aigroup-econ-mcp 1.3.3__py3-none-any.whl → 2.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (198) hide show
  1. .gitignore +253 -0
  2. PKG-INFO +732 -0
  3. README.md +687 -0
  4. __init__.py +14 -0
  5. aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
  6. aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
  7. aigroup_econ_mcp-2.0.1.dist-info/entry_points.txt +2 -0
  8. aigroup_econ_mcp-2.0.1.dist-info/licenses/LICENSE +21 -0
  9. cli.py +32 -0
  10. econometrics/README.md +18 -0
  11. econometrics/__init__.py +191 -0
  12. econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
  13. econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
  14. econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
  15. econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
  16. econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
  17. econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
  18. econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
  19. econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
  20. econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
  21. econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
  22. econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
  23. econometrics/basic_parametric_estimation/__init__.py +31 -0
  24. econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
  25. econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
  26. econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
  27. econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
  28. econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
  29. econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
  30. econometrics/causal_inference/__init__.py +66 -0
  31. econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
  32. econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
  33. econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
  34. econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
  35. econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
  36. econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
  37. econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
  38. econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
  39. econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
  40. econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
  41. econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
  42. econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
  43. econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
  44. econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
  45. econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
  46. econometrics/distribution_analysis/__init__.py +28 -0
  47. econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
  48. econometrics/distribution_analysis/time_series_decomposition.py +152 -0
  49. econometrics/distribution_analysis/variance_decomposition.py +179 -0
  50. econometrics/missing_data/__init__.py +18 -0
  51. econometrics/missing_data/imputation_methods.py +219 -0
  52. econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
  53. econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
  54. econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
  55. econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
  56. econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
  57. econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
  58. econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
  59. econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
  60. econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
  61. econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
  62. econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
  63. econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
  64. econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
  65. econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
  66. econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
  67. econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
