diffusers 0.31.0__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +74 -28
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/METADATA +69 -69
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1501 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPTextModel,
26
+ CLIPTextModelWithProjection,
27
+ CLIPTokenizer,
28
+ CLIPVisionModelWithProjection,
29
+ )
30
+
31
+ from diffusers.utils.import_utils import is_invisible_watermark_available
32
+
33
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
34
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
35
+ from ...loaders import (
36
+ FromSingleFileMixin,
37
+ IPAdapterMixin,
38
+ StableDiffusionXLLoraLoaderMixin,
39
+ TextualInversionLoaderMixin,
40
+ )
41
+ from ...models import AutoencoderKL, ControlNetModel, ControlNetUnionModel, ImageProjection, UNet2DConditionModel
42
+ from ...models.attention_processor import (
43
+ AttnProcessor2_0,
44
+ XFormersAttnProcessor,
45
+ )
46
+ from ...models.lora import adjust_lora_scale_text_encoder
47
+ from ...schedulers import KarrasDiffusionSchedulers
48
+ from ...utils import (
49
+ USE_PEFT_BACKEND,
50
+ logging,
51
+ replace_example_docstring,
52
+ scale_lora_layers,
53
+ unscale_lora_layers,
54
+ )
55
+ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
56
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
57
+ from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
58
+
59
+
60
+ if is_invisible_watermark_available():
61
+ from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
62
+
63
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
64
+
65
+
66
+ EXAMPLE_DOC_STRING = """
67
+ Examples:
68
+ ```py
69
+ >>> # !pip install controlnet_aux
70
+ >>> from controlnet_aux import LineartAnimeDetector
71
+ >>> from diffusers import StableDiffusionXLControlNetUnionPipeline, ControlNetUnionModel, AutoencoderKL
72
+ >>> from diffusers.utils import load_image
73
+ >>> import torch
74
+
75
+ >>> prompt = "A cat"
76
+ >>> # download an image
77
+ >>> image = load_image(
78
+ ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
79
+ ... ).resize((1024, 1024))
80
+ >>> # initialize the models and pipeline
81
+ >>> controlnet = ControlNetUnionModel.from_pretrained(
82
+ ... "xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16
83
+ ... )
84
+ >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
85
+ >>> pipe = StableDiffusionXLControlNetUnionPipeline.from_pretrained(
86
+ ... "stabilityai/stable-diffusion-xl-base-1.0",
87
+ ... controlnet=controlnet,
88
+ ... vae=vae,
89
+ ... torch_dtype=torch.float16,
90
+ ... variant="fp16",
91
+ ... )
92
+ >>> pipe.enable_model_cpu_offload()
93
+ >>> # prepare image
94
+ >>> processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
95
+ >>> controlnet_img = processor(image, output_type="pil")
96
+ >>> # generate image
97
+ >>> image = pipe(prompt, control_image=[controlnet_img], control_mode=[3], height=1024, width=1024).images[0]
98
+ ```
99
+ """
100
+
101
+
102
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
103
+ def retrieve_timesteps(
104
+ scheduler,
105
+ num_inference_steps: Optional[int] = None,
106
+ device: Optional[Union[str, torch.device]] = None,
107
+ timesteps: Optional[List[int]] = None,
108
+ sigmas: Optional[List[float]] = None,
109
+ **kwargs,
110
+ ):
111
+ r"""
112
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
113
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
114
+
115
+ Args:
116
+ scheduler (`SchedulerMixin`):
117
+ The scheduler to get timesteps from.
118
+ num_inference_steps (`int`):
119
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
120
+ must be `None`.
121
+ device (`str` or `torch.device`, *optional*):
122
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
123
+ timesteps (`List[int]`, *optional*):
124
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
125
+ `num_inference_steps` and `sigmas` must be `None`.
126
+ sigmas (`List[float]`, *optional*):
127
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
128
+ `num_inference_steps` and `timesteps` must be `None`.
129
+
130
+ Returns:
131
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
132
+ second element is the number of inference steps.
133
+ """
134
+ if timesteps is not None and sigmas is not None:
135
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
136
+ if timesteps is not None:
137
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accepts_timesteps:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" timestep schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ elif sigmas is not None:
147
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accept_sigmas:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ else:
157
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ return timesteps, num_inference_steps
160
+
161
+
162
+ class StableDiffusionXLControlNetUnionPipeline(
163
+ DiffusionPipeline,
164
+ StableDiffusionMixin,
165
+ TextualInversionLoaderMixin,
166
+ StableDiffusionXLLoraLoaderMixin,
167
+ IPAdapterMixin,
168
+ FromSingleFileMixin,
169
+ ):
170
+ r"""
171
+ Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
172
+
173
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
174
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
175
+
176
+ The pipeline also inherits the following loading methods:
177
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
178
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
179
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
180
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
181
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
182
+
183
+ Args:
184
+ vae ([`AutoencoderKL`]):
185
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
186
+ text_encoder ([`~transformers.CLIPTextModel`]):
187
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
188
+ text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
189
+ Second frozen text-encoder
190
+ ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
191
+ tokenizer ([`~transformers.CLIPTokenizer`]):
192
+ A `CLIPTokenizer` to tokenize text.
193
+ tokenizer_2 ([`~transformers.CLIPTokenizer`]):
194
+ A `CLIPTokenizer` to tokenize text.
195
+ unet ([`UNet2DConditionModel`]):
196
+ A `UNet2DConditionModel` to denoise the encoded image latents.
197
+ controlnet ([`ControlNetUnionModel`]`):
198
+ Provides additional conditioning to the `unet` during the denoising process.
