aigroup-econ-mcp 1.3.3__py3-none-any.whl → 2.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (198) hide show
  1. .gitignore +253 -0
  2. PKG-INFO +732 -0
  3. README.md +687 -0
  4. __init__.py +14 -0
  5. aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
  6. aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
  7. aigroup_econ_mcp-2.0.1.dist-info/entry_points.txt +2 -0
  8. aigroup_econ_mcp-2.0.1.dist-info/licenses/LICENSE +21 -0
  9. cli.py +32 -0
  10. econometrics/README.md +18 -0
  11. econometrics/__init__.py +191 -0
  12. econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
  13. econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
  14. econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
  15. econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
  16. econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
  17. econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
  18. econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
  19. econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
  20. econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
  21. econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
  22. econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
  23. econometrics/basic_parametric_estimation/__init__.py +31 -0
  24. econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
  25. econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
  26. econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
  27. econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
  28. econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
  29. econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
  30. econometrics/causal_inference/__init__.py +66 -0
  31. econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
  32. econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
  33. econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
  34. econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
  35. econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
  36. econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
  37. econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
  38. econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
  39. econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
  40. econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
  41. econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
  42. econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
  43. econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
  44. econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
  45. econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
  46. econometrics/distribution_analysis/__init__.py +28 -0
  47. econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
  48. econometrics/distribution_analysis/time_series_decomposition.py +152 -0
  49. econometrics/distribution_analysis/variance_decomposition.py +179 -0
  50. econometrics/missing_data/__init__.py +18 -0
  51. econometrics/missing_data/imputation_methods.py +219 -0
  52. econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
  53. econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
  54. econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
  55. econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
  56. econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
  57. econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
  58. econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
  59. econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
  60. econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
  61. econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
  62. econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
  63. econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
  64. econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
  65. econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
  66. econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
  67. econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
  68. econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
  69. econometrics/nonparametric/__init__.py +35 -0
  70. econometrics/nonparametric/gam_model.py +117 -0
  71. econometrics/nonparametric/kernel_regression.py +161 -0
  72. econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
  73. econometrics/nonparametric/quantile_regression.py +249 -0
  74. econometrics/nonparametric/spline_regression.py +100 -0
  75. econometrics/spatial_econometrics/__init__.py +68 -0
  76. econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
  77. econometrics/spatial_econometrics/gwr_simple.py +154 -0
  78. econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
  79. econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