  68. econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
  69. econometrics/nonparametric/__init__.py +35 -0
  70. econometrics/nonparametric/gam_model.py +117 -0
  71. econometrics/nonparametric/kernel_regression.py +161 -0
  72. econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
  73. econometrics/nonparametric/quantile_regression.py +249 -0
  74. econometrics/nonparametric/spline_regression.py +100 -0
  75. econometrics/spatial_econometrics/__init__.py +68 -0
  76. econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
  77. econometrics/spatial_econometrics/gwr_simple.py +154 -0
  78. econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
  79. econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
  80. econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
  81. econometrics/spatial_econometrics/spatial_regression.py +315 -0
  82. econometrics/spatial_econometrics/spatial_weights.py +226 -0
  83. econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
  84. econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
  85. econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
  86. econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
  87. econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
  88. econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
  89. econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
  90. econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
  91. econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
  92. econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
  93. econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
  94. econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
  95. econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
  96. econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
  97. econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
  98. econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
  99. econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
  100. econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
  101. econometrics/statistical_inference/__init__.py +21 -0
  102. econometrics/statistical_inference/bootstrap_methods.py +162 -0
  103. econometrics/statistical_inference/permutation_test.py +177 -0
  104. econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
  105. econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
  106. econometrics/survival_analysis/__init__.py +18 -0
  107. econometrics/survival_analysis/survival_models.py +259 -0
  108. econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
  109. econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
  110. econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
  111. econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
  112. econometrics/tests/causal_inference_tests/__init__.py +3 -0
  113. econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
  114. econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
  115. econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
  116. econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
  117. econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
  118. econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
  119. econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
  120. econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
  121. econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
  122. econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
  123. econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
  124. econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
  125. econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
  126. econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
  127. econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
  128. econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
  129. econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
  130. prompts/__init__.py +0 -0
  131. prompts/analysis_guides.py +43 -0
  132. pyproject.toml +85 -0
  133. resources/MCP_MASTER_GUIDE.md +422 -0
  134. resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
