diffusers 0.31.0__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +66 -5
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +1 -1
- diffusers/dependency_versions_table.py +1 -1
- diffusers/image_processor.py +25 -17
- diffusers/loaders/__init__.py +22 -3
- diffusers/loaders/ip_adapter.py +538 -15
- diffusers/loaders/lora_base.py +124 -118
- diffusers/loaders/lora_conversion_utils.py +318 -3
- diffusers/loaders/lora_pipeline.py +1688 -368
- diffusers/loaders/peft.py +379 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +519 -9
- diffusers/loaders/textual_inversion.py +3 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +17 -4
- diffusers/models/__init__.py +47 -14
- diffusers/models/activations.py +22 -9
- diffusers/models/attention.py +13 -4
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2059 -281
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +2 -1
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +29 -495
- diffusers/models/controlnet_sd3.py +25 -379
- diffusers/models/controlnet_sparsectrl.py +46 -718
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +838 -43
- diffusers/models/model_loading_utils.py +88 -6
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +74 -28
- diffusers/models/normalization.py +78 -13
- diffusers/models/transformers/__init__.py +5 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +1 -1
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +1 -1
- diffusers/models/transformers/transformer_flux.py +30 -9
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +105 -17
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +1 -1
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +5 -5
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +8 -0
- diffusers/pipelines/__init__.py +34 -0
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
- diffusers/pipelines/auto_pipeline.py +53 -6
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
- diffusers/pipelines/flux/__init__.py +13 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +204 -29
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +7 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +25 -4
- diffusers/pipelines/pipeline_utils.py +35 -6
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/auto.py +14 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +280 -2
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddpm.py +2 -6
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
- diffusers/schedulers/scheduling_deis_multistep.py +28 -9
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
- diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
- diffusers/schedulers/scheduling_euler_discrete.py +4 -4
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_heun_discrete.py +4 -4
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +28 -9
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
- diffusers/training_utils.py +16 -2
- diffusers/utils/__init__.py +5 -0
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +180 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +31 -39
- diffusers/utils/import_utils.py +67 -0
- diffusers/utils/peft_utils.py +3 -0
- diffusers/utils/testing_utils.py +56 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/METADATA +69 -69
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/RECORD +214 -162
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
diffusers/loaders/ip_adapter.py
CHANGED
@@ -33,17 +33,20 @@ from .unet_loader_utils import _maybe_expand_lora_scales
|
|
33
33
|
|
34
34
|
|
35
35
|
if is_transformers_available():
|
36
|
-
from transformers import
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
36
|
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, SiglipImageProcessor, SiglipVisionModel
|
37
|
+
|
38
|
+
from ..models.attention_processor import (
|
39
|
+
AttnProcessor,
|
40
|
+
AttnProcessor2_0,
|
41
|
+
FluxAttnProcessor2_0,
|
42
|
+
FluxIPAdapterJointAttnProcessor2_0,
|
43
|
+
IPAdapterAttnProcessor,
|
44
|
+
IPAdapterAttnProcessor2_0,
|
45
|
+
IPAdapterXFormersAttnProcessor,
|
46
|
+
JointAttnProcessor2_0,
|
47
|
+
SD3IPAdapterJointAttnProcessor2_0,
|
48
|
+
)
|
49
|
+
|
47
50
|
|
48
51
|
logger = logging.get_logger(__name__)
|
49
52
|
|
@@ -76,7 +79,7 @@ class IPAdapterMixin:
|
|
76
79
|
list is passed, it should have the same length as `weight_name`.
|
77
80
|
weight_name (`str` or `List[str]`):
|
78
81
|
The name of the weight file to load. If a list is passed, it should have the same length as
|
79
|
-
`
|
82
|
+
`subfolder`.