199
+ scheduler ([`SchedulerMixin`]):
200
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
201
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
202
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
203
+ Whether the negative prompt embeddings should always be set to 0. Also see the config of
204
+ `stabilityai/stable-diffusion-xl-base-1-0`.
205
+ add_watermarker (`bool`, *optional*):
206
+ Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
207
+ watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
208
+ watermarker is used.
209
+ """
210
+
211
+ # leave controlnet out on purpose because it iterates with unet
212
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
213
+ _optional_components = [
214
+ "tokenizer",
215
+ "tokenizer_2",
216
+ "text_encoder",
217
+ "text_encoder_2",
218
+ "feature_extractor",
219
+ "image_encoder",
220
+ ]
221
+ _callback_tensor_inputs = [
222
+ "latents",
223
+ "prompt_embeds",
224
+ "add_text_embeds",
225
+ "add_time_ids",
226
+ ]
227
+
228
+ def __init__(
229
+ self,
230
+ vae: AutoencoderKL,
231
+ text_encoder: CLIPTextModel,
232
+ text_encoder_2: CLIPTextModelWithProjection,
233
+ tokenizer: CLIPTokenizer,
234
+ tokenizer_2: CLIPTokenizer,
235
+ unet: UNet2DConditionModel,
236
+ controlnet: ControlNetUnionModel,
237
+ scheduler: KarrasDiffusionSchedulers,
238
+ force_zeros_for_empty_prompt: bool = True,
239
+ add_watermarker: Optional[bool] = None,
240
+ feature_extractor: CLIPImageProcessor = None,
241
+ image_encoder: CLIPVisionModelWithProjection = None,
242
+ ):
243
+ super().__init__()
244
+
245
+ if not isinstance(controlnet, ControlNetUnionModel):
246
+ raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
247
+
248
+ self.register_modules(
249
+ vae=vae,
250
+ text_encoder=text_encoder,
251
+ text_encoder_2=text_encoder_2,
252
+ tokenizer=tokenizer,
253
+ tokenizer_2=tokenizer_2,
254
+ unet=unet,
255
+ controlnet=controlnet,
256
+ scheduler=scheduler,
257
+ feature_extractor=feature_extractor,
258
+ image_encoder=image_encoder,
259
+ )
260
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
261
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
262
+ self.control_image_processor = VaeImageProcessor(
263
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
264
+ )
265
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
266
+
267
+ if add_watermarker:
268
+ self.watermark = StableDiffusionXLWatermarker()
269
+ else:
270
+ self.watermark = None
271
+
272
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
273
+
274
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
275
+ def encode_prompt(
276
+ self,
277
+ prompt: str,
278
+ prompt_2: Optional[str] = None,
279
+ device: Optional[torch.device] = None,
280
+ num_images_per_prompt: int = 1,
281
+ do_classifier_free_guidance: bool = True,
282
+ negative_prompt: Optional[str] = None,
283
+ negative_prompt_2: Optional[str] = None,
284
+ prompt_embeds: Optional[torch.Tensor] = None,
285
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
286
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
287
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
288
+ lora_scale: Optional[float] = None,
289
+ clip_skip: Optional[int] = None,
290
+ ):
291
+ r"""
292
+ Encodes the prompt into text encoder hidden states.
293
+
294
+ Args:
295
+ prompt (`str` or `List[str]`, *optional*):
296
+ prompt to be encoded
297
+ prompt_2 (`str` or `List[str]`, *optional*):
298
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
299
+ used in both text-encoders
300
+ device: (`torch.device`):
301
+ torch device
302
+ num_images_per_prompt (`int`):
303
+ number of images that should be generated per prompt
304
+ do_classifier_free_guidance (`bool`):
305
+ whether to use classifier free guidance or not
306
+ negative_prompt (`str` or `List[str]`, *optional*):
307
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
308
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
309
+ less than `1`).
310
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
311
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
312
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
313
+ prompt_embeds (`torch.Tensor`, *optional*):
314
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
315
+ provided, text embeddings will be generated from `prompt` input argument.
316
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
317
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
318
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
319
+ argument.
320
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
321
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
322
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
323
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
324
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
325
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
326
+ input argument.
327
+ lora_scale (`float`, *optional*):
328
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
329
+ clip_skip (`int`, *optional*):
330
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
331
+ the output of the pre-final layer will be used for computing the prompt embeddings.
332
+ """
333
+ device = device or self._execution_device
334
+
335
+ # set lora scale so that monkey patched LoRA
336
+ # function of text encoder can correctly access it
337
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
338
+ self._lora_scale = lora_scale
339
+
340
+ # dynamically adjust the LoRA scale
341
+ if self.text_encoder is not None:
342
+ if not USE_PEFT_BACKEND:
343
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
344
+ else:
345
+ scale_lora_layers(self.text_encoder, lora_scale)
346
+
347
+ if self.text_encoder_2 is not None:
348
+ if not USE_PEFT_BACKEND:
349
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
350
+ else:
351
+ scale_lora_layers(self.text_encoder_2, lora_scale)
352
+
353
+ prompt = [prompt] if isinstance(prompt, str) else prompt
354
+
355
+ if prompt is not None:
356
+ batch_size = len(prompt)
357
+ else:
358
+ batch_size = prompt_embeds.shape[0]
359
+
360
+ # Define tokenizers and text encoders
361
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
362
+ text_encoders = (
363
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
364
+ )
365
+
366
+ if prompt_embeds is None:
367
+ prompt_2 = prompt_2 or prompt
368
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
369
+
370
+ # textual inversion: process multi-vector tokens if necessary
371
+ prompt_embeds_list = []
372
+ prompts = [prompt, prompt_2]
373
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
374
+ if isinstance(self, TextualInversionLoaderMixin):
375
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
376
+
377
+ text_inputs = tokenizer(
378
+ prompt,
379
+ padding="max_length",
380
+ max_length=tokenizer.model_max_length,
381
+ truncation=True,
382
+ return_tensors="pt",
383
+ )
384
+
385
+ text_input_ids = text_inputs.input_ids
386
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
387
+
388
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
389
+ text_input_ids, untruncated_ids
390
+ ):
391
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
392
+ logger.warning(
393
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
394
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
395
+ )
396
+
397
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
398
+
399
+ # We are only ALWAYS interested in the pooled output of the final text encoder
400
+ pooled_prompt_embeds = prompt_embeds[0]
401
+ if clip_skip is None:
402
+ prompt_embeds = prompt_embeds.hidden_states[-2]
403
+ else:
404
+ # "2" because SDXL always indexes from the penultimate layer.