  135. resources/__init__.py +0 -0
  136. server.py +97 -0
  137. tools/README.md +88 -0
  138. tools/__init__.py +119 -0
  139. tools/causal_inference_adapter.py +658 -0
  140. tools/data_loader.py +213 -0
  141. tools/decorators.py +38 -0
  142. tools/distribution_analysis_adapter.py +121 -0
  143. tools/econometrics_adapter.py +286 -0
  144. tools/gwr_simple_adapter.py +54 -0
  145. tools/machine_learning_adapter.py +567 -0
  146. tools/mcp_tool_groups/__init__.py +15 -0
  147. tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
  148. tools/mcp_tool_groups/causal_inference_tools.py +643 -0
  149. tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
  150. tools/mcp_tool_groups/machine_learning_tools.py +422 -0
  151. tools/mcp_tool_groups/microecon_tools.py +325 -0
  152. tools/mcp_tool_groups/missing_data_tools.py +117 -0
  153. tools/mcp_tool_groups/model_specification_tools.py +402 -0
  154. tools/mcp_tool_groups/nonparametric_tools.py +225 -0
  155. tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
  156. tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
  157. tools/mcp_tool_groups/time_series_tools.py +494 -0
  158. tools/mcp_tools_registry.py +124 -0
  159. tools/microecon_adapter.py +412 -0
  160. tools/missing_data_adapter.py +73 -0
  161. tools/model_specification_adapter.py +369 -0
  162. tools/nonparametric_adapter.py +190 -0
  163. tools/output_formatter.py +563 -0
  164. tools/spatial_econometrics_adapter.py +318 -0
  165. tools/statistical_inference_adapter.py +90 -0
  166. tools/survival_analysis_adapter.py +46 -0
  167. tools/time_series_panel_data_adapter.py +858 -0
  168. tools/time_series_panel_data_tools.py +65 -0
  169. aigroup_econ_mcp/__init__.py +0 -19
  170. aigroup_econ_mcp/cli.py +0 -82
  171. aigroup_econ_mcp/config.py +0 -561
  172. aigroup_econ_mcp/server.py +0 -452
  173. aigroup_econ_mcp/tools/__init__.py +0 -19
  174. aigroup_econ_mcp/tools/base.py +0 -470
  175. aigroup_econ_mcp/tools/cache.py +0 -533
  176. aigroup_econ_mcp/tools/data_loader.py +0 -195
  177. aigroup_econ_mcp/tools/file_parser.py +0 -1027
  178. aigroup_econ_mcp/tools/machine_learning.py +0 -60
  179. aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
  180. aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
  181. aigroup_econ_mcp/tools/ml_models.py +0 -54
  182. aigroup_econ_mcp/tools/ml_regularization.py +0 -186
  183. aigroup_econ_mcp/tools/monitoring.py +0 -555
  184. aigroup_econ_mcp/tools/optimized_example.py +0 -229
  185. aigroup_econ_mcp/tools/panel_data.py +0 -619
  186. aigroup_econ_mcp/tools/regression.py +0 -214
  187. aigroup_econ_mcp/tools/statistics.py +0 -154
  188. aigroup_econ_mcp/tools/time_series.py +0 -698
  189. aigroup_econ_mcp/tools/timeout.py +0 -283
  190. aigroup_econ_mcp/tools/tool_descriptions.py +0 -410
  191. aigroup_econ_mcp/tools/tool_handlers.py +0 -1016
  192. aigroup_econ_mcp/tools/tool_registry.py +0 -478
  193. aigroup_econ_mcp/tools/validation.py +0 -482
  194. aigroup_econ_mcp-1.3.3.dist-info/METADATA +0 -525
  195. aigroup_econ_mcp-1.3.3.dist-info/RECORD +0 -30
  196. aigroup_econ_mcp-1.3.3.dist-info/entry_points.txt +0 -2
  197. /aigroup_econ_mcp-1.3.3.dist-info/licenses/LICENSE → /LICENSE +0 -0
  198. {aigroup_econ_mcp-1.3.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
@@ -0,0 +1,170 @@
1
+ ./.gitignore,sha256=M67x66mQGPjpk5A6LO93G9R7cY9vWCQH9sdLFt6S53c,3284
2
+ ./LICENSE,sha256=DoyCJUWlDzKbqc5KRbFpsGYLwLh-XJRHKQDoITjb1yc,1083
3
+ ./PKG-INFO,sha256=gQ902Sju8YC3j9r70FnKd_d8v4K9ozzNI2uIKJa0OjE,28759
4
+ ./README.md,sha256=fKp95G5hpoun6WGp5SjJ0BeiyKhH60KpX4wTWStnfpg,27591
5
+ ./__init__.py,sha256=G_4YjKvO9KBXASCjbEqVj8QNlUSeDfeU3ki4bVhA1Ew,282
6
+ ./cli.py,sha256=VylCwO9YMkMU36SEPzzrEEu7UaEw3IdqPdkfCE8DrzQ,788
7
+ ./pyproject.toml,sha256=tbHsYWk5y6Rujhl4h6xVbs4-IkRMhzCSotqt0q9cI1s,2237
8
+ ./server.py,sha256=U9eFmkrV9xnUh3OAzC99cukmpjw28TqU5PTI-5KX9Wk,2997
9
+ ./econometrics/README.md,sha256=kbBTUhv_ZHluD6ultI0FqSGqBKNc95OmaghESyrT0ZM,5499
10
+ ./econometrics/__init__.py,sha256=PXN3is7i4PU4YVX4ZcDqrAOWEiizjA13TPQb68i47OM,4328
11