|
80
83
|
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
81
84
|
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
82
85
|
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
|
@@ -189,7 +192,7 @@ class IPAdapterMixin:
|
|
189
192
|
state_dict = pretrained_model_name_or_path_or_dict
|
190
193
|
|
191
194
|
keys = list(state_dict.keys())
|
192
|
-
if
|
195
|
+
if "image_proj" not in keys and "ip_adapter" not in keys:
|
193
196
|
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
194
197
|
|
195
198
|
state_dicts.append(state_dict)
|
@@ -284,7 +287,9 @@ class IPAdapterMixin:
|
|
284
287
|
scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)
|
285
288
|
|
286
289
|
for attn_name, attn_processor in unet.attn_processors.items():
|
287
|
-
if isinstance(
|
290
|
+
if isinstance(
|
291
|
+
attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
|
292
|
+
):
|
288
293
|
if len(scale_configs) != len(attn_processor.scale):
|
289
294
|
raise ValueError(
|
290
295
|
f"Cannot assign {len(scale_configs)} scale_configs to "
|
@@ -342,7 +347,525 @@ class IPAdapterMixin:
|
|
342
347
|
)
|
343
348
|
attn_procs[name] = (
|
344
349
|
attn_processor_class
|
345
|
-
if isinstance(
|
350
|
+
if isinstance(
|
351
|
+
value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
|
352
|
+
)
|
346
353
|
else value.__class__()
|
347
354
|
)
|
348
355
|
self.unet.set_attn_processor(attn_procs)
|
356
|
+
|
357
|
+
|
358
|
+
class FluxIPAdapterMixin:
|
359
|
+
"""Mixin for handling Flux IP Adapters."""
|
360
|
+
|
361
|
+
@validate_hf_hub_args
|
362
|
+
def load_ip_adapter(
|
363
|
+
self,
|
364
|
+
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
|
365
|
+
weight_name: Union[str, List[str]],
|
366
|
+
subfolder: Optional[Union[str, List[str]]] = "",
|
367
|
+
image_encoder_pretrained_model_name_or_path: Optional[str] = "image_encoder",
|
368
|
+
image_encoder_subfolder: Optional[str] = "",
|
369
|
+
image_encoder_dtype: torch.dtype = torch.float16,
|
370
|
+
**kwargs,
|
371
|
+
):
|
372
|
+
"""
|
373
|
+
Parameters:
|
374
|
+
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
|
375
|
+
Can be either:
|
376
|
+
|
377
|
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
378
|
+
the Hub.
|
379
|
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
380
|
+
with [`ModelMixin.save_pretrained`].
|
381
|
+
- A [torch state
|
382
|
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
383
|
+
subfolder (`str` or `List[str]`):
|
384
|
+
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
|
385
|
+
list is passed, it should have the same length as `weight_name`.
|
386
|
+
weight_name (`str` or `List[str]`):
|
387
|
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
388
|
+
`weight_name`.
|
389
|
+
image_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `./image_encoder`):
|
390
|
+
Can be either:
|
391
|
+
|
392
|
+
- A string, the *model id* (for example `openai/clip-vit-large-patch14`) of a pretrained model
|
393
|
+
hosted on the Hub.
|
394
|
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
395
|
+
with [`ModelMixin.save_pretrained`].
|
396
|
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
397
|
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
398
|
+
is not used.
|
399
|
+
force_download (`bool`, *optional*, defaults to `False`):
|
400
|
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
401
|
+
cached versions if they exist.
|
402
|
+
|
403
|
+
proxies (`Dict[str, str]`, *optional*):
|
404
|
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
405
|
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
406
|
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
407
|
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
408
|
+
won't be downloaded from the Hub.
|
409
|
+
token (`str` or *bool*, *optional*):
|
410
|
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
411
|
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
412
|
+
revision (`str`, *optional*, defaults to `"main"`):
|
413
|
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
414
|
+
allowed by Git.
|
415
|
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
416
|
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
417
|
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
418
|
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
419
|
+
argument to `True` will raise an error.
