_attention_kwargs,
847
+ return_dict=False,
848
+ )[0]
849
+
850
+ # compute the previous noisy sample x_t -> x_t-1
851
+ latents_dtype = latents.dtype
852
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
853
+
854
+ if latents.dtype != latents_dtype:
855
+ if torch.backends.mps.is_available():
856
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
857
+ latents = latents.to(latents_dtype)
858
+
859
+ if callback_on_step_end is not None:
860
+ callback_kwargs = {}
861
+ for k in callback_on_step_end_tensor_inputs:
862
+ callback_kwargs[k] = locals()[k]
863
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
864
+
865
+ latents = callback_outputs.pop("latents", latents)
866
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
867
+
868
+ # call the callback, if provided
869
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
870
+ progress_bar.update()
871
+
872
+ if XLA_AVAILABLE:
873
+ xm.mark_step()
874
+
875
+ if output_type == "latent":
876
+ image = latents
877
+ else:
878
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
879
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
880
+ image = self.vae.decode(latents, return_dict=False)[0]
881
+ image = self.image_processor.postprocess(image, output_type=output_type)
882
+
883
+ # Offload all models
884
+ self.maybe_free_model_hooks()
885
+
886
+ if not return_dict:
887
+ return (image,)
888
+
889
+ return FluxPipelineOutput(images=image)