aigroup-econ-mcp 1.3.3__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- .gitignore +253 -0
- PKG-INFO +732 -0
- README.md +687 -0
- __init__.py +14 -0
- aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
- aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
- aigroup_econ_mcp-2.0.1.dist-info/entry_points.txt +2 -0
- aigroup_econ_mcp-2.0.1.dist-info/licenses/LICENSE +21 -0
- cli.py +32 -0
- econometrics/README.md +18 -0
- econometrics/__init__.py +191 -0
- econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
- econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
- econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
- econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
- econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
- econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
- econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
- econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
- econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
- econometrics/basic_parametric_estimation/__init__.py +31 -0
- econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
- econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
- econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
- econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
- econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
- econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
- econometrics/causal_inference/__init__.py +66 -0
- econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
- econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
- econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
- econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
- econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
- econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
- econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
- econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
- econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
- econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
- econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
- econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
- econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
- econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
- econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
- econometrics/distribution_analysis/__init__.py +28 -0
- econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
- econometrics/distribution_analysis/time_series_decomposition.py +152 -0
- econometrics/distribution_analysis/variance_decomposition.py +179 -0
- econometrics/missing_data/__init__.py +18 -0
- econometrics/missing_data/imputation_methods.py +219 -0
- econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
- econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
- econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
- econometrics/nonparametric/__init__.py +35 -0
- econometrics/nonparametric/gam_model.py +117 -0
- econometrics/nonparametric/kernel_regression.py +161 -0
- econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
- econometrics/nonparametric/quantile_regression.py +249 -0
- econometrics/nonparametric/spline_regression.py +100 -0
- econometrics/spatial_econometrics/__init__.py +68 -0
- econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
- econometrics/spatial_econometrics/gwr_simple.py +154 -0
- econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
- econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
- econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
- econometrics/spatial_econometrics/spatial_regression.py +315 -0
- econometrics/spatial_econometrics/spatial_weights.py +226 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
- econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
- econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
- econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
- econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
- econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
- econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
- econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
- econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
- econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
- econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
- econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
- econometrics/statistical_inference/__init__.py +21 -0
- econometrics/statistical_inference/bootstrap_methods.py +162 -0
- econometrics/statistical_inference/permutation_test.py +177 -0
- econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
- econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
- econometrics/survival_analysis/__init__.py +18 -0
- econometrics/survival_analysis/survival_models.py +259 -0
- econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
- econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
- econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
- econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
- econometrics/tests/causal_inference_tests/__init__.py +3 -0
- econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
- econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
- econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
- econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
- econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
- econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
- econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
- econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
- econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
- econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
- econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
- econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
- econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
- econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
- econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
- econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
- econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
- prompts/__init__.py +0 -0
- prompts/analysis_guides.py +43 -0
- pyproject.toml +85 -0
- resources/MCP_MASTER_GUIDE.md +422 -0
- resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
- resources/__init__.py +0 -0
- server.py +97 -0
- tools/README.md +88 -0
- tools/__init__.py +119 -0
- tools/causal_inference_adapter.py +658 -0
- tools/data_loader.py +213 -0
- tools/decorators.py +38 -0
- tools/distribution_analysis_adapter.py +121 -0
- tools/econometrics_adapter.py +286 -0
- tools/gwr_simple_adapter.py +54 -0
- tools/machine_learning_adapter.py +567 -0
- tools/mcp_tool_groups/__init__.py +15 -0
- tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
- tools/mcp_tool_groups/causal_inference_tools.py +643 -0
- tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
- tools/mcp_tool_groups/machine_learning_tools.py +422 -0
- tools/mcp_tool_groups/microecon_tools.py +325 -0
- tools/mcp_tool_groups/missing_data_tools.py +117 -0
- tools/mcp_tool_groups/model_specification_tools.py +402 -0
- tools/mcp_tool_groups/nonparametric_tools.py +225 -0
- tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
- tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
- tools/mcp_tool_groups/time_series_tools.py +494 -0
- tools/mcp_tools_registry.py +124 -0
- tools/microecon_adapter.py +412 -0
- tools/missing_data_adapter.py +73 -0
- tools/model_specification_adapter.py +369 -0
- tools/nonparametric_adapter.py +190 -0
- tools/output_formatter.py +563 -0
- tools/spatial_econometrics_adapter.py +318 -0
- tools/statistical_inference_adapter.py +90 -0
- tools/survival_analysis_adapter.py +46 -0
- tools/time_series_panel_data_adapter.py +858 -0
- tools/time_series_panel_data_tools.py +65 -0
- aigroup_econ_mcp/__init__.py +0 -19
- aigroup_econ_mcp/cli.py +0 -82
- aigroup_econ_mcp/config.py +0 -561
- aigroup_econ_mcp/server.py +0 -452
- aigroup_econ_mcp/tools/__init__.py +0 -19
- aigroup_econ_mcp/tools/base.py +0 -470
- aigroup_econ_mcp/tools/cache.py +0 -533
- aigroup_econ_mcp/tools/data_loader.py +0 -195
- aigroup_econ_mcp/tools/file_parser.py +0 -1027
- aigroup_econ_mcp/tools/machine_learning.py +0 -60
- aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
- aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
- aigroup_econ_mcp/tools/ml_models.py +0 -54
- aigroup_econ_mcp/tools/ml_regularization.py +0 -186
- aigroup_econ_mcp/tools/monitoring.py +0 -555
- aigroup_econ_mcp/tools/optimized_example.py +0 -229
- aigroup_econ_mcp/tools/panel_data.py +0 -619
- aigroup_econ_mcp/tools/regression.py +0 -214
- aigroup_econ_mcp/tools/statistics.py +0 -154
- aigroup_econ_mcp/tools/time_series.py +0 -698
- aigroup_econ_mcp/tools/timeout.py +0 -283
- aigroup_econ_mcp/tools/tool_descriptions.py +0 -410
- aigroup_econ_mcp/tools/tool_handlers.py +0 -1016
- aigroup_econ_mcp/tools/tool_registry.py +0 -478
- aigroup_econ_mcp/tools/validation.py +0 -482
- aigroup_econ_mcp-1.3.3.dist-info/METADATA +0 -525
- aigroup_econ_mcp-1.3.3.dist-info/RECORD +0 -30
- aigroup_econ_mcp-1.3.3.dist-info/entry_points.txt +0 -2
- /aigroup_econ_mcp-1.3.3.dist-info/licenses/LICENSE → /LICENSE +0 -0
- {aigroup_econ_mcp-1.3.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,356 @@
|
|
|
1
|
+
"""
|
|
2
|
+
空间自相关检验
|
|
3
|
+
基于 esda (Exploratory Spatial Data Analysis) 库实现
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from typing import List, Optional, Tuple
|
|
7
|
+
from pydantic import BaseModel, Field
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
from esda import Moran, Moran_Local, Geary
|
|
12
|
+
from libpysal.weights import W
|
|
13
|
+
ESDA_AVAILABLE = True
|
|
14
|
+
except ImportError:
|
|
15
|
+
ESDA_AVAILABLE = False
|
|
16
|
+
Moran = None
|
|
17
|
+
Moran_Local = None
|
|
18
|
+
Geary = None
|
|
19
|
+
W = None
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class MoranIResult(BaseModel):
|
|
23
|
+
"""Moran's I 空间自相关检验结果"""
|
|
24
|
+
moran_i: float = Field(..., description="Moran's I 统计量")
|
|
25
|
+
expected_i: float = Field(..., description="期望值")
|
|
26
|
+
variance_i: float = Field(..., description="方差")
|
|
27
|
+
z_score: float = Field(..., description="Z统计量")
|
|
28
|
+