  80. econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
  81. econometrics/spatial_econometrics/spatial_regression.py +315 -0
  82. econometrics/spatial_econometrics/spatial_weights.py +226 -0
  83. econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
  84. econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
  85. econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
  86. econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
  87. econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
  88. econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
  89. econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
  90. econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
  91. econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
  92. econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
  93. econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
  94. econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
  95. econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
  96. econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
  97. econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
  98. econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
  99. econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
  100. econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
  101. econometrics/statistical_inference/__init__.py +21 -0
  102. econometrics/statistical_inference/bootstrap_methods.py +162 -0
  103. econometrics/statistical_inference/permutation_test.py +177 -0
  104. econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
  105. econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
  106. econometrics/survival_analysis/__init__.py +18 -0
  107. econometrics/survival_analysis/survival_models.py +259 -0
  108. econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
  109. econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
  110. econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
  111. econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
  112. econometrics/tests/causal_inference_tests/__init__.py +3 -0
  113. econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
  114. econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
  115. econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
  116. econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
  117. econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
  118. econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
  119. econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
  120. econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
  121. econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
  122. econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
  123. econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
  124. econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
  125. econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
  126. econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
  127. econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
  128. econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
  129. econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
  130. prompts/__init__.py +0 -0
  131. prompts/analysis_guides.py +43 -0
  132. pyproject.toml +85 -0
  133. resources/MCP_MASTER_GUIDE.md +422 -0
  134. resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
  135. resources/__init__.py +0 -0
  136. server.py +97 -0
  137. tools/README.md +88 -0
  138. tools/__init__.py +119 -0
  139. tools/causal_inference_adapter.py +658 -0
  140. tools/data_loader.py +213 -0
  141. tools/decorators.py +38 -0
  142. tools/distribution_analysis_adapter.py +121 -0
  143. tools/econometrics_adapter.py +286 -0
  144. tools/gwr_simple_adapter.py +54 -0
  145. tools/machine_learning_adapter.py +567 -0
  146. tools/mcp_tool_groups/__init__.py +15 -0
  147. tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
  148. tools/mcp_tool_groups/causal_inference_tools.py +643 -0
  149. tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
  150. tools/mcp_tool_groups/machine_learning_tools.py +422 -0
  151. tools/mcp_tool_groups/microecon_tools.py +325 -0
  152. tools/mcp_tool_groups/missing_data_tools.py +117 -0
  153. tools/mcp_tool_groups/model_specification_tools.py +402 -0
  154. tools/mcp_tool_groups/nonparametric_tools.py +225 -0
  155. tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
  156. tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
  157. tools/mcp_tool_groups/time_series_tools.py +494 -0
  158. tools/mcp_tools_registry.py +124 -0
  159. tools/microecon_adapter.py +412 -0
  160. tools/missing_data_adapter.py +73 -0
  161. tools/model_specification_adapter.py +369 -0
  162. tools/nonparametric_adapter.py +190 -0