405
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
406
+
407
+ prompt_embeds_list.append(prompt_embeds)
408
+
409
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
410
+
411
+ # get unconditional embeddings for classifier free guidance
412
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
413
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
414
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
415
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
416
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
417
+ negative_prompt = negative_prompt or ""
418
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
419
+
420
+ # normalize str to list
421
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
422
+ negative_prompt_2 = (
423
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
424
+ )
425
+
426
+ uncond_tokens: List[str]
427
+ if prompt is not None and type(prompt) is not type(negative_prompt):
428
+ raise TypeError(
429
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
430
+ f" {type(prompt)}."
431
+ )
432
+ elif batch_size != len(negative_prompt):
433
+ raise ValueError(
434
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
435
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
436
+ " the batch size of `prompt`."
437
+ )
438
+ else:
439
+ uncond_tokens = [negative_prompt, negative_prompt_2]
440
+
441
+ negative_prompt_embeds_list = []
442
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
443
+ if isinstance(self, TextualInversionLoaderMixin):
444
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
445
+
446
+ max_length = prompt_embeds.shape[1]
447
+ uncond_input = tokenizer(
448
+ negative_prompt,
449
+ padding="max_length",
450
+ max_length=max_length,
451
+ truncation=True,
452
+ return_tensors="pt",
453
+ )
454
+
455
+ negative_prompt_embeds = text_encoder(
456
+ uncond_input.input_ids.to(device),
457
+ output_hidden_states=True,
458
+ )
459
+ # We are only ALWAYS interested in the pooled output of the final text encoder
460
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
461
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
462
+
463
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
464
+
465
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
466
+
467
+ if self.text_encoder_2 is not None:
468
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
469
+ else:
470
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
471
+
472
+ bs_embed, seq_len, _ = prompt_embeds.shape
473
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
474
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
475
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
476
+
477
+ if do_classifier_free_guidance:
478
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
479
+ seq_len = negative_prompt_embeds.shape[1]
480
+
481
+ if self.text_encoder_2 is not None:
482
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
483
+ else:
484
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
485
+
486
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
487
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
488
+
489
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
490
+ bs_embed * num_images_per_prompt, -1
491
+ )
492
+ if do_classifier_free_guidance:
493
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
494
+ bs_embed * num_images_per_prompt, -1
495
+ )
496
+
497
+ if self.text_encoder is not None:
498
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
499
+ # Retrieve the original scale by scaling back the LoRA layers
500
+ unscale_lora_layers(self.text_encoder, lora_scale)
501
+
502
+ if self.text_encoder_2 is not None:
503
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
504
+ # Retrieve the original scale by scaling back the LoRA layers
505
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
506
+
507
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
508
+
509
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
510
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
511
+ dtype = next(self.image_encoder.parameters()).dtype
512
+
513
+ if not isinstance(image, torch.Tensor):
514
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
515
+
516
+ image = image.to(device=device, dtype=dtype)
517
+ if output_hidden_states:
518
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
519
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
520
+ uncond_image_enc_hidden_states = self.image_encoder(
521
+ torch.zeros_like(image), output_hidden_states=True
522
+ ).hidden_states[-2]
523
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
524
+ num_images_per_prompt, dim=0
525
+ )
526
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
527
+ else:
528
+ image_embeds = self.image_encoder(image).image_embeds
529
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
530
+ uncond_image_embeds = torch.zeros_like(image_embeds)
531
+
532
+ return image_embeds, uncond_image_embeds
533
+
534
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
535
+ def prepare_ip_adapter_image_embeds(
536
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
537
+ ):
538
+ image_embeds = []
539
+ if do_classifier_free_guidance:
540
+ negative_image_embeds = []
541
+ if ip_adapter_image_embeds is None:
542
+ if not isinstance(ip_adapter_image, list):
543
+ ip_adapter_image = [ip_adapter_image]
544
+
545
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
546
+ raise ValueError(
547
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
548
+ )
549
+
550
+ for single_ip_adapter_image, image_proj_layer in zip(
551
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
552
+ ):
553
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
554
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
555
+ single_ip_adapter_image, device, 1, output_hidden_state
556
+ )
557
+
558
+ image_embeds.append(single_image_embeds[None, :])
559
+ if do_classifier_free_guidance:
560
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
561
+ else:
562
+ for single_image_embeds in ip_adapter_image_embeds:
563
+ if do_classifier_free_guidance:
564
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
565
+ negative_image_embeds.append(single_negative_image_embeds)
566
+ image_embeds.append(single_image_embeds)
567
+
568
+ ip_adapter_image_embeds = []
569
+ for i, single_image_embeds in enumerate(image_embeds):
570
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
571
+ if do_classifier_free_guidance:
572
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
573
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
574
+
575
+ single_image_embeds = single_image_embeds.to(device=device)
576
+ ip_adapter_image_embeds.append(single_image_embeds)
577
+
578
+ return ip_adapter_image_embeds
579
+
580
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
581
+ def prepare_extra_step_kwargs(self, generator, eta):
582
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
583
