diffusers 0.31.0__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +74 -28
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/METADATA +69 -69
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,422 @@
1
+ # Copyright 2024 The RhymesAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Any, Dict, Optional, Tuple
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+
22
+ from ...configuration_utils import ConfigMixin, register_to_config
23
+ from ...utils import is_torch_version, logging
24
+ from ...utils.torch_utils import maybe_allow_in_graph
25
+ from ..attention import FeedForward
26
+ from ..attention_processor import AllegroAttnProcessor2_0, Attention
27
+ from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
28
+ from ..modeling_outputs import Transformer2DModelOutput
29
+ from ..modeling_utils import ModelMixin
30
+ from ..normalization import AdaLayerNormSingle
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ @maybe_allow_in_graph
37
+ class AllegroTransformerBlock(nn.Module):
38
+ r"""
39
+ Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model.
40
+
41
+ Args:
42
+ dim (`int`):
43
+ The number of channels in the input and output.
44
+ num_attention_heads (`int`):
45
+ The number of heads to use for multi-head attention.
46
+ attention_head_dim (`int`):
47
+ The number of channels in each head.
48
+ dropout (`float`, defaults to `0.0`):
49
+ The dropout probability to use.
50
+ cross_attention_dim (`int`, defaults to `2304`):
51
+ The dimension of the cross attention features.
52
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
53
+ Activation function to be used in feed-forward.
54
+ attention_bias (`bool`, defaults to `False`):
55
+ Whether or not to use bias in attention projection layers.
56
+ only_cross_attention (`bool`, defaults to `False`):
57
+ norm_elementwise_affine (`bool`, defaults to `True`):
58
+ Whether to use learnable elementwise affine parameters for normalization.
59
+ norm_eps (`float`, defaults to `1e-5`):
60
+ Epsilon value for normalization layers.
61
+ final_dropout (`bool` defaults to `False`):
62
+ Whether to apply a final dropout after the last feed-forward layer.
63
+ """
64
+
65
+ def __init__(
66
+ self,
67
+ dim: int,
68
+ num_attention_heads: int,
69
+ attention_head_dim: int,
70
+ dropout=0.0,
71
+ cross_attention_dim: Optional[int] = None,
72
+ activation_fn: str = "geglu",
73
+ attention_bias: bool = False,
74
+ norm_elementwise_affine: bool = True,
75
+ norm_eps: float = 1e-5,
76
+ ):
77
+ super().__init__()
78
+
79
+ # 1. Self Attention
80
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
81
+
82
+ self.attn1 = Attention(
83
+ query_dim=dim,
84
+ heads=num_attention_heads,
85
+ dim_head=attention_head_dim,
86
+ dropout=dropout,
87
+ bias=attention_bias,
88
+ cross_attention_dim=None,
89
+ processor=AllegroAttnProcessor2_0(),
90
+ )
91
+
92
+ # 2. Cross Attention
93
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
94
+ self.attn2 = Attention(
95
+ query_dim=dim,
96
+ cross_attention_dim=cross_attention_dim,
97
+ heads=num_attention_heads,
98
+ dim_head=attention_head_dim,
99
+ dropout=dropout,
100
+ bias=attention_bias,
101
+ processor=AllegroAttnProcessor2_0(),
102
+ )
103
+
104
+ # 3. Feed Forward
105
+ self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
106
+
107
+ self.ff = FeedForward(
108
+ dim,
109
+ dropout=dropout,
110
+ activation_fn=activation_fn,
111
+ )
112
+
113
+ # 4. Scale-shift
114
+ self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
115
+
116
+ def forward(
117
+ self,
118
+ hidden_states: torch.Tensor,
119
+ encoder_hidden_states: Optional[torch.Tensor] = None,
120
+ temb: Optional[torch.LongTensor] = None,
121
+ attention_mask: Optional[torch.Tensor] = None,
122
+ encoder_attention_mask: Optional[torch.Tensor] = None,
123
+ image_rotary_emb=None,
124
+ ) -> torch.Tensor:
125
+ # 0. Self-Attention
126
+ batch_size = hidden_states.shape[0]
127
+
128
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
129
+ self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1)
130
+ ).chunk(6, dim=1)
131
+ norm_hidden_states = self.norm1(hidden_states)
132
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
133
+ norm_hidden_states = norm_hidden_states.squeeze(1)
134
+
135
+ attn_output = self.attn1(
136
+ norm_hidden_states,
137
+ encoder_hidden_states=None,
138
+ attention_mask=attention_mask,
139
+ image_rotary_emb=image_rotary_emb,
140
+ )
141
+ attn_output = gate_msa * attn_output
142
+
143
+ hidden_states = attn_output + hidden_states
144
+ if hidden_states.ndim == 4:
145
+ hidden_states = hidden_states.squeeze(1)
146
+
147
+ # 1. Cross-Attention
148
+ if self.attn2 is not None:
149
+ norm_hidden_states = hidden_states
150
+
151
+ attn_output = self.attn2(
152
+ norm_hidden_states,
153
+ encoder_hidden_states=encoder_hidden_states,
154
+ attention_mask=encoder_attention_mask,
155
+ image_rotary_emb=None,
156
+ )
157
+ hidden_states = attn_output + hidden_states
158
+
159
+ # 2. Feed-forward
