diffusers 0.31.0__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +66 -5
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +1 -1
- diffusers/dependency_versions_table.py +1 -1
- diffusers/image_processor.py +25 -17
- diffusers/loaders/__init__.py +22 -3
- diffusers/loaders/ip_adapter.py +538 -15
- diffusers/loaders/lora_base.py +124 -118
- diffusers/loaders/lora_conversion_utils.py +318 -3
- diffusers/loaders/lora_pipeline.py +1688 -368
- diffusers/loaders/peft.py +379 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +519 -9
- diffusers/loaders/textual_inversion.py +3 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +17 -4
- diffusers/models/__init__.py +47 -14
- diffusers/models/activations.py +22 -9
- diffusers/models/attention.py +13 -4
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2059 -281
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +2 -1
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +29 -495
- diffusers/models/controlnet_sd3.py +25 -379
- diffusers/models/controlnet_sparsectrl.py +46 -718
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +838 -43
- diffusers/models/model_loading_utils.py +88 -6
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +74 -28
- diffusers/models/normalization.py +78 -13
- diffusers/models/transformers/__init__.py +5 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +1 -1
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +1 -1
- diffusers/models/transformers/transformer_flux.py +30 -9
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +105 -17
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +1 -1
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +5 -5
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +8 -0
- diffusers/pipelines/__init__.py +34 -0
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
- diffusers/pipelines/auto_pipeline.py +53 -6
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
- diffusers/pipelines/flux/__init__.py +13 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +204 -29
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +7 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +25 -4
- diffusers/pipelines/pipeline_utils.py +35 -6
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/auto.py +14 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +280 -2
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddpm.py +2 -6
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
- diffusers/schedulers/scheduling_deis_multistep.py +28 -9
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
- diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
- diffusers/schedulers/scheduling_euler_discrete.py +4 -4
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_heun_discrete.py +4 -4
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +28 -9
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
- diffusers/training_utils.py +16 -2
- diffusers/utils/__init__.py +5 -0
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +180 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +31 -39
- diffusers/utils/import_utils.py +67 -0
- diffusers/utils/peft_utils.py +3 -0
- diffusers/utils/testing_utils.py +56 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/METADATA +69 -69
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/RECORD +214 -162
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1149 @@
|
|
1
|
+
# Copyright 2024 The RhymesAI and The HuggingFace Team.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
import math
|
17
|
+
from typing import Optional, Tuple, Union
|
18
|
+
|
19
|
+
import torch
|
20
|
+
import torch.nn as nn
|
21
|
+
|
22
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ...utils.accelerate_utils import apply_forward_hook
|
24
|
+
from ..attention_processor import Attention, SpatialNorm
|
25
|
+
from ..autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
26
|
+
from ..downsampling import Downsample2D
|
27
|
+
from ..modeling_outputs import AutoencoderKLOutput
|
28
|
+
from ..modeling_utils import ModelMixin
|
29
|
+
from ..resnet import ResnetBlock2D
|
30
|
+
from ..upsampling import Upsample2D
|
31
|
+
|
32
|
+
|
33
|
+
class AllegroTemporalConvLayer(nn.Module):
|
34
|
+
r"""
|
35
|
+
Temporal convolutional layer that can be used for video (sequence of images) input. Code adapted from:
|
36
|
+
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
|
37
|
+
"""
|
38
|
+
|
39
|
+
def __init__(
|
40
|
+
self,
|
41
|
+
in_dim: int,
|
42
|
+
out_dim: Optional[int] = None,
|
43
|
+
dropout: float = 0.0,
|
44
|
+
norm_num_groups: int = 32,
|
45
|
+
up_sample: bool = False,
|
46
|
+
down_sample: bool = False,
|
47
|
+
stride: int = 1,
|
48
|
+
) -> None:
|
49
|
+
super().__init__()
|
50
|
+
|
51
|
+
out_dim = out_dim or in_dim
|
52
|
+
pad_h = pad_w = int((stride - 1) * 0.5)
|
53
|
+
pad_t = 0
|
54
|
+
|
55
|
+
self.down_sample = down_sample
|
56
|
+
self.up_sample = up_sample
|
57
|
+
|
58
|
+
if down_sample:
|
59
|
+
self.conv1 = nn.Sequential(
|
60
|
+
nn.GroupNorm(norm_num_groups, in_dim),
|
61
|
+
nn.SiLU(),
|
62
|
+
nn.Conv3d(in_dim, out_dim, (2, stride, stride), stride=(2, 1, 1), padding=(0, pad_h, pad_w)),
|
63
|
+
)
|
64
|
+
elif up_sample:
|
65
|
+
self.conv1 = nn.Sequential(
|
66
|
+
nn.GroupNorm(norm_num_groups, in_dim),
|
67
|
+
nn.SiLU(),
|
68
|
+
nn.Conv3d(in_dim, out_dim * 2, (1, stride, stride), padding=(0, pad_h, pad_w)),
|
69
|
+
)
|
70
|
+
else:
|
71
|
+
self.conv1 = nn.Sequential(
|
72
|
+
nn.GroupNorm(norm_num_groups, in_dim),
|
73
|
+
nn.SiLU(),
|
74
|
+
nn.Conv3d(in_dim, out_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
|
75
|
+
)
|
76
|
+
self.conv2 = nn.Sequential(
|
77
|
+
nn.GroupNorm(norm_num_groups, out_dim),