|
420
|
+
"""
|
421
|
+
|
422
|
+
# handle the list inputs for multiple IP Adapters
|
423
|
+
if not isinstance(weight_name, list):
|
424
|
+
weight_name = [weight_name]
|
425
|
+
|
426
|
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
427
|
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
|
428
|
+
if len(pretrained_model_name_or_path_or_dict) == 1:
|
429
|
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
|
430
|
+
|
431
|
+
if not isinstance(subfolder, list):
|
432
|
+
subfolder = [subfolder]
|
433
|
+
if len(subfolder) == 1:
|
434
|
+
subfolder = subfolder * len(weight_name)
|
435
|
+
|
436
|
+
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
|
437
|
+
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
|
438
|
+
|
439
|
+
if len(weight_name) != len(subfolder):
|
440
|
+
raise ValueError("`weight_name` and `subfolder` must have the same length.")
|
441
|
+
|
442
|
+
# Load the main state dict first.
|
443
|
+
cache_dir = kwargs.pop("cache_dir", None)
|
444
|
+
force_download = kwargs.pop("force_download", False)
|
445
|
+
proxies = kwargs.pop("proxies", None)
|
446
|
+
local_files_only = kwargs.pop("local_files_only", None)
|
447
|
+
token = kwargs.pop("token", None)
|
448
|
+
revision = kwargs.pop("revision", None)
|
449
|
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
450
|
+
|
451
|
+
if low_cpu_mem_usage and not is_accelerate_available():
|
452
|
+
low_cpu_mem_usage = False
|
453
|
+
logger.warning(
|
454
|
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
455
|
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
456
|
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
457
|
+
" install accelerate\n```\n."
|
458
|
+
)
|
459
|
+
|
460
|
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
461
|
+
raise NotImplementedError(
|
462
|
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
463
|
+
" `low_cpu_mem_usage=False`."
|
464
|
+
)
|
465
|
+
|
466
|
+
user_agent = {
|
467
|
+
"file_type": "attn_procs_weights",
|
468
|
+
"framework": "pytorch",
|
469
|
+
}
|
470
|
+
state_dicts = []
|
471
|
+
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
|
472
|
+
pretrained_model_name_or_path_or_dict, weight_name, subfolder
|
473
|
+
):
|
474
|
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
475
|
+
model_file = _get_model_file(
|
476
|
+
pretrained_model_name_or_path_or_dict,
|
477
|
+
weights_name=weight_name,
|
478
|
+
cache_dir=cache_dir,
|
479
|
+
force_download=force_download,
|
480
|
+
proxies=proxies,
|
481
|
+
local_files_only=local_files_only,
|
482
|
+
token=token,
|
483
|
+
revision=revision,
|
484
|
+
subfolder=subfolder,
|
485
|
+
user_agent=user_agent,
|
486
|
+
)
|
487
|
+
if weight_name.endswith(".safetensors"):
|
488
|
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
489
|
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
490
|
+
image_proj_keys = ["ip_adapter_proj_model.", "image_proj."]
|
491
|
+
ip_adapter_keys = ["double_blocks.", "ip_adapter."]