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
584
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
585
+ # and should be between [0, 1]
586
+
587
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
588
+ extra_step_kwargs = {}
589
+ if accepts_eta:
590
+ extra_step_kwargs["eta"] = eta
591
+
592
+ # check if the scheduler accepts generator
593
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
594
+ if accepts_generator:
595
+ extra_step_kwargs["generator"] = generator
596
+ return extra_step_kwargs
597
+
598
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
599
+ def check_image(self, image, prompt, prompt_embeds):
600
+ image_is_pil = isinstance(image, PIL.Image.Image)
601
+ image_is_tensor = isinstance(image, torch.Tensor)
602
+ image_is_np = isinstance(image, np.ndarray)
603
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
604
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
605
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
606
+
607
+ if (
608
+ not image_is_pil
609
+ and not image_is_tensor
610
+ and not image_is_np
611
+ and not image_is_pil_list
612
+ and not image_is_tensor_list
613
+ and not image_is_np_list
614
+ ):
615
+ raise TypeError(
616
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
617
+ )
618
+
619
+ if image_is_pil:
620
+ image_batch_size = 1
621
+ else:
622
+ image_batch_size = len(image)
623
+
624
+ if prompt is not None and isinstance(prompt, str):
625
+ prompt_batch_size = 1
626
+ elif prompt is not None and isinstance(prompt, list):
627
+ prompt_batch_size = len(prompt)
628
+ elif prompt_embeds is not None:
629
+ prompt_batch_size = prompt_embeds.shape[0]
630
+
631
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
632
+ raise ValueError(
633
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
634
+ )
635
+
636
+ def check_inputs(
637
+ self,
638
+ prompt,
639
+ prompt_2,
640
+ image: PipelineImageInput,
641
+ negative_prompt=None,
642
+ negative_prompt_2=None,
643
+ prompt_embeds=None,
644
+ negative_prompt_embeds=None,
645
+ pooled_prompt_embeds=None,
646
+ ip_adapter_image=None,
647
+ ip_adapter_image_embeds=None,
648
+ negative_pooled_prompt_embeds=None,
649
+ controlnet_conditioning_scale=1.0,
650
+ control_guidance_start=0.0,
651
+ control_guidance_end=1.0,
652
+ callback_on_step_end_tensor_inputs=None,
653
+ ):
654
+ if callback_on_step_end_tensor_inputs is not None and not all(
655
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
656
+ ):
657
+ raise ValueError(
658
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
659
+ )
660
+
661
+ if prompt is not None and prompt_embeds is not None:
662
+ raise ValueError(
663
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
664
+ " only forward one of the two."
665
+ )
666
+ elif prompt_2 is not None and prompt_embeds is not None:
667
+ raise ValueError(
668
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
669
+ " only forward one of the two."
670
+ )
671
+ elif prompt is None and prompt_embeds is None:
672
+ raise ValueError(
673
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
674
+ )
675
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
676
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
677
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
678
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
679
+
680
+ if negative_prompt is not None and negative_prompt_embeds is not None:
681
+ raise ValueError(
682
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
683
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
684
+ )
685
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
686
+ raise ValueError(
687
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
688
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
689
+ )
690
+
691
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
692
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
693
+ raise ValueError(
694
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
695
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
696
+ f" {negative_prompt_embeds.shape}."
697
+ )
698
+
699
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
700
+ raise ValueError(
701
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
702
+ )
703
+
704
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
705
+ raise ValueError(
706
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
707
+ )
708
+
709
+ # Check `image`
710
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
711
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
712
+ )
713
+ if (
714
+ isinstance(self.controlnet, ControlNetModel)
715
+ or is_compiled
716
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
717
+ ):
718
+ self.check_image(image, prompt, prompt_embeds)
719
+ elif (
720
+ isinstance(self.controlnet, ControlNetUnionModel)
721
+ or is_compiled
722
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
723
+ ):
724
+ self.check_image(image, prompt, prompt_embeds)
725
+
726
+ else:
727
+ assert False
728
+
729
+ # Check `controlnet_conditioning_scale`
730
+ if (
731
+ isinstance(self.controlnet, ControlNetModel)
732
+ or is_compiled
733
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
734
+ ):
735
+ if not isinstance(controlnet_conditioning_scale, float):
736
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
737
+
738
+ elif (
739
+ isinstance(self.controlnet, ControlNetUnionModel)
740
+ or is_compiled
741
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
742
+ ):
743
+ if not isinstance(controlnet_conditioning_scale, float):
744
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
745
+
746
+ else:
747
+ assert False
748
+
749
+ if not isinstance(control_guidance_start, (tuple, list)):
750
+ control_guidance_start = [control_guidance_start]
751
+
752
+ if not isinstance(control_guidance_end, (tuple, list)):
753
+ control_guidance_end = [control_guidance_end]
754
+
755
+ if len(control_guidance_start) != len(control_guidance_end):
756
+ raise ValueError(
757
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
758
+ )
759
+
760
+ for start, end in zip(control_guidance_start, control_guidance_end):
761
+ if start >= end:
762
+ raise ValueError(
763
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
764
+ )
765
+ if start < 0.0:
766
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
767
+ if end > 1.0:
768
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
769
+
770
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
771
+ raise ValueError(
772
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
773
+ )
774
+
775
+ if ip_adapter_image_embeds is not None:
776
+ if not isinstance(ip_adapter_image_embeds, list):
777
+ raise ValueError(
778
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
779
+ )
780
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
781
+ raise ValueError(
782
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
783
+ )
784
+
785
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
786