160
+ norm_hidden_states = self.norm2(hidden_states)
161
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
162
+
163
+ ff_output = self.ff(norm_hidden_states)
164
+ ff_output = gate_mlp * ff_output
165
+
166
+ hidden_states = ff_output + hidden_states
167
+
168
+ # TODO(aryan): maybe following line is not required
169
+ if hidden_states.ndim == 4:
170
+ hidden_states = hidden_states.squeeze(1)
171
+
172
+ return hidden_states
173
+
174
+
175
+ class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
176
+ _supports_gradient_checkpointing = True
177
+
178
+ """
179
+ A 3D Transformer model for video-like data.
180
+
181
+ Args:
182
+ patch_size (`int`, defaults to `2`):
183
+ The size of spatial patches to use in the patch embedding layer.
184
+ patch_size_t (`int`, defaults to `1`):
185
+ The size of temporal patches to use in the patch embedding layer.
186
+ num_attention_heads (`int`, defaults to `24`):
187
+ The number of heads to use for multi-head attention.
188
+ attention_head_dim (`int`, defaults to `96`):
189
+ The number of channels in each head.
190
+ in_channels (`int`, defaults to `4`):
191
+ The number of channels in the input.
192
+ out_channels (`int`, *optional*, defaults to `4`):
193
+ The number of channels in the output.
194
+ num_layers (`int`, defaults to `32`):
195
+ The number of layers of Transformer blocks to use.
196
+ dropout (`float`, defaults to `0.0`):
197
+ The dropout probability to use.
198
+ cross_attention_dim (`int`, defaults to `2304`):
199
+ The dimension of the cross attention features.
200
+ attention_bias (`bool`, defaults to `True`):
201
+ Whether or not to use bias in the attention projection layers.
202
+ sample_height (`int`, defaults to `90`):
203
+ The height of the input latents.
204
+ sample_width (`int`, defaults to `160`):
205
+ The width of the input latents.
206
+ sample_frames (`int`, defaults to `22`):
207
+ The number of frames in the input latents.
208
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
209
+ Activation function to use in feed-forward.
210
+ norm_elementwise_affine (`bool`, defaults to `False`):
211
+ Whether or not to use elementwise affine in normalization layers.
212
+ norm_eps (`float`, defaults to `1e-6`):
213
+ The epsilon value to use in normalization layers.
214
+ caption_channels (`int`, defaults to `4096`):
215
+ Number of channels to use for projecting the caption embeddings.
216
+ interpolation_scale_h (`float`, defaults to `2.0`):
217
+ Scaling factor to apply in 3D positional embeddings across height dimension.
218
+ interpolation_scale_w (`float`, defaults to `2.0`):
219
+ Scaling factor to apply in 3D positional embeddings across width dimension.
220
+ interpolation_scale_t (`float`, defaults to `2.2`):
221
+ Scaling factor to apply in 3D positional embeddings across time dimension.
222
+ """
223
+
224
+ @register_to_config
225
+ def __init__(
226
+ self,
227
+ patch_size: int = 2,
228
+ patch_size_t: int = 1,
229
+ num_attention_heads: int = 24,
230
+ attention_head_dim: int = 96,
231
+ in_channels: int = 4,
232
+ out_channels: int = 4,
233
+ num_layers: int = 32,
234
+ dropout: float = 0.0,
235
+ cross_attention_dim: int = 2304,
236
+ attention_bias: bool = True,
237
+ sample_height: int = 90,
238
+ sample_width: int = 160,
239
+ sample_frames: int = 22,
240
+ activation_fn: str = "gelu-approximate",
241
+ norm_elementwise_affine: bool = False,
242
+ norm_eps: float = 1e-6,
243
+ caption_channels: int = 4096,
244
+ interpolation_scale_h: float = 2.0,
245
+ interpolation_scale_w: float = 2.0,
246
+ interpolation_scale_t: float = 2.2,
247
+ ):
248
+ super().__init__()
249
+
250
+ self.inner_dim = num_attention_heads * attention_head_dim
251
+
252
+ interpolation_scale_t = (
253
+ interpolation_scale_t
254
+ if interpolation_scale_t is not None
255
+ else ((sample_frames - 1) // 16 + 1)
256
+ if sample_frames % 2 == 1
257
+ else sample_frames // 16
258
+ )
259
+ interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30
260
+ interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40
261
+
262
+ # 1. Patch embedding
263
+ self.pos_embed = PatchEmbed(
264
+ height=sample_height,
265
+ width=sample_width,
266
+ patch_size=patch_size,
267
+ in_channels=in_channels,
268
+ embed_dim=self.inner_dim,
269
+ pos_embed_type=None,
270
+ )
271
+
272
+ # 2. Transformer blocks
273
+ self.transformer_blocks = nn.ModuleList(
274
+ [
275
+ AllegroTransformerBlock(
276
+ self.inner_dim,
277
+ num_attention_heads,
278
+ attention_head_dim,
279
+ dropout=dropout,
280
+ cross_attention_dim=cross_attention_dim,
281
+ activation_fn=activation_fn,
282
+ attention_bias=attention_bias,
283
+ norm_elementwise_affine=norm_elementwise_affine,
284
+ norm_eps=norm_eps,
285
+ )
286
+ for _ in range(num_layers)
287
+ ]
288
+ )
289
+
290
+ # 3. Output projection & norm
291
+ self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
292
+ self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
293