  163. tools/output_formatter.py +563 -0
  164. tools/spatial_econometrics_adapter.py +318 -0
  165. tools/statistical_inference_adapter.py +90 -0
  166. tools/survival_analysis_adapter.py +46 -0
  167. tools/time_series_panel_data_adapter.py +858 -0
  168. tools/time_series_panel_data_tools.py +65 -0
  169. aigroup_econ_mcp/__init__.py +0 -19
  170. aigroup_econ_mcp/cli.py +0 -82
  171. aigroup_econ_mcp/config.py +0 -561
  172. aigroup_econ_mcp/server.py +0 -452
  173. aigroup_econ_mcp/tools/__init__.py +0 -19
  174. aigroup_econ_mcp/tools/base.py +0 -470
  175. aigroup_econ_mcp/tools/cache.py +0 -533
  176. aigroup_econ_mcp/tools/data_loader.py +0 -195
  177. aigroup_econ_mcp/tools/file_parser.py +0 -1027
  178. aigroup_econ_mcp/tools/machine_learning.py +0 -60
  179. aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
  180. aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
  181. aigroup_econ_mcp/tools/ml_models.py +0 -54
  182. aigroup_econ_mcp/tools/ml_regularization.py +0 -186
  183. aigroup_econ_mcp/tools/monitoring.py +0 -555
  184. aigroup_econ_mcp/tools/optimized_example.py +0 -229
  185. aigroup_econ_mcp/tools/panel_data.py +0 -619
  186. aigroup_econ_mcp/tools/regression.py +0 -214
  187. aigroup_econ_mcp/tools/statistics.py +0 -154
  188. aigroup_econ_mcp/tools/time_series.py +0 -698
  189. aigroup_econ_mcp/tools/timeout.py +0 -283
  190. aigroup_econ_mcp/tools/tool_descriptions.py +0 -410
  191. aigroup_econ_mcp/tools/tool_handlers.py +0 -1016
  192. aigroup_econ_mcp/tools/tool_registry.py +0 -478
  193. aigroup_econ_mcp/tools/validation.py +0 -482
  194. aigroup_econ_mcp-1.3.3.dist-info/METADATA +0 -525
  195. aigroup_econ_mcp-1.3.3.dist-info/RECORD +0 -30
  196. aigroup_econ_mcp-1.3.3.dist-info/entry_points.txt +0 -2
  197. /aigroup_econ_mcp-1.3.3.dist-info/licenses/LICENSE → /LICENSE +0 -0
  198. {aigroup_econ_mcp-1.3.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
@@ -1,452 +0,0 @@
1
- """
2
- AIGroup 计量经济学 MCP 服务器 - 优化版
3
- 使用组件化架构,代码量减少80%,同时自动支持文件输入
4
- """
5
-
6
- from typing import Dict, Any, Optional, List, Annotated
7
- from collections.abc import AsyncIterator
8
- from contextlib import asynccontextmanager
9
- from dataclasses import dataclass
10
-
11
- from pydantic import BaseModel, Field
12
- from mcp.server.fastmcp import FastMCP, Context
13
- from mcp.server.session import ServerSession
14
- from mcp.types import CallToolResult, TextContent
15
-
16
- # 导入工具处理器
17
- from .tools.tool_handlers import (
18
- handle_descriptive_statistics,
19
- handle_ols_regression,
20
- handle_hypothesis_testing,
21
- handle_time_series_analysis,
22
- handle_correlation_analysis,
23
- handle_panel_fixed_effects,
24
- handle_panel_random_effects,
25
- handle_panel_hausman_test,
26
- handle_panel_unit_root_test,
27
- handle_var_model,
28
- handle_vecm_model,
29
- handle_garch_model,
30
- handle_state_space_model,
31
- handle_variance_decomposition,
32
- handle_random_forest,
33
- handle_gradient_boosting,
34
- handle_lasso_regression,
35
- handle_ridge_regression,
36
- handle_cross_validation,
37
- handle_feature_importance
38
- )
39
-
40
- # 导入装饰器和工具描述
41
- from .tools.base import with_file_support_decorator as econometric_tool
42
- from .tools.tool_descriptions import (
43
- get_tool_description,
44
- get_field_description,
45
- DESCRIPTIVE_STATISTICS,
46
- OLS_REGRESSION,
47
- HYPOTHESIS_TESTING,
48
- TIME_SERIES_ANALYSIS,
49
- CORRELATION_ANALYSIS,
50
- PANEL_FIXED_EFFECTS,
51
- PANEL_RANDOM_EFFECTS,
52
- PANEL_HAUSMAN_TEST,
53
- PANEL_UNIT_ROOT_TEST,
54
- VAR_MODEL_ANALYSIS,
55
- VECM_MODEL_ANALYSIS,
56
- GARCH_MODEL_ANALYSIS,
57
- STATE_SPACE_MODEL_ANALYSIS,
58
- VARIANCE_DECOMPOSITION_ANALYSIS,
59
- RANDOM_FOREST_REGRESSION_ANALYSIS,
60
- GRADIENT_BOOSTING_REGRESSION_ANALYSIS,
61
- LASSO_REGRESSION_ANALYSIS,
62
- RIDGE_REGRESSION_ANALYSIS,
63
- CROSS_VALIDATION_ANALYSIS,
64
- FEATURE_IMPORTANCE_ANALYSIS_TOOL
65
- )
66
-
67
-
68
- # 应用上下文
69
- @dataclass
70
- class AppContext:
71
- """应用上下文,包含共享资源"""
72
- config: Dict[str, Any]
73
- version: str = "1.0.0"
74
-
75
-
76
- @asynccontextmanager
77
- async def lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
78
- """服务器生命周期管理"""
79
- config = {
80
- "max_sample_size": 10000,
81
- "default_significance_level": 0.05,
82
- "supported_tests": ["t_test", "f_test", "chi_square", "adf"],
83
- "data_types": ["cross_section", "time_series", "panel"]
84
- }
85
- try:
86
- yield AppContext(config=config, version="1.0.0")
87
- finally:
88
- pass
89
-
90
-
91
- # 创建MCP服务器实例
92
- mcp = FastMCP(
93
- name="aigroup-econ-mcp",
94
- instructions="Econometrics MCP Server - Provides data analysis with automatic file input support",
95
- lifespan=lifespan
96
- )
97
-
98
-
99
- # ============================================================================
100
- # 基础统计工具 (5个) - 自动支持文件输入
101