+ def prepare_image(
787
+ self,
788
+ image,
789
+ width,
790
+ height,
791
+ batch_size,
792
+ num_images_per_prompt,
793
+ device,
794
+ dtype,
795
+ do_classifier_free_guidance=False,
796
+ guess_mode=False,
797
+ ):
798
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
799
+ image_batch_size = image.shape[0]
800
+
801
+ if image_batch_size == 1:
802
+ repeat_by = batch_size
803
+ else:
804
+ # image batch size is the same as prompt batch size
805
+ repeat_by = num_images_per_prompt
806
+
807
+ image = image.repeat_interleave(repeat_by, dim=0)
808
+
809
+ image = image.to(device=device, dtype=dtype)
810
+
811
+ if do_classifier_free_guidance and not guess_mode:
812
+ image = torch.cat([image] * 2)
813
+
814
+ return image
815
+
816
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
817
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
818
+ shape = (
819
+ batch_size,
820
+ num_channels_latents,
821
+ int(height) // self.vae_scale_factor,
822
+ int(width) // self.vae_scale_factor,
823
+ )
824
+ if isinstance(generator, list) and len(generator) != batch_size:
825
+ raise ValueError(
826
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
827
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
828
+ )
829
+
830
+ if latents is None:
831
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
832
+ else:
833
+ latents = latents.to(device)
834
+
835
+ # scale the initial noise by the standard deviation required by the scheduler
836
+ latents = latents * self.scheduler.init_noise_sigma
837
+ return latents
838
+
839
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
840
+ def _get_add_time_ids(
841
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
842
+ ):
843
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
844
+
845
+ passed_add_embed_dim = (
846
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
847
+ )
848
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
849
+
850
+ if expected_add_embed_dim != passed_add_embed_dim:
851
+ raise ValueError(
852
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
853
+ )
854
+
855
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
856
+ return add_time_ids
857
+
858
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
859
+ def upcast_vae(self):
860
+ dtype = self.vae.dtype
861
+ self.vae.to(dtype=torch.float32)
862
+ use_torch_2_0_or_xformers = isinstance(
863
+ self.vae.decoder.mid_block.attentions[0].processor,
864
+ (
865
+ AttnProcessor2_0,
866
+ XFormersAttnProcessor,
867
+ ),
868
+ )
869
+ # if xformers or torch_2_0 is used attention block does not need
870
+ # to be in float32 which can save lots of memory
871
+ if use_torch_2_0_or_xformers:
872
+ self.vae.post_quant_conv.to(dtype)
873
+ self.vae.decoder.conv_in.to(dtype)
874
+ self.vae.decoder.mid_block.to(dtype)
875
+
876
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
877
+ def get_guidance_scale_embedding(
878
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
879
+ ) -> torch.Tensor:
880
+ """
881
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
882
+
883
+ Args:
884
+ w (`torch.Tensor`):
885
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
886
+ embedding_dim (`int`, *optional*, defaults to 512):
887
+ Dimension of the embeddings to generate.
888
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
889
+ Data type of the generated embeddings.
890
+
891
+ Returns:
892
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
893
+ """
894
+ assert len(w.shape) == 1
895
+ w = w * 1000.0
896
+
897
+ half_dim = embedding_dim // 2
898
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
899
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
900
+ emb = w.to(dtype)[:, None] * emb[None, :]
901
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
902
+ if embedding_dim % 2 == 1: # zero pad
903
+ emb = torch.nn.functional.pad(emb, (0, 1))
904
+ assert emb.shape == (w.shape[0], embedding_dim)
905
+ return emb
906
+
907
+ @property
908
+ def guidance_scale(self):
909
+ return self._guidance_scale
910
+
911
+ @property
912
+ def clip_skip(self):
913
+ return self._clip_skip
914
+
915
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
916
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
917
+ # corresponds to doing no classifier free guidance.
918
+ @property
919
+ def do_classifier_free_guidance(self):
920
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
921
+
922
+ @property
923
+ def cross_attention_kwargs(self):
924
+ return self._cross_attention_kwargs
925
+
926
+ @property
927
+ def denoising_end(self):
928
+ return self._denoising_end
929
+
930
+ @property
931
+ def num_timesteps(self):
932
+ return self._num_timesteps
933
+
934
+ @property
935
+ def interrupt(self):
936
+ return self._interrupt
937
+
938
+ @torch.no_grad()
939
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
940
+ def __call__(
941
+ self,
942
+ prompt: Union[str, List[str]] = None,
943
+ prompt_2: Optional[Union[str, List[str]]] = None,
944
+ control_image: PipelineImageInput = None,
945
+ height: Optional[int] = None,
946
+ width: Optional[int] = None,
947
+ num_inference_steps: int = 50,
948
+ timesteps: List[int] = None,
949
+ sigmas: List[float] = None,
950
+ denoising_end: Optional[float] = None,
951
+ guidance_scale: float = 5.0,
952
+ negative_prompt: Optional[Union[str, List[str]]] = None,
953
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
954
+ num_images_per_prompt: Optional[int] = 1,
955
+ eta: float = 0.0,
956
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
957
+ latents: Optional[torch.Tensor] = None,
958
+ prompt_embeds: Optional[torch.Tensor] = None,
959
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
960
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
961
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
962
+ ip_adapter_image: Optional[PipelineImageInput] = None,
963
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
964
+ output_type: Optional[str] = "pil",
965
+ return_dict: bool = True,
966
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
967
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
968
+ guess_mode: bool = False,
969
+ control_guidance_start: Union[float, List[float]] = 0.0,
970
+ control_guidance_end: Union[float, List[float]] = 1.0,
971
+ control_mode: Optional[Union[int, List[int]]] = None,
972
+ original_size: Tuple[int, int] = None,
973
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
974
+ target_size: Tuple[int, int] = None,
975
+ negative_original_size: Optional[Tuple[int, int]] = None,
976
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
977
+ negative_target_size: Optional[Tuple[int, int]] = None,
978
+ clip_skip: Optional[int] = None,
979
+ callback_on_step_end: Optional[
980
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
981
+ ] = None,
982
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
983
+ ):
984
+ r"""
985
+ The call function to the pipeline for generation.