p_value: float = Field(..., description="P值(双侧检验)")
|
|
29
|
+
p_value_one_sided: float = Field(..., description="P值(单侧检验)")
|
|
30
|
+
interpretation: str = Field(..., description="结果解释")
|
|
31
|
+
n_observations: int = Field(..., description="观测数量")
|
|
32
|
+
summary: str = Field(..., description="摘要信息")
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class GearysCResult(BaseModel):
|
|
36
|
+
"""Geary's C 空间自相关检验结果"""
|
|
37
|
+
geary_c: float = Field(..., description="Geary's C 统计量")
|
|
38
|
+
expected_c: float = Field(..., description="期望值")
|
|
39
|
+
variance_c: float = Field(..., description="方差")
|
|
40
|
+
z_score: float = Field(..., description="Z统计量")
|
|
41
|
+
p_value: float = Field(..., description="P值")
|
|
42
|
+
interpretation: str = Field(..., description="结果解释")
|
|
43
|
+
n_observations: int = Field(..., description="观测数量")
|
|
44
|
+
summary: str = Field(..., description="摘要信息")
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class LocalMoranResult(BaseModel):
|
|
48
|
+
"""局部Moran's I (LISA) 结果"""
|
|
49
|
+
local_i: List[float] = Field(..., description="局部Moran's I值")
|
|
50
|
+
z_scores: List[float] = Field(..., description="Z统计量")
|
|
51
|
+
p_values: List[float] = Field(..., description="P值")
|
|
52
|
+
quadrants: List[str] = Field(..., description="象限分类 (HH, LL, HL, LH)")
|
|
53
|
+
significant_locations: List[int] = Field(..., description="显著位置索引")
|
|
54
|
+
n_significant: int = Field(..., description="显著位置数量")
|
|
55
|
+
summary: str = Field(..., description="摘要信息")
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def morans_i_test(
|
|
59
|
+
values: List[float],
|
|
60
|
+
neighbors: dict,
|
|
61
|
+
weights: Optional[dict] = None,
|
|
62
|
+
permutations: int = 999,
|
|
63
|
+
two_tailed: bool = True
|
|
64
|
+
) -> MoranIResult:
|
|
65
|
+
"""
|
|
66
|
+
Moran's I 全局空间自相关检验
|
|
67
|
+
|
|
68
|
+
Args:
|
|
69
|
+
values: 观测值列表
|
|
70
|
+
neighbors: 邻居字典 {i: [j1, j2, ...]}
|
|
71
|
+
weights: 权重字典 {i: [w1, w2, ...]},如果为None则使用均等权重
|
|
72
|
+
permutations: 置换检验次数
|
|
73
|
+
two_tailed: 是否双侧检验
|
|
74
|
+
|
|
75
|
+
Returns:
|
|
76
|
+
MoranIResult: Moran's I检验结果
|
|
77
|
+
|
|
78
|
+
Raises:
|
|
79
|
+
ImportError: esda库未安装
|
|
80
|
+
ValueError: 输入数据无效
|
|
81
|
+
"""
|
|
82
|
+
if not ESDA_AVAILABLE:
|
|
83
|
+
raise ImportError(
|
|
84
|
+
"esda库未安装。请运行: pip install esda\n"
|
|
85
|
+
"或: pip install pysal"
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
# 输入验证
|
|
89
|
+
if not values:
|
|
90
|
+
raise ValueError("values不能为空")
|
|
91
|
+
if not neighbors:
|
|
92
|
+
raise ValueError("neighbors不能为空")
|
|
93
|
+
|
|
94
|
+
n = len(values)
|
|
95
|
+
y = np.array(values, dtype=np.float64)
|
|
96
|
+
|
|
97
|
+
# 构建权重对象
|
|
98
|
+
if weights is None:
|
|
99
|
+
# 使用均等权重
|
|
100
|
+
weights = {i: [1.0] * len(neighbors[i]) for i in neighbors}
|
|
101
|
+
|
|
102
|
+
# 确保邻居字典的键是整数
|
|
103
|
+
neighbors_int = {int(k): [int(n) for n in v] for k, v in neighbors.items()}
|
|
104
|
+
weights_int = {int(k): v for k, v in weights.items()}
|
|
105
|
+
|
|
106
|
+
w = W(neighbors_int, weights_int)
|
|
107
|
+
|
|
108
|
+
# 执行Moran's I检验
|
|
109
|
+
try:
|
|
110
|
+
mi = Moran(y, w, permutations=permutations)
|
|
111
|
+
|
|
112
|
+
# 提取结果
|
|
113
|
+
moran_i = float(mi.I)
|
|
114
|
+
expected_i = float(mi.EI)
|
|
115
|
+
variance_i = float(mi.VI_norm)
|
|
116
|
+
z_score = float(mi.z_norm)
|
|
117
|
+
|
|
118
|
+
# P值
|
|
119
|
+
if two_tailed:
|
|
120
|
+
