diffusers 0.31.0__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +66 -5
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +1 -1
- diffusers/dependency_versions_table.py +1 -1
- diffusers/image_processor.py +25 -17
- diffusers/loaders/__init__.py +22 -3
- diffusers/loaders/ip_adapter.py +538 -15
- diffusers/loaders/lora_base.py +124 -118
- diffusers/loaders/lora_conversion_utils.py +318 -3
- diffusers/loaders/lora_pipeline.py +1688 -368
- diffusers/loaders/peft.py +379 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +519 -9
- diffusers/loaders/textual_inversion.py +3 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +17 -4
- diffusers/models/__init__.py +47 -14
- diffusers/models/activations.py +22 -9
- diffusers/models/attention.py +13 -4
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2059 -281
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +2 -1
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +29 -495
- diffusers/models/controlnet_sd3.py +25 -379
- diffusers/models/controlnet_sparsectrl.py +46 -718
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +838 -43
- diffusers/models/model_loading_utils.py +88 -6
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +74 -28
- diffusers/models/normalization.py +78 -13
- diffusers/models/transformers/__init__.py +5 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +1 -1
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +1 -1
- diffusers/models/transformers/transformer_flux.py +30 -9
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +105 -17
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +1 -1
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +5 -5
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +8 -0
- diffusers/pipelines/__init__.py +34 -0
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
- diffusers/pipelines/auto_pipeline.py +53 -6
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
- diffusers/pipelines/flux/__init__.py +13 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +204 -29
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +7 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +25 -4
- diffusers/pipelines/pipeline_utils.py +35 -6
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/auto.py +14 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +280 -2
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddpm.py +2 -6
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
- diffusers/schedulers/scheduling_deis_multistep.py +28 -9
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
- diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
- diffusers/schedulers/scheduling_euler_discrete.py +4 -4
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_heun_discrete.py +4 -4
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +28 -9
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
- diffusers/training_utils.py +16 -2
- diffusers/utils/__init__.py +5 -0
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +180 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +31 -39
- diffusers/utils/import_utils.py +67 -0
- diffusers/utils/peft_utils.py +3 -0
- diffusers/utils/testing_utils.py +56 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/METADATA +69 -69
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/RECORD +214 -162
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1501 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
import inspect
|
17
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18
|
+
|
19
|
+
import numpy as np
|
20
|
+
import PIL.Image
|
21
|
+
import torch
|
22
|
+
import torch.nn.functional as F
|
23
|
+
from transformers import (
|
24
|
+
CLIPImageProcessor,
|
25
|
+
CLIPTextModel,
|
26
|
+
CLIPTextModelWithProjection,
|
27
|
+
CLIPTokenizer,
|
28
|
+
CLIPVisionModelWithProjection,
|
29
|
+
)
|
30
|
+
|
31
|
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
32
|
+
|
33
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
34
|
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
35
|
+
from ...loaders import (
|
36
|
+
FromSingleFileMixin,
|
37
|
+
IPAdapterMixin,
|
38
|
+
StableDiffusionXLLoraLoaderMixin,
|
39
|
+
TextualInversionLoaderMixin,
|
40
|
+
)
|
41
|
+
from ...models import AutoencoderKL, ControlNetModel, ControlNetUnionModel, ImageProjection, UNet2DConditionModel
|
42
|
+
from ...models.attention_processor import (
|
43
|
+
AttnProcessor2_0,
|
44
|
+
XFormersAttnProcessor,
|
45
|
+
)
|
46
|
+
from ...models.lora import adjust_lora_scale_text_encoder
|
47
|
+
from ...schedulers import KarrasDiffusionSchedulers
|
48
|
+
from ...utils import (
|
49
|
+
USE_PEFT_BACKEND,
|
50
|
+
logging,
|
51
|
+
replace_example_docstring,
|
52
|
+
scale_lora_layers,
|
53
|
+
unscale_lora_layers,
|
54
|
+
)
|
55
|
+
from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
56
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
57
|
+
from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
58
|
+
|
59
|
+
|
60
|
+
if is_invisible_watermark_available():
|
61
|
+
from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
62
|
+
|
63
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
64
|
+
|
65
|
+
|
66
|
+
EXAMPLE_DOC_STRING = """
|
67
|
+
Examples:
|
68
|
+
```py
|
69
|
+
>>> # !pip install controlnet_aux
|
70
|
+
>>> from controlnet_aux import LineartAnimeDetector
|
71
|
+
>>> from diffusers import StableDiffusionXLControlNetUnionPipeline, ControlNetUnionModel, AutoencoderKL
|
72
|
+
>>> from diffusers.utils import load_image
|
73
|
+
>>> import torch
|
74
|
+
|
75
|
+
>>> prompt = "A cat"
|
76
|
+
>>> # download an image
|
77
|
+
>>> image = load_image(
|
78
|
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
|
79
|
+
... ).resize((1024, 1024))
|
80
|
+
>>> # initialize the models and pipeline
|
81
|
+
>>> controlnet = ControlNetUnionModel.from_pretrained(
|
82
|
+
... "xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16
|
83
|
+
... )
|
84
|
+
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
85
|
+
>>> pipe = StableDiffusionXLControlNetUnionPipeline.from_pretrained(
|
86
|
+
... "stabilityai/stable-diffusion-xl-base-1.0",
|
87
|
+
... controlnet=controlnet,
|
88
|
+
... vae=vae,
|
89
|
+
... torch_dtype=torch.float16,
|
90
|
+
... variant="fp16",
|
91
|
+
... )
|
92
|
+
>>> pipe.enable_model_cpu_offload()
|
93
|
+
>>> # prepare image
|
94
|
+
>>> processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
|
95
|
+
>>> controlnet_img = processor(image, output_type="pil")
|
96
|
+
>>> # generate image
|
97
|
+
>>> image = pipe(prompt, control_image=[controlnet_img], control_mode=[3], height=1024, width=1024).images[0]
|
98
|
+
```
|
99
|
+
"""
|
100
|
+
|
101
|
+
|
102
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
103
|
+
def retrieve_timesteps(
|
104
|
+
scheduler,
|
105
|
+
num_inference_steps: Optional[int] = None,
|
106
|
+
device: Optional[Union[str, torch.device]] = None,
|
107
|
+
timesteps: Optional[List[int]] = None,
|
108
|
+
sigmas: Optional[List[float]] = None,
|
109
|
+
**kwargs,
|
110
|
+
):
|
111
|
+
r"""
|
112
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
113
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
114
|
+
|
115
|
+
Args:
|
116
|
+
scheduler (`SchedulerMixin`):
|
117
|
+
The scheduler to get timesteps from.
|
118
|
+
num_inference_steps (`int`):
|
119
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
120
|
+
must be `None`.