- # ============================================================================
102
-
103
- @mcp.tool()
104
- @econometric_tool('multi_var_dict')
105
- async def descriptive_statistics(
106
- ctx: Context[ServerSession, AppContext],
107
- file_path: Annotated[Optional[str], Field(default=None, description=DESCRIPTIVE_STATISTICS.get_field_description("file_path"))] = None,
108
- file_content: Annotated[Optional[str], Field(default=None, description=DESCRIPTIVE_STATISTICS.get_field_description("file_content"))] = None,
109
- file_format: Annotated[str, Field(default="auto", description=DESCRIPTIVE_STATISTICS.get_field_description("file_format"))] = "auto",
110
- data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=DESCRIPTIVE_STATISTICS.get_field_description("data"))] = None
111
- ) -> CallToolResult:
112
- """计算描述性统计量"""
113
- return await handle_descriptive_statistics(ctx, data=data)
114
-
115
-
116
- @mcp.tool()
117
- @econometric_tool('regression')
118
- async def ols_regression(
119
- ctx: Context[ServerSession, AppContext],
120
- file_path: Annotated[Optional[str], Field(default=None, description=OLS_REGRESSION.get_field_description("file_path"))] = None,
121
- file_content: Annotated[Optional[str], Field(default=None, description=OLS_REGRESSION.get_field_description("file_content"))] = None,
122
- file_format: Annotated[str, Field(default="auto", description=OLS_REGRESSION.get_field_description("file_format"))] = "auto",
123
- y_data: Annotated[Optional[List[float]], Field(default=None, description=OLS_REGRESSION.get_field_description("y_data"))] = None,
124
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=OLS_REGRESSION.get_field_description("x_data"))] = None,
125
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=OLS_REGRESSION.get_field_description("feature_names"))] = None
126
- ) -> CallToolResult:
127
- """OLS回归分析"""
128
- return await handle_ols_regression(ctx, y_data=y_data, x_data=x_data, feature_names=feature_names)
129
-
130
-
131
- @mcp.tool()
132
- @econometric_tool('single_var')
133
- async def hypothesis_testing(
134
- ctx: Context[ServerSession, AppContext],
135
- file_path: Annotated[Optional[str], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("file_path"))] = None,
136
- file_content: Annotated[Optional[str], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("file_content"))] = None,
137
- file_format: Annotated[str, Field(default="auto", description=HYPOTHESIS_TESTING.get_field_description("file_format"))] = "auto",
138
- data: Annotated[Optional[List[float]], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("data"))] = None,
139
- data2: Annotated[Optional[List[float]], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("data2"))] = None,
140
- test_type: Annotated[str, Field(default="t_test", description=HYPOTHESIS_TESTING.get_field_description("test_type"))] = "t_test"
141
- ) -> CallToolResult:
142
- """假设检验 - 支持文件或直接数据输入"""
143
- return await handle_hypothesis_testing(ctx, data1=data, data2=data2, test_type=test_type)
144
-
145
-
146
- @mcp.tool()
147
- @econometric_tool('single_var')
148
- async def time_series_analysis(
149
- ctx: Context[ServerSession, AppContext],
150
- file_path: Annotated[Optional[str], Field(default=None, description=TIME_SERIES_ANALYSIS.get_field_description("file_path"))] = None,
151
- file_content: Annotated[Optional[str], Field(default=None, description=TIME_SERIES_ANALYSIS.get_field_description("file_content"))] = None,
152
- file_format: Annotated[str, Field(default="auto", description=TIME_SERIES_ANALYSIS.get_field_description("file_format"))] = "auto",
153
- data: Annotated[Optional[List[float]], Field(default=None, description=TIME_SERIES_ANALYSIS.get_field_description("data"))] = None
154
- ) -> CallToolResult:
155
- """时间序列分析 - 支持文件或直接数据输入"""
156
- return await handle_time_series_analysis(ctx, data=data)
157
-
158
-
159
- @mcp.tool()
160
- @econometric_tool('multi_var_dict')
161
- async def correlation_analysis(
162
- ctx: Context[ServerSession, AppContext],
163
- file_path: Annotated[Optional[str], Field(default=None, description=CORRELATION_ANALYSIS.get_field_description("file_path"))] = None,
164
- file_content: Annotated[Optional[str], Field(default=None, description=CORRELATION_ANALYSIS.get_field_description("file_content"))] = None,
165
- file_format: Annotated[str, Field(default="auto", description=CORRELATION_ANALYSIS.get_field_description("file_format"))] = "auto",
166
- data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=CORRELATION_ANALYSIS.get_field_description("data"))] = None,
167
- method: Annotated[str, Field(default="pearson", description=CORRELATION_ANALYSIS.get_field_description("method"))] = "pearson"
168
- ) -> CallToolResult:
169
- """相关性分析 - 支持文件或直接数据输入"""
170
- return await handle_correlation_analysis(ctx, data=data, method=method)
171
-
172
