aigroup-econ-mcp 1.3.3__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- .gitignore +253 -0
- PKG-INFO +732 -0
- README.md +687 -0
- __init__.py +14 -0
- aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
- aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
- aigroup_econ_mcp-2.0.1.dist-info/entry_points.txt +2 -0
- aigroup_econ_mcp-2.0.1.dist-info/licenses/LICENSE +21 -0
- cli.py +32 -0
- econometrics/README.md +18 -0
- econometrics/__init__.py +191 -0
- econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
- econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
- econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
- econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
- econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
- econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
- econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
- econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
- econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
- econometrics/basic_parametric_estimation/__init__.py +31 -0
- econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
- econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
- econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
- econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
- econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
- econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
- econometrics/causal_inference/__init__.py +66 -0
- econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
- econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
- econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
- econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
- econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
- econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
- econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
- econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
- econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
- econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
- econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
- econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
- econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
- econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
- econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
- econometrics/distribution_analysis/__init__.py +28 -0
- econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
- econometrics/distribution_analysis/time_series_decomposition.py +152 -0
- econometrics/distribution_analysis/variance_decomposition.py +179 -0
- econometrics/missing_data/__init__.py +18 -0
- econometrics/missing_data/imputation_methods.py +219 -0
- econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
- econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
- econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
- econometrics/nonparametric/__init__.py +35 -0
- econometrics/nonparametric/gam_model.py +117 -0
- econometrics/nonparametric/kernel_regression.py +161 -0
- econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
- econometrics/nonparametric/quantile_regression.py +249 -0
- econometrics/nonparametric/spline_regression.py +100 -0
- econometrics/spatial_econometrics/__init__.py +68 -0
- econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
- econometrics/spatial_econometrics/gwr_simple.py +154 -0
- econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
- econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
- econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
- econometrics/spatial_econometrics/spatial_regression.py +315 -0
- econometrics/spatial_econometrics/spatial_weights.py +226 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
- econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
- econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
- econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
- econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
- econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
- econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
- econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
- econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
- econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
- econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
- econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
- econometrics/statistical_inference/__init__.py +21 -0
- econometrics/statistical_inference/bootstrap_methods.py +162 -0
- econometrics/statistical_inference/permutation_test.py +177 -0
- econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
- econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
- econometrics/survival_analysis/__init__.py +18 -0
- econometrics/survival_analysis/survival_models.py +259 -0
- econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
- econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
- econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
- econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
- econometrics/tests/causal_inference_tests/__init__.py +3 -0
- econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
- econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
- econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
- econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
- econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
- econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
- econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
- econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
- econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
- econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
- econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
- econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
- econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
- econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
- econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
- econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
- econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
- prompts/__init__.py +0 -0
- prompts/analysis_guides.py +43 -0
- pyproject.toml +85 -0
- resources/MCP_MASTER_GUIDE.md +422 -0
- resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
- resources/__init__.py +0 -0
- server.py +97 -0
- tools/README.md +88 -0
- tools/__init__.py +119 -0
- tools/causal_inference_adapter.py +658 -0
- tools/data_loader.py +213 -0
- tools/decorators.py +38 -0
- tools/distribution_analysis_adapter.py +121 -0
- tools/econometrics_adapter.py +286 -0
- tools/gwr_simple_adapter.py +54 -0
- tools/machine_learning_adapter.py +567 -0
- tools/mcp_tool_groups/__init__.py +15 -0
- tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
- tools/mcp_tool_groups/causal_inference_tools.py +643 -0
- tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
- tools/mcp_tool_groups/machine_learning_tools.py +422 -0
- tools/mcp_tool_groups/microecon_tools.py +325 -0
- tools/mcp_tool_groups/missing_data_tools.py +117 -0
- tools/mcp_tool_groups/model_specification_tools.py +402 -0
- tools/mcp_tool_groups/nonparametric_tools.py +225 -0
- tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
- tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
- tools/mcp_tool_groups/time_series_tools.py +494 -0
- tools/mcp_tools_registry.py +124 -0
- tools/microecon_adapter.py +412 -0
- tools/missing_data_adapter.py +73 -0
- tools/model_specification_adapter.py +369 -0
- tools/nonparametric_adapter.py +190 -0
- tools/output_formatter.py +563 -0