986
+
987
+ Args:
988
+ prompt (`str` or `List[str]`, *optional*):
989
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
990
+ prompt_2 (`str` or `List[str]`, *optional*):
991
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
992
+ used in both text-encoders.
993
+ control_image (`PipelineImageInput`):
994
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
995
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
996
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
997
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
998
+ images must be passed as a list such that each element of the list can be correctly batched for input
999
+ to a single ControlNet.
1000
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1001
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
1002
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1003
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1004
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1005
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
1006
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1007
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1008
+ num_inference_steps (`int`, *optional*, defaults to 50):
1009
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1010
+ expense of slower inference.
1011
+ timesteps (`List[int]`, *optional*):
1012
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
1013
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
1014
+ passed will be used. Must be in descending order.
1015
+ sigmas (`List[float]`, *optional*):
1016
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
1017
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
1018
+ will be used.
1019
+ denoising_end (`float`, *optional*):
1020
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
1021
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
1022
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
1023
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
1024
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
1025
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
1026
+ guidance_scale (`float`, *optional*, defaults to 5.0):
1027
+ A higher guidance scale value encourages the model to generate images closely linked to the text
1028
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1029
+ negative_prompt (`str` or `List[str]`, *optional*):
1030
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
1031
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1032
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1033
+ The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
1034
+ and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
1035
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1036
+ The number of images to generate per prompt.
1037
+ eta (`float`, *optional*, defaults to 0.0):
1038
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
1039
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1040
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1041
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
1042
+ generation deterministic.
1043
+ latents (`torch.Tensor`, *optional*):
1044
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1045
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1046
+ tensor is generated by sampling using the supplied random `generator`.
1047
+ prompt_embeds (`torch.Tensor`, *optional*):
1048
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
1049
+ provided, text embeddings are generated from the `prompt` input argument.
1050
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1051
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1052
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1053
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1054
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1055
+ not provided, pooled text embeddings are generated from `prompt` input argument.
1056
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1057
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
1058
+ weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
1059
+ argument.
1060
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1061
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1062
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1063
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1064
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1065
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1066
+ output_type (`str`, *optional*, defaults to `"pil"`):
1067
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1068
+ return_dict (`bool`, *optional*, defaults to `True`):
1069
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1070
+ plain tuple.
1071
+ cross_attention_kwargs (`dict`, *optional*):
1072
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
1073
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1074
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1075
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
1076
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
1077
+ the corresponding scale as a list.
1078
+ guess_mode (`bool`, *optional*, defaults to `False`):
1079
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
1080
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1081
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1082
+ The percentage of total steps at which the ControlNet starts applying.
1083
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1084
+ The percentage of total steps at which the ControlNet stops applying.
1085
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1086
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1087
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1088
+ explained in section 2.2 of
1089
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1090
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1091
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1092
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1093
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1094
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1095
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1096
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1097
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1098
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1099
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1100
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1101
+ micro-conditioning as explained in section 2.2 of
1102
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1103
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1104
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1105
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1106
+ micro-conditioning as explained in section 2.2 of
1107
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1108
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1109
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1110
+ To negatively condition the generation process based on a target image resolution. It should be as same
1111
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1112
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1113
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1114
+ clip_skip (`int`, *optional*):
1115
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1116
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1117
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1118
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1119
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1120
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1121
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1122
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1123
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1124
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1125
+ `._callback_tensor_inputs` attribute of your pipeline class.
1126
+
1127
+ Examples:
1128
+
1129
+ Returns:
1130
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1131
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
1132
+ otherwise a `tuple` is returned containing the output images.