-
173
- # ============================================================================
174
- # 面板数据工具 (4个) - 自动支持文件输入
175
- # ============================================================================
176
-
177
- @mcp.tool()
178
- @econometric_tool('panel')
179
- async def panel_fixed_effects(
180
- ctx: Context[ServerSession, AppContext],
181
- file_path: Annotated[Optional[str], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("file_path"))] = None,
182
- file_content: Annotated[Optional[str], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("file_content"))] = None,
183
- file_format: Annotated[str, Field(default="auto", description=PANEL_FIXED_EFFECTS.get_field_description("file_format"))] = "auto",
184
- y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("y_data"))] = None,
185
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("x_data"))] = None,
186
- entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("entity_ids"))] = None,
187
- time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("time_periods"))] = None,
188
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("feature_names"))] = None,
189
- entity_effects: Annotated[bool, Field(default=True, description=PANEL_FIXED_EFFECTS.get_field_description("entity_effects"))] = True,
190
- time_effects: Annotated[bool, Field(default=False, description=PANEL_FIXED_EFFECTS.get_field_description("time_effects"))] = False
191
- ) -> CallToolResult:
192
- """固定效应模型 - 支持文件输入"""
193
- return await handle_panel_fixed_effects(ctx, y_data, x_data, entity_ids, time_periods,
194
- feature_names, entity_effects, time_effects)
195
-
196
-
197
- @mcp.tool()
198
- @econometric_tool('panel')
199
- async def panel_random_effects(
200
- ctx: Context[ServerSession, AppContext],
201
- file_path: Annotated[Optional[str], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("file_path"))] = None,
202
- file_content: Annotated[Optional[str], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("file_content"))] = None,
203
- file_format: Annotated[str, Field(default="auto", description=PANEL_RANDOM_EFFECTS.get_field_description("file_format"))] = "auto",
204
- y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("y_data"))] = None,
205
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("x_data"))] = None,
206
- entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("entity_ids"))] = None,
207
- time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("time_periods"))] = None,
208
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("feature_names"))] = None,
209
- entity_effects: Annotated[bool, Field(default=True, description=PANEL_RANDOM_EFFECTS.get_field_description("entity_effects"))] = True,
210
- time_effects: Annotated[bool, Field(default=False, description=PANEL_RANDOM_EFFECTS.get_field_description("time_effects"))] = False
211
- ) -> CallToolResult:
212
- """随机效应模型 - 支持文件输入"""
213
- return await handle_panel_random_effects(ctx, y_data, x_data, entity_ids, time_periods,
214
- feature_names, entity_effects, time_effects)
215
-
216
-
217
- @mcp.tool()
218
- @econometric_tool('panel')
219
- async def panel_hausman_test(
220
- ctx: Context[ServerSession, AppContext],
221
- file_path: Annotated[Optional[str], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("file_path"))] = None,
222
- file_content: Annotated[Optional[str], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("file_content"))] = None,
223
- file_format: Annotated[str, Field(default="auto", description=PANEL_HAUSMAN_TEST.get_field_description("file_format"))] = "auto",
224
- y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("y_data"))] = None,
225
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("x_data"))] = None,
226
- entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("entity_ids"))] = None,
227
- time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("time_periods"))] = None,
228
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("feature_names"))] = None
229
- ) -> CallToolResult:
230
- """Hausman检验 - 支持文件输入"""
231
- return await handle_panel_hausman_test(ctx, y_data, x_data, entity_ids, time_periods, feature_names)
232
-
233
-
234
- @mcp.tool()
235
- @econometric_tool('panel') # 保持panel类型以获取entity_ids和time_periods
236
- async def panel_unit_root_test(
237
- ctx: Context[ServerSession, AppContext],
238
- file_path: Annotated[Optional[str], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("file_path"))] = None,
239
- file_content: Annotated[Optional[str], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("file_content"))] = None,
240
- file_format: Annotated[str, Field(default="auto", description=PANEL_UNIT_ROOT_TEST.get_field_description("file_format"))] = "auto",
241
- data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("data"))] = None,
242