+ ./econometrics/未开发大类优先级分析.md,sha256=l5lWegUOxrpoB5b8co4AxhCuvjI9FY4CpyjvvcenlDo,17738
12
+ ./econometrics/advanced_methods/modern_computing_machine_learning/__init__.py,sha256=QoKR7cP_PpbckU0FZ74F-BDWc5J8JEcYdBCHLSXF-lM,1040
13
+ ./econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py,sha256=B-S7twKcXsUIPWpw4Ck7pSESft2gnrv70tmxQv3NTBw,8235
14
+ ./econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py,sha256=0HraAKGuEDM1Su8oJUvnRnzqYzrrS4_NKPy-lZ2UchI,8954
15
+ ./econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py,sha256=-cA5ih65622j2YiRNrlK2lcSLQITyYG3vuUMglgQJxc,8386
16
+ ./econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py,sha256=_W1IFoPa3MN--Cnd2QIOjt9GffaGmIBIjGK-qtm0Emc,7706
17
+ ./econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py,sha256=uWfSJB40F9RwYCgUpRjroWkf9PUA8uXA7w0R9OFDfOM,9602
18
+ ./econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py,sha256=zT1tFaxgYxPYWw2uP17FnwjdwXnTabXuMLld1heCOmc,9162
19
+ ./econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py,sha256=A5p7qZiQi7g626EYAdNAi4IWaC1P7TOUP05RjtesIso,5974
20
+ ./econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py,sha256=PFuSj09O9Wcia0TSD6-95QraXLRdB2Qrg-QcsmLwmbw,7093
21
+ ./econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py,sha256=g9yI2jQ3njYkB3GriCU-Ci-Zce7yNzBiYepsICe3mZ8,11659
22
+ ./econometrics/advanced_methods/modern_computing_machine_learning/test_report.md,sha256=XdNKjsxUFNX9bMSyWfKWQ9a-qCOmHy4AGt8PhQKbziE,3622
23
+ ./econometrics/basic_parametric_estimation/__init__.py,sha256=IFgOw46qAzecWUha-uUlab0VptCh82Mhc1hsZIlNH8I,463
24
+ ./econometrics/basic_parametric_estimation/gmm/__init__.py,sha256=H5KwHqEx-ALHNlI4DyOenj4XEJ5PI-vQ0kAXR9o_S1s,151
25
+ ./econometrics/basic_parametric_estimation/gmm/gmm_model.py,sha256=uwBIxjmO58P41qx7lHSkECMh3WhQoZgYH4gyIDLnwQI,9410
26
+ ./econometrics/basic_parametric_estimation/mle/__init__.py,sha256=w9eJFI5c-pcMqG7igIFedz5FOnQGIviZiXXc4Dso_-s,154
27
+ ./econometrics/basic_parametric_estimation/mle/mle_model.py,sha256=sQcPlheEYD5Kpn0RDNKjy305AMwCP07kK2U6FN73u_Q,8526
28
+ ./econometrics/basic_parametric_estimation/ols/__init__.py,sha256=NhFFi8COkCRrSJrcjvEVOlSJkQABa20PO9yFpykJ4X4,157
29
+ ./econometrics/basic_parametric_estimation/ols/ols_model.py,sha256=vj98YSotw-7EbQMzGWG3CGRsgpI2C4axr-KgmmvmxcE,4655
30
+ ./econometrics/causal_inference/__init__.py,sha256=zO7jncbywWu_ut3T5p47kG3U8YY8IEkMjT4u1faNQ4Y,1536
31
+ ./econometrics/causal_inference/causal_identification_strategy/__init__.py,sha256=ea1aM-qvvPqR-fK1OjFJho_ccupnznIdwpTJh7abkF8,1959
32
+ ./econometrics/causal_inference/causal_identification_strategy/control_function.py,sha256=-680JCgud-BkcgAsHkIDhlQ_A3btvdotrHGNQJlRXls,3802
33
+ ./econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py,sha256=IaTIzBYSZqBdC9TMN_eOplxgz7ZYNw6TRgm6I6Urqdk,3303
34
+ ./econometrics/causal_inference/causal_identification_strategy/event_study.py,sha256=Z0EucEVJ7RWiCm47CXYSUjlCRfmEJzXKPGoMYaFw_RQ,3981
35
+ ./econometrics/causal_inference/causal_identification_strategy/first_difference.py,sha256=FfcqNmyEgDYqNabh3ap25OhF5tcaXjebSj5Waqmsfis,2476
36
+ ./econometrics/causal_inference/causal_identification_strategy/fixed_effects.py,sha256=Lj0D8oXup7T8DInONip0QfBJaCq_hkaIpyvk-LsxvZg,3243
37
+ ./econometrics/causal_inference/causal_identification_strategy/hausman_test.py,sha256=G6-YXkI_ltKVjwtxPLU0ggPby2Jde_RJIxn_i7JMOjU,2153
38
+ ./econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py,sha256=uojAby4w5x81KdW49kMisjXOugPwJAfRbEUMkaGZsYE,4732
39
+ ./econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py,sha256=MKixdaxQh70TuTV5gc7SipYT5sbB0YKAoS3-GruP2HE,4160
40
+ ./econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py,sha256=w1f1A0l1BE7JuhLcfxwzO6qZlGq_siK_DcmN_NrsnWI,3860
41
+ ./econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py,sha256=IerdC-nNU8l3ya-FnVqTDmm3kENFFW-GVDAFSq2Ib3c,5152
42
+ ./econometrics/causal_inference/causal_identification_strategy/random_effects.py,sha256=zUh2k7cprB6vC7JUyiqkUa6FtaJc1LgdI1DdqLh0M7g,3147
43
+ ./econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py,sha256=S-Ttm1jDU0oEvThNdzotRv5sv97PMZzuaW_zI4PTKYk,3325
44