- tools/spatial_econometrics_adapter.py +318 -0
- tools/statistical_inference_adapter.py +90 -0
- tools/survival_analysis_adapter.py +46 -0
- tools/time_series_panel_data_adapter.py +858 -0
- tools/time_series_panel_data_tools.py +65 -0
- aigroup_econ_mcp/__init__.py +0 -19
- aigroup_econ_mcp/cli.py +0 -82
- aigroup_econ_mcp/config.py +0 -561
- aigroup_econ_mcp/server.py +0 -452
- aigroup_econ_mcp/tools/__init__.py +0 -19
- aigroup_econ_mcp/tools/base.py +0 -470
- aigroup_econ_mcp/tools/cache.py +0 -533
- aigroup_econ_mcp/tools/data_loader.py +0 -195
- aigroup_econ_mcp/tools/file_parser.py +0 -1027
- aigroup_econ_mcp/tools/machine_learning.py +0 -60
- aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
- aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
- aigroup_econ_mcp/tools/ml_models.py +0 -54
- aigroup_econ_mcp/tools/ml_regularization.py +0 -186
- aigroup_econ_mcp/tools/monitoring.py +0 -555
- aigroup_econ_mcp/tools/optimized_example.py +0 -229
- aigroup_econ_mcp/tools/panel_data.py +0 -619
- aigroup_econ_mcp/tools/regression.py +0 -214
- aigroup_econ_mcp/tools/statistics.py +0 -154
- aigroup_econ_mcp/tools/time_series.py +0 -698
- aigroup_econ_mcp/tools/timeout.py +0 -283
- aigroup_econ_mcp/tools/tool_descriptions.py +0 -410
- aigroup_econ_mcp/tools/tool_handlers.py +0 -1016
- aigroup_econ_mcp/tools/tool_registry.py +0 -478
- aigroup_econ_mcp/tools/validation.py +0 -482
- aigroup_econ_mcp-1.3.3.dist-info/METADATA +0 -525
- aigroup_econ_mcp-1.3.3.dist-info/RECORD +0 -30
- aigroup_econ_mcp-1.3.3.dist-info/entry_points.txt +0 -2
- /aigroup_econ_mcp-1.3.3.dist-info/licenses/LICENSE → /LICENSE +0 -0
- {aigroup_econ_mcp-1.3.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
|
@@ -1,186 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
正则化回归方法模块
|
|
3
|
-
包含Lasso和Ridge回归算法
|
|
4
|
-
"""
|
|
5
|
-
|
|
6
|
-
import numpy as np
|
|
7
|
-
from typing import List, Optional
|
|
8
|
-
from sklearn.linear_model import Lasso, Ridge
|
|
9
|
-
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
|
|
10
|
-
from sklearn.preprocessing import StandardScaler
|
|
11
|
-
import warnings
|
|
12
|
-
warnings.filterwarnings('ignore')
|
|
13
|
-
|
|
14
|
-
from .ml_models import RegularizedRegressionResult
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def lasso_regression(
|
|
18
|
-
y_data: List[float],
|
|
19
|
-
x_data: List[List[float]],
|
|
20
|
-
feature_names: Optional[List[str]] = None,
|
|
21
|
-
alpha: float = 1.0,
|
|
22
|
-
random_state: int = 42
|
|
23
|
-
) -> RegularizedRegressionResult:
|
|
24
|
-
"""
|
|
25
|
-
Lasso回归(L1正则化)
|
|
26
|
-
|
|
27
|
-
📊 功能说明:
|
|
28
|
-
使用L1正则化的线性回归,能够进行特征选择和稀疏建模。
|
|
29
|
-
|
|
30
|
-
📈 算法特点:
|
|
31
|
-
- 特征选择:自动将不重要的特征系数压缩为0
|
|
32
|
-
- 稀疏解:产生稀疏的系数向量
|
|
33
|
-
- 可解释性:保留重要特征,去除冗余特征
|
|
34
|
-
- 处理多重共线性:对高度相关的特征进行选择
|
|
35
|
-
|
|
36
|
-
💡 使用场景:
|
|
37
|
-
- 高维数据特征选择
|
|
38
|
-
- 多重共线性问题
|
|
39
|
-
- 稀疏建模需求
|
|
40
|
-
- 可解释性要求高的场景
|
|
41
|
-
|
|
42
|
-
⚠️ 注意事项:
|
|
43
|
-
- 对alpha参数敏感
|
|
44
|
-
- 可能过度压缩重要特征
|
|
45
|
-
- 需要数据标准化
|
|
46
|
-
|
|
47
|
-
Args:
|
|
48
|
-
y_data: 因变量数据
|
|
49
|
-
x_data: 自变量数据,二维列表格式
|
|
50
|
-
feature_names: 特征名称列表
|
|
51
|
-
alpha: 正则化强度,默认1.0
|
|
52
|
-
random_state: 随机种子
|
|
53
|
-
|
|
54
|
-
Returns:
|
|
55
|
-
RegularizedRegressionResult: Lasso回归结果
|
|
56
|
-
"""
|
|
57
|
-
return _regularized_regression(
|
|
58
|
-
y_data, x_data, feature_names, alpha, random_state, "lasso"
|
|
59
|
-
)
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
def ridge_regression(
|
|
63
|
-
y_data: List[float],
|
|
64
|
-
x_data: List[List[float]],
|
|
65
|
-
feature_names: Optional[List[str]] = None,
|
|
66
|
-
alpha: float = 1.0,
|
|
67
|
-
random_state: int = 42
|
|
68
|
-
) -> RegularizedRegressionResult:
|
|
69
|
-
"""
|
|
70
|
-
Ridge回归(L2正则化)
|
|
71
|
-
|
|
72
|
-
📊 功能说明:
|
|