|
492
|
+
for key in f.keys():
|
493
|
+
if any(key.startswith(prefix) for prefix in image_proj_keys):
|
494
|
+
diffusers_name = ".".join(key.split(".")[1:])
|
495
|
+
state_dict["image_proj"][diffusers_name] = f.get_tensor(key)
|
496
|
+
elif any(key.startswith(prefix) for prefix in ip_adapter_keys):
|
497
|
+
diffusers_name = (
|
498
|
+
".".join(key.split(".")[1:])
|
499
|
+
.replace("ip_adapter_double_stream_k_proj", "to_k_ip")
|
500
|
+
.replace("ip_adapter_double_stream_v_proj", "to_v_ip")
|
501
|
+
.replace("processor.", "")
|
502
|
+
)
|
503
|
+
state_dict["ip_adapter"][diffusers_name] = f.get_tensor(key)
|
504
|
+
else:
|
505
|
+
state_dict = load_state_dict(model_file)
|
506
|
+
else:
|
507
|
+
state_dict = pretrained_model_name_or_path_or_dict
|
508
|
+
|
509
|
+
keys = list(state_dict.keys())
|
510
|
+
if keys != ["image_proj", "ip_adapter"]:
|
511
|
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
512
|
+
|
513
|
+
state_dicts.append(state_dict)
|
514
|
+
|
515
|
+
# load CLIP image encoder here if it has not been registered to the pipeline yet
|
516
|
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
517
|
+
if image_encoder_pretrained_model_name_or_path is not None:
|
518
|
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
519
|
+
logger.info(f"loading image_encoder from {image_encoder_pretrained_model_name_or_path}")
|
520
|
+
image_encoder = (
|
521
|
+
CLIPVisionModelWithProjection.from_pretrained(
|
522
|
+
image_encoder_pretrained_model_name_or_path,
|
523
|
+
subfolder=image_encoder_subfolder,
|
524
|
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
525
|
+
cache_dir=cache_dir,
|
526
|
+
local_files_only=local_files_only,
|
527
|
+
)
|
528
|
+
.to(self.device, dtype=image_encoder_dtype)
|
529
|
+
.eval()
|
530
|
+
)
|
531
|
+
self.register_modules(image_encoder=image_encoder)
|
532
|
+
else:
|
533
|
+
raise ValueError(
|
534
|
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
535
|
+
)
|
536
|
+
else:
|
537
|
+
logger.warning(
|
538
|
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
539
|
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
540
|
+
)
|
541
|
+
|
542
|
+
# create feature extractor if it has not been registered to the pipeline yet
|
543
|
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
|
544
|
+
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
|
545
|
+
default_clip_size = 224
|
546
|
+
clip_image_size = (
|
547
|
+
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
|
548
|
+
)
|
549
|
+
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
|
550
|
+
self.register_modules(feature_extractor=feature_extractor)
|
551
|
+
|
552
|
+
# load ip-adapter into transformer
|
553
|
+
self.transformer._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
554
|
+
|
555
|
+
def set_ip_adapter_scale(self, scale: Union[float, List[float], List[List[float]]]):
|
556
|
+
"""
|
557
|
+
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
|
558
|
+
granular control over each IP-Adapter behavior. A config can be a float or a list.
|
559
|
+
|
560
|
+
`float` is converted to list and repeated for the number of blocks and the number of IP adapters. `List[float]`
|
561
|
+
length match the number of blocks, it is repeated for each IP adapter. `List[List[float]]` must match the
|
562
|
+
number of IP adapters and each must match the number of blocks.
|
563
|
+
|
564
|
+
Example:
|
565
|
+
|
566
|
+
```py
|
567
|
+
# To use original IP-Adapter
|
568
|
+
scale = 1.0
|
569
|
+
pipeline.set_ip_adapter_scale(scale)
|
570
|
+
|
571
|
+
|
572
|
+
def LinearStrengthModel(start, finish, size):
|
573
|
+
return [(start + (finish - start) * (i / (size - 1))) for i in range(size)]
|
574
|
+
|
575
|
+
|
576
|
+
ip_strengths = LinearStrengthModel(0.3, 0.92, 19)
|
577
|
+
pipeline.set_ip_adapter_scale(ip_strengths)
|
578
|
+
```
|
579
|
+
"""
|
580
|
+
transformer = self.transformer
|
581
|
+
if not isinstance(scale, list):
|
582
|
+
scale = [[scale] * transformer.config.num_layers]
|
583
|
+
elif isinstance(scale, list) and isinstance(scale[0], int) or isinstance(scale[0], float):
|
584
|
+
if len(scale) != transformer.config.num_layers:
|
585
|
+
raise ValueError(f"Expected list of {transformer.config.num_layers} scales, got {len(scale)}.")
|
586
|
+
scale = [scale]
|
587
|
+
|
588
|
+
scale_configs = scale
|
589
|
+
|
590
|
+
key_id = 0
|
591
|
+
for attn_name, attn_processor in transformer.attn_processors.items():
|
592
|
+
if isinstance(attn_processor, (FluxIPAdapterJointAttnProcessor2_0)):
|
593
|
+
if len(scale_configs) != len(attn_processor.scale):
|
594
|
+
raise ValueError(
|
595
|
+
f"Cannot assign {len(scale_configs)} scale_configs to "
|
596
|
+
f"{len(attn_processor.scale)} IP-Adapter."