+ ./econometrics/causal_inference/causal_identification_strategy/synthetic_control.py,sha256=m0Ms4rgV96HPV4EP50flYgVCbj9li7B0M8Zd9FZEyIU,4246
45
+ ./econometrics/causal_inference/causal_identification_strategy/triple_difference.py,sha256=0mhGsfrxndLHI4zOnWlpw996w7M1e52Dxa_vrxyymoc,2814
46
+ ./econometrics/distribution_analysis/__init__.py,sha256=y1MxYke8P0kg7Ik_uRKDwmqDXJVYsxZrzKv7WNWbxDo,631
47
+ ./econometrics/distribution_analysis/oaxaca_blinder.py,sha256=zvEPalLpuyu6ZR_F4wsLtxt58mnX7Ceaqw2X2HC_c2M,6693
48
+ ./econometrics/distribution_analysis/time_series_decomposition.py,sha256=zYg29RSgx_PTexIYQDN7_ed-6MGTTa8DVyUVqNCO-9E,5410
49
+ ./econometrics/distribution_analysis/variance_decomposition.py,sha256=OFLLa8vB4SUvraT1AZ4bBozglC8gdXooD343aEK5Kks,5764
50
+ ./econometrics/missing_data/__init__.py,sha256=PPKqqN6meqkbhbVPY3IQcXxbMMVsocdqMtgIxm9yAGk,368
51
+ ./econometrics/missing_data/imputation_methods.py,sha256=U-xQ8G0mWbHzI1AyufKaKRB_1krCq8bKR3TiqHhwBBQ,6891
52
+ ./econometrics/missing_data/missing_data_measurement_error/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ ./econometrics/model_specification_diagnostics_robust_inference/README.md,sha256=A6MQ3e_fBRcgUTGG-8PIZoak2mKxg8wvoOo_mF52guk,4681
54
+ ./econometrics/model_specification_diagnostics_robust_inference/__init__.py,sha256=EmJt_7fLMK3d6MkNCWYhWLPsZgHjjIj0zs9xkM9nh38,1832
55
+ ./econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py,sha256=KRhdc5K-xATvNQPnSBRnLRr3Hhi2mtbm6GG2_dYdsBU,446
56
+ ./econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py,sha256=xqagx4CcqLbyIwJXcmnnb33TWe_0tXSwtqCUCIVHtZo,5119
57
+ ./econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py,sha256=3ELQkgGtOLgWY6UOi_ZFL3g7KQxid1WCMdhhByoZHUg,196
58
+ ./econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py,sha256=HupVc4WkpltRCkEZYYcrdJG_8cdY7p6SJS-_v6emKqk,4418
59
+ ./econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py,sha256=kDxpczAVXNaam7T_Ri0SDKl42eY4hzzu8M_XzVt-M-4,319
60
+ ./econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py,sha256=V0gTaHjIl_xRWAfILLIn-Z0Qt12E8Q2UMQwBVvsihgY,9297
61
+ ./econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py,sha256=48Y9Lhm77kMtGtH-K1hrpEf41cNf10dSQO5As3Mb2RU,311
62
+ ./econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py,sha256=kzkhAEN6pGSk3US-o4_vh2CwhcBpBoNTbAaDBNCD9P8,6047
63
+ ./econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py,sha256=J-PaSUus5_f3t9kSC9EGWZPYcxwwCU5KEzymDYQi7ZA,257
64
+ ./econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py,sha256=ctOQGLSRXCdKbReUw6WyjlFhHsnrl7RfLkmI92U-2tk,4269
65
+ ./econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py,sha256=gQg1Hjt3QWuLu8nPqUDG3GbsEmL9U31LuRpLAb2CxLI,294
66
+ ./econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py,sha256=LQbOf6o6iVtcrJBgpi6txznaxtn9REBQCIgzBAZnlxM,10309
67
+ ./econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py,sha256=uUcFyCn7Ny3jkAw7GsB2UYT_ucrsbM1P6wGx7MAWoRc,193
68
+ ./econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py,sha256=Jzc5p3TI1elFuYQp0EgGvTpsgtBiqKmKAPo5ppZ7xq0,4196
69
+ ./econometrics/nonparametric/__init__.py,sha256=6z00sY_giOJM_svIOuBWH7PngXmabqYDoZWqFRnQPMM,659
70
+ ./econometrics/nonparametric/gam_model.py,sha256=FpkEj0dAaaC2eIGVrpTENxg0u_icV7AVCvWGSx0S124,3377
71
+ ./econometrics/nonparametric/kernel_regression.py,sha256=mrg5gGoSy1kRmWW_L4QvLbd4yga_JA7Xq_EuihTdPMQ,5306
72
+ ./econometrics/nonparametric/quantile_regression.py,sha256=9a8pg6TuTdJUkoepO8UfAp_uqfxSLM-G_17x_KJt4AU,7909
73
+ ./econometrics/nonparametric/spline_regression.py,sha256=6LK3iMqkVq89kY1alE_Ru66fMxhP2an6I80E_xlTd_Q,2934
74
+ ./econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
+ ./econometrics/spatial_econometrics/__init__.py,sha256=hzLnwzWMWHYfBQMMJAXMnxMmt0nCG32MbNJlbDNCgYM,1492
76
+ ./econometrics/spatial_econometrics/geographically_weighted_regression.py,sha256=4-rMmThDMwp84sLwkDymEIUP80MokoYNdmyQBpp78ak,7664
77
+ ./econometrics/spatial_econometrics/gwr_simple.py,sha256=QyPSpj1uzcVBZBUpzji64jwy_YxrDaF9vploSugf2AY,5163
78
+ ./econometrics/spatial_econometrics/spatial_autocorrelation.py,sha256=1PDZKgZgQu8WXpS8LmR1xvO-HhfIQuT2ZR-Jh0N23ac,11029
79