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels)
294
+
295
+ # 4. Timestep embeddings
296
+ self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False)
297
+
298
+ # 5. Caption projection
299
+ self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim)
300
+
301
+ self.gradient_checkpointing = False
302
+
303
+ def _set_gradient_checkpointing(self, module, value=False):
304
+ self.gradient_checkpointing = value
305
+
306
+ def forward(
307
+ self,
308
+ hidden_states: torch.Tensor,
309
+ encoder_hidden_states: torch.Tensor,
310
+ timestep: torch.LongTensor,
311
+ attention_mask: Optional[torch.Tensor] = None,
312
+ encoder_attention_mask: Optional[torch.Tensor] = None,
313
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
314
+ return_dict: bool = True,
315
+ ):
316
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
317
+ p_t = self.config.patch_size_t
318
+ p = self.config.patch_size
319
+
320
+ post_patch_num_frames = num_frames // p_t
321
+ post_patch_height = height // p
322
+ post_patch_width = width // p
323
+
324
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
325
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
326
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
327
+ # expects mask of shape:
328
+ # [batch, key_tokens]
329
+ # adds singleton query_tokens dimension:
330
+ # [batch, 1, key_tokens]
331
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
332
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
333
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
334
+ if attention_mask is not None and attention_mask.ndim == 4:
335
+ # assume that mask is expressed as:
336
+ # (1 = keep, 0 = discard)
337
+ # convert mask into a bias that can be added to attention scores:
338
+ # (keep = +0, discard = -10000.0)
339
+ # b, frame+use_image_num, h, w -> a video with images
340
+ # b, 1, h, w -> only images
341
+ attention_mask = attention_mask.to(hidden_states.dtype)
342
+ attention_mask = attention_mask[:, :num_frames] # [batch_size, num_frames, height, width]
343
+
344
+ if attention_mask.numel() > 0:
345
+ attention_mask = attention_mask.unsqueeze(1) # [batch_size, 1, num_frames, height, width]
346
+ attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p))
347
+ attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1)
348
+
349
+ attention_mask = (
350
+ (1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None
351
+ )
352
+
353
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
354
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
355
+ encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
356
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
357
+
358
+ # 1. Timestep embeddings
359
+ timestep, embedded_timestep = self.adaln_single(
360
+ timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
361
+ )
362
+
363
+ # 2. Patch embeddings
364
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
365
+ hidden_states = self.pos_embed(hidden_states)
366
+ hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
367
+
368
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
369
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1])
370
+
371
+ # 3. Transformer blocks
372
+ for i, block in enumerate(self.transformer_blocks):
373
+ # TODO(aryan): Implement gradient checkpointing
374
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
375
+
376
+ def create_custom_forward(module):
377
+ def custom_forward(*inputs):
378
+ return module(*inputs)
379
+
380
+ return custom_forward
381
+
382
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
383
+ hidden_states = torch.utils.checkpoint.checkpoint(
384
+ create_custom_forward(block),
385
+ hidden_states,
386
+ encoder_hidden_states,
387
+ timestep,
388
+ attention_mask,
389
+ encoder_attention_mask,
390
+ image_rotary_emb,
391
+ **ckpt_kwargs,
392
+ )
393
+ else:
394
+ hidden_states = block(
395
+ hidden_states=hidden_states,
396
+ encoder_hidden_states=encoder_hidden_states,
397
+ temb=timestep,
398
+ attention_mask=attention_mask,
399
+ encoder_attention_mask=encoder_attention_mask,
400
+ image_rotary_emb=image_rotary_emb,
401
+ )
402
+
403
+ # 4. Output normalization & projection
404
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
405
+ hidden_states = self.norm_out(hidden_states)
406
+
407
+ # Modulation
408
+ hidden_states = hidden_states * (1 + scale) + shift
409
+ hidden_states = self.proj_out(hidden_states)
410
+ hidden_states = hidden_states.squeeze(1)
411
+
412
+ # 5. Unpatchify
413
+ hidden_states = hidden_states.reshape(
414
+ batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1
415
+ )
416
+ hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
417
+ output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
418
+
419
+ if not return_dict:
420
+ return (output,)
421
+
422
+ return Transformer2DModelOutput(sample=output)
@@ -341,7 +341,7 @@ class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin):
341
341
  hidden_states = hidden_states[:, text_seq_length:]
342
342
 