|
78
|
+
nn.SiLU(),
|
79
|
+
nn.Dropout(dropout),
|
80
|
+
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
|
81
|
+
)
|
82
|
+
self.conv3 = nn.Sequential(
|
83
|
+
nn.GroupNorm(norm_num_groups, out_dim),
|
84
|
+
nn.SiLU(),
|
85
|
+
nn.Dropout(dropout),
|
86
|
+
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
|
87
|
+
)
|
88
|
+
self.conv4 = nn.Sequential(
|
89
|
+
nn.GroupNorm(norm_num_groups, out_dim),
|
90
|
+
nn.SiLU(),
|
91
|
+
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
|
92
|
+
)
|
93
|
+
|
94
|
+
@staticmethod
|
95
|
+
def _pad_temporal_dim(hidden_states: torch.Tensor) -> torch.Tensor:
|
96
|
+
hidden_states = torch.cat((hidden_states[:, :, 0:1], hidden_states), dim=2)
|
97
|
+
hidden_states = torch.cat((hidden_states, hidden_states[:, :, -1:]), dim=2)
|
98
|
+
return hidden_states
|
99
|
+
|
100
|
+
def forward(self, hidden_states: torch.Tensor, batch_size: int) -> torch.Tensor:
|
101
|
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
102
|
+
|
103
|
+
if self.down_sample:
|
104
|
+
identity = hidden_states[:, :, ::2]
|
105
|
+
elif self.up_sample:
|
106
|
+
identity = hidden_states.repeat_interleave(2, dim=2)
|
107
|
+
else:
|
108
|
+
identity = hidden_states
|
109
|
+
|
110
|
+
if self.down_sample or self.up_sample:
|
111
|
+
hidden_states = self.conv1(hidden_states)
|
112
|
+
else:
|
113
|
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
114
|
+
hidden_states = self.conv1(hidden_states)
|
115
|
+
|
116
|
+
if self.up_sample:
|
117
|
+
hidden_states = hidden_states.unflatten(1, (2, -1)).permute(0, 2, 3, 1, 4, 5).flatten(2, 3)
|
118
|
+
|
119
|
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
120
|
+
hidden_states = self.conv2(hidden_states)
|
121
|
+
|
122
|
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
123
|
+
hidden_states = self.conv3(hidden_states)
|
124
|
+
|
125
|
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
126
|
+
hidden_states = self.conv4(hidden_states)
|
127
|
+
|
128
|
+
hidden_states = identity + hidden_states
|
129
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
130
|
+
|
131
|
+
return hidden_states
|
132
|
+
|
133
|
+
|
134
|
+
class AllegroDownBlock3D(nn.Module):
|
135
|
+
def __init__(
|
136
|
+
self,
|
137
|
+
in_channels: int,
|
138
|
+
out_channels: int,
|
139
|
+
dropout: float = 0.0,
|
140
|
+
num_layers: int = 1,
|
141
|
+
resnet_eps: float = 1e-6,
|
142
|
+
resnet_time_scale_shift: str = "default",
|
143
|
+
resnet_act_fn: str = "swish",
|
144
|
+
resnet_groups: int = 32,
|
145
|
+
resnet_pre_norm: bool = True,
|
146
|
+
output_scale_factor: float = 1.0,
|
147
|
+
spatial_downsample: bool = True,
|
148
|
+
temporal_downsample: bool = False,
|
149
|
+
downsample_padding: int = 1,
|
150
|
+
):
|
151
|
+
super().__init__()
|
152
|
+
|
153
|
+
resnets = []
|
154
|
+
temp_convs = []
|
155
|
+
|
156
|
+
for i in range(num_layers):
|
157
|
+
in_channels = in_channels if i == 0 else out_channels
|
158
|
+
resnets.append(
|
159
|
+
ResnetBlock2D(
|
160
|
+
in_channels=in_channels,
|
161
|
+
out_channels=out_channels,
|
162
|
+
temb_channels=None,
|
163
|
+
eps=resnet_eps,
|
164
|
+
groups=resnet_groups,
|
165
|
+
dropout=dropout,
|
166
|
+
time_embedding_norm=resnet_time_scale_shift,
|
167
|
+
non_linearity=resnet_act_fn,
|
168
|
+
output_scale_factor=output_scale_factor,
|
169
|
+
pre_norm=resnet_pre_norm,
|
170
|
+
)
|
171
|
+
)
|
172
|
+
temp_convs.append(
|
173
|
+
AllegroTemporalConvLayer(
|
174
|
+
out_channels,
|
175
|
+
out_channels,
|
176
|
+
dropout=0.1,
|
177
|
+
norm_num_groups=resnet_groups,
|
178
|
+
)
|
179
|
+
)
|
180
|
+
|
181
|
+
self.resnets = nn.ModuleList(resnets)
|
182
|
+
self.temp_convs = nn.ModuleList(temp_convs)
|
183
|
+
|
184
|
+
if temporal_downsample:
|
185
|
+
self.temp_convs_down = AllegroTemporalConvLayer(
|
186
|
+
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, down_sample=True, stride=3
|
187
|
+
)
|
188
|
+
self.add_temp_downsample = temporal_downsample
|
189
|
+
|
190
|
+
if spatial_downsample:
|
191
|
+
self.downsamplers = nn.ModuleList(
|
192
|
+
[
|
193
|
+
Downsample2D(
|
194
|
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
195
|
+
)
|
196
|
+
]
|
197
|
+
)
|
198
|
+
else:
|
199
|
+
self.downsamplers = None
|
200
|
+
|
201
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
202
|
+
batch_size = hidden_states.shape[0]
|
203
|
+
|
204
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
205
|
+
|
206
|
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
207
|
+
hidden_states = resnet(hidden_states, temb=None)
|
208
|
+
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
|
209
|
+
|
210
|
+
if self.add_temp_downsample:
|
211
|
+
hidden_states = self.temp_convs_down(hidden_states, batch_size=batch_size)
|
212
|
+
|
213
|
+
if self.downsamplers is not None:
|
214
|
+
for downsampler in self.downsamplers:
|
215
|
+
hidden_states = downsampler(hidden_states)
|
216
|
+
|
217
|
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
218
|
+
return hidden_states
|
219
|
+
|
220
|
+
|
221
|
+
class AllegroUpBlock3D(nn.Module):
|
222
|
+
def __init__(
|
223
|
+
self,
|
224
|
+
in_channels: int,
|
225
|
+
out_channels: int,
|
226
|
+
dropout: float = 0.0,
|
227
|
+
num_layers: int = 1,
|
228
|
+
resnet_eps: float = 1e-6,
|
229
|
+
resnet_time_scale_shift: str = "default", # default, spatial
|
230
|
+
resnet_act_fn: str = "swish",
|
231
|
+
resnet_groups: int = 32,
|
232
|
+
resnet_pre_norm: bool = True,
|
233
|
+
output_scale_factor: float = 1.0,
|
234
|
+
spatial_upsample: bool = True,
|
235
|
+
temporal_upsample: bool = False,
|
236
|
+
temb_channels: Optional[int] = None,
|
237
|
+
):
|
238
|
+
super().__init__()
|
239
|
+
|
240
|