|
597
|
+
)
|
598
|
+
elif len(scale_configs) == 1:
|
599
|
+
scale_configs = scale_configs * len(attn_processor.scale)
|
600
|
+
for i, scale_config in enumerate(scale_configs):
|
601
|
+
attn_processor.scale[i] = scale_config[key_id]
|
602
|
+
key_id += 1
|
603
|
+
|
604
|
+
def unload_ip_adapter(self):
|
605
|
+
"""
|
606
|
+
Unloads the IP Adapter weights
|
607
|
+
|
608
|
+
Examples:
|
609
|
+
|
610
|
+
```python
|
611
|
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
612
|
+
>>> pipeline.unload_ip_adapter()
|
613
|
+
>>> ...
|
614
|
+
```
|
615
|
+
"""
|
616
|
+
# remove CLIP image encoder
|
617
|
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
618
|
+
self.image_encoder = None
|
619
|
+
self.register_to_config(image_encoder=[None, None])
|
620
|
+
|
621
|
+
# remove feature extractor only when safety_checker is None as safety_checker uses
|
622
|
+
# the feature_extractor later
|
623
|
+
if not hasattr(self, "safety_checker"):
|
624
|
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
625
|
+
self.feature_extractor = None
|
626
|
+
self.register_to_config(feature_extractor=[None, None])
|
627
|
+
|
628
|
+
# remove hidden encoder
|
629
|
+
self.transformer.encoder_hid_proj = None
|
630
|
+
self.transformer.config.encoder_hid_dim_type = None
|
631
|
+
|
632
|
+
# restore original Transformer attention processors layers
|
633
|
+
attn_procs = {}
|
634
|
+
for name, value in self.transformer.attn_processors.items():
|
635
|
+
attn_processor_class = FluxAttnProcessor2_0()
|
636
|
+
attn_procs[name] = (
|
637
|
+
attn_processor_class if isinstance(value, (FluxIPAdapterJointAttnProcessor2_0)) else value.__class__()
|
638
|
+
)
|
639
|
+
self.transformer.set_attn_processor(attn_procs)
|
640
|
+
|
641
|
+
|
642
|
+
class SD3IPAdapterMixin:
|
643
|
+
"""Mixin for handling StableDiffusion 3 IP Adapters."""
|
644
|
+
|
645
|
+
@property
|
646
|
+
def is_ip_adapter_active(self) -> bool:
|
647
|
+
"""Checks if IP-Adapter is loaded and scale > 0.
|
648
|
+
|
649
|
+
IP-Adapter scale controls the influence of the image prompt versus text prompt. When this value is set to 0,
|
650
|
+
the image context is irrelevant.
|
651
|
+
|
652
|
+
Returns:
|
653
|
+
`bool`: True when IP-Adapter is loaded and any layer has scale > 0.
|
654
|
+
"""
|
655
|
+
scales = [
|
656
|
+
attn_proc.scale
|
657
|
+
for attn_proc in self.transformer.attn_processors.values()
|
658
|
+
if isinstance(attn_proc, SD3IPAdapterJointAttnProcessor2_0)
|
659
|
+
]
|
660
|
+
|
661
|
+
return len(scales) > 0 and any(scale > 0 for scale in scales)
|
662
|
+
|
663
|
+
@validate_hf_hub_args
|
664
|
+
def load_ip_adapter(
|
665
|
+
self,
|
666
|
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
667
|
+
weight_name: str = "ip-adapter.safetensors",
|
668
|
+
subfolder: Optional[str] = None,
|
669
|
+
image_encoder_folder: Optional[str] = "image_encoder",
|
670
|
+
**kwargs,
|
671
|
+
) -> None:
|
672
|
+
"""
|
673
|
+
Parameters:
|
674
|
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
675
|
+
Can be either:
|
676
|
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
677
|
+
the Hub.