p_value = float(mi.p_norm)
|
|
121
|
+
p_value_one_sided = float(mi.p_norm) / 2
|
|
122
|
+
else:
|
|
123
|
+
p_value_one_sided = float(mi.p_norm)
|
|
124
|
+
p_value = float(mi.p_norm) * 2
|
|
125
|
+
|
|
126
|
+
# 解释结果
|
|
127
|
+
interpretation = _interpret_moran_i(moran_i, p_value, z_score)
|
|
128
|
+
|
|
129
|
+
# 生成摘要
|
|
130
|
+
summary = f"""Moran's I 空间自相关检验:
|
|
131
|
+
- Moran's I: {moran_i:.4f}
|
|
132
|
+
- 期望值: {expected_i:.4f}
|
|
133
|
+
- Z统计量: {z_score:.4f}
|
|
134
|
+
- P值: {p_value:.4f}
|
|
135
|
+
- 置换次数: {permutations}
|
|
136
|
+
- 结论: {interpretation}
|
|
137
|
+
"""
|
|
138
|
+
|
|
139
|
+
return MoranIResult(
|
|
140
|
+
moran_i=moran_i,
|
|
141
|
+
expected_i=expected_i,
|
|
142
|
+
variance_i=variance_i,
|
|
143
|
+
z_score=z_score,
|
|
144
|
+
p_value=p_value,
|
|
145
|
+
p_value_one_sided=p_value_one_sided,
|
|
146
|
+
interpretation=interpretation,
|
|
147
|
+
n_observations=n,
|
|
148
|
+
summary=summary
|
|
149
|
+
)
|
|
150
|
+
except Exception as e:
|
|
151
|
+
raise ValueError(f"Moran's I检验失败: {str(e)}")
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def gearys_c_test(
|
|
155
|
+
values: List[float],
|
|
156
|
+
neighbors: dict,
|
|
157
|
+
weights: Optional[dict] = None,
|
|
158
|
+
permutations: int = 999
|
|
159
|
+
) -> GearysCResult:
|
|
160
|
+
"""
|
|
161
|
+
Geary's C 空间自相关检验
|
|
162
|
+
|
|
163
|
+
Args:
|
|
164
|
+
values: 观测值列表
|
|
165
|
+
neighbors: 邻居字典
|
|
166
|
+
weights: 权重字典
|
|
167
|
+
permutations: 置换检验次数
|
|
168
|
+
|
|
169
|
+
Returns:
|
|
170
|
+
GearysCResult: Geary's C检验结果
|
|
171
|
+
"""
|
|
172
|
+
if not ESDA_AVAILABLE:
|
|
173
|
+
raise ImportError("esda库未安装")
|
|
174
|
+
|
|
175
|
+
if not values or not neighbors:
|
|
176
|
+
raise ValueError("输入数据不能为空")
|
|
177
|
+
|
|
178
|
+
n = len(values)
|
|
179
|
+
y = np.array(values, dtype=np.float64)
|
|
180
|
+
|
|
181
|
+
# 构建权重对象
|
|
182
|
+
if weights is None:
|
|
183
|
+
weights = {i: [1.0] * len(neighbors[i]) for i in neighbors}
|
|
184
|
+
|
|
185
|
+
# 确保邻居字典的键是整数
|
|
186
|
+
neighbors_int = {int(k): [int(n) for n in v] for k, v in neighbors.items()}
|
|
187
|
+
weights_int = {int(k): v for k, v in weights.items()}
|
|
188
|
+
|
|
189
|
+
w = W(neighbors_int, weights_int)
|
|
190
|
+
|
|
191
|
+
# 执行Geary's C检验
|
|
192
|
+
try:
|
|
193
|
+
gc = Geary(y, w, permutations=permutations)
|
|
194
|
+
|
|
195
|
+
# 提取结果
|
|
196
|
+
geary_c = float(gc.C)
|
|
197
|
+
expected_c = float(gc.EC)
|
|
198
|
+
variance_c = float(gc.VC_norm)
|
|
199
|
+
z_score = float(gc.z_norm)
|
|
200
|
+
p_value = float(gc.p_norm)
|
|
201
|
+
|
|
202
|
+
# 解释结果
|
|
203
|
+
interpretation = _interpret_geary_c(geary_c, p_value, z_score)
|
|
204
|
+
|
|
205
|
+
# 生成摘要
|
|
206
|
+
summary = f"""Geary's C 空间自相关检验:
|
|
207
|
+
- Geary's C: {geary_c:.4f}
|
|
208
|
+
- 期望值: {expected_c:.4f}
|
|
209
|
+
- Z统计量: {z_score:.4f}
|
|
210
|
+
- P值: {p_value:.4f}
|
|
211
|
+
- 结论: {interpretation}
|
|
212
|
+
"""
|
|
213
|
+
|
|
214
|
+
return GearysCResult(
|
|
215
|
+
geary_c=geary_c,
|
|
216
|
+
expected_c=expected_c,
|
|
217
|
+
variance_c=variance_c,
|
|
218
|
+
z_score=z_score,
|
|
219
|
+
p_value=p_value,
|
|
220
|
+
interpretation=interpretation,
|
|
221
|
+
n_observations=n,
|
|
222
|
+
summary=summary
|
|
223
|
+
)
|
|
224
|
+
except Exception as e:
|
|
225
|
+
raise ValueError(f"Geary's C检验失败: {str(e)}")
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def local_morans_i(
|
|
229
|
+