+
resnets = []
|
241
|
+
temp_convs = []
|
242
|
+
|
243
|
+
for i in range(num_layers):
|
244
|
+
input_channels = in_channels if i == 0 else out_channels
|
245
|
+
|
246
|
+
resnets.append(
|
247
|
+
ResnetBlock2D(
|
248
|
+
in_channels=input_channels,
|
249
|
+
out_channels=out_channels,
|
250
|
+
temb_channels=temb_channels,
|
251
|
+
eps=resnet_eps,
|
252
|
+
groups=resnet_groups,
|
253
|
+
dropout=dropout,
|
254
|
+
time_embedding_norm=resnet_time_scale_shift,
|
255
|
+
non_linearity=resnet_act_fn,
|
256
|
+
output_scale_factor=output_scale_factor,
|
257
|
+
pre_norm=resnet_pre_norm,
|
258
|
+
)
|
259
|
+
)
|
260
|
+
temp_convs.append(
|
261
|
+
AllegroTemporalConvLayer(
|
262
|
+
out_channels,
|
263
|
+
out_channels,
|
264
|
+
dropout=0.1,
|
265
|
+
norm_num_groups=resnet_groups,
|
266
|
+
)
|
267
|
+
)
|
268
|
+
|
269
|
+
self.resnets = nn.ModuleList(resnets)
|
270
|
+
self.temp_convs = nn.ModuleList(temp_convs)
|
271
|
+
|
272
|
+
self.add_temp_upsample = temporal_upsample
|
273
|
+
if temporal_upsample:
|
274
|
+
self.temp_conv_up = AllegroTemporalConvLayer(
|
275
|
+
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, up_sample=True, stride=3
|
276
|
+
)
|
277
|
+
|
278
|
+
if spatial_upsample:
|
279
|
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
280
|
+
else:
|
281
|
+
self.upsamplers = None
|
282
|
+
|
283
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
284
|
+
batch_size = hidden_states.shape[0]
|
285
|
+
|
286
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
287
|
+
|
288
|
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
289
|
+
hidden_states = resnet(hidden_states, temb=None)
|
290
|
+
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
|
291
|
+
|
292
|
+
if self.add_temp_upsample:
|
293
|
+
hidden_states = self.temp_conv_up(hidden_states, batch_size=batch_size)
|
294
|
+
|
295
|
+
if self.upsamplers is not None:
|
296
|
+
for upsampler in self.upsamplers:
|
297
|
+
hidden_states = upsampler(hidden_states)
|
298
|
+
|
299
|
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
300
|
+
return hidden_states
|
301
|
+
|
302
|
+
|
303
|
+
class AllegroMidBlock3DConv(nn.Module):
|
304
|
+
def __init__(
|
305
|
+
self,
|
306
|
+
in_channels: int,
|
307
|
+
temb_channels: int,
|
308
|
+
dropout: float = 0.0,
|
309
|
+
num_layers: int = 1,
|
310
|
+
resnet_eps: float = 1e-6,
|
311
|
+
resnet_time_scale_shift: str = "default", # default, spatial
|
312
|
+
resnet_act_fn: str = "swish",
|
313
|
+
resnet_groups: int = 32,
|
314
|
+
resnet_pre_norm: bool = True,
|
315
|
+
add_attention: bool = True,
|
316
|
+
attention_head_dim: int = 1,
|
317
|
+
output_scale_factor: float = 1.0,
|
318
|
+
):
|
319
|
+
super().__init__()
|
320
|
+
|
321
|
+
# there is always at least one resnet
|
322
|
+
resnets = [
|
323
|
+
ResnetBlock2D(
|
324
|
+
in_channels=in_channels,
|
325
|
+
out_channels=in_channels,
|
326
|
+
temb_channels=temb_channels,
|
327
|
+
eps=resnet_eps,
|
328
|
+
groups=resnet_groups,
|
329
|
+
dropout=dropout,
|
330
|
+
time_embedding_norm=resnet_time_scale_shift,
|
331
|
+
non_linearity=resnet_act_fn,
|
332
|
+
output_scale_factor=output_scale_factor,
|
333
|
+
pre_norm=resnet_pre_norm,
|
334
|
+
)
|
335
|
+
]
|
336
|
+
temp_convs = [
|
337
|
+
AllegroTemporalConvLayer(
|
338
|
+
in_channels,
|
339
|
+
in_channels,
|
340
|
+
dropout=0.1,
|
341
|
+
norm_num_groups=resnet_groups,
|
342
|
+
)
|
343
|
+
]
|
344
|
+
attentions = []
|
345
|
+
|
346
|
+
if attention_head_dim is None:
|
347
|
+
attention_head_dim = in_channels
|
348
|
+
|
349
|
+
for _ in range(num_layers):
|
350
|
+
if add_attention:
|
351
|
+
attentions.append(
|
352
|
+
Attention(
|
353
|
+
in_channels,
|
354
|
+
heads=in_channels // attention_head_dim,
|
355
|
+
dim_head=attention_head_dim,
|
356
|
+
rescale_output_factor=output_scale_factor,
|
357
|
+
eps=resnet_eps,
|
358
|
+
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
|
359
|
+
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
360
|
+
residual_connection=True,
|
361
|
+
bias=True,
|
362
|
+
upcast_softmax=True,
|
363
|
+
_from_deprecated_attn_block=True,
|
364
|
+
)
|
365
|
+
)
|
366
|
+
else:
|
367
|
+
attentions.append(None)
|
368
|
+
|
369
|
+
resnets.append(
|
370
|
+
ResnetBlock2D(
|
371
|
+
in_channels=in_channels,
|
372
|
+
out_channels=in_channels,
|
373
|
+
temb_channels=temb_channels,
|
374
|
+
eps=resnet_eps,
|
375
|
+
groups=resnet_groups,
|
376
|
+
dropout=dropout,
|
377
|
+
time_embedding_norm=resnet_time_scale_shift,
|
378
|
+
non_linearity=resnet_act_fn,
|
379
|
+
output_scale_factor=output_scale_factor,
|
380
|
+
pre_norm=resnet_pre_norm,
|
381
|
+
)
|
382
|
+
)
|
383
|
+
|
384
|
+
temp_convs.append(
|
385
|
+
AllegroTemporalConvLayer(
|
386
|
+
in_channels,
|
387
|
+
in_channels,
|
388
|
+
dropout=0.1,
|
389
|
+
norm_num_groups=resnet_groups,
|
390
|
+
)
|
391
|
+
)
|
392
|
+
|
393
|
+
self.resnets = nn.ModuleList(resnets)
|
394
|
+
self.temp_convs = nn.ModuleList(temp_convs)
|
395
|
+
self.attentions = nn.ModuleList(attentions)
|
396
|
+
|
397
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
398
|
+
batch_size = hidden_states.shape[0]
|
399
|
+
|
400
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
401
|
+
hidden_states = self.resnets[0](hidden_states, temb=None)
|
402
|
+
|
403
|
+
hidden_states = self.temp_convs[0](hidden_states, batch_size=batch_size)
|
404
|
+
|
405
|
+
for attn, resnet, temp_conv in zip(self.attentions, self.resnets[1:], self.temp_convs[1:]):
|
406
|
+
hidden_states = attn(hidden_states)
|
407
|
+
hidden_states = resnet(hidden_states, temb=None)
|
408
|
+
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
|
409
|
+
|
410
|
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