343
343
  for index_block, block in enumerate(self.transformer_blocks):
344
- if self.training and self.gradient_checkpointing:
344
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
345
345
 
346
346
  def create_custom_forward(module):
347
347
  def custom_forward(*inputs):
@@ -21,17 +21,19 @@ import torch.nn as nn
21
21
  import torch.nn.functional as F
22
22
 
23
23
  from ...configuration_utils import ConfigMixin, register_to_config
24
- from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
24
+ from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
25
25
  from ...models.attention import FeedForward
26
26
  from ...models.attention_processor import (
27
27
  Attention,
28
28
  AttentionProcessor,
29
29
  FluxAttnProcessor2_0,
30
+ FluxAttnProcessor2_0_NPU,
30
31
  FusedFluxAttnProcessor2_0,
31
32
  )
32
33
  from ...models.modeling_utils import ModelMixin
33
34
  from ...models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
34
35
  from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
36
+ from ...utils.import_utils import is_torch_npu_available
35
37
  from ...utils.torch_utils import maybe_allow_in_graph
36
38
  from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
37
39
  from ..modeling_outputs import Transformer2DModelOutput
@@ -64,7 +66,10 @@ class FluxSingleTransformerBlock(nn.Module):
64
66
  self.act_mlp = nn.GELU(approximate="tanh")
65
67
  self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
66
68
 