|
121
|
+
device (`str` or `torch.device`, *optional*):
|
122
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
123
|
+
timesteps (`List[int]`, *optional*):
|
124
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
125
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
126
|
+
sigmas (`List[float]`, *optional*):
|
127
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
128
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
129
|
+
|
130
|
+
Returns:
|
131
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
132
|
+
second element is the number of inference steps.
|
133
|
+
"""
|
134
|
+
if timesteps is not None and sigmas is not None:
|
135
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
136
|
+
if timesteps is not None:
|
137
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
138
|
+
if not accepts_timesteps:
|
139
|
+
raise ValueError(
|
140
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
141
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
142
|
+
)
|
143
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
144
|
+
timesteps = scheduler.timesteps
|
145
|
+
num_inference_steps = len(timesteps)
|
146
|
+
elif sigmas is not None:
|
147
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
148
|
+
if not accept_sigmas:
|
149
|
+
raise ValueError(
|
150
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
151
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
152
|
+
)
|
153
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
154
|
+
timesteps = scheduler.timesteps
|
155
|
+
num_inference_steps = len(timesteps)
|
156
|
+
else:
|
157
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
158
|
+
timesteps = scheduler.timesteps
|
159
|
+
return timesteps, num_inference_steps
|
160
|
+
|
161
|
+
|
162
|
+
class StableDiffusionXLControlNetUnionPipeline(
|
163
|
+
DiffusionPipeline,
|
164
|
+
StableDiffusionMixin,
|
165
|
+
TextualInversionLoaderMixin,
|
166
|
+
StableDiffusionXLLoraLoaderMixin,
|
167
|
+
IPAdapterMixin,
|
168
|
+
FromSingleFileMixin,
|
169
|
+
):
|
170
|
+
r"""
|
171
|
+
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
172
|
+
|
173
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
174
|
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
175
|
+
|
176
|
+
The pipeline also inherits the following loading methods:
|
177
|
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
178
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
179
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
180
|
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
181
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
182
|
+
|
183
|
+
Args:
|
184
|
+
vae ([`AutoencoderKL`]):
|
185
|
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
186
|
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
187
|
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
188
|
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
189
|
+
Second frozen text-encoder
|
190
|
+
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
191
|
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
192
|
+
A `CLIPTokenizer` to tokenize text.
|
193
|
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
194
|
+
A `CLIPTokenizer` to tokenize text.
|
195
|
+
unet ([`UNet2DConditionModel`]):
|
196
|
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
197
|
+
controlnet ([`ControlNetUnionModel`]`):
|
198
|
+
Provides additional conditioning to the `unet` during the denoising process.
|
199
|
+
scheduler ([`SchedulerMixin`]):
|
200
|
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
201
|
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
202
|
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
203
|
+
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
204
|
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
205
|
+
add_watermarker (`bool`, *optional*):
|
206
|
+
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
207
|
+
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
208
|
+
watermarker is used.
|
209
|
+
"""
|
210
|
+
|
211
|
+
# leave controlnet out on purpose because it iterates with unet
|
212
|
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
213
|
+
_optional_components = [
|
214
|
+
"tokenizer",
|
215
|
+
"tokenizer_2",
|
216
|
+
"text_encoder",
|
217
|
+
"text_encoder_2",
|
218
|
+
"feature_extractor",
|
219
|
+
"image_encoder",
|
220
|
+
]
|
221
|
+
_callback_tensor_inputs = [
|
222
|
+
"latents",
|
223
|
+
"prompt_embeds",
|
224
|
+
"add_text_embeds",
|
225
|
+
"add_time_ids",
|
226
|
+
]
|
227
|
+
|
228
|
+
def __init__(
|
229
|
+
self,
|
230
|
+
vae: AutoencoderKL,
|
231
|
+
text_encoder: CLIPTextModel,
|
232
|
+
text_encoder_2: CLIPTextModelWithProjection,
|
233
|
+
tokenizer: CLIPTokenizer,
|
234
|
+
tokenizer_2: CLIPTokenizer,
|
235
|
+
unet: UNet2DConditionModel,
|
236
|
+
controlnet: ControlNetUnionModel,
|
237
|
+
scheduler: KarrasDiffusionSchedulers,
|
238
|
+
force_zeros_for_empty_prompt: bool = True,
|
239
|
+
add_watermarker: Optional[bool] = None,
|
240
|
+
feature_extractor: CLIPImageProcessor = None,
|
241
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
242
|
+
):
|
243
|
+
super().__init__()
|
244
|
+
|
245
|
+
if not isinstance(controlnet, ControlNetUnionModel):
|
246
|
+
raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
|
247
|
+
|
248
|
+
self.register_modules(
|
249
|
+
vae=vae,
|
250
|
+
text_encoder=text_encoder,
|
251
|
+
text_encoder_2=text_encoder_2,
|
252
|
+
tokenizer=tokenizer,
|
253
|
+
tokenizer_2=tokenizer_2,
|
254
|
+
unet=unet,
|
255
|
+
controlnet=controlnet,
|
256
|
+
scheduler=scheduler,
|
257
|
+
feature_extractor=feature_extractor,
|
258
|
+
image_encoder=image_encoder,
|
259
|
+
)
|
260
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
261
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
262
|
+
self.control_image_processor = VaeImageProcessor(
|
263
|
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
264
|
+
)
|
265
|
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
266
|
+
|
267
|
+
if add_watermarker:
|
268
|
+
self.watermark = StableDiffusionXLWatermarker()
|
269
|
+
else:
|
270
|
+
self.watermark = None
|
271
|
+
|
272
|
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
273
|
+
|
274
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
275
|
+
def encode_prompt(
|
276
|
+
self,
|
277
|
+
prompt: str,
|
278
|
+
prompt_2: Optional[str] = None,
|
279
|
+
device: Optional[torch.device] = None,
|
280
|
+
num_images_per_prompt: int = 1,
|
281
|
+
do_classifier_free_guidance: bool = True,
|
282
|
+
negative_prompt: Optional[str] = None,
|
283
|
+
negative_prompt_2: Optional[str] = None,
|
284
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
285
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
286
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
287
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
288
|
+
lora_scale: Optional[float] = None,
|
289
|
+
clip_skip: Optional[int] = None,
|
290
|
+
):
|
291
|
+
r"""
|
292
|
+
Encodes the prompt into text encoder hidden states.
|
293
|
+
|
294
|
+
Args:
|
295
|
+
prompt (`str` or `List[str]`, *optional*):
|
296
|
+
prompt to be encoded
|
297
|
+
prompt_2 (`str` or `List[str]`, *optional*):
|
298
|
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
299
|
+
used in both text-encoders
|
300
|
+
device: (`torch.device`):
|
301
|
+
torch device
|
302
|
+
num_images_per_prompt (`int`):
|
303
|
+
number of images that should be generated per prompt
|
304
|
+
do_classifier_free_guidance (`bool`):
|
305
|
+
whether to use classifier free guidance or not
|
306
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
307
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
308
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
309
|
+
less than `1`).