- y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("y_data"))] = None, # 从panel转换来的
243
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("x_data"))] = None, # 从panel转换来的,忽略
244
- entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("entity_ids"))] = None,
245
- time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("time_periods"))] = None,
246
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("feature_names"))] = None, # 从panel转换来的,忽略
247
- test_type: Annotated[str, Field(default="levinlin", description=PANEL_UNIT_ROOT_TEST.get_field_description("test_type"))] = "levinlin"
248
- ) -> CallToolResult:
249
- """面板单位根检验 - 支持文件输入"""
250
- # 传递所有参数给handler
251
- return await handle_panel_unit_root_test(
252
- ctx,
253
- data=data,
254
- y_data=y_data,
255
- entity_ids=entity_ids,
256
- time_periods=time_periods,
257
- test_type=test_type
258
- )
259
-
260
-
261
- # ============================================================================
262
- # 高级时间序列工具 (5个) - 自动支持文件输入
263
- # ============================================================================
264
-
265
- @mcp.tool()
266
- @econometric_tool('time_series')
267
- async def var_model_analysis(
268
- ctx: Context[ServerSession, AppContext],
269
- file_path: Annotated[Optional[str], Field(default=None, description=VAR_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
270
- file_content: Annotated[Optional[str], Field(default=None, description=VAR_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
271
- file_format: Annotated[str, Field(default="auto", description=VAR_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
272
- data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=VAR_MODEL_ANALYSIS.get_field_description("data"))] = None,
273
- max_lags: Annotated[int, Field(default=5, description=VAR_MODEL_ANALYSIS.get_field_description("max_lags"))] = 5,
274
- ic: Annotated[str, Field(default="aic", description=VAR_MODEL_ANALYSIS.get_field_description("ic"))] = "aic"
275
- ) -> CallToolResult:
276
- """VAR模型分析 - 支持文件输入"""
277
- return await handle_var_model(ctx, data, max_lags, ic)
278
-
279
-
280
- @mcp.tool()
281
- @econometric_tool('time_series')
282
- async def vecm_model_analysis(
283
- ctx: Context[ServerSession, AppContext],
284
- file_path: Annotated[Optional[str], Field(default=None, description=VECM_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
285
- file_content: Annotated[Optional[str], Field(default=None, description=VECM_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
286
- file_format: Annotated[str, Field(default="auto", description=VECM_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
287
- data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=VECM_MODEL_ANALYSIS.get_field_description("data"))] = None,
288
- coint_rank: Annotated[int, Field(default=1, description=VECM_MODEL_ANALYSIS.get_field_description("coint_rank"))] = 1,
289
- deterministic: Annotated[str, Field(default="co", description=VECM_MODEL_ANALYSIS.get_field_description("deterministic"))] = "co",
290
- max_lags: Annotated[int, Field(default=5, description=VECM_MODEL_ANALYSIS.get_field_description("max_lags"))] = 5
291
- ) -> CallToolResult:
292
- """VECM模型分析 - 支持文件输入"""
293
- return await handle_vecm_model(ctx, data, coint_rank, deterministic, max_lags)
294
-
295
-
296
- @mcp.tool()
297
- @econometric_tool('single_var')
298
- async def garch_model_analysis(
299
- ctx: Context[ServerSession, AppContext],
300
- file_path: Annotated[Optional[str], Field(default=None, description=GARCH_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
301
- file_content: Annotated[Optional[str], Field(default=None, description=GARCH_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
302
- file_format: Annotated[str, Field(default="auto", description=GARCH_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
303
- data: Annotated[Optional[List[float]], Field(default=None, description=GARCH_MODEL_ANALYSIS.get_field_description("data"))] = None,
304
- order: Annotated[tuple, Field(default=(1, 1), description=GARCH_MODEL_ANALYSIS.get_field_description("order"))] = (1, 1),
305
- dist: Annotated[str, Field(default="normal", description=GARCH_MODEL_ANALYSIS.get_field_description("dist"))] = "normal"
306
- ) -> CallToolResult:
307
- """GARCH模型分析 - 支持文件输入"""
308
- return await handle_garch_model(ctx, data, order, dist)
309
-
310
-
311
- @mcp.tool()
312
- @econometric_tool('single_var')
313
- async def state_space_model_analysis(
314
- ctx: Context[ServerSession, AppContext],
315
- file_path: Annotated[Optional[str], Field(default=None, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
316
- file_content: Annotated[Optional[str], Field(default=None, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
317
- file_format: Annotated[str, Field(default="auto", description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
318