67
- processor = FluxAttnProcessor2_0()
69
+ if is_torch_npu_available():
70
+ processor = FluxAttnProcessor2_0_NPU()
71
+ else:
72
+ processor = FluxAttnProcessor2_0()
68
73
  self.attn = Attention(
69
74
  query_dim=dim,
70
75
  cross_attention_dim=None,
@@ -172,13 +177,18 @@ class FluxTransformerBlock(nn.Module):
172
177
  )
173
178
  joint_attention_kwargs = joint_attention_kwargs or {}
174
179
  # Attention.
175
- attn_output, context_attn_output = self.attn(
180
+ attention_outputs = self.attn(
176
181
  hidden_states=norm_hidden_states,
177
182
  encoder_hidden_states=norm_encoder_hidden_states,
178
183
  image_rotary_emb=image_rotary_emb,
179
184
  **joint_attention_kwargs,
180
185
  )
181
186
 
187
+ if len(attention_outputs) == 2:
188
+ attn_output, context_attn_output = attention_outputs
189
+ elif len(attention_outputs) == 3:
190
+ attn_output, context_attn_output, ip_attn_output = attention_outputs
191
+
182
192
  # Process attention outputs for the `hidden_states`.
183
193
  attn_output = gate_msa.unsqueeze(1) * attn_output
184
194
  hidden_states = hidden_states + attn_output
@@ -190,6 +200,8 @@ class FluxTransformerBlock(nn.Module):
190
200
  ff_output = gate_mlp.unsqueeze(1) * ff_output
191
201
 
192
202
  hidden_states = hidden_states + ff_output
203
+ if len(attention_outputs) == 3:
204
+ hidden_states = hidden_states + ip_attn_output
193
205
 
194
206
  # Process attention outputs for the `encoder_hidden_states`.
195
207
 
@@ -207,7 +219,9 @@ class FluxTransformerBlock(nn.Module):
207
219
  return encoder_hidden_states, hidden_states
208
220
 
209
221
 
210
- class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
222
+ class FluxTransformer2DModel(
223
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin
224
+ ):
211
225
  """
212
226
  The Transformer model introduced in Flux.
213
227
 
@@ -233,6 +247,7 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
233
247
  self,
234
248
  patch_size: int = 1,
235
249
  in_channels: int = 64,
250
+ out_channels: Optional[int] = None,
236
251
  num_layers: int = 19,
237
252
  num_single_layers: int = 38,
238
253
  attention_head_dim: int = 128,
@@ -243,7 +258,7 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
243
258
  axes_dims_rope: Tuple[int] = (16, 56, 56),
244
259
  ):
245
260
  super().__init__()
246
- self.out_channels = in_channels
261
+ self.out_channels = out_channels or in_channels
247
262
  self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
248
263
 
249
264
  self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
@@ -256,7 +271,7 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
256
271
  )
257
272
 
258
273
  self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
259
- self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
274
+ self.x_embedder = nn.Linear(self.config.in_channels, self.inner_dim)
260
275
 
261
276
  self.transformer_blocks = nn.ModuleList(
262
277
  [
@@ -444,6 +459,7 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
444
459
  logger.warning(
445
460
  "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
446
461
  )
462
+
447
463
  hidden_states = self.x_embedder(hidden_states)
448
464
 
449
465
  timestep = timestep.to(hidden_states.dtype) * 1000
@@ -451,6 +467,7 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
451
467
  guidance = guidance.to(hidden_states.dtype) * 1000
452
468
  else:
453
469
  guidance = None
470
+
454
471
  temb = (
455
472
  self.time_text_embed(timestep, pooled_projections)
456
473
  if guidance is None
@@ -474,8 +491,13 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
474
491
  ids = torch.cat((txt_ids, img_ids), dim=0)
475
492
  image_rotary_emb = self.pos_embed(ids)
476
493
 
494
+ if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
495
+ ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
496
+ ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
497
+ joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
498
+
477
499
  for index_block, block in enumerate(self.transformer_blocks):
478
- if self.training and self.gradient_checkpointing:
500
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
479
501
 
480
502
  def create_custom_forward(module, return_dict=None):
481
503
  def custom_forward(*inputs):
@@ -516,11 +538,10 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
516
538
  )
517
539
  else:
518
540
  hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
519
-
520
541
  hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
521
542
 
522
543
  for index_block, block in enumerate(self.single_transformer_blocks):
523
- if self.training and self.gradient_checkpointing:
544
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
524
545
 
525
546
  def create_custom_forward(module, return_dict=None):
526
547
  def custom_forward(*inputs):