|
310
|
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
311
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
312
|
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
313
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
314
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
315
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
316
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
317
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
318
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
319
|
+
argument.
|
320
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
321
|
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
322
|
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
323
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
324
|
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
325
|
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
326
|
+
input argument.
|
327
|
+
lora_scale (`float`, *optional*):
|
328
|
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
329
|
+
clip_skip (`int`, *optional*):
|
330
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
331
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
332
|
+
"""
|
333
|
+
device = device or self._execution_device
|
334
|
+
|
335
|
+
# set lora scale so that monkey patched LoRA
|
336
|
+
# function of text encoder can correctly access it
|
337
|
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
338
|
+
self._lora_scale = lora_scale
|
339
|
+
|
340
|
+
# dynamically adjust the LoRA scale
|
341
|
+
if self.text_encoder is not None:
|
342
|
+
if not USE_PEFT_BACKEND:
|
343
|
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
344
|
+
else:
|
345
|
+
scale_lora_layers(self.text_encoder, lora_scale)
|
346
|
+
|
347
|
+
if self.text_encoder_2 is not None:
|
348
|
+
if not USE_PEFT_BACKEND:
|
349
|
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
350
|
+
else:
|
351
|
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
352
|
+
|
353
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
354
|
+
|
355
|
+
if prompt is not None:
|
356
|
+
batch_size = len(prompt)
|
357
|
+
else:
|
358
|
+
batch_size = prompt_embeds.shape[0]
|
359
|
+
|
360
|
+
# Define tokenizers and text encoders
|
361
|
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
362
|
+
text_encoders = (
|
363
|
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
364
|
+
)
|
365
|
+
|
366
|
+
if prompt_embeds is None:
|
367
|
+
prompt_2 = prompt_2 or prompt
|
368
|
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
369
|
+
|
370
|
+
# textual inversion: process multi-vector tokens if necessary
|
371
|
+
prompt_embeds_list = []
|
372
|
+
prompts = [prompt, prompt_2]
|
373
|
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
374
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
375
|
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
376
|
+
|
377
|
+
text_inputs = tokenizer(
|
378
|
+
prompt,
|
379
|
+
padding="max_length",
|
380
|
+
max_length=tokenizer.model_max_length,
|
381
|
+
truncation=True,
|
382
|
+
return_tensors="pt",
|
383
|
+
)
|
384
|
+
|
385
|
+
text_input_ids = text_inputs.input_ids
|
386
|
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
387
|
+
|
388
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
389
|
+
text_input_ids, untruncated_ids
|
390
|
+
):
|
391
|
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
392
|
+
logger.warning(
|
393
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
394
|
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
395
|
+
)
|
396
|
+
|
397
|
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
398
|
+
|
399
|
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
400
|
+
pooled_prompt_embeds = prompt_embeds[0]
|
401
|
+
if clip_skip is None:
|
402
|
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
403
|
+
else:
|
404
|
+
# "2" because SDXL always indexes from the penultimate layer.
|
405
|
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
406
|
+
|
407
|
+
prompt_embeds_list.append(prompt_embeds)
|
408
|
+
|
409
|
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
410
|
+
|
411
|
+
# get unconditional embeddings for classifier free guidance
|
412
|
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
413
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
414
|
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
415
|
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
416
|
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
417
|
+
negative_prompt = negative_prompt or ""
|
418
|
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
419
|
+
|
420
|
+
# normalize str to list
|
421
|
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
422
|
+
negative_prompt_2 = (
|
423
|
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
424
|
+
)
|
425
|
+
|
426
|
+
uncond_tokens: List[str]
|
427
|
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
428
|
+
raise TypeError(
|
429
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
430
|
+
f" {type(prompt)}."
|
431
|
+
)
|
432
|
+
elif batch_size != len(negative_prompt):
|
433
|
+
raise ValueError(
|
434
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
435
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
436
|
+
" the batch size of `prompt`."
|
437
|
+
)
|
438
|
+
else:
|
439
|
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
440
|
+
|
441
|
+
negative_prompt_embeds_list = []
|
442
|
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
443
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
444
|
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
445
|
+
|
446
|
+
max_length = prompt_embeds.shape[1]
|
447
|
+
uncond_input = tokenizer(
|
448
|
+
negative_prompt,
|
449
|
+
padding="max_length",
|
450
|
+
max_length=max_length,
|
451
|
+
truncation=True,
|
452
|
+
return_tensors="pt",
|
453
|
+
)
|
454
|
+
|
455
|
+
negative_prompt_embeds = text_encoder(
|
456
|
+
uncond_input.input_ids.to(device),
|
457
|
+
output_hidden_states=True,
|
458
|
+
)
|
459
|
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
460
|
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
461
|
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
462
|
+
|
463
|
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
464
|
+
|
465
|
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
466
|
+
|
467
|
+
if self.text_encoder_2 is not None:
|
468
|
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
469
|
+
else:
|
470
|
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
471
|
+
|
472
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
473
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
474
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
475
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
476
|
+
|
477
|
+
if do_classifier_free_guidance:
|
478
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
479
|
+
seq_len = negative_prompt_embeds.shape[1]
|
480
|
+
|
481
|
+
if self.text_encoder_2 is not None:
|
482
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
483
|
+
else:
|
484
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
485
|
+
|
486
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
487
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
488
|
+
|
489
|
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
490
|
+
bs_embed * num_images_per_prompt, -1
|
491
|
+
)
|
492
|
+
if do_classifier_free_guidance:
|
493
|
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
494
|
+
bs_embed * num_images_per_prompt, -1
|
495
|
+
)
|
496
|
+
|
497
|
+
if self.text_encoder is not None:
|
498
|
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
499
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
500
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
501
|
+
|
502
|
+
if self.text_encoder_2 is not None:
|
503
|