411
|
+
return hidden_states
|
412
|
+
|
413
|
+
|
414
|
+
class AllegroEncoder3D(nn.Module):
|
415
|
+
def __init__(
|
416
|
+
self,
|
417
|
+
in_channels: int = 3,
|
418
|
+
out_channels: int = 3,
|
419
|
+
down_block_types: Tuple[str, ...] = (
|
420
|
+
"AllegroDownBlock3D",
|
421
|
+
"AllegroDownBlock3D",
|
422
|
+
"AllegroDownBlock3D",
|
423
|
+
"AllegroDownBlock3D",
|
424
|
+
),
|
425
|
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
426
|
+
temporal_downsample_blocks: Tuple[bool, ...] = [True, True, False, False],
|
427
|
+
layers_per_block: int = 2,
|
428
|
+
norm_num_groups: int = 32,
|
429
|
+
act_fn: str = "silu",
|
430
|
+
double_z: bool = True,
|
431
|
+
):
|
432
|
+
super().__init__()
|
433
|
+
|
434
|
+
self.conv_in = nn.Conv2d(
|
435
|
+
in_channels,
|
436
|
+
block_out_channels[0],
|
437
|
+
kernel_size=3,
|
438
|
+
stride=1,
|
439
|
+
padding=1,
|
440
|
+
)
|
441
|
+
|
442
|
+
self.temp_conv_in = nn.Conv3d(
|
443
|
+
in_channels=block_out_channels[0],
|
444
|
+
out_channels=block_out_channels[0],
|
445
|
+
kernel_size=(3, 1, 1),
|
446
|
+
padding=(1, 0, 0),
|
447
|
+
)
|
448
|
+
|
449
|
+
self.down_blocks = nn.ModuleList([])
|
450
|
+
|
451
|
+
# down
|
452
|
+
output_channel = block_out_channels[0]
|
453
|
+
for i, down_block_type in enumerate(down_block_types):
|
454
|
+
input_channel = output_channel
|
455
|
+
output_channel = block_out_channels[i]
|
456
|
+
is_final_block = i == len(block_out_channels) - 1
|
457
|
+
|
458
|
+
if down_block_type == "AllegroDownBlock3D":
|
459
|
+
down_block = AllegroDownBlock3D(
|
460
|
+
num_layers=layers_per_block,
|
461
|
+
in_channels=input_channel,
|
462
|
+
out_channels=output_channel,
|
463
|
+
spatial_downsample=not is_final_block,
|
464
|
+
temporal_downsample=temporal_downsample_blocks[i],
|
465
|
+
resnet_eps=1e-6,
|
466
|
+
downsample_padding=0,
|
467
|
+
resnet_act_fn=act_fn,
|
468
|
+
resnet_groups=norm_num_groups,
|
469
|
+
)
|
470
|
+
else:
|
471
|
+
raise ValueError("Invalid `down_block_type` encountered. Must be `AllegroDownBlock3D`")
|
472
|
+
|
473
|
+
self.down_blocks.append(down_block)
|
474
|
+
|
475
|
+
# mid
|
476
|
+
self.mid_block = AllegroMidBlock3DConv(
|
477
|
+
in_channels=block_out_channels[-1],
|
478
|
+
resnet_eps=1e-6,
|
479
|
+
resnet_act_fn=act_fn,
|
480
|
+
output_scale_factor=1,
|
481
|
+
resnet_time_scale_shift="default",
|
482
|
+
attention_head_dim=block_out_channels[-1],
|
483
|
+
resnet_groups=norm_num_groups,
|
484
|
+
temb_channels=None,
|
485
|
+
)
|
486
|
+
|
487
|
+
# out
|
488
|
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
489
|
+
self.conv_act = nn.SiLU()
|
490
|
+
|
491
|
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
492
|
+
|
493
|
+
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))
|
494
|
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
495
|
+
|
496
|
+
self.gradient_checkpointing = False
|
497
|
+
|
498
|
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
499
|
+
batch_size = sample.shape[0]
|
500
|
+
|
501
|
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
502
|
+
sample = self.conv_in(sample)
|
503
|
+
|
504
|
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
505
|
+
residual = sample
|
506
|
+
sample = self.temp_conv_in(sample)
|
507
|
+
sample = sample + residual
|
508
|
+
|
509
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
510
|
+
|
511
|
+
def create_custom_forward(module):
|
512
|
+
def custom_forward(*inputs):
|
513
|
+
return module(*inputs)
|
514
|
+
|
515
|
+
return custom_forward
|
516
|
+
|
517
|
+
# Down blocks
|
518
|
+
for down_block in self.down_blocks:
|
519
|
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
|
520
|
+
|
521
|
+
# Mid block
|
522
|
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
|
523
|
+
else:
|
524
|
+
# Down blocks
|
525
|
+
for down_block in self.down_blocks:
|
526
|
+
sample = down_block(sample)
|
527
|
+
|
528
|
+
# Mid block
|
529
|
+
sample = self.mid_block(sample)
|
530
|
+
|
531
|
+
# Post process
|
532
|
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
533
|
+
sample = self.conv_norm_out(sample)
|
534
|
+
sample = self.conv_act(sample)
|
535
|
+
|
536
|
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
537
|
+
residual = sample
|
538
|
+
sample = self.temp_conv_out(sample)
|
539
|
+
sample = sample + residual
|
540
|
+
|
541
|
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
542
|
+
sample = self.conv_out(sample)
|
543
|
+
|
544
|
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
545
|
+
return sample
|
546
|
+
|
547
|
+
|
548
|
+
class AllegroDecoder3D(nn.Module):
|
549
|
+
def __init__(
|
550
|
+
self,
|
551
|
+
in_channels: int = 4,
|
552
|
+
out_channels: int = 3,
|
553
|
+
up_block_types: Tuple[str, ...] = (
|
554
|
+
"AllegroUpBlock3D",
|
555
|
+
"AllegroUpBlock3D",
|
556
|
+
"AllegroUpBlock3D",
|
557
|
+
"AllegroUpBlock3D",
|
558
|
+
),
|
559
|
+
temporal_upsample_blocks: Tuple[bool, ...] = [False, True, True, False],
|
560
|
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
561
|
+
layers_per_block: int = 2,
|
562
|
+
norm_num_groups: int = 32,
|
563
|
+
act_fn: str = "silu",
|
564
|
+
norm_type: str = "group", # group, spatial
|
565
|
+
):
|
566
|
+
super().__init__()
|
567
|
+
|
568
|
+
self.conv_in = nn.Conv2d(
|
569
|
+
in_channels,
|
570
|
+
block_out_channels[-1],
|
571
|
+
kernel_size=3,
|
572
|
+
stride=1,
|
573
|
+
padding=1,
|
574
|
+
)
|
575
|
+
|
576
|
+
self.temp_conv_in = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))
|
577
|
+
|
578
|
+
self.mid_block = None
|
579
|
+
self.up_blocks = nn.ModuleList([])
|
580
|
+
|
581
|
+
temb_channels = in_channels if norm_type == "spatial" else None