values: List[float],
|
|
230
|
+
neighbors: dict,
|
|
231
|
+
weights: Optional[dict] = None,
|
|
232
|
+
permutations: int = 999,
|
|
233
|
+
significance_level: float = 0.05
|
|
234
|
+
) -> LocalMoranResult:
|
|
235
|
+
"""
|
|
236
|
+
局部Moran's I (LISA - Local Indicators of Spatial Association)
|
|
237
|
+
|
|
238
|
+
Args:
|
|
239
|
+
values: 观测值列表
|
|
240
|
+
neighbors: 邻居字典
|
|
241
|
+
weights: 权重字典
|
|
242
|
+
permutations: 置换检验次数
|
|
243
|
+
significance_level: 显著性水平
|
|
244
|
+
|
|
245
|
+
Returns:
|
|
246
|
+
LocalMoranResult: 局部Moran's I结果
|
|
247
|
+
"""
|
|
248
|
+
if not ESDA_AVAILABLE:
|
|
249
|
+
raise ImportError("esda库未安装")
|
|
250
|
+
|
|
251
|
+
if not values or not neighbors:
|
|
252
|
+
raise ValueError("输入数据不能为空")
|
|
253
|
+
|
|
254
|
+
y = np.array(values, dtype=np.float64)
|
|
255
|
+
|
|
256
|
+
# 构建权重对象
|
|
257
|
+
if weights is None:
|
|
258
|
+
weights = {i: [1.0] * len(neighbors[i]) for i in neighbors}
|
|
259
|
+
|
|
260
|
+
# 确保邻居字典的键是整数
|
|
261
|
+
neighbors_int = {int(k): [int(n) for n in v] for k, v in neighbors.items()}
|
|
262
|
+
weights_int = {int(k): v for k, v in weights.items()}
|
|
263
|
+
|
|
264
|
+
w = W(neighbors_int, weights_int)
|
|
265
|
+
|
|
266
|
+
# 执行局部Moran's I分析
|
|
267
|
+
lm = Moran_Local(y, w, permutations=permutations)
|
|
268
|
+
|
|
269
|
+
# 提取结果
|
|
270
|
+
local_i = lm.Is.tolist()
|
|
271
|
+
z_scores = lm.z_sim.tolist()
|
|
272
|
+
p_values = lm.p_sim.tolist()
|
|
273
|
+
|
|
274
|
+
# 象限分类
|
|
275
|
+
quadrants = []
|
|
276
|
+
for q in lm.q:
|
|
277
|
+
if q == 1:
|
|
278
|
+
quadrants.append("HH") # High-High
|
|
279
|
+
elif q == 2:
|
|
280
|
+
quadrants.append("LH") # Low-High
|
|
281
|
+
elif q == 3:
|
|
282
|
+
quadrants.append("LL") # Low-Low
|
|
283
|
+
elif q == 4:
|
|
284
|
+
quadrants.append("HL") # High-Low
|
|
285
|
+
else:
|
|
286
|
+
quadrants.append("NS") # Not Significant
|
|
287
|
+
|
|
288
|
+
# 识别显著位置
|
|
289
|
+
significant_locations = [
|
|
290
|
+
i for i, p in enumerate(p_values)
|
|
291
|
+
if p < significance_level
|
|
292
|
+
]
|
|
293
|
+
n_significant = len(significant_locations)
|
|
294
|
+
|
|
295
|
+
# 生成摘要
|
|
296
|
+
summary = f"""局部Moran's I (LISA) 分析:
|
|
297
|
+
- 观测数量: {len(values)}
|
|
298
|
+
- 显著位置数: {n_significant} ({n_significant/len(values)*100:.1f}%)
|
|
299
|
+
- 显著性水平: {significance_level}
|
|
300
|
+
- HH聚类: {quadrants.count('HH')} 个
|
|
301
|
+
- LL聚类: {quadrants.count('LL')} 个
|
|
302
|
+
- HL离群: {quadrants.count('HL')} 个
|
|
303
|
+
- LH离群: {quadrants.count('LH')} 个
|
|
304
|
+
"""
|
|
305
|
+
|
|
306
|
+
return LocalMoranResult(
|
|
307
|
+
local_i=local_i,
|
|
308
|
+
z_scores=z_scores,
|
|
309
|
+
p_values=p_values,
|
|
310
|
+
quadrants=quadrants,
|
|
311
|
+
significant_locations=significant_locations,
|
|
312
|
+
n_significant=n_significant,
|
|
313
|
+
summary=summary
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
def _interpret_moran_i(moran_i: float, p_value: float, z_score: float) -> str:
|
|
318
|
+
"""解释Moran's I结果"""
|
|
319
|
+
if p_value < 0.01:
|
|
320
|
+
sig_level = "高度显著"
|
|
321
|
+
elif p_value < 0.05:
|
|
322
|
+
sig_level = "显著"
|
|
323
|
+
elif p_value < 0.10:
|
|
324
|
+
sig_level = "边际显著"
|
|
325
|
+
else:
|
|
326
|
+
sig_level = "不显著"
|
|
327
|
+
|
|
328
|
+
if moran_i > 0:
|
|
329
|
+
pattern = "正空间自相关(空间聚集)"
|
|
330
|
+
elif moran_i < 0:
|
|
331
|
+
pattern = "负空间自相关(空间离散)"
|
|
332
|
+
else:
|
|
333
|
+
pattern = "无空间自相关(随机分布)"
|
|
334
|