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
504
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
505
|
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
506
|
+
|
507
|
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
508
|
+
|
509
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
510
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
511
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
512
|
+
|
513
|
+
if not isinstance(image, torch.Tensor):
|
514
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
515
|
+
|
516
|
+
image = image.to(device=device, dtype=dtype)
|
517
|
+
if output_hidden_states:
|
518
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
519
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
520
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
521
|
+
torch.zeros_like(image), output_hidden_states=True
|
522
|
+
).hidden_states[-2]
|
523
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
524
|
+
num_images_per_prompt, dim=0
|
525
|
+
)
|
526
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
527
|
+
else:
|
528
|
+
image_embeds = self.image_encoder(image).image_embeds
|
529
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
530
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
531
|
+
|
532
|
+
return image_embeds, uncond_image_embeds
|
533
|
+
|
534
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
535
|
+
def prepare_ip_adapter_image_embeds(
|
536
|
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
537
|
+
):
|
538
|
+
image_embeds = []
|
539
|
+
if do_classifier_free_guidance:
|
540
|
+
negative_image_embeds = []
|
541
|
+
if ip_adapter_image_embeds is None:
|
542
|
+
if not isinstance(ip_adapter_image, list):
|
543
|
+
ip_adapter_image = [ip_adapter_image]
|
544
|
+
|
545
|
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
546
|
+
raise ValueError(
|
547
|
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
548
|
+
)
|
549
|
+
|
550
|
+
for single_ip_adapter_image, image_proj_layer in zip(
|
551
|
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
552
|
+
):
|
553
|
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
554
|
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
555
|
+
single_ip_adapter_image, device, 1, output_hidden_state
|
556
|
+
)
|
557
|
+
|
558
|
+
image_embeds.append(single_image_embeds[None, :])
|
559
|
+
if do_classifier_free_guidance:
|
560
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
561
|
+
else:
|
562
|
+
for single_image_embeds in ip_adapter_image_embeds:
|
563
|
+
if do_classifier_free_guidance:
|
564
|
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
565
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
566
|
+
image_embeds.append(single_image_embeds)
|
567
|
+
|
568
|
+
ip_adapter_image_embeds = []
|
569
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
570
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
571
|
+
if do_classifier_free_guidance:
|
572
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
573
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
574
|
+
|
575
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
576
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
577
|
+
|
578
|
+
return ip_adapter_image_embeds
|
579
|
+
|
580
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
581
|
+
def prepare_extra_step_kwargs(self, generator, eta):
|
582
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
583
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
584
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
585
|
+
# and should be between [0, 1]
|
586
|
+
|
587
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
588
|
+
extra_step_kwargs = {}
|
589
|
+
if accepts_eta:
|
590
|
+
extra_step_kwargs["eta"] = eta
|
591
|
+
|
592
|
+
# check if the scheduler accepts generator
|
593
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
594
|
+
if accepts_generator:
|
595
|
+
extra_step_kwargs["generator"] = generator
|
596
|
+
return extra_step_kwargs
|
597
|
+
|
598
|
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
599
|
+
def check_image(self, image, prompt, prompt_embeds):
|
600
|
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
601
|
+
image_is_tensor = isinstance(image, torch.Tensor)
|
602
|
+
image_is_np = isinstance(image, np.ndarray)
|
603
|
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
604
|
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
605
|
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
606
|
+
|
607
|
+
if (
|
608
|
+
not image_is_pil
|
609
|
+
and not image_is_tensor
|
610
|
+
and not image_is_np
|
611
|
+
and not image_is_pil_list
|
612
|
+
and not image_is_tensor_list
|
613
|
+
and not image_is_np_list
|
614
|
+
):
|
615
|
+
raise TypeError(
|
616
|
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
617
|
+
)
|
618
|
+
|
619
|
+
if image_is_pil:
|
620
|
+
image_batch_size = 1
|
621
|
+
else:
|
622
|
+
image_batch_size = len(image)
|
623
|
+
|
624
|
+
if prompt is not None and isinstance(prompt, str):
|
625
|
+
prompt_batch_size = 1
|
626
|
+
elif prompt is not None and isinstance(prompt, list):
|
627
|
+
prompt_batch_size = len(prompt)
|
628
|
+
elif prompt_embeds is not None:
|
629
|
+
prompt_batch_size = prompt_embeds.shape[0]
|
630
|
+
|
631
|
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
632
|
+
raise ValueError(
|
633
|
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
634
|
+
)
|
635
|
+
|
636
|
+
def check_inputs(
|
637
|
+
self,
|
638
|
+
prompt,
|
639
|
+
prompt_2,
|
640
|
+
image: PipelineImageInput,
|
641
|
+
negative_prompt=None,
|
642
|
+
negative_prompt_2=None,
|
643
|
+
prompt_embeds=None,
|
644
|
+
negative_prompt_embeds=None,
|
645
|
+
pooled_prompt_embeds=None,
|
646
|
+
ip_adapter_image=None,
|
647
|
+
ip_adapter_image_embeds=None,
|
648
|
+
negative_pooled_prompt_embeds=None,
|
649
|
+
controlnet_conditioning_scale=1.0,
|
650
|
+
control_guidance_start=0.0,
|
651
|
+
control_guidance_end=1.0,
|
652
|
+
callback_on_step_end_tensor_inputs=None,
|
653
|
+
):
|
654
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
655
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
656
|
+
):
|
657
|
+
raise ValueError(
|
658
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
659
|
+
)
|
660
|
+
|
661
|
+
if prompt is not None and prompt_embeds is not None:
|
662
|
+
raise ValueError(
|
663
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
664
|
+
" only forward one of the two."
|
665
|
+
)
|
666
|
+
elif prompt_2 is not None and prompt_embeds is not None:
|
667
|
+
raise ValueError(
|
668
|
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
669
|
+
" only forward one of the two."
|
670
|
+
)
|
671
|
+
elif prompt is None and prompt_embeds is None:
|
672
|
+
raise ValueError(
|
673
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
674
|
+
)
|
675
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
676
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
677
|
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
678
|
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
679
|
+
|
680
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
681
|
+
raise ValueError(
|
682
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
683
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
684
|
+
)
|
685
|
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
686
|
+
raise ValueError(
|
687
|
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
688
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
689
|
+
)
|
690
|
+
|
691
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
692
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
693
|
+
raise ValueError(
|
694
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
695
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
696
|
+
f" {negative_prompt_embeds.shape}."