|
582
|
+
|
583
|
+
# mid
|
584
|
+
self.mid_block = AllegroMidBlock3DConv(
|
585
|
+
in_channels=block_out_channels[-1],
|
586
|
+
resnet_eps=1e-6,
|
587
|
+
resnet_act_fn=act_fn,
|
588
|
+
output_scale_factor=1,
|
589
|
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
590
|
+
attention_head_dim=block_out_channels[-1],
|
591
|
+
resnet_groups=norm_num_groups,
|
592
|
+
temb_channels=temb_channels,
|
593
|
+
)
|
594
|
+
|
595
|
+
# up
|
596
|
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
597
|
+
output_channel = reversed_block_out_channels[0]
|
598
|
+
for i, up_block_type in enumerate(up_block_types):
|
599
|
+
prev_output_channel = output_channel
|
600
|
+
output_channel = reversed_block_out_channels[i]
|
601
|
+
|
602
|
+
is_final_block = i == len(block_out_channels) - 1
|
603
|
+
|
604
|
+
if up_block_type == "AllegroUpBlock3D":
|
605
|
+
up_block = AllegroUpBlock3D(
|
606
|
+
num_layers=layers_per_block + 1,
|
607
|
+
in_channels=prev_output_channel,
|
608
|
+
out_channels=output_channel,
|
609
|
+
spatial_upsample=not is_final_block,
|
610
|
+
temporal_upsample=temporal_upsample_blocks[i],
|
611
|
+
resnet_eps=1e-6,
|
612
|
+
resnet_act_fn=act_fn,
|
613
|
+
resnet_groups=norm_num_groups,
|
614
|
+
temb_channels=temb_channels,
|
615
|
+
resnet_time_scale_shift=norm_type,
|
616
|
+
)
|
617
|
+
else:
|
618
|
+
raise ValueError("Invalid `UP_block_type` encountered. Must be `AllegroUpBlock3D`")
|
619
|
+
|
620
|
+
self.up_blocks.append(up_block)
|
621
|
+
prev_output_channel = output_channel
|
622
|
+
|
623
|
+
# out
|
624
|
+
if norm_type == "spatial":
|
625
|
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
626
|
+
else:
|
627
|
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
628
|
+
|
629
|
+
self.conv_act = nn.SiLU()
|
630
|
+
|
631
|
+
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3, 1, 1), padding=(1, 0, 0))
|
632
|
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
633
|
+
|
634
|
+
self.gradient_checkpointing = False
|
635
|
+
|
636
|
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
637
|
+
batch_size = sample.shape[0]
|
638
|
+
|
639
|
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
640
|
+
sample = self.conv_in(sample)
|
641
|
+
|
642
|
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
643
|
+
residual = sample
|
644
|
+
sample = self.temp_conv_in(sample)
|
645
|
+
sample = sample + residual
|
646
|
+
|
647
|
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
648
|
+
|
649
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
650
|
+
|
651
|
+
def create_custom_forward(module):
|
652
|
+
def custom_forward(*inputs):
|
653
|
+
return module(*inputs)
|
654
|
+
|
655
|
+
return custom_forward
|
656
|
+
|
657
|
+
# Mid block
|
658
|
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
|
659
|
+
|
660
|
+
# Up blocks
|
661
|
+
for up_block in self.up_blocks:
|
662
|
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample)
|
663
|
+
|
664
|
+
else:
|
665
|
+
# Mid block
|
666
|
+
sample = self.mid_block(sample)
|
667
|
+
sample = sample.to(upscale_dtype)
|
668
|
+
|
669
|
+
# Up blocks
|
670
|
+
for up_block in self.up_blocks:
|
671
|
+
sample = up_block(sample)
|
672
|
+
|
673
|
+
# Post process
|
674
|
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
675
|
+
sample = self.conv_norm_out(sample)
|
676
|
+
sample = self.conv_act(sample)
|
677
|
+
|
678
|
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
679
|
+
residual = sample
|
680
|
+
sample = self.temp_conv_out(sample)
|
681
|
+
sample = sample + residual
|
682
|
+
|
683
|
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
684
|
+
sample = self.conv_out(sample)
|
685
|
+
|
686
|
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
687
|
+
return sample
|
688
|
+
|
689
|
+
|
690
|
+
class AutoencoderKLAllegro(ModelMixin, ConfigMixin):
|
691
|
+
r"""
|
692
|
+
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used in
|
693
|
+
[Allegro](https://github.com/rhymes-ai/Allegro).
|
694
|
+
|
695
|
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
696
|
+
for all models (such as downloading or saving).
|
697
|
+
|
698
|
+
Parameters:
|
699
|
+
in_channels (int, defaults to `3`):
|
700
|
+
Number of channels in the input image.
|
701
|
+
out_channels (int, defaults to `3`):
|
702
|
+
Number of channels in the output.
|
703
|
+
down_block_types (`Tuple[str, ...]`, defaults to `("AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D")`):
|
704
|
+
Tuple of strings denoting which types of down blocks to use.
|
705
|
+
up_block_types (`Tuple[str, ...]`, defaults to `("AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D")`):
|
706
|
+
Tuple of strings denoting which types of up blocks to use.
|
707
|
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
708
|
+
Tuple of integers denoting number of output channels in each block.
|
709
|
+
temporal_downsample_blocks (`Tuple[bool, ...]`, defaults to `(True, True, False, False)`):
|
710
|
+
Tuple of booleans denoting which blocks to enable temporal downsampling in.
|
711
|
+
latent_channels (`int`, defaults to `4`):
|
712
|
+
Number of channels in latents.
|
713
|
+
layers_per_block (`int`, defaults to `2`):
|
714
|
+
Number of resnet or attention or temporal convolution layers per down/up block.
|
715
|
+
act_fn (`str`, defaults to `"silu"`):
|
716
|
+
The activation function to use.
|
717
|
+
norm_num_groups (`int`, defaults to `32`):
|
718
|
+
Number of groups to use in normalization layers.
|
719
|
+
temporal_compression_ratio (`int`, defaults to `4`):
|
720
|
+
Ratio by which temporal dimension of samples are compressed.
|
721
|
+
sample_size (`int`, defaults to `320`):
|
722
|
+
Default latent size.