+ ./econometrics/spatial_econometrics/spatial_durbin_model.py,sha256=xF-OvBbeYqfoemuu1YtsSyCw7DzqTNQ6C9Rl9Db0twQ,5755
80
+ ./econometrics/spatial_econometrics/spatial_regression.py,sha256=faPazLxEG2BkPU775l_Stl61WmIueIJq36Fc4IiQdDA,10162
81
+ ./econometrics/spatial_econometrics/spatial_weights.py,sha256=DFNduCpex0xTrGTEAL2wj9MtaLr9z5a-FZK6h3FKRsw,7890
82
+ ./econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
83
+ ./econometrics/specific_data_modeling/micro_discrete_limited_data/README.md,sha256=p0-ClYEupOIjy7YMSjF_xP5MuoFn5pZM_UQ63I72OvM,4616
84
+ ./econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py,sha256=iXU4kGgjB2FbpfV_FYUTeMaYRMw4uNW89N3lsHBsVms,761
85
+ ./econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py,sha256=sOBe3vJgoF0lMBloOqd22Cq9uDuSgxjwRSgBAqwb0sg,9601
86
+ ./econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py,sha256=WsCs3VpiGvHTFktI03z41KCpkG2Z1t9ICdnIA59QlQE,8535
87
+ ./econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py,sha256=6CQ8N_ymoFjWB7qqYGjhGhq6KWdAefaQRxosCuzV3bA,9900
88
+ ./econometrics/specific_data_modeling/survival_duration_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
89
+ ./econometrics/specific_data_modeling/time_series_panel_data/__init__.py,sha256=HGRg4teWO8cbzr4oS_Zx2iqNJppAxRPp7WsaAt6CqMY,2526
90
+ ./econometrics/specific_data_modeling/time_series_panel_data/arima_model.py,sha256=F_uhdZ0UsKCfGrJ1WscLmiyF4OAFKtqz_OJw5My7OYU,4162
91
+ ./econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py,sha256=hGxOlGOchQQIEkzds8sHWlUrnenObJKjC1DctJx9jLQ,14048
92
+ ./econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py,sha256=a_d-F5Vtv5XCpshOiduvICeBTzGbtx5f4wOqFLzM1Xo,28094
93
+ ./econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py,sha256=_EMoy13MfgZl2xNIZOHVOisihAvSsQo9RCs6ob38mnE,7354
94
+ ./econometrics/specific_data_modeling/time_series_panel_data/garch_model.py,sha256=1-cnQz8qV6kPHJgo61g0rmF8cTKArqaMJPX-1o24Y3Y,7033
95
+ ./econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py,sha256=zo2mkWvL8e4lIuQ_UT25geMnZq_uUPuiIIyuoIyCtnI,3910
96
+ ./econometrics/specific_data_modeling/time_series_panel_data/panel_var.py,sha256=fzHkwORKwrCFEY24aExTGTdYXdtaiv_fZUJ-anySS5g,2225
97
+ ./econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py,sha256=lBJMSzvMG8KFuKBqjOYM_lPD_P_LXEBqnBmYRiaNJjk,2362
98
+ ./econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py,sha256=iXGMdhcfPouDYa9VUQrmmAcjwvZA4AatKPxpFapvEes,3546
99
+ ./econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py,sha256=K6aTAYTF73Mcg7pLBK3tDY2wWsfXSc1xphOWBm2EfQM,6854
100
+ ./econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py,sha256=1IviPC5XkQBsEVI09poonRXq5RAVDmK6Lu5pvsrgPIM,14742
101
+ ./econometrics/statistical_inference/__init__.py,sha256=4DtmbcTDPV2UCZhwjJ-rWCuGAvRCjLIJYwoaRjWsnuw,379
102
+ ./econometrics/statistical_inference/bootstrap_methods.py,sha256=Srvt-ISxc4UTOChcqGTz1nGE8dMlbFzpFcHAV50p2j4,5595
103
+ ./econometrics/statistical_inference/permutation_test.py,sha256=OTaL0TjrxWheRsbj7bUL2vje9k8Tsm-j0hgIOeQYdsY,5547
104
+ ./econometrics/statistical_inference/statistical_inference_techniques/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
105
+ ./econometrics/statistics/distribution_decomposition_methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
+ ./econometrics/survival_analysis/__init__.py,sha256=hcOJhPd0_vzeqOoI7KwSueMbvfRemj0Cyo-X0E6R5Sg,351
107
+ ./econometrics/survival_analysis/survival_models.py,sha256=t44fJ9N2pXmw1lA7T7timwr50SQk3deYqlDCBf74l3E,9232
108
+ ./econometrics/tests/basic_parametric_estimation_tests/__init__.py,sha256=m4Nv29MZh4w-TekKYMdP5hLPxfIvw_X3s1a9fdnxjQk,53
109
+ ./econometrics/tests/basic_parametric_estimation_tests/test_gmm.py,sha256=BA6KMQaYRLxnWJgw-LclCnJu_-npAiDtom5LsAAozNM,3760
110
+ ./econometrics/tests/basic_parametric_estimation_tests/test_mle.py,sha256=kZa3sx7Cdu7s6hrx645AKXJNN7hnRJantw0VgBo_Mis,3735
111
+ ./econometrics/tests/basic_parametric_estimation_tests/test_ols.py,sha256=dqsrYhmjKcwKVdRdhBHPaygukvsZ_mFsj4y7BoxJgCI,2835
112
+ ./econometrics/tests/causal_inference_tests/__init__.py,sha256=gmtYsJNAuuV_J9X8ZwY8a8TG5FpNHAireV95kPGCb5c,32
113