|
697
|
+
)
|
698
|
+
|
699
|
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
700
|
+
raise ValueError(
|
701
|
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
702
|
+
)
|
703
|
+
|
704
|
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
705
|
+
raise ValueError(
|
706
|
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
707
|
+
)
|
708
|
+
|
709
|
+
# Check `image`
|
710
|
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
711
|
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
712
|
+
)
|
713
|
+
if (
|
714
|
+
isinstance(self.controlnet, ControlNetModel)
|
715
|
+
or is_compiled
|
716
|
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
717
|
+
):
|
718
|
+
self.check_image(image, prompt, prompt_embeds)
|
719
|
+
elif (
|
720
|
+
isinstance(self.controlnet, ControlNetUnionModel)
|
721
|
+
or is_compiled
|
722
|
+
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
|
723
|
+
):
|
724
|
+
self.check_image(image, prompt, prompt_embeds)
|
725
|
+
|
726
|
+
else:
|
727
|
+
assert False
|
728
|
+
|
729
|
+
# Check `controlnet_conditioning_scale`
|
730
|
+
if (
|
731
|
+
isinstance(self.controlnet, ControlNetModel)
|
732
|
+
or is_compiled
|
733
|
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
734
|
+
):
|
735
|
+
if not isinstance(controlnet_conditioning_scale, float):
|
736
|
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
737
|
+
|
738
|
+
elif (
|
739
|
+
isinstance(self.controlnet, ControlNetUnionModel)
|
740
|
+
or is_compiled
|
741
|
+
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
|
742
|
+
):
|
743
|
+
if not isinstance(controlnet_conditioning_scale, float):
|
744
|
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
745
|
+
|
746
|
+
else:
|
747
|
+
assert False
|
748
|
+
|
749
|
+
if not isinstance(control_guidance_start, (tuple, list)):
|
750
|
+
control_guidance_start = [control_guidance_start]
|
751
|
+
|
752
|
+
if not isinstance(control_guidance_end, (tuple, list)):
|
753
|
+
control_guidance_end = [control_guidance_end]
|
754
|
+
|
755
|
+
if len(control_guidance_start) != len(control_guidance_end):
|
756
|
+
raise ValueError(
|
757
|
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
758
|
+
)
|
759
|
+
|
760
|
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
761
|
+
if start >= end:
|
762
|
+
raise ValueError(
|
763
|
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
764
|
+
)
|
765
|
+
if start < 0.0:
|
766
|
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
767
|
+
if end > 1.0:
|
768
|
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
769
|
+
|
770
|
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
771
|
+
raise ValueError(
|
772
|
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
773
|
+
)
|
774
|
+
|
775
|
+
if ip_adapter_image_embeds is not None:
|
776
|
+
if not isinstance(ip_adapter_image_embeds, list):
|
777
|
+
raise ValueError(
|
778
|
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
779
|
+
)
|
780
|
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
781
|
+
raise ValueError(
|
782
|
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
783
|
+
)
|
784
|
+
|
785
|
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
786
|
+
def prepare_image(
|
787
|
+
self,
|
788
|
+
image,
|
789
|
+
width,
|
790
|
+
height,
|
791
|
+
batch_size,
|
792
|
+
num_images_per_prompt,
|
793
|
+
device,
|
794
|
+
dtype,
|
795
|
+
do_classifier_free_guidance=False,
|
796
|
+
guess_mode=False,
|
797
|
+
):
|
798
|
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
799
|
+
image_batch_size = image.shape[0]
|
800
|
+
|
801
|
+
if image_batch_size == 1:
|
802
|
+
repeat_by = batch_size
|
803
|
+
else:
|
804
|
+
# image batch size is the same as prompt batch size
|
805
|
+
repeat_by = num_images_per_prompt
|
806
|
+
|
807
|
+
image = image.repeat_interleave(repeat_by, dim=0)
|
808
|
+
|
809
|
+
image = image.to(device=device, dtype=dtype)
|
810
|
+
|
811
|
+
if do_classifier_free_guidance and not guess_mode:
|
812
|
+
image = torch.cat([image] * 2)
|
813
|
+
|
814
|
+
return image
|
815
|
+
|
816
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
817
|
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
818
|
+
shape = (
|
819
|
+
batch_size,
|
820
|
+
num_channels_latents,
|
821
|
+
int(height) // self.vae_scale_factor,
|
822
|
+
int(width) // self.vae_scale_factor,
|
823
|
+
)
|
824
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
825
|
+
raise ValueError(
|
826
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
827
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
828
|
+
)
|
829
|
+
|
830
|
+
if latents is None:
|
831
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
832
|
+
else:
|
833
|
+
latents = latents.to(device)
|
834
|
+
|
835
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
836
|
+
latents = latents * self.scheduler.init_noise_sigma
|
837
|
+
return latents
|
838
|
+
|
839
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
840
|
+
def _get_add_time_ids(
|
841
|
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
842
|
+
):
|
843
|
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
844
|
+
|
845
|
+
passed_add_embed_dim = (
|
846
|
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
847
|
+
)
|
848
|
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
849
|
+
|
850
|
+
if expected_add_embed_dim != passed_add_embed_dim:
|
851
|
+
raise ValueError(
|
852
|
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
853
|
+
)
|
854
|
+
|
855
|
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
856
|
+
return add_time_ids
|
857
|
+
|
858
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
859
|
+
def upcast_vae(self):
|
860
|
+
dtype = self.vae.dtype
|
861
|
+
self.vae.to(dtype=torch.float32)
|
862
|
+
use_torch_2_0_or_xformers = isinstance(
|
863
|
+
self.vae.decoder.mid_block.attentions[0].processor,
|
864
|
+
(
|
865
|
+
AttnProcessor2_0,
|
866
|
+
XFormersAttnProcessor,
|
867
|
+
),
|
868
|
+
)
|
869
|
+
# if xformers or torch_2_0 is used attention block does not need
|
870
|
+
# to be in float32 which can save lots of memory
|
871
|
+
if use_torch_2_0_or_xformers:
|
872
|
+
self.vae.post_quant_conv.to(dtype)
|
873
|
+
self.vae.decoder.conv_in.to(dtype)
|
874
|
+
self.vae.decoder.mid_block.to(dtype)
|
875
|
+
|
876
|
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
877
|
+
def get_guidance_scale_embedding(
|
878
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
879
|
+
) -> torch.Tensor:
|
880
|
+
"""
|
881
|
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
882
|
+
|
883
|
+
Args:
|
884
|
+
w (`torch.Tensor`):
|
885
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
886
|
+
embedding_dim (`int`, *optional*, defaults to 512):
|
887
|
+
Dimension of the embeddings to generate.
|
888
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
889
|
+
Data type of the generated embeddings.
|
890
|
+
|
891
|
+
Returns:
|
892
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
893
|
+
"""
|
894
|
+
assert len(w.shape) == 1
|
895
|
+
w = w * 1000.0
|
896
|
+
|
897
|
+
half_dim = embedding_dim // 2
|
898
|
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
899
|
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
900
|
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
901
|
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
902
|
+
if embedding_dim % 2 == 1: # zero pad
|
903
|
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
904
|
+
assert emb.shape == (w.shape[0], embedding_dim)
|
905
|
+
return emb
|
906
|
+
|
907
|
+
@property
|
908
|
+
def guidance_scale(self):
|
909
|
+
return self._guidance_scale
|
910
|
+
|
911
|
+
@property
|
912
|
+
def clip_skip(self):