1133
+ """
1134
+
1135
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1136
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1137
+
1138
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1139
+
1140
+ # align format for control guidance
1141
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1142
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1143
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1144
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1145
+
1146
+ if not isinstance(control_image, list):
1147
+ control_image = [control_image]
1148
+
1149
+ if not isinstance(control_mode, list):
1150
+ control_mode = [control_mode]
1151
+
1152
+ if len(control_image) != len(control_mode):
1153
+ raise ValueError("Expected len(control_image) == len(control_type)")
1154
+
1155
+ num_control_type = controlnet.config.num_control_type
1156
+
1157
+ # 1. Check inputs
1158
+ control_type = [0 for _ in range(num_control_type)]
1159
+ # 1. Check inputs. Raise error if not correct
1160
+ for _image, control_idx in zip(control_image, control_mode):
1161
+ control_type[control_idx] = 1
1162
+ self.check_inputs(
1163
+ prompt,
1164
+ prompt_2,
1165
+ _image,
1166
+ negative_prompt,
1167
+ negative_prompt_2,
1168
+ prompt_embeds,
1169
+ negative_prompt_embeds,
1170
+ pooled_prompt_embeds,
1171
+ ip_adapter_image,
1172
+ ip_adapter_image_embeds,
1173
+ negative_pooled_prompt_embeds,
1174
+ controlnet_conditioning_scale,
1175
+ control_guidance_start,
1176
+ control_guidance_end,
1177
+ callback_on_step_end_tensor_inputs,
1178
+ )
1179
+
1180
+ control_type = torch.Tensor(control_type)
1181
+
1182
+ self._guidance_scale = guidance_scale
1183
+ self._clip_skip = clip_skip
1184
+ self._cross_attention_kwargs = cross_attention_kwargs
1185
+ self._denoising_end = denoising_end
1186
+ self._interrupt = False
1187
+
1188
+ # 2. Define call parameters
1189
+ if prompt is not None and isinstance(prompt, str):
1190
+ batch_size = 1
1191
+ elif prompt is not None and isinstance(prompt, list):
1192
+ batch_size = len(prompt)
1193
+ else:
1194
+ batch_size = prompt_embeds.shape[0]
1195
+
1196
+ device = self._execution_device
1197
+
1198
+ global_pool_conditions = controlnet.config.global_pool_conditions
1199
+ guess_mode = guess_mode or global_pool_conditions
1200
+
1201
+ # 3.1 Encode input prompt
1202
+ text_encoder_lora_scale = (
1203
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1204
+ )
1205
+ (
1206
+ prompt_embeds,
1207
+ negative_prompt_embeds,
1208
+ pooled_prompt_embeds,
1209
+ negative_pooled_prompt_embeds,
1210
+ ) = self.encode_prompt(
1211
+ prompt,
1212
+ prompt_2,
1213
+ device,
1214
+ num_images_per_prompt,
1215
+ self.do_classifier_free_guidance,
1216
+ negative_prompt,
1217
+ negative_prompt_2,
1218
+ prompt_embeds=prompt_embeds,
1219
+ negative_prompt_embeds=negative_prompt_embeds,
1220
+ pooled_prompt_embeds=pooled_prompt_embeds,
1221
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1222
+ lora_scale=text_encoder_lora_scale,
1223
+ clip_skip=self.clip_skip,
1224
+ )
1225
+
1226
+ # 3.2 Encode ip_adapter_image
1227
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1228
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1229
+ ip_adapter_image,
1230
+ ip_adapter_image_embeds,
1231
+ device,
1232
+ batch_size * num_images_per_prompt,
1233
+ self.do_classifier_free_guidance,
1234
+ )
1235
+
1236
+ # 4. Prepare image
1237
+ for idx, _ in enumerate(control_image):
1238
+ control_image[idx] = self.prepare_image(
1239
+ image=control_image[idx],
1240
+ width=width,
1241
+ height=height,
1242
+ batch_size=batch_size * num_images_per_prompt,
1243
+ num_images_per_prompt=num_images_per_prompt,
1244
+ device=device,
1245
+ dtype=controlnet.dtype,
1246
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1247
+ guess_mode=guess_mode,
1248
+ )
1249
+ height, width = control_image[idx].shape[-2:]
1250
+
1251
+ # 5. Prepare timesteps
1252
+ timesteps, num_inference_steps = retrieve_timesteps(
1253
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1254
+ )
1255
+ self._num_timesteps = len(timesteps)
1256
+
1257
+ # 6. Prepare latent variables
1258
+ num_channels_latents = self.unet.config.in_channels
1259
+ latents = self.prepare_latents(
1260
+ batch_size * num_images_per_prompt,
1261
+ num_channels_latents,
1262
+ height,
1263
+ width,
1264
+ prompt_embeds.dtype,
1265
+ device,
1266
+ generator,
1267
+ latents,
1268
+ )
1269
+
1270
+ # 6.5 Optionally get Guidance Scale Embedding
1271
+ timestep_cond = None
1272
+ if self.unet.config.time_cond_proj_dim is not None:
1273
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1274
+ timestep_cond = self.get_guidance_scale_embedding(
1275
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1276
+ ).to(device=device, dtype=latents.dtype)
1277
+
1278
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1279
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1280
+
1281
+ # 7.1 Create tensor stating which controlnets to keep
1282
+ controlnet_keep = []
1283
+ for i in range(len(timesteps)):
1284
+ controlnet_keep.append(
1285
+ 1.0
1286
+ - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
1287
+ )
1288
+
1289
+ # 7.2 Prepare added time ids & embeddings
1290
+ original_size = original_size or (height, width)
1291
+ target_size = target_size or (height, width)
1292
+ for _image in control_image:
1293
+ if isinstance(_image, torch.Tensor):
1294
+ original_size = original_size or _image.shape[-2:]
1295
+ add_text_embeds = pooled_prompt_embeds
1296
+ if self.text_encoder_2 is None:
1297
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1298
+ else:
1299
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1300
+
1301
+ add_time_ids = self._get_add_time_ids(
1302
+ original_size,
1303
+ crops_coords_top_left,
1304
+ target_size,
1305
+ dtype=prompt_embeds.dtype,
1306
+ text_encoder_projection_dim=text_encoder_projection_dim,
1307
+ )
1308
+
1309
+ if negative_original_size is not None and negative_target_size is not None:
1310
+ negative_add_time_ids = self._get_add_time_ids(
1311
+ negative_original_size,
1312
+ negative_crops_coords_top_left,
1313
+ negative_target_size,
1314
+ dtype=prompt_embeds.dtype,
1315
+ text_encoder_projection_dim=text_encoder_projection_dim,
1316
+ )
1317
+ else:
1318
+ negative_add_time_ids = add_time_ids
1319
+
1320
+ if self.do_classifier_free_guidance:
1321
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1322
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1323
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1324
+
1325
+ prompt_embeds = prompt_embeds.to(device)
1326
+ add_text_embeds = add_text_embeds.to(device)
1327
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1328
+
1329
+ # 8. Denoising loop
1330
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1331
+
1332
+ # 8.1 Apply denoising_end
1333
+ if (
1334
+ self.denoising_end is not None
1335
+ and isinstance(self.denoising_end, float)
1336
+ and self.denoising_end > 0
1337
+ and self.denoising_end < 1
1338
+ ):
1339
+ discrete_timestep_cutoff = int(
1340
+ round(
1341
+ self.scheduler.config.num_train_timesteps
1342
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1343
+ )
1344
+ )
1345
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1346
+ timesteps = timesteps[:num_inference_steps]
1347
+
1348
+ is_unet_compiled = is_compiled_module(self.unet)
1349
+ is_controlnet_compiled = is_compiled_module(self.controlnet)
1350
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1351
+
1352
+ control_type = (
1353
+ control_type.reshape(1, -1)
1354
+ .to(device, dtype=prompt_embeds.dtype)
1355
+ .repeat(batch_size * num_images_per_prompt * 2, 1)
1356
+ )
1357
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1358
+ for i, t in enumerate(timesteps):
1359
+ if self.interrupt:
1360
+ continue
1361
+
1362
+ # Relevant thread:
1363
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1364
+ if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1365
+ torch._inductor.cudagraph_mark_step_begin()
1366
+ # expand the latents if we are doing classifier free guidance
1367
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1368
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1369
+
1370
+ added_cond_kwargs = {
1371
+ "text_embeds": add_text_embeds,
1372
+ "time_ids": add_time_ids,
1373
+ }
1374
+
1375
+ # controlnet(s) inference
1376
+ if guess_mode and self.do_classifier_free_guidance:
1377
+ # Infer ControlNet only for the conditional batch.