+ ./econometrics/tests/causal_inference_tests/detailed_test.py,sha256=d0z2TZkgeWwPkxnzc8ZjOJ3F3Guu1VZKr2EWr5IQxwM,14460
114
+ ./econometrics/tests/causal_inference_tests/test_all_methods.py,sha256=g2qAeyXeZgeH22SKh-cIds-Uz0God7ODSmCWEsb1TX8,13790
115
+ ./econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py,sha256=e2nfMpuUp2d0rRiP-skuT9hhPEjcH4rL3XA0V9bxJmE,6719
116
+ ./econometrics/tests/causal_inference_tests/test_difference_in_differences.py,sha256=5CYoYUILqsvBZeuDoljMRldlNx8PTgV2BFJ7Mkzn3mA,1825
117
+ ./econometrics/tests/causal_inference_tests/test_instrumental_variables.py,sha256=whwrJo-e9t9_5JUOzZOiQQVrme5k-1V7qBqhzGyQRs0,1194
118
+ ./econometrics/tests/model_specification_diagnostics_tests/__init__.py,sha256=r_fvo5IW5smEMykzU0LGdd8vtL3NOI2ZyL4WgVOoYak,71
119
+ ./econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py,sha256=7ICFo3rDo2yK9rGcWtYSNe1iIEZO6ywp4oYFHVL_z4o,2694
120
+ ./econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py,sha256=c5C7VcsvNmegIAzsok4q5iJKb5Lstpa8qHdY7jdW0g4,2905
121
+ ./econometrics/tests/specific_data_modeling_tests/__init__.py,sha256=pT2dhJ9FeaPzTY4xcwuMYCk6rtnYie_xTwk7LARuFg4,53
122
+ ./econometrics/tests/specific_data_modeling_tests/test_arima.py,sha256=aQGhShPzDdoDjU5GociZDJk190OhLbD1A2JRXIjDv6A,2806
123
+ ./econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py,sha256=99FEc_o437W59Mfj8jzlb2m7QDCCWANWwMN0aEL24IU,6372
124
+ ./econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py,sha256=D90bZhBfDAIcT1IBhjkRluv0xpxJsulzAEudI4FLjKI,3366
125
+ ./econometrics/tests/specific_data_modeling_tests/test_garch.py,sha256=Fkaih4Lh5TVScCBKjtXI60pSxnobi2aaGcca8p04PM4,3271
126
+ ./econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py,sha256=lbFGJIkibSuk3H8gbCQwDZzZrscGKNYQZhNsBkDAOW8,5006
127
+ ./econometrics/tests/specific_data_modeling_tests/test_unit_root.py,sha256=87gEu8fDh7LS20xMJk_OrBryA2UYa-8KPUBaVaNFjNc,4539
128
+ ./econometrics/tests/specific_data_modeling_tests/test_var.py,sha256=kbWZVftblOULYABBBCiIS5x6JpBdPv-ZgG5HfbtsI4U,3556
129
+ ./prompts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
130
+ ./prompts/analysis_guides.py,sha256=FCsEtRCETWJUuG8exmAL30NRpD0eT9dyqljlpxXU5u0,1545
131
+ ./resources/MCP_MASTER_GUIDE.md,sha256=lZ2R2xV1ksCHSkSl4YorvW0ZmgCJM3Oq8UuM0kZaG6I,13407
132
+ ./resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md,sha256=LFY_VS_bwLu5LBi1vbPruFac4qwGzP-UwvDAk1s9ha0,5706
133
+ ./resources/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
134
+ ./tools/README.md,sha256=KkEUtBa3TBwz2HcVoW1Z9sGExb8BrElKzcgSlG0eoP0,2217
135
+ ./tools/__init__.py,sha256=_bPYaImVZ7zgNPN2sW6KVfrZ-rasPGVuklmSz3Vu8Ic,2840
136
+ ./tools/causal_inference_adapter.py,sha256=7h-PlNq5imdGa8hWsrbzZCo7JVrOdbZnrADrnxCWz1Y,21646
137
+ ./tools/data_loader.py,sha256=-HFKORi03DejxCBD2i5HJJCiwEEdG5uSA4jJivhVT0Y,6886
138
+ ./tools/decorators.py,sha256=ascsn0rNtzv1-RZWa4xQXArFD-43R3YuUbVIyxRtuOA,867
139
+ ./tools/distribution_analysis_adapter.py,sha256=a3GwomSfGX0EqGqehhIYZYUYP89GwhRFVOtypUNZjMQ,3498
140
+ ./tools/econometrics_adapter.py,sha256=MHXvzjBnULEgBGc5HRV5m93auzwPhSZyorl8dq3Mt_0,11429
141
+ ./tools/gwr_simple_adapter.py,sha256=rCcoI3O0AxhwQtx5-bCL2UEYGtwm7iH4QkBk-XER4rQ,1581
142
+ ./tools/machine_learning_adapter.py,sha256=zz9jIVGyJngewq11GdWzorgxPRHjacIC73XwAM2wu78,20991
143
+ ./tools/mcp_tools_registry.py,sha256=4SRmT81KCpA605jDJM3_otoG_ejC3Ls0sk7vWJtbcdU,3914
144
+ ./tools/microecon_adapter.py,sha256=Q1lXkNu5Cx8v76FQ_Qu5qslMN-50C6neAq-JitHJ6YY,15648
145
+ ./tools/missing_data_adapter.py,sha256=ZGGNw-j0DIFxO9hFI7zNW0SxcfH9jjC_5BxEw8QWO8E,2194
146
+ ./tools/model_specification_adapter.py,sha256=M1bdELqKJe7Mg91V7BNqdBXV2D5l3nqC_h91sQ4Ifno,14570
147
+ ./tools/nonparametric_adapter.py,sha256=JPyvTo4KnoSPR5ZasxHtgiItIyVXOG2KTfaodxx8d9w,5969
148
+ ./tools/output_formatter.py,sha256=l03L6QhsSKiOoDBSDeMkRjkxVHvfMAuBFcTdB7-m2CM,20751
149
+ ./tools/spatial_econometrics_adapter.py,sha256=qkjpdjsplYb-6ETQ5aG4N2WyuJ19J6XdSyqz5yW9ofI,10325
150
+ ./tools/statistical_inference_adapter.py,sha256=Tps2v3CyI1jrF6iOcXsMLQWzs1WZfYXo-2VyAryO4SM,2591
151
+ ./tools/survival_analysis_adapter.py,sha256=z0vmooAh1lisgAn9SaamVzjKedkZW6a3fIxNJlFa5oQ,1451