- data: Annotated[Optional[List[float]], Field(default=None, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("data"))] = None,
319
- state_dim: Annotated[int, Field(default=1, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("state_dim"))] = 1,
320
- observation_dim: Annotated[int, Field(default=1, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("observation_dim"))] = 1,
321
- trend: Annotated[bool, Field(default=True, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("trend"))] = True,
322
- seasonal: Annotated[bool, Field(default=False, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("seasonal"))] = False,
323
- period: Annotated[int, Field(default=12, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("period"))] = 12
324
- ) -> CallToolResult:
325
- """状态空间模型分析 - 支持文件输入"""
326
- return await handle_state_space_model(ctx, data, state_dim, observation_dim, trend, seasonal, period)
327
-
328
-
329
- @mcp.tool()
330
- @econometric_tool('time_series')
331
- async def variance_decomposition_analysis(
332
- ctx: Context[ServerSession, AppContext],
333
- file_path: Annotated[Optional[str], Field(default=None, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("file_path"))] = None,
334
- file_content: Annotated[Optional[str], Field(default=None, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("file_content"))] = None,
335
- file_format: Annotated[str, Field(default="auto", description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("file_format"))] = "auto",
336
- data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("data"))] = None,
337
- periods: Annotated[int, Field(default=10, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("periods"))] = 10,
338
- max_lags: Annotated[int, Field(default=5, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("max_lags"))] = 5
339
- ) -> CallToolResult:
340
- """方差分解分析 - 支持文件输入"""
341
- return await handle_variance_decomposition(ctx, data, periods, max_lags)
342
-
343
-
344
- # ============================================================================
345
- # 机器学习工具 (6个) - 自动支持文件输入
346
- # ============================================================================
347
-
348
- @mcp.tool()
349
- @econometric_tool('regression')
350
- async def random_forest_regression_analysis(
351
- ctx: Context[ServerSession, AppContext],
352
- file_path: Annotated[Optional[str], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
353
- file_content: Annotated[Optional[str], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
354
- file_format: Annotated[str, Field(default="auto", description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
355
- y_data: Annotated[Optional[List[float]], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
356
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
357
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
358
- n_estimators: Annotated[int, Field(default=100, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("n_estimators"))] = 100,
359
- max_depth: Annotated[Optional[int], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("max_depth"))] = None
360
- ) -> CallToolResult:
361
- """随机森林回归 - 支持文件输入"""
362
- return await handle_random_forest(ctx, y_data, x_data, feature_names, n_estimators, max_depth)
363
-
364
-
365
- @mcp.tool()
366
- @econometric_tool('regression')
367
- async def gradient_boosting_regression_analysis(
368
- ctx: Context[ServerSession, AppContext],
369
- file_path: Annotated[Optional[str], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
370
- file_content: Annotated[Optional[str], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
371
- file_format: Annotated[str, Field(default="auto", description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
372
- y_data: Annotated[Optional[List[float]], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
373
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
374
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
375
- n_estimators: Annotated[int, Field(default=100, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("n_estimators"))] = 100,
376
- learning_rate: Annotated[float, Field(default=0.1, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("learning_rate"))] = 0.1,
377
- max_depth: Annotated[int, Field(default=3, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("max_depth"))] = 3
378
- ) -> CallToolResult:
379
- """梯度提升树回归 - 支持文件输入"""
380
- return await handle_gradient_boosting(ctx, y_data, x_data, feature_names, n_estimators, learning_rate, max_depth)
381
-
382
-
383
- @mcp.tool()
384
- @econometric_tool('regression')
385
- async def lasso_regression_analysis(
386
- ctx: Context[ServerSession, AppContext],
387
- file_path: Annotated[Optional[str], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
388
- file_content: Annotated[Optional[str], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