1378
+ control_model_input = latents
1379
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1380
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1381
+ controlnet_added_cond_kwargs = {
1382
+ "text_embeds": add_text_embeds.chunk(2)[1],
1383
+ "time_ids": add_time_ids.chunk(2)[1],
1384
+ }
1385
+ else:
1386
+ control_model_input = latent_model_input
1387
+ controlnet_prompt_embeds = prompt_embeds
1388
+ controlnet_added_cond_kwargs = added_cond_kwargs
1389
+
1390
+ if isinstance(controlnet_keep[i], list):
1391
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1392
+ else:
1393
+ controlnet_cond_scale = controlnet_conditioning_scale
1394
+ if isinstance(controlnet_cond_scale, list):
1395
+ controlnet_cond_scale = controlnet_cond_scale[0]
1396
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1397
+
1398
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1399
+ control_model_input,
1400
+ t,
1401
+ encoder_hidden_states=controlnet_prompt_embeds,
1402
+ controlnet_cond=control_image,
1403
+ control_type=control_type,
1404
+ control_type_idx=control_mode,
1405
+ conditioning_scale=cond_scale,
1406
+ guess_mode=guess_mode,
1407
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1408
+ return_dict=False,
1409
+ )
1410
+
1411
+ if guess_mode and self.do_classifier_free_guidance:
1412
+ # Inferred ControlNet only for the conditional batch.
1413
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1414
+ # add 0 to the unconditional batch to keep it unchanged.
1415
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1416
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1417
+
1418
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1419
+ added_cond_kwargs["image_embeds"] = image_embeds
1420
+
1421
+ # predict the noise residual
1422
+ noise_pred = self.unet(
1423
+ latent_model_input,
1424
+ t,
1425
+ encoder_hidden_states=prompt_embeds,
1426
+ timestep_cond=timestep_cond,
1427
+ cross_attention_kwargs=self.cross_attention_kwargs,
1428
+ down_block_additional_residuals=down_block_res_samples,
1429
+ mid_block_additional_residual=mid_block_res_sample,
1430
+ added_cond_kwargs=added_cond_kwargs,
1431
+ return_dict=False,
1432
+ )[0]
1433
+
1434
+ # perform guidance
1435
+ if self.do_classifier_free_guidance:
1436
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1437
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1438
+
1439
+ # compute the previous noisy sample x_t -> x_t-1
1440
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1441
+
1442
+ if callback_on_step_end is not None:
1443
+ callback_kwargs = {}
1444
+ for k in callback_on_step_end_tensor_inputs:
1445
+ callback_kwargs[k] = locals()[k]
1446
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1447
+
1448
+ latents = callback_outputs.pop("latents", latents)
1449
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1450
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1451
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1452
+
1453
+ # call the callback, if provided
1454
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1455
+ progress_bar.update()
1456
+
1457
+ if not output_type == "latent":
1458
+ # make sure the VAE is in float32 mode, as it overflows in float16
1459
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1460
+
1461
+ if needs_upcasting:
1462
+ self.upcast_vae()
1463
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1464
+
1465
+ # unscale/denormalize the latents
1466
+ # denormalize with the mean and std if available and not None
1467
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1468
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1469
+ if has_latents_mean and has_latents_std:
1470
+ latents_mean = (
1471
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1472
+ )
1473
+ latents_std = (
1474
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1475
+ )
1476
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1477
+ else:
1478
+ latents = latents / self.vae.config.scaling_factor
1479
+
1480
+ image = self.vae.decode(latents, return_dict=False)[0]
1481
+
1482
+ # cast back to fp16 if needed
1483
+ if needs_upcasting:
1484
+ self.vae.to(dtype=torch.float16)
1485
+ else:
1486
+ image = latents
1487
+
1488
+ if not output_type == "latent":
1489
+ # apply watermark if available
1490
+ if self.watermark is not None:
1491
+ image = self.watermark.apply_watermark(image)
1492
+
1493
+ image = self.image_processor.postprocess(image, output_type=output_type)
1494
+
1495
+ # Offload all models
1496
+ self.maybe_free_model_hooks()
1497
+
1498
+ if not return_dict:
1499
+ return (image,)
1500
+
1501
+ return StableDiffusionXLPipelineOutput(images=image)