|
678
|
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
679
|
+
with [`ModelMixin.save_pretrained`].
|
680
|
+
- A [torch state
|
681
|
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
682
|
+
weight_name (`str`, defaults to "ip-adapter.safetensors"):
|
683
|
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
684
|
+
`subfolder`.
|
685
|
+
subfolder (`str`, *optional*):
|
686
|
+
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
|
687
|
+
list is passed, it should have the same length as `weight_name`.
|
688
|
+
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
689
|
+
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
690
|
+
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
|
691
|
+
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
|
692
|
+
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
|
693
|
+
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
|
694
|
+
`image_encoder_folder="different_subfolder/image_encoder"`.
|
695
|
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
696
|
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
697
|
+
is not used.
|
698
|
+
force_download (`bool`, *optional*, defaults to `False`):
|
699
|
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
700
|
+
cached versions if they exist.
|
701
|
+
proxies (`Dict[str, str]`, *optional*):
|
702
|
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
703
|
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
704
|
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
705
|
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
706
|
+
won't be downloaded from the Hub.
|
707
|
+
token (`str` or *bool*, *optional*):
|
708
|
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
709
|
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
710
|
+
revision (`str`, *optional*, defaults to `"main"`):
|
711
|
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
712
|
+
allowed by Git.
|
713
|
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
714
|
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
715
|
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
716
|
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
717
|
+
argument to `True` will raise an error.
|
718
|
+
"""
|
719
|
+
# Load the main state dict first
|
720
|
+
cache_dir = kwargs.pop("cache_dir", None)
|
721
|
+
force_download = kwargs.pop("force_download", False)
|
722
|
+
proxies = kwargs.pop("proxies", None)
|
723
|
+
local_files_only = kwargs.pop("local_files_only", None)
|
724
|
+
token = kwargs.pop("token", None)
|
725
|
+
revision = kwargs.pop("revision", None)
|
726
|
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
727
|
+
|
728
|
+
if low_cpu_mem_usage and not is_accelerate_available():
|
729
|
+
low_cpu_mem_usage = False
|
730
|
+
logger.warning(
|
731
|
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
732
|
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
733
|
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
734
|
+
" install accelerate\n```\n."
|
735
|
+
)
|
736
|
+
|
737
|
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
738
|
+
raise NotImplementedError(
|
739
|
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
740
|
+
" `low_cpu_mem_usage=False`."
|
741
|
+
)
|
742
|
+
|
743
|
+
user_agent = {
|
744
|
+
"file_type": "attn_procs_weights",
|
745
|
+
"framework": "pytorch",
|
746
|
+
}
|
747
|
+
|
748
|
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
749
|
+
model_file = _get_model_file(
|
750
|
+
pretrained_model_name_or_path_or_dict,
|
751
|
+
weights_name=weight_name,
|
752
|
+
cache_dir=cache_dir,
|
753
|
+
force_download=force_download,
|
754
|
+
proxies=proxies,
|
755
|
+
local_files_only=local_files_only,
|
756
|
+
token=token,
|
757
|
+
revision=revision,
|
758
|
+
subfolder=subfolder,
|
759
|
+
user_agent=user_agent,
|
760
|
+
)
|
761
|
+
if weight_name.endswith(".safetensors"):
|
762
|
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
763
|
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
764
|
+
for key in f.keys():
|
765
|
+
if key.startswith("image_proj."):
|
766
|
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