|
913
|
+
return self._clip_skip
|
914
|
+
|
915
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
916
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
917
|
+
# corresponds to doing no classifier free guidance.
|
918
|
+
@property
|
919
|
+
def do_classifier_free_guidance(self):
|
920
|
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
921
|
+
|
922
|
+
@property
|
923
|
+
def cross_attention_kwargs(self):
|
924
|
+
return self._cross_attention_kwargs
|
925
|
+
|
926
|
+
@property
|
927
|
+
def denoising_end(self):
|
928
|
+
return self._denoising_end
|
929
|
+
|
930
|
+
@property
|
931
|
+
def num_timesteps(self):
|
932
|
+
return self._num_timesteps
|
933
|
+
|
934
|
+
@property
|
935
|
+
def interrupt(self):
|
936
|
+
return self._interrupt
|
937
|
+
|
938
|
+
@torch.no_grad()
|
939
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
940
|
+
def __call__(
|
941
|
+
self,
|
942
|
+
prompt: Union[str, List[str]] = None,
|
943
|
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
944
|
+
control_image: PipelineImageInput = None,
|
945
|
+
height: Optional[int] = None,
|
946
|
+
width: Optional[int] = None,
|
947
|
+
num_inference_steps: int = 50,
|
948
|
+
timesteps: List[int] = None,
|
949
|
+
sigmas: List[float] = None,
|
950
|
+
denoising_end: Optional[float] = None,
|
951
|
+
guidance_scale: float = 5.0,
|
952
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
953
|
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
954
|
+
num_images_per_prompt: Optional[int] = 1,
|
955
|
+
eta: float = 0.0,
|
956
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
957
|
+
latents: Optional[torch.Tensor] = None,
|
958
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
959
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
960
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
961
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
962
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
963
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
964
|
+
output_type: Optional[str] = "pil",
|
965
|
+
return_dict: bool = True,
|
966
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
967
|
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
968
|
+
guess_mode: bool = False,
|
969
|
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
970
|
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
971
|
+
control_mode: Optional[Union[int, List[int]]] = None,
|
972
|
+
original_size: Tuple[int, int] = None,
|
973
|
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
974
|
+
target_size: Tuple[int, int] = None,
|
975
|
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
976
|
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
977
|
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
978
|
+
clip_skip: Optional[int] = None,
|
979
|
+
callback_on_step_end: Optional[
|
980
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
981
|
+
] = None,
|
982
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
983
|
+
):
|
984
|
+
r"""
|
985
|
+
The call function to the pipeline for generation.
|
986
|
+
|
987
|
+
Args:
|
988
|
+
prompt (`str` or `List[str]`, *optional*):
|
989
|
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
990
|
+
prompt_2 (`str` or `List[str]`, *optional*):
|
991
|
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
992
|
+
used in both text-encoders.
|
993
|
+
control_image (`PipelineImageInput`):
|
994
|
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
995
|
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
996
|
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
997
|
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
998
|
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
999
|
+
to a single ControlNet.
|
1000
|
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1001
|
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
1002
|
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1003
|
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1004
|
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1005
|
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
1006
|
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1007
|
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1008
|
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1009
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1010
|
+
expense of slower inference.
|
1011
|
+
timesteps (`List[int]`, *optional*):
|
1012
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1013
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1014
|
+
passed will be used. Must be in descending order.
|
1015
|
+
sigmas (`List[float]`, *optional*):
|
1016
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1017
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1018
|
+
will be used.
|
1019
|
+
denoising_end (`float`, *optional*):
|
1020
|
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1021
|
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1022
|
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
1023
|
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
1024
|
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1025
|
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
1026
|
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1027
|
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1028
|
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1029
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1030
|
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1031
|
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1032
|
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1033
|
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
1034
|
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
1035
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1036
|
+
The number of images to generate per prompt.
|
1037
|
+
eta (`float`, *optional*, defaults to 0.0):
|
1038
|
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1039
|
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1040
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1041
|
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1042
|
+
generation deterministic.
|
1043
|
+
latents (`torch.Tensor`, *optional*):
|
1044
|
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1045
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1046
|
+
tensor is generated by sampling using the supplied random `generator`.
|
1047
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1048
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1049
|
+
provided, text embeddings are generated from the `prompt` input argument.
|
1050
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1051
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1052
|
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1053
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1054
|
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1055
|
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
1056
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1057
|
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
1058
|
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
1059
|
+
argument.
|
1060
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1061
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1062
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1063
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1064
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1065
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1066
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1067
|
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1068
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1069
|
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1070
|
+
plain tuple.
|
1071
|
+
cross_attention_kwargs (`dict`, *optional*):
|
1072
|
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1073
|
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1074
|
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1075
|
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
1076
|
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
1077
|
+
the corresponding scale as a list.
|
1078
|
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1079
|
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
1080
|
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
1081
|
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1082
|
+
The percentage of total steps at which the ControlNet starts applying.
|
1083
|
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1084
|
+
The percentage of total steps at which the ControlNet stops applying.
|
1085
|
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1086
|
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1087
|
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1088
|
+
explained in section 2.2 of
|
1089
|
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1090
|
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1091
|
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1092
|
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1093
|
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1094
|
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1095
|
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1096
|
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1097
|
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1098
|
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1099
|
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1100
|
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1101
|
+
micro-conditioning as explained in section 2.2 of
|
1102
|
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1103
|
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1104
|
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1105
|
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1106
|
+
micro-conditioning as explained in section 2.2 of
|
1107
|
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1108
|
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1109
|
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1110
|
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1111
|
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1112
|
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1113
|
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1114
|
+
clip_skip (`int`, *optional*):
|
1115
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1116
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1117
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1118
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1119
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1120
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1121
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1122
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1123
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1124
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1125
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1126
|
+
|
1127
|
+
Examples:
|
1128
|
+
|
1129
|
+
Returns:
|
1130
|
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1131
|
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1132
|
+
otherwise a `tuple` is returned containing the output images.