+
|
|
335
|
+
return f"{sig_level}的{pattern}"
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def _interpret_geary_c(geary_c: float, p_value: float, z_score: float) -> str:
|
|
339
|
+
"""解释Geary's C结果"""
|
|
340
|
+
if p_value < 0.01:
|
|
341
|
+
sig_level = "高度显著"
|
|
342
|
+
elif p_value < 0.05:
|
|
343
|
+
sig_level = "显著"
|
|
344
|
+
elif p_value < 0.10:
|
|
345
|
+
sig_level = "边际显著"
|
|
346
|
+
else:
|
|
347
|
+
sig_level = "不显著"
|
|
348
|
+
|
|
349
|
+
if geary_c < 1:
|
|
350
|
+
pattern = "正空间自相关"
|
|
351
|
+
elif geary_c > 1:
|
|
352
|
+
pattern = "负空间自相关"
|
|
353
|
+
else:
|
|
354
|
+
pattern = "无空间自相关"
|
|
355
|
+
|
|
356
|
+
return f"{sig_level}的{pattern}"
|
|
@@ -0,0 +1,177 @@
|
|
|
1
|
+
"""
|
|
2
|
+
空间杜宾模型 (Spatial Durbin Model - SDM)
|
|
3
|
+
基于 spreg 库实现
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from typing import List, Optional, Dict
|
|
7
|
+
from pydantic import BaseModel, Field
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
from spreg import OLS_Regimes, ML_Lag
|
|
12
|
+
from libpysal.weights import W
|
|
13
|
+
SPREG_AVAILABLE = True
|
|
14
|
+
except ImportError:
|
|
15
|
+
SPREG_AVAILABLE = False
|
|
16
|
+
W = None
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SpatialDurbinResult(BaseModel):
|
|
20
|
+
"""空间杜宾模型结果"""
|
|
21
|
+
coefficients: List[float] = Field(..., description="回归系数")
|
|
22
|
+
std_errors: List[float] = Field(..., description="标准误")
|
|
23
|
+
z_scores: List[float] = Field(..., description="Z统计量")
|
|
24
|
+
p_values: List[float] = Field(..., description="P值")
|
|
25
|
+
feature_names: List[str] = Field(..., description="特征名称(包括WX)")
|
|
26
|
+
spatial_lag_coef: float = Field(..., description="空间滞后系数ρ")
|
|
27
|
+
spatial_lag_se: float = Field(..., description="空间滞后系数标准误")
|
|
28
|
+
log_likelihood: float = Field(..., description="对数似然值")
|
|
29
|
+
aic: float = Field(..., description="AIC信息准则")
|
|
30
|
+
schwarz: float = Field(..., description="BIC信息准则")
|
|
31
|
+
n_observations: int = Field(..., description="观测数量")
|
|
32
|
+
summary: str = Field(..., description="摘要信息")
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def spatial_durbin_model(
|
|
36
|
+
y_data: List[float],
|
|
37
|
+
x_data: List[List[float]],
|
|
38
|
+
neighbors: dict,
|
|
39
|
+
weights: Optional[dict] = None,
|
|
40
|
+
feature_names: Optional[List[str]] = None
|
|
41
|
+
) -> SpatialDurbinResult:
|
|
42
|
+
"""
|
|
43
|
+
空间杜宾模型 (SDM)
|
|
44
|
+
模型形式: y = ρWy + Xβ + WXθ + ε
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
y_data: 因变量
|
|
48
|
+
x_data: 自变量(二维列表)
|
|
49
|
+
neighbors: 邻居字典
|
|
50
|
+
weights: 权重字典
|
|
51
|
+
feature_names: 特征名称
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
SpatialDurbinResult: 空间杜宾模型结果
|
|
55
|
+
|
|
56
|
+
Raises:
|
|
57
|
+
ImportError: spreg库未安装
|
|
58
|
+
ValueError: 输入数据无效
|
|
59
|
+
"""
|
|
60
|
+
if not SPREG_AVAILABLE:
|
|
61
|
+
raise ImportError(
|
|
62
|
+
"spreg库未安装。请运行: pip install spreg\n"
|
|
63
|
+
"或: pip install pysal"
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
# 输入验证
|
|
67
|
+
if not y_data or not x_data:
|
|
68
|
+
raise ValueError("y_data和x_data不能为空")
|
|
69
|
+
|
|
70
|
+
# 数据准备
|
|
71
|
+
y = np.array(y_data).reshape(-1, 1)
|
|
72
|
+
X = np.array(x_data)
|
|
73
|
+
|
|
74
|
+
if X.ndim == 1:
|
|
75
|
+
X = X.reshape(-1, 1)
|
|
76
|
+
|
|
77
|
+
n = len(y)
|
|
78
|
+
k = X.shape[1]
|
|
79
|
+
|
|
80
|
+
# 构建权重对象
|
|
81
|
+
if weights is None:
|
|