|
723
|
+
scaling_factor (`float`, defaults to `0.13235`):
|
724
|
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
725
|
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
726
|
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
727
|
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
728
|
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
729
|
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
730
|
+
force_upcast (`bool`, default to `True`):
|
731
|
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
732
|
+
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
733
|
+
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
734
|
+
"""
|
735
|
+
|
736
|
+
_supports_gradient_checkpointing = True
|
737
|
+
|
738
|
+
@register_to_config
|
739
|
+
def __init__(
|
740
|
+
self,
|
741
|
+
in_channels: int = 3,
|
742
|
+
out_channels: int = 3,
|
743
|
+
down_block_types: Tuple[str, ...] = (
|
744
|
+
"AllegroDownBlock3D",
|
745
|
+
"AllegroDownBlock3D",
|
746
|
+
"AllegroDownBlock3D",
|
747
|
+
"AllegroDownBlock3D",
|
748
|
+
),
|
749
|
+
up_block_types: Tuple[str, ...] = (
|
750
|
+
"AllegroUpBlock3D",
|
751
|
+
"AllegroUpBlock3D",
|
752
|
+
"AllegroUpBlock3D",
|
753
|
+
"AllegroUpBlock3D",
|
754
|
+
),
|
755
|
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
756
|
+
temporal_downsample_blocks: Tuple[bool, ...] = (True, True, False, False),
|
757
|
+
temporal_upsample_blocks: Tuple[bool, ...] = (False, True, True, False),
|
758
|
+
latent_channels: int = 4,
|
759
|
+
layers_per_block: int = 2,
|
760
|
+
act_fn: str = "silu",
|
761
|
+
norm_num_groups: int = 32,
|
762
|
+
temporal_compression_ratio: float = 4,
|
763
|
+
sample_size: int = 320,
|
764
|
+
scaling_factor: float = 0.13,
|
765
|
+
force_upcast: bool = True,
|
766
|
+
) -> None:
|
767
|
+
super().__init__()
|
768
|
+
|
769
|
+
self.encoder = AllegroEncoder3D(
|
770
|
+
in_channels=in_channels,
|
771
|
+
out_channels=latent_channels,
|
772
|
+
down_block_types=down_block_types,
|
773
|
+
temporal_downsample_blocks=temporal_downsample_blocks,
|
774
|
+
block_out_channels=block_out_channels,
|
775
|
+
layers_per_block=layers_per_block,
|
776
|
+
act_fn=act_fn,
|
777
|
+
norm_num_groups=norm_num_groups,
|
778
|
+
double_z=True,
|
779
|
+
)
|
780
|
+
self.decoder = AllegroDecoder3D(
|
781
|
+
in_channels=latent_channels,
|
782
|
+
out_channels=out_channels,
|
783
|
+
up_block_types=up_block_types,
|
784
|
+
temporal_upsample_blocks=temporal_upsample_blocks,
|
785
|
+
block_out_channels=block_out_channels,
|
786
|
+
layers_per_block=layers_per_block,
|
787
|
+
norm_num_groups=norm_num_groups,
|
788
|
+
act_fn=act_fn,
|
789
|
+
)
|
790
|
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
791
|
+
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
|
792
|
+
|
793
|
+
# TODO(aryan): For the 1.0.0 refactor, `temporal_compression_ratio` can be inferred directly and we don't need
|
794
|
+
# to use a specific parameter here or in other VAEs.
|
795
|
+
|
796
|
+
self.use_slicing = False
|
797
|
+
self.use_tiling = False
|
798
|
+
|
799
|
+
self.spatial_compression_ratio = 2 ** (len(block_out_channels) - 1)
|
800
|
+
self.tile_overlap_t = 8
|
801
|
+
self.tile_overlap_h = 120
|
802
|
+
self.tile_overlap_w = 80
|
803
|
+
sample_frames = 24
|
804
|
+
|
805
|
+
self.kernel = (sample_frames, sample_size, sample_size)
|
806
|
+
self.stride = (
|
807
|
+
sample_frames - self.tile_overlap_t,
|
808
|
+
sample_size - self.tile_overlap_h,
|
809
|
+
sample_size - self.tile_overlap_w,
|
810
|
+
)
|
811
|
+
|
812
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
813
|
+
if isinstance(module, (AllegroEncoder3D, AllegroDecoder3D)):
|
814
|
+
module.gradient_checkpointing = value
|
815
|
+
|
816
|
+
def enable_tiling(self) -> None:
|
817
|
+
r"""
|
818
|
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
819
|
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
820
|
+
processing larger images.
|
821
|
+
"""
|
822
|
+
self.use_tiling = True
|
823
|
+
|
824
|
+
def disable_tiling(self) -> None:
|
825
|
+
r"""
|
826
|
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
827
|
+
decoding in one step.
|
828
|
+
"""
|
829
|
+
self.use_tiling = False
|
830
|
+
|
831
|
+
def enable_slicing(self) -> None:
|
832
|
+
r"""
|
833
|
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
834
|
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
835
|
+
"""
|
836
|
+
self.use_slicing = True
|
837
|
+
|
838
|
+
def disable_slicing(self) -> None:
|
839
|
+
r"""
|
840
|
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
841
|
+
decoding in one step.
|
842
|
+
"""
|
843
|
+
self.use_slicing = False
|
844
|
+
|
845
|
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
846
|
+
# TODO(aryan)
|
847
|
+
# if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
848
|
+
if self.use_tiling:
|
849
|
+
return self.tiled_encode(x)
|
850
|
+
|
851
|
+
raise NotImplementedError("Encoding without tiling has not been implemented yet.")
|
852
|
+
|
853
|
+
@apply_forward_hook
|
854
|
+
def encode(
|
855
|
+
self, x: torch.Tensor, return_dict: bool = True
|
856
|
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
857
|
+
r"""
|
858
|
+
Encode a batch of videos into latents.
|
859
|
+
|
860
|
+
Args:
|
861
|
+
x (`torch.Tensor`):
|
862
|
+
Input batch of videos.
|
863
|
+
return_dict (`bool`, defaults to `True`):
|
864
|
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
865
|
+
|
866
|
+
Returns:
|
867
|
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
868
|
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
869
|
+
"""
|
870
|
+
if self.use_slicing and x.shape[0] > 1:
|
871
|
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
872
|
+
h = torch.cat(encoded_slices)
|
873
|
+
else:
|
874
|
+
h = self._encode(x)
|
875
|
+
|
876
|
+
posterior = DiagonalGaussianDistribution(h)
|
877
|
+
|
878
|
+
if not return_dict:
|
879
|
+
return (posterior,)
|
880
|
+
return AutoencoderKLOutput(latent_dist=posterior)
|
881
|
+
|
882
|
+
def _decode(self, z: torch.Tensor) -> torch.Tensor:
|
883
|
+
# TODO(aryan): refactor tiling implementation
|
884
|
+
# if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
|
885
|
+
if self.use_tiling:
|
886
|
+
return self.tiled_decode(z)
|
887
|
+
|
888
|
+
raise NotImplementedError("Decoding without tiling has not been implemented yet.")