767
|
+
elif key.startswith("ip_adapter."):
|
768
|
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
769
|
+
else:
|
770
|
+
state_dict = load_state_dict(model_file)
|
771
|
+
else:
|
772
|
+
state_dict = pretrained_model_name_or_path_or_dict
|
773
|
+
|
774
|
+
keys = list(state_dict.keys())
|
775
|
+
if "image_proj" not in keys and "ip_adapter" not in keys:
|
776
|
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
777
|
+
|
778
|
+
# Load image_encoder and feature_extractor here if they haven't been registered to the pipeline yet
|
779
|
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
780
|
+
if image_encoder_folder is not None:
|
781
|
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
782
|
+
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
|
783
|
+
if image_encoder_folder.count("/") == 0:
|
784
|
+
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
|
785
|
+
else:
|
786
|
+
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
|
787
|
+
|
788
|
+
# Commons args for loading image encoder and image processor
|
789
|
+
kwargs = {
|
790
|
+
"low_cpu_mem_usage": low_cpu_mem_usage,
|
791
|
+
"cache_dir": cache_dir,
|
792
|
+
"local_files_only": local_files_only,
|
793
|
+
}
|
794
|
+
|
795
|
+
self.register_modules(
|
796
|
+
feature_extractor=SiglipImageProcessor.from_pretrained(image_encoder_subfolder, **kwargs).to(
|
797
|
+
self.device, dtype=self.dtype
|
798
|
+
),
|
799
|
+
image_encoder=SiglipVisionModel.from_pretrained(image_encoder_subfolder, **kwargs).to(
|
800
|
+
self.device, dtype=self.dtype
|
801
|
+
),
|
802
|
+
)
|
803
|
+
else:
|
804
|
+
raise ValueError(
|
805
|
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
806
|
+
)
|
807
|
+
else:
|
808
|
+
logger.warning(
|
809
|
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
810
|
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
811
|
+
)
|
812
|
+
|
813
|
+
# Load IP-Adapter into transformer
|
814
|
+
self.transformer._load_ip_adapter_weights(state_dict, low_cpu_mem_usage=low_cpu_mem_usage)
|
815
|
+
|
816
|
+
def set_ip_adapter_scale(self, scale: float) -> None:
|
817
|
+
"""
|
818
|
+
Set IP-Adapter scale, which controls image prompt conditioning. A value of 1.0 means the model is only
|
819
|
+
conditioned on the image prompt, and 0.0 only conditioned by the text prompt. Lowering this value encourages
|
820
|
+
the model to produce more diverse images, but they may not be as aligned with the image prompt.
|
821
|
+
|
822
|
+
Example:
|
823
|
+
|
824
|
+
```python
|
825
|
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
826
|
+
>>> pipeline.set_ip_adapter_scale(0.6)
|
827
|
+
>>> ...
|
828
|
+
```
|
829
|
+
|
830
|
+
Args:
|
831
|
+
scale (float):
|
832
|
+
IP-Adapter scale to be set.
|
833
|
+
|
834
|
+
"""
|
835
|
+
for attn_processor in self.transformer.attn_processors.values():
|
836
|
+
if isinstance(attn_processor, SD3IPAdapterJointAttnProcessor2_0):
|
837
|
+
attn_processor.scale = scale
|
838
|
+
|
839
|
+
def unload_ip_adapter(self) -> None:
|
840
|
+
"""
|
841
|
+
Unloads the IP Adapter weights.
|
842
|
+
|
843
|
+
Example:
|
844
|
+
|
845
|
+
```python
|
846
|
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
847
|
+
>>> pipeline.unload_ip_adapter()
|
848
|
+
>>> ...
|
849
|
+
```
|
850
|
+
"""
|
851
|
+
# Remove image encoder
|
852
|
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
853
|
+
self.image_encoder = None
|
854
|
+
self.register_to_config(image_encoder=None)
|
855
|
+
|
856
|
+
# Remove feature extractor
|
857
|
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
858
|
+
self.feature_extractor = None
|
859
|
+
self.register_to_config(feature_extractor=None)
|
860
|
+
|
861
|
+
# Remove image projection
|
862
|
+
self.transformer.image_proj = None
|
863
|
+
|
864
|
+
# Restore original attention processors layers
|
865
|
+
attn_procs = {
|
866
|
+
name: (
|
867
|
+
JointAttnProcessor2_0() if isinstance(value, SD3IPAdapterJointAttnProcessor2_0) else value.__class__()
|
868
|
+
)
|
869
|
+
for name, value in self.transformer.attn_processors.items()
|
870
|
+
}
|
871
|
+
self.transformer.set_attn_processor(attn_procs)
|