73
|
-
使用L2正则化的线性回归,能够处理多重共线性问题。
|
|
74
|
-
|
|
75
|
-
📈 算法特点:
|
|
76
|
-
- 稳定性:对多重共线性稳健
|
|
77
|
-
- 收缩系数:将所有系数向0收缩
|
|
78
|
-
- 无特征选择:保留所有特征
|
|
79
|
-
- 数值稳定性:改善矩阵条件数
|
|
80
|
-
|
|
81
|
-
💡 使用场景:
|
|
82
|
-
- 多重共线性问题
|
|
83
|
-
- 需要稳定估计的场景
|
|
84
|
-
- 所有特征都可能有贡献的情况
|
|
85
|
-
- 小样本高维数据
|
|
86
|
-
|
|
87
|
-
⚠️ 注意事项:
|
|
88
|
-
- 不进行特征选择
|
|
89
|
-
- 对alpha参数敏感
|
|
90
|
-
- 需要数据标准化
|
|
91
|
-
|
|
92
|
-
Args:
|
|
93
|
-
y_data: 因变量数据
|
|
94
|
-
x_data: 自变量数据,二维列表格式
|
|
95
|
-
feature_names: 特征名称列表
|
|
96
|
-
alpha: 正则化强度,默认1.0
|
|
97
|
-
random_state: 随机种子
|
|
98
|
-
|
|
99
|
-
Returns:
|
|
100
|
-
RegularizedRegressionResult: Ridge回归结果
|
|
101
|
-
"""
|
|
102
|
-
return _regularized_regression(
|
|
103
|
-
y_data, x_data, feature_names, alpha, random_state, "ridge"
|
|
104
|
-
)
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
def _regularized_regression(
|
|
108
|
-
y_data: List[float],
|
|
109
|
-
x_data: List[List[float]],
|
|
110
|
-
feature_names: Optional[List[str]],
|
|
111
|
-
alpha: float,
|
|
112
|
-
random_state: int,
|
|
113
|
-
model_type: str
|
|
114
|
-
) -> RegularizedRegressionResult:
|
|
115
|
-
"""正则化回归内部实现"""
|
|
116
|
-
# 数据验证
|
|
117
|
-
if not y_data or not x_data:
|
|
118
|
-
raise ValueError("因变量和自变量数据不能为空")
|
|
119
|
-
|
|
120
|
-
if len(y_data) != len(x_data):
|
|
121
|
-
raise ValueError(f"因变量和自变量的观测数量不一致: y_data={len(y_data)}, x_data={len(x_data)}")
|
|
122
|
-
|
|
123
|
-
# 准备数据
|
|
124
|
-
X = np.array(x_data)
|
|
125
|
-
y = np.array(y_data)
|
|
126
|
-
|
|
127
|
-
# 特征名称处理
|
|
128
|
-
if feature_names is None:
|
|
129
|
-
feature_names = [f"x{i}" for i in range(X.shape[1])]
|
|
130
|
-
elif len(feature_names) != X.shape[1]:
|
|
131
|
-
raise ValueError(f"特征名称数量({len(feature_names)})与自变量数量({X.shape[1]})不匹配")
|
|
132
|
-
|
|
133
|
-
# 检查数据质量
|
|
134
|
-
if len(y) < 5:
|
|
135
|
-
warnings.warn(f"⚠️ 警告:样本数量较少({len(y)}个),正则化回归可能不稳定")
|
|
136
|
-
|
|
137
|
-
# 数据标准化 - 只标准化自变量,不标准化因变量
|
|
138
|
-
scaler = StandardScaler()
|
|
139
|
-
X_scaled = scaler.fit_transform(X)
|
|
140
|
-
|
|
141
|
-
# 选择模型
|
|
142
|
-
if model_type == "lasso":
|
|
143
|
-
model = Lasso(alpha=alpha, random_state=random_state, max_iter=10000, tol=1e-4)
|
|
144
|
-
# 对于Lasso,如果alpha过大,建议使用更小的值
|
|
145
|
-
if alpha > 10:
|
|
146
|
-
warnings.warn(f"⚠️ 警告:Lasso正则化参数alpha={alpha}可能过大,建议尝试更小的值(如0.1-1.0)")
|
|
147
|
-
elif model_type == "ridge":
|
|
148
|
-
model = Ridge(alpha=alpha, random_state=random_state)
|
|
149
|
-
else:
|
|
150
|
-
raise ValueError(f"不支持的模型类型: {model_type}")
|
|
151
|
-
|
|
152
|
-
# 训练模型
|
|
153
|
-
try:
|
|
154
|
-
model.fit(X_scaled, y)
|
|
155
|
-
except Exception as e:
|
|
156
|
-
raise ValueError(f"{model_type}模型拟合失败: {str(e)}。建议:1) 检查数据质量 2) 尝试不同的alpha值 3) 增加样本数量")
|
|
157
|
-
|
|
158
|
-
# 预测
|
|
159
|
-
y_pred = model.predict(X_scaled)
|
|
160
|
-
|
|
161
|
-
# 计算评估指标
|
|
162
|
-
r2 = r2_score(y, y_pred)
|
|
163
|
-
mse = mean_squared_error(y, y_pred)
|
|
164
|
-
mae = mean_absolute_error(y, y_pred)
|
|
165
|
-
|
|
166
|
-
# 检查R²是否为负值
|
|
167
|
-
if r2 < 0:
|
|
168
|
-
warnings.warn(f"⚠️ 警告:{model_type}模型的R²为负值({r2:.4f}),表明模型性能比简单均值预测更差。可能原因:1) 数据噪声过大 2) 特征与目标变量无关 3) 正则化参数过大 4) 样本量过小")
|
|
169
|
-
|
|
170
|
-
# 系数(注意:由于标准化,系数需要适当解释)
|
|
171
|
-
coefficients = dict(zip(feature_names, model.coef_))
|
|
172
|
-
|
|
173
|
-
# 检查系数是否全为0(Lasso过度压缩)
|
|
174
|
-
if model_type == "lasso" and all(abs(coef) < 1e-10 for coef in model.coef_):
|
|
175
|
-
warnings.warn(f"⚠️ 警告:Lasso模型所有系数都被压缩为0,表明正则化参数alpha={alpha}可能过大,建议减小alpha值")
|
|
176
|
-
|
|
177
|
-
return RegularizedRegressionResult(
|
|
178
|
-
model_type=model_type,
|
|
179
|
-
r2_score=r2,
|
|
180
|
-
mse=mse,
|
|
181
|
-
mae=mae,
|
|
182
|
-
n_obs=len(y),
|
|
183
|
-
feature_names=feature_names,
|
|
184
|
-
alpha=alpha,
|
|
185
|
-
coefficients=coefficients
|
|
186
|
-
)
|