|
889
|
+
|
890
|
+
@apply_forward_hook
|
891
|
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
892
|
+
"""
|
893
|
+
Decode a batch of videos.
|
894
|
+
|
895
|
+
Args:
|
896
|
+
z (`torch.Tensor`):
|
897
|
+
Input batch of latent vectors.
|
898
|
+
return_dict (`bool`, defaults to `True`):
|
899
|
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
900
|
+
|
901
|
+
Returns:
|
902
|
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
903
|
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
904
|
+
returned.
|
905
|
+
"""
|
906
|
+
if self.use_slicing and z.shape[0] > 1:
|
907
|
+
decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)]
|
908
|
+
decoded = torch.cat(decoded_slices)
|
909
|
+
else:
|
910
|
+
decoded = self._decode(z)
|
911
|
+
|
912
|
+
if not return_dict:
|
913
|
+
return (decoded,)
|
914
|
+
return DecoderOutput(sample=decoded)
|
915
|
+
|
916
|
+
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
917
|
+
local_batch_size = 1
|
918
|
+
rs = self.spatial_compression_ratio
|
919
|
+
rt = self.config.temporal_compression_ratio
|
920
|
+
|
921
|
+
batch_size, num_channels, num_frames, height, width = x.shape
|
922
|
+
|
923
|
+
output_num_frames = math.floor((num_frames - self.kernel[0]) / self.stride[0]) + 1
|
924
|
+
output_height = math.floor((height - self.kernel[1]) / self.stride[1]) + 1
|
925
|
+
output_width = math.floor((width - self.kernel[2]) / self.stride[2]) + 1
|
926
|
+
|
927
|
+
count = 0
|
928
|
+
output_latent = x.new_zeros(
|
929
|
+
(
|
930
|
+
output_num_frames * output_height * output_width,
|
931
|
+
2 * self.config.latent_channels,
|
932
|
+
self.kernel[0] // rt,
|
933
|
+
self.kernel[1] // rs,
|
934
|
+
self.kernel[2] // rs,
|
935
|
+
)
|
936
|
+
)
|
937
|
+
vae_batch_input = x.new_zeros((local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2]))
|
938
|
+
|
939
|
+
for i in range(output_num_frames):
|
940
|
+
for j in range(output_height):
|
941
|
+
for k in range(output_width):
|
942
|
+
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
|
943
|
+
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
|
944
|
+
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]
|
945
|
+
|
946
|
+
video_cube = x[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
947
|
+
vae_batch_input[count % local_batch_size] = video_cube
|
948
|
+
|
949
|
+
if (
|
950
|
+
count % local_batch_size == local_batch_size - 1
|
951
|
+
or count == output_num_frames * output_height * output_width - 1
|
952
|
+
):
|
953
|
+
latent = self.encoder(vae_batch_input)
|
954
|
+
|
955
|
+
if (
|
956
|
+
count == output_num_frames * output_height * output_width - 1
|
957
|
+
and count % local_batch_size != local_batch_size - 1
|
958
|
+
):
|
959
|
+
output_latent[count - count % local_batch_size :] = latent[: count % local_batch_size + 1]
|
960
|
+
else:
|
961
|
+
output_latent[count - local_batch_size + 1 : count + 1] = latent
|
962
|
+
|
963
|
+
vae_batch_input = x.new_zeros(
|
964
|
+
(local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2])
|
965
|
+
)
|
966
|
+
|
967
|
+
count += 1
|
968
|
+
|
969
|
+
latent = x.new_zeros(
|
970
|
+
(batch_size, 2 * self.config.latent_channels, num_frames // rt, height // rs, width // rs)
|
971
|
+
)
|
972
|
+
output_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
|
973
|
+
output_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs
|
974
|
+
output_overlap = (
|
975
|
+
output_kernel[0] - output_stride[0],
|
976
|
+
output_kernel[1] - output_stride[1],
|
977
|
+
output_kernel[2] - output_stride[2],
|
978
|
+
)
|
979
|
+
|
980
|
+
for i in range(output_num_frames):
|
981
|
+
n_start, n_end = i * output_stride[0], i * output_stride[0] + output_kernel[0]
|
982
|
+
for j in range(output_height):
|
983
|
+
h_start, h_end = j * output_stride[1], j * output_stride[1] + output_kernel[1]
|
984
|
+
for k in range(output_width):
|
985
|
+
w_start, w_end = k * output_stride[2], k * output_stride[2] + output_kernel[2]
|
986
|
+
latent_mean = _prepare_for_blend(
|
987
|
+
(i, output_num_frames, output_overlap[0]),
|
988
|
+
(j, output_height, output_overlap[1]),
|
989
|
+
(k, output_width, output_overlap[2]),
|
990
|
+
output_latent[i * output_height * output_width + j * output_width + k].unsqueeze(0),
|
991
|
+
)
|
992
|
+
latent[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean
|
993
|
+
|
994
|
+
latent = latent.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
995
|
+
latent = self.quant_conv(latent)
|
996
|
+
latent = latent.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
997
|
+
return latent
|
998
|
+
|
999
|
+
def tiled_decode(self, z: torch.Tensor) -> torch.Tensor:
|
1000
|
+
local_batch_size = 1
|
1001
|
+
rs = self.spatial_compression_ratio
|
1002
|
+
rt = self.config.temporal_compression_ratio
|
1003
|
+
|
1004
|
+
latent_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
|
1005
|
+
latent_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs
|
1006
|
+
|
1007
|
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1008
|
+
|
1009
|
+
## post quant conv (a mapping)
|
1010
|
+
z = z.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
1011
|
+
z = self.post_quant_conv(z)
|
1012
|
+
z = z.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
1013
|
+
|
1014
|
+
output_num_frames = math.floor((num_frames - latent_kernel[0]) / latent_stride[0]) + 1
|
1015
|
+
output_height = math.floor((height - latent_kernel[1]) / latent_stride[1]) + 1
|
1016
|
+
output_width = math.floor((width - latent_kernel[2]) / latent_stride[2]) + 1