152
+ ./tools/time_series_panel_data_adapter.py,sha256=b9GsTzLIEQnUInC4jVUasOQbEmiEvhy60QxAWgznSWs,35746
153
+ ./tools/time_series_panel_data_tools.py,sha256=W4R_CRBYnRjAd5s3_6_BfOPuIluxTkfj7iAfH-UWBgs,2098
154
+ ./tools/mcp_tool_groups/__init__.py,sha256=MZ9WKfbB5LMdNns0P9j5P7tLPFjgHGu9YohspmuOp-8,469
155
+ ./tools/mcp_tool_groups/basic_parametric_tools.py,sha256=9noEMDxQi7TfDlSXEl5RYEEd1RmQYT-FfzZtmjUUbIw,5827
156
+ ./tools/mcp_tool_groups/causal_inference_tools.py,sha256=jdgs1LwPFPBDYUiHKe23Ue6IHriNkKEgfaZKRSQPU10,22529
157
+ ./tools/mcp_tool_groups/distribution_analysis_tools.py,sha256=vC3o7ZrwzdNp5ZSmDbyiHXMEuY8FbsNfHH7k69GmUBU,5491
158
+ ./tools/mcp_tool_groups/machine_learning_tools.py,sha256=wOwv6SGaXGjwIGdDbW4m3_Z-SOZGFE3YPqVo15YhCxo,15070
159
+ ./tools/mcp_tool_groups/microecon_tools.py,sha256=rfFTR1C6GcQWJmsuih_423eIfGbxuez2ZYQ3FTDN91I,10805
160
+ ./tools/mcp_tool_groups/missing_data_tools.py,sha256=UUceenEOxrKLW-1jD4j4zqWKrZmAhJh5yU552EhCAs4,3601
161
+ ./tools/mcp_tool_groups/model_specification_tools.py,sha256=-IqFF7OjXKwKaFU-XruOFO62AkvEVJqSHHgh8ymSj8s,14834
162
+ ./tools/mcp_tool_groups/nonparametric_tools.py,sha256=8LJkzb4ykyBA8XNGKiKlmEFEMBqLxWIRphYOwseXzTg,7383
163
+ ./tools/mcp_tool_groups/spatial_econometrics_tools.py,sha256=qgVH-Q0Fysb9tAotZ5_vzoDMJ9nwz0x4OHzA3Ny5lnE,10637
164
+ ./tools/mcp_tool_groups/statistical_inference_tools.py,sha256=_wTsGLLWsisvD6L5OXqVbX9_CznCXma1QS0AnISJzZQ,4126
165
+ ./tools/mcp_tool_groups/time_series_tools.py,sha256=IytweixTmJ14uMuAFczZ80mV6eUBrF85AQrBUkmpcCA,18276
166
+ aigroup_econ_mcp-2.0.1.dist-info/METADATA,sha256=gQ902Sju8YC3j9r70FnKd_d8v4K9ozzNI2uIKJa0OjE,28759
167
+ aigroup_econ_mcp-2.0.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
168
+ aigroup_econ_mcp-2.0.1.dist-info/entry_points.txt,sha256=UbLsgggIXKYqolHc0xxLCKr0_aFxRek4_QOCAgzDHZk,45
169
+ aigroup_econ_mcp-2.0.1.dist-info/licenses/LICENSE,sha256=DoyCJUWlDzKbqc5KRbFpsGYLwLh-XJRHKQDoITjb1yc,1083
170
+ aigroup_econ_mcp-2.0.1.dist-info/RECORD,,
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ aigroup-econ-mcp = cli:cli
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 AIGroup
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
cli.py ADDED
@@ -0,0 +1,32 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ AIGroup Econometrics MCP - CLI 入口
4
+ """
5
+
6
+ import sys
7
+ import os
8
+ import traceback
9
+ from pathlib import Path
10
+
11
+ def main():
12
+ """CLI 主函数"""
13
+ try:
14
+ print("正在启动 AIGroup Econometrics MCP 服务器...")
15
+ # 导入并运行服务器
16
+ from server import main as server_main
17
+ server_main()
18
+ except ImportError as e:
19
+ print(f"导入错误: {e}")
20
+ traceback.print_exc()
21
+ print("请确保所有依赖已正确安装")
22
+ sys.exit(1)
23
+ except Exception as e:
24
+ print(f"启动服务器时出错: {e}")
25
+ traceback.print_exc()
26
+ sys.exit(1)
27
+
28
+ # 添加cli函数以匹配pyproject.toml中的入口点定义
29
+ cli = main
30
+
31
+ if __name__ == "__main__":
32
+ main()
econometrics/README.md ADDED
@@ -0,0 +1,18 @@
1
+ # 计量经济学模型说明文档
2
+
3
+ 本目录包含AIGroup计量经济学MCP服务器的所有计量经济学分析功能。
4
+ | 核心类别 | 解决的核心问题 | 主要方法 |
5
+ | :--- | :--- | :--- |
6
+ | **1. 基础与参数估计** | 建立变量间的基础参数化关系,并进行估计。 | **普通最小二乘法 (OLS)**、**最大似然估计 (MLE)**、**广义矩估计 (GMM)** |
7
+ | **2. 模型设定、诊断与稳健推断** | 当基础模型的理想假设不成立时,修正模型或调整推断;对模型进行诊断和选择。 | **稳健标准误**(处理异方差/自相关)、**广义最小二乘法 (GLS)**、**加权最小二乘法 (WLS)**、**岭回归/LASSO/弹性网络**(处理多重共线性/高维数据)、**联立方程模型**(处理双向因果关系)<br><br>**模型诊断**:异方差检验(White、Breusch-Pagan)、自相关检验(Durbin-Watson、Ljung-Box)、正态性检验(Jarque-Bera)、多重共线性诊断(VIF)、内生性检验(Durbin-Wu-Hausman)、残差诊断、影响点分析<br><br>**模型选择**:信息准则(AIC/BIC/HQIC)、交叉验证(K折、留一法)、格兰杰因果检验 |
8
+ | **3. 因果识别策略** | 在非实验数据中,识别变量间的因果关系(解决内生性问题)。 | **工具变量法 (IV/2SLS)**、**控制函数法**、**面板数据模型**(固定效应、随机效应、一阶差分、Hausman检验)、**双重差分法 (DID)**、**三重差分法 (DDD)**、**事件研究法 (Event Study)**、**断点回归设计 (RDD)**、**合成控制法**、**匹配方法**(倾向得分匹配PSM、协变量平衡、倾向得分加权IPW、熵平衡法)<br><br>**效应分解与异质性**:中介效应分析(Baron-Kenny、Bootstrap检验、Sobel检验)、调节效应分析(交互项回归)、处理效应异质性 (HTE)、条件平均处理效应 (CATE)、因果森林<br><br>**稳健性检验**:敏感性分析、Rosenbaum bounds、双重机器学习 (Double ML) |
9
+ | **4. 特定数据类型建模** | 针对因变量或数据结构的固有特性进行建模。 | |
10
+ | &nbsp;&nbsp;**• 微观离散与受限数据** | 因变量为分类、计数、截断等非连续情况。 | **Logit/Probit**、**多项/有序/条件Logit**、**混合/嵌套Logit**、**Tobit