|
1133
|
+
"""
|
1134
|
+
|
1135
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1136
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1137
|
+
|
1138
|
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1139
|
+
|
1140
|
+
# align format for control guidance
|
1141
|
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1142
|
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1143
|
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1144
|
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1145
|
+
|
1146
|
+
if not isinstance(control_image, list):
|
1147
|
+
control_image = [control_image]
|
1148
|
+
|
1149
|
+
if not isinstance(control_mode, list):
|
1150
|
+
control_mode = [control_mode]
|
1151
|
+
|
1152
|
+
if len(control_image) != len(control_mode):
|
1153
|
+
raise ValueError("Expected len(control_image) == len(control_type)")
|
1154
|
+
|
1155
|
+
num_control_type = controlnet.config.num_control_type
|
1156
|
+
|
1157
|
+
# 1. Check inputs
|
1158
|
+
control_type = [0 for _ in range(num_control_type)]
|
1159
|
+
# 1. Check inputs. Raise error if not correct
|
1160
|
+
for _image, control_idx in zip(control_image, control_mode):
|
1161
|
+
control_type[control_idx] = 1
|
1162
|
+
self.check_inputs(
|
1163
|
+
prompt,
|
1164
|
+
prompt_2,
|
1165
|
+
_image,
|
1166
|
+
negative_prompt,
|
1167
|
+
negative_prompt_2,
|
1168
|
+
prompt_embeds,
|
1169
|
+
negative_prompt_embeds,
|
1170
|
+
pooled_prompt_embeds,
|
1171
|
+
ip_adapter_image,
|
1172
|
+
ip_adapter_image_embeds,
|
1173
|
+
negative_pooled_prompt_embeds,
|
1174
|
+
controlnet_conditioning_scale,
|
1175
|
+
control_guidance_start,
|
1176
|
+
control_guidance_end,
|
1177
|
+
callback_on_step_end_tensor_inputs,
|
1178
|
+
)
|
1179
|
+
|
1180
|
+
control_type = torch.Tensor(control_type)
|
1181
|
+
|
1182
|
+
self._guidance_scale = guidance_scale
|
1183
|
+
self._clip_skip = clip_skip
|
1184
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1185
|
+
self._denoising_end = denoising_end
|
1186
|
+
self._interrupt = False
|
1187
|
+
|
1188
|
+
# 2. Define call parameters
|
1189
|
+
if prompt is not None and isinstance(prompt, str):
|
1190
|
+
batch_size = 1
|
1191
|
+
elif prompt is not None and isinstance(prompt, list):
|
1192
|
+
batch_size = len(prompt)
|
1193
|
+
else:
|
1194
|
+
batch_size = prompt_embeds.shape[0]
|
1195
|
+
|
1196
|
+
device = self._execution_device
|
1197
|
+
|
1198
|
+
global_pool_conditions = controlnet.config.global_pool_conditions
|
1199
|
+
guess_mode = guess_mode or global_pool_conditions
|
1200
|
+
|
1201
|
+
# 3.1 Encode input prompt
|
1202
|
+
text_encoder_lora_scale = (
|
1203
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1204
|
+
)
|
1205
|
+
(
|
1206
|
+
prompt_embeds,
|
1207
|
+
negative_prompt_embeds,
|
1208
|
+
pooled_prompt_embeds,
|
1209
|
+
negative_pooled_prompt_embeds,
|
1210
|
+
) = self.encode_prompt(
|
1211
|
+
prompt,
|
1212
|
+
prompt_2,
|
1213
|
+
device,
|
1214
|
+
num_images_per_prompt,
|
1215
|
+
self.do_classifier_free_guidance,
|
1216
|
+
negative_prompt,
|
1217
|
+
negative_prompt_2,
|
1218
|
+
prompt_embeds=prompt_embeds,
|
1219
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
1220
|
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1221
|
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1222
|
+
lora_scale=text_encoder_lora_scale,
|
1223
|
+
clip_skip=self.clip_skip,
|
1224
|
+
)
|
1225
|
+
|
1226
|
+
# 3.2 Encode ip_adapter_image
|
1227
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1228
|
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1229
|
+
ip_adapter_image,
|
1230
|
+
ip_adapter_image_embeds,
|
1231
|
+
device,
|
1232
|
+
batch_size * num_images_per_prompt,
|
1233
|
+
self.do_classifier_free_guidance,
|
1234
|
+
)
|
1235
|
+
|
1236
|
+
# 4. Prepare image
|
1237
|
+
for idx, _ in enumerate(control_image):
|
1238
|
+
control_image[idx] = self.prepare_image(
|
1239
|
+
image=control_image[idx],
|
1240
|
+
width=width,
|
1241
|
+
height=height,
|
1242
|
+
batch_size=batch_size * num_images_per_prompt,
|
1243
|
+
num_images_per_prompt=num_images_per_prompt,
|
1244
|
+
device=device,
|
1245
|
+
dtype=controlnet.dtype,
|
1246
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1247
|
+
guess_mode=guess_mode,
|
1248
|
+
)
|
1249
|
+
height, width = control_image[idx].shape[-2:]
|
1250
|
+
|
1251
|
+
# 5. Prepare timesteps
|
1252
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1253
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1254
|
+
)
|
1255
|
+
self._num_timesteps = len(timesteps)
|
1256
|
+
|
1257
|
+
# 6. Prepare latent variables
|
1258
|
+
num_channels_latents = self.unet.config.in_channels
|
1259
|
+
latents = self.prepare_latents(
|
1260
|
+
batch_size * num_images_per_prompt,
|
1261
|
+
num_channels_latents,
|
1262
|
+
height,
|
1263
|
+
width,
|
1264
|
+
prompt_embeds.dtype,
|
1265
|
+
device,
|
1266
|
+
generator,
|
1267
|
+
latents,
|
1268
|
+
)
|
1269
|
+
|
1270
|
+
# 6.5 Optionally get Guidance Scale Embedding
|
1271
|
+
timestep_cond = None
|
1272
|
+
if self.unet.config.time_cond_proj_dim is not None:
|
1273
|
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1274
|
+
timestep_cond = self.get_guidance_scale_embedding(
|
1275
|
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1276
|
+
).to(device=device, dtype=latents.dtype)
|
1277
|
+
|
1278
|
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1279
|
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1280
|
+
|
1281
|
+
# 7.1 Create tensor stating which controlnets to keep
|
1282
|
+
controlnet_keep = []
|
1283
|
+
for i in range(len(timesteps)):
|
1284
|
+
controlnet_keep.append(
|
1285
|
+
1.0
|
1286
|
+
- float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
|
1287
|
+
)
|
1288
|
+
|
1289
|
+
# 7.2 Prepare added time ids & embeddings
|
1290
|
+
original_size = original_size or (height, width)
|
1291
|
+
target_size = target_size or (height, width)
|
1292
|
+
for _image in control_image:
|
1293
|
+
if isinstance(_image, torch.Tensor):
|
1294
|
+
original_size = original_size or _image.shape[-2:]
|
1295
|
+
add_text_embeds = pooled_prompt_embeds
|
1296
|
+
if self.text_encoder_2 is None:
|
1297
|
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1298
|
+
else:
|
1299
|
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1300
|
+
|
1301
|
+
add_time_ids = self._get_add_time_ids(
|
1302
|
+
original_size,
|
1303
|
+
crops_coords_top_left,
|
1304
|
+
target_size,
|
1305
|
+
dtype=prompt_embeds.dtype,
|
1306
|
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1307
|
+
)
|
1308
|
+
|
1309
|
+
if negative_original_size is not None and negative_target_size is not None:
|
1310
|
+
negative_add_time_ids = self._get_add_time_ids(
|
1311
|
+
negative_original_size,
|
1312
|
+
negative_crops_coords_top_left,
|
1313
|
+
negative_target_size,
|
1314
|
+
dtype=prompt_embeds.dtype,
|
1315
|
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1316
|
+
)
|
1317
|
+
else:
|
1318
|
+
negative_add_time_ids = add_time_ids
|
1319
|
+
|
1320
|
+
if self.do_classifier_free_guidance:
|
1321
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1322
|
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1323
|