389
- file_format: Annotated[str, Field(default="auto", description=LASSO_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
390
- y_data: Annotated[Optional[List[float]], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
391
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
392
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
393
- alpha: Annotated[float, Field(default=1.0, description=LASSO_REGRESSION_ANALYSIS.get_field_description("alpha"))] = 1.0
394
- ) -> CallToolResult:
395
- """Lasso回归 - 支持文件输入"""
396
- return await handle_lasso_regression(ctx, y_data, x_data, feature_names, alpha)
397
-
398
-
399
- @mcp.tool()
400
- @econometric_tool('regression')
401
- async def ridge_regression_analysis(
402
- ctx: Context[ServerSession, AppContext],
403
- file_path: Annotated[Optional[str], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
404
- file_content: Annotated[Optional[str], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
405
- file_format: Annotated[str, Field(default="auto", description=RIDGE_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
406
- y_data: Annotated[Optional[List[float]], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
407
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
408
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
409
- alpha: Annotated[float, Field(default=1.0, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("alpha"))] = 1.0
410
- ) -> CallToolResult:
411
- """Ridge回归 - 支持文件输入"""
412
- return await handle_ridge_regression(ctx, y_data, x_data, feature_names, alpha)
413
-
414
-
415
- @mcp.tool()
416
- @econometric_tool('regression')
417
- async def cross_validation_analysis(
418
- ctx: Context[ServerSession, AppContext],
419
- file_path: Annotated[Optional[str], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("file_path"))] = None,
420
- file_content: Annotated[Optional[str], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("file_content"))] = None,
421
- file_format: Annotated[str, Field(default="auto", description=CROSS_VALIDATION_ANALYSIS.get_field_description("file_format"))] = "auto",
422
- y_data: Annotated[Optional[List[float]], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("y_data"))] = None,
423
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("x_data"))] = None,
424
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("feature_names"))] = None,
425
- model_type: Annotated[str, Field(default="random_forest", description=CROSS_VALIDATION_ANALYSIS.get_field_description("model_type"))] = "random_forest",
426
- cv_folds: Annotated[int, Field(default=5, description=CROSS_VALIDATION_ANALYSIS.get_field_description("cv_folds"))] = 5,
427
- scoring: Annotated[str, Field(default="r2", description=CROSS_VALIDATION_ANALYSIS.get_field_description("scoring"))] = "r2"
428
- ) -> CallToolResult:
429
- """交叉验证 - 支持文件输入"""
430
- return await handle_cross_validation(ctx, y_data, x_data, model_type, cv_folds, scoring)
431
-
432
-
433
- @mcp.tool()
434
- @econometric_tool('regression')
435
- async def feature_importance_analysis_tool(
436
- ctx: Context[ServerSession, AppContext],
437
- file_path: Annotated[Optional[str], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("file_path"))] = None,
438
- file_content: Annotated[Optional[str], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("file_content"))] = None,
439
- file_format: Annotated[str, Field(default="auto", description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("file_format"))] = "auto",
440
- y_data: Annotated[Optional[List[float]], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("y_data"))] = None,
441
- x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("x_data"))] = None,
442
- feature_names: Annotated[Optional[List[str]], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("feature_names"))] = None,
443
- method: Annotated[str, Field(default="random_forest", description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("method"))] = "random_forest",
444
- top_k: Annotated[int, Field(default=5, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("top_k"))] = 5
445
- ) -> CallToolResult:
446
- """特征重要性分析 - 支持文件输入"""
447
- return await handle_feature_importance(ctx, y_data, x_data, feature_names, method, top_k)
448
-
449
-
450
- def create_mcp_server() -> FastMCP:
451
- """创建并返回MCP服务器实例"""
452
- return mcp
@@ -1,19 +0,0 @@
1
- """
2
- 计量经济学工具模块
3
- """
4
-
5
- from . import regression, statistics, time_series, machine_learning, panel_data
6
- from . import validation, cache, monitoring, file_parser, tool_descriptions
7
-
8
- __all__ = [
9
- "regression",
10
- "statistics",
11
- "time_series",
12
- "machine_learning",
13
- "panel_data",
14
- "validation",
15
- "cache",
16
- "monitoring",
17
- "file_parser",
18
- "tool_descriptions"
19
- ]