82
|
+
weights = {i: [1.0] * len(neighbors[i]) for i in neighbors}
|
|
83
|
+
|
|
84
|
+
# 确保邻居字典的键是整数
|
|
85
|
+
neighbors_int = {int(k): [int(n) for n in v] for k, v in neighbors.items()}
|
|
86
|
+
weights_int = {int(k): v for k, v in weights.items()}
|
|
87
|
+
|
|
88
|
+
w = W(neighbors_int, weights_int)
|
|
89
|
+
w.transform = 'r'
|
|
90
|
+
|
|
91
|
+
# 特征名称
|
|
92
|
+
if feature_names is None:
|
|
93
|
+
feature_names = [f"X{i+1}" for i in range(k)]
|
|
94
|
+
|
|
95
|
+
# 计算WX(空间滞后的自变量)
|
|
96
|
+
try:
|
|
97
|
+
from scipy import sparse
|
|
98
|
+
W_matrix = w.sparse
|
|
99
|
+
WX = W_matrix.dot(X)
|
|
100
|
+
except ImportError:
|
|
101
|
+
# 如果scipy不可用,使用numpy实现
|
|
102
|
+
W_matrix = np.zeros((n, n))
|
|
103
|
+
for i in w.neighbors:
|
|
104
|
+
for j_idx, j in enumerate(w.neighbors[i]):
|
|
105
|
+
W_matrix[i, j] = w.weights[i][j_idx]
|
|
106
|
+
WX = W_matrix.dot(X)
|
|
107
|
+
|
|
108
|
+
# 合并X和WX
|
|
109
|
+
X_full = np.hstack([X, WX])
|
|
110
|
+
|
|
111
|
+
# 特征名称(包括WX)
|
|
112
|
+
wx_names = [f"W_{name}" for name in feature_names]
|
|
113
|
+
all_feature_names = feature_names + wx_names
|
|
114
|
+
|
|
115
|
+
# 使用ML_Lag但包含WX作为额外的解释变量
|
|
116
|
+
# 这实际上是SDM的一种实现方式
|
|
117
|
+
try:
|
|
118
|
+
# 创建包含WX的模型
|
|
119
|
+
model = ML_Lag(y, X_full, w, name_y='y', name_x=all_feature_names)
|
|
120
|
+
except Exception as e:
|
|
121
|
+
raise ValueError(f"空间杜宾模型估计失败: {str(e)}")
|
|
122
|
+
|
|
123
|
+
# 提取结果
|
|
124
|
+
coefficients = model.betas.flatten().tolist()
|
|
125
|
+
std_errors = np.sqrt(np.diag(model.vm)).tolist()
|
|
126
|
+
|
|
127
|
+
# 处理z_stat - 可能是列表或numpy数组
|
|
128
|
+
if hasattr(model.z_stat, 'shape'):
|
|
129
|
+
# numpy数组
|
|
130
|
+
z_scores = model.z_stat[:, 0].tolist()
|
|
131
|
+
p_values = model.z_stat[:, 1].tolist()
|
|
132
|
+
else:
|
|
133
|
+
# 列表
|
|
134
|
+
z_scores = [stat[0] for stat in model.z_stat] if model.z_stat else []
|
|
135
|
+
p_values = [stat[1] for stat in model.z_stat] if model.z_stat else []
|
|
136
|
+
|
|
137
|
+
# 空间滞后系数
|
|
138
|
+
spatial_lag_coef = float(model.rho)
|
|
139
|
+
try:
|
|
140
|
+
spatial_lag_se = float(np.sqrt(model.vm[-1, -1]))
|
|
141
|
+
except:
|
|
142
|
+
spatial_lag_se = 0.0
|
|
143
|
+
|
|
144
|
+
# 模型拟合指标
|
|
145
|
+
log_likelihood = float(model.logll) if hasattr(model, 'logll') else 0.0
|
|
146
|
+
aic = float(model.aic) if hasattr(model, 'aic') else 0.0
|
|
147
|
+
schwarz = float(model.schwarz) if hasattr(model, 'schwarz') else 0.0
|
|
148
|
+
|
|
149
|
+
# 添加常数项到特征名称
|
|
150
|
+
final_feature_names = ['const'] + all_feature_names
|
|
151
|
+
|
|
152
|
+
# 生成摘要
|
|
153
|
+
summary = f"""空间杜宾模型 (SDM):
|
|
154
|
+
- 观测数量: {n}
|
|
155
|
+
- 自变量数: {k}
|
|
156
|
+
- 空间滞后系数 ρ: {spatial_lag_coef:.4f} (SE: {spatial_lag_se:.4f})
|
|
157
|
+
- 对数似然: {log_likelihood:.2f}
|
|
158
|
+
- AIC: {aic:.2f}
|
|
159
|
+
- BIC: {schwarz:.2f}
|
|
160
|
+
|
|
161
|
+
说明: SDM同时包含Wy和WX,捕捉自变量的空间溢出效应
|
|
162
|
+
"""
|
|
163
|
+
|
|
164
|
+
return SpatialDurbinResult(
|
|
165
|
+
coefficients=coefficients,
|
|
166
|
+
std_errors=std_errors,
|
|
167
|
+
z_scores=z_scores,
|
|
168
|
+
p_values=p_values,
|
|
169
|
+
feature_names=final_feature_names,
|
|
170
|
+
spatial_lag_coef=spatial_lag_coef,
|
|
171
|
+
spatial_lag_se=spatial_lag_se,
|
|
172
|
+
log_likelihood=log_likelihood,
|
|
173
|
+
aic=aic,
|
|
174
|
+
schwarz=schwarz,
|
|
175
|
+
n_observations=n,
|
|
176
|
+
summary=summary
|
|
177
|
+
)
|
|
File without changes
|