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1324
|
+
|
1325
|
+
prompt_embeds = prompt_embeds.to(device)
|
1326
|
+
add_text_embeds = add_text_embeds.to(device)
|
1327
|
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1328
|
+
|
1329
|
+
# 8. Denoising loop
|
1330
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1331
|
+
|
1332
|
+
# 8.1 Apply denoising_end
|
1333
|
+
if (
|
1334
|
+
self.denoising_end is not None
|
1335
|
+
and isinstance(self.denoising_end, float)
|
1336
|
+
and self.denoising_end > 0
|
1337
|
+
and self.denoising_end < 1
|
1338
|
+
):
|
1339
|
+
discrete_timestep_cutoff = int(
|
1340
|
+
round(
|
1341
|
+
self.scheduler.config.num_train_timesteps
|
1342
|
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1343
|
+
)
|
1344
|
+
)
|
1345
|
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1346
|
+
timesteps = timesteps[:num_inference_steps]
|
1347
|
+
|
1348
|
+
is_unet_compiled = is_compiled_module(self.unet)
|
1349
|
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
1350
|
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1351
|
+
|
1352
|
+
control_type = (
|
1353
|
+
control_type.reshape(1, -1)
|
1354
|
+
.to(device, dtype=prompt_embeds.dtype)
|
1355
|
+
.repeat(batch_size * num_images_per_prompt * 2, 1)
|
1356
|
+
)
|
1357
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1358
|
+
for i, t in enumerate(timesteps):
|
1359
|
+
if self.interrupt:
|
1360
|
+
continue
|
1361
|
+
|
1362
|
+
# Relevant thread:
|
1363
|
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1364
|
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
1365
|
+
torch._inductor.cudagraph_mark_step_begin()
|
1366
|
+
# expand the latents if we are doing classifier free guidance
|
1367
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1368
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1369
|
+
|
1370
|
+
added_cond_kwargs = {
|
1371
|
+
"text_embeds": add_text_embeds,
|
1372
|
+
"time_ids": add_time_ids,
|
1373
|
+
}
|
1374
|
+
|
1375
|
+
# controlnet(s) inference
|
1376
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1377
|
+
# Infer ControlNet only for the conditional batch.
|
1378
|
+
control_model_input = latents
|
1379
|
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1380
|
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1381
|
+
controlnet_added_cond_kwargs = {
|
1382
|
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1383
|
+
"time_ids": add_time_ids.chunk(2)[1],
|
1384
|
+
}
|
1385
|
+
else:
|
1386
|
+
control_model_input = latent_model_input
|
1387
|
+
controlnet_prompt_embeds = prompt_embeds
|
1388
|
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1389
|
+
|
1390
|
+
if isinstance(controlnet_keep[i], list):
|
1391
|
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1392
|
+
else:
|
1393
|
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1394
|
+
if isinstance(controlnet_cond_scale, list):
|
1395
|
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1396
|
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1397
|
+
|
1398
|
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1399
|
+
control_model_input,
|
1400
|
+
t,
|
1401
|
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1402
|
+
controlnet_cond=control_image,
|
1403
|
+
control_type=control_type,
|
1404
|
+
control_type_idx=control_mode,
|
1405
|
+
conditioning_scale=cond_scale,
|
1406
|
+
guess_mode=guess_mode,
|
1407
|
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1408
|
+
return_dict=False,
|
1409
|
+
)
|
1410
|
+
|
1411
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1412
|
+
# Inferred ControlNet only for the conditional batch.
|
1413
|
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1414
|
+
# add 0 to the unconditional batch to keep it unchanged.
|
1415
|
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1416
|
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1417
|
+
|
1418
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1419
|
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1420
|
+
|
1421
|
+
# predict the noise residual
|
1422
|
+
noise_pred = self.unet(
|
1423
|
+
latent_model_input,
|
1424
|
+
t,
|
1425
|
+
encoder_hidden_states=prompt_embeds,
|
1426
|
+
timestep_cond=timestep_cond,
|
1427
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1428
|
+
down_block_additional_residuals=down_block_res_samples,
|
1429
|
+
mid_block_additional_residual=mid_block_res_sample,
|
1430
|
+
added_cond_kwargs=added_cond_kwargs,
|
1431
|
+
return_dict=False,
|
1432
|
+
)[0]
|
1433
|
+
|
1434
|
+
# perform guidance
|
1435
|
+
if self.do_classifier_free_guidance:
|
1436
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1437
|
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1438
|
+
|
1439
|
+
# compute the previous noisy sample x_t -> x_t-1
|
1440
|
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1441
|
+
|
1442
|
+
if callback_on_step_end is not None:
|
1443
|
+
callback_kwargs = {}
|
1444
|
+
for k in callback_on_step_end_tensor_inputs:
|
1445
|
+
callback_kwargs[k] = locals()[k]
|
1446
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1447
|
+
|
1448
|
+
latents = callback_outputs.pop("latents", latents)
|
1449
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1450
|
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1451
|
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1452
|
+
|
1453
|
+
# call the callback, if provided
|
1454
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1455
|
+
progress_bar.update()
|
1456
|
+
|
1457
|
+
if not output_type == "latent":
|
1458
|
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1459
|
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1460
|
+
|
1461
|
+
if needs_upcasting:
|
1462
|
+
self.upcast_vae()
|
1463
|
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1464
|
+
|
1465
|
+
# unscale/denormalize the latents
|
1466
|
+
# denormalize with the mean and std if available and not None
|
1467
|
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1468
|
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1469
|
+
if has_latents_mean and has_latents_std:
|
1470
|
+
latents_mean = (
|
1471
|
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1472
|
+
)
|
1473
|
+
latents_std = (
|
1474
|
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1475
|
+
)
|
1476
|
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1477
|
+
else:
|
1478
|
+
latents = latents / self.vae.config.scaling_factor
|
1479
|
+
|
1480
|
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1481
|
+
|
1482
|
+
# cast back to fp16 if needed
|
1483
|
+
if needs_upcasting:
|
1484
|
+
self.vae.to(dtype=torch.float16)
|
1485
|
+
else:
|
1486
|
+
image = latents
|
1487
|
+
|
1488
|
+
if not output_type == "latent":
|
1489
|
+
# apply watermark if available
|
1490
|
+
if self.watermark is not None:
|
1491
|
+
image = self.watermark.apply_watermark(image)
|
1492
|
+
|
1493
|
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1494
|
+
|
1495
|
+
# Offload all models
|
1496
|
+
self.maybe_free_model_hooks()
|
1497
|
+
|
1498
|
+
if not return_dict:
|
1499
|
+
return (image,)
|
1500
|
+
|
1501
|
+
return StableDiffusionXLPipelineOutput(images=image)
|