|
1017
|
+
|
1018
|
+
count = 0
|
1019
|
+
decoded_videos = z.new_zeros(
|
1020
|
+
(
|
1021
|
+
output_num_frames * output_height * output_width,
|
1022
|
+
self.config.out_channels,
|
1023
|
+
self.kernel[0],
|
1024
|
+
self.kernel[1],
|
1025
|
+
self.kernel[2],
|
1026
|
+
)
|
1027
|
+
)
|
1028
|
+
vae_batch_input = z.new_zeros(
|
1029
|
+
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
|
1030
|
+
)
|
1031
|
+
|
1032
|
+
for i in range(output_num_frames):
|
1033
|
+
for j in range(output_height):
|
1034
|
+
for k in range(output_width):
|
1035
|
+
n_start, n_end = i * latent_stride[0], i * latent_stride[0] + latent_kernel[0]
|
1036
|
+
h_start, h_end = j * latent_stride[1], j * latent_stride[1] + latent_kernel[1]
|
1037
|
+
w_start, w_end = k * latent_stride[2], k * latent_stride[2] + latent_kernel[2]
|
1038
|
+
|
1039
|
+
current_latent = z[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
1040
|
+
vae_batch_input[count % local_batch_size] = current_latent
|
1041
|
+
|
1042
|
+
if (
|
1043
|
+
count % local_batch_size == local_batch_size - 1
|
1044
|
+
or count == output_num_frames * output_height * output_width - 1
|
1045
|
+
):
|
1046
|
+
current_video = self.decoder(vae_batch_input)
|
1047
|
+
|
1048
|
+
if (
|
1049
|
+
count == output_num_frames * output_height * output_width - 1
|
1050
|
+
and count % local_batch_size != local_batch_size - 1
|
1051
|
+
):
|
1052
|
+
decoded_videos[count - count % local_batch_size :] = current_video[
|
1053
|
+
: count % local_batch_size + 1
|
1054
|
+
]
|
1055
|
+
else:
|
1056
|
+
decoded_videos[count - local_batch_size + 1 : count + 1] = current_video
|
1057
|
+
|
1058
|
+
vae_batch_input = z.new_zeros(
|
1059
|
+
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
|
1060
|
+
)
|
1061
|
+
|
1062
|
+
count += 1
|
1063
|
+
|
1064
|
+
video = z.new_zeros((batch_size, self.config.out_channels, num_frames * rt, height * rs, width * rs))
|
1065
|
+
video_overlap = (
|
1066
|
+
self.kernel[0] - self.stride[0],
|
1067
|
+
self.kernel[1] - self.stride[1],
|
1068
|
+
self.kernel[2] - self.stride[2],
|
1069
|
+
)
|
1070
|
+
|
1071
|
+
for i in range(output_num_frames):
|
1072
|
+
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
|
1073
|
+
for j in range(output_height):
|
1074
|
+
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
|
1075
|
+
for k in range(output_width):
|
1076
|
+
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]
|
1077
|
+
out_video_blend = _prepare_for_blend(
|
1078
|
+
(i, output_num_frames, video_overlap[0]),
|
1079
|
+
(j, output_height, video_overlap[1]),
|
1080
|
+
(k, output_width, video_overlap[2]),
|
1081
|
+
decoded_videos[i * output_height * output_width + j * output_width + k].unsqueeze(0),
|
1082
|
+
)
|
1083
|
+
video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
|
1084
|
+
|
1085
|
+
video = video.permute(0, 2, 1, 3, 4).contiguous()
|
1086
|
+
return video
|
1087
|
+
|
1088
|
+
def forward(
|
1089
|
+
self,
|
1090
|
+
sample: torch.Tensor,
|
1091
|
+
sample_posterior: bool = False,
|
1092
|
+
return_dict: bool = True,
|
1093
|
+
generator: Optional[torch.Generator] = None,
|
1094
|
+
) -> Union[DecoderOutput, torch.Tensor]:
|
1095
|
+
r"""
|
1096
|
+
Args:
|
1097
|
+
sample (`torch.Tensor`): Input sample.
|
1098
|
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
1099
|
+
Whether to sample from the posterior.
|
1100
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1101
|
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
1102
|
+
generator (`torch.Generator`, *optional*):
|
1103
|
+
PyTorch random number generator.
|
1104
|
+
"""
|
1105
|
+
x = sample
|
1106
|
+
posterior = self.encode(x).latent_dist
|
1107
|
+
if sample_posterior:
|
1108
|
+
z = posterior.sample(generator=generator)
|
1109
|
+
else:
|
1110
|
+
z = posterior.mode()
|
1111
|
+
dec = self.decode(z).sample
|
1112
|
+
|
1113
|
+
if not return_dict:
|
1114
|
+
return (dec,)
|
1115
|
+
|
1116
|
+
return DecoderOutput(sample=dec)
|
1117
|
+
|
1118
|
+
|
1119
|
+
def _prepare_for_blend(n_param, h_param, w_param, x):
|
1120
|
+
# TODO(aryan): refactor
|
1121
|
+
n, n_max, overlap_n = n_param
|
1122
|
+
h, h_max, overlap_h = h_param
|
1123
|
+
w, w_max, overlap_w = w_param
|
1124
|
+
if overlap_n > 0:
|
1125
|
+
if n > 0: # the head overlap part decays from 0 to 1
|
1126
|
+
x[:, :, 0:overlap_n, :, :] = x[:, :, 0:overlap_n, :, :] * (
|
1127
|
+
torch.arange(0, overlap_n).float().to(x.device) / overlap_n
|
1128
|
+
).reshape(overlap_n, 1, 1)
|
1129
|
+
if n < n_max - 1: # the tail overlap part decays from 1 to 0
|
1130
|
+
x[:, :, -overlap_n:, :, :] = x[:, :, -overlap_n:, :, :] * (
|
1131
|
+
1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n
|
1132
|
+
).reshape(overlap_n, 1, 1)
|
1133
|
+
if h > 0:
|
1134
|
+
x[:, :, :, 0:overlap_h, :] = x[:, :, :, 0:overlap_h, :] * (
|
1135
|
+
torch.arange(0, overlap_h).float().to(x.device) / overlap_h
|
1136
|
+
).reshape(overlap_h, 1)
|
1137
|
+
if h < h_max - 1:
|
1138
|
+
x[:, :, :, -overlap_h:, :] = x[:, :, :, -overlap_h:, :] * (
|
1139
|
+
1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h
|
1140
|
+
).reshape(overlap_h, 1)
|
1141
|
+
if w > 0:
|
1142
|
+
x[:, :, :, :, 0:overlap_w] = x[:, :, :, :, 0:overlap_w] * (
|
1143
|
+
torch.arange(0, overlap_w).float().to(x.device) / overlap_w
|
1144
|
+
)
|
1145
|
+
if w < w_max - 1:
|
1146
|
+
x[:, :, :, :, -overlap_w:] = x[:, :, :, :, -overlap_w:] * (
|
1147
|
+
1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w
|
1148
|
+
)
|
1149
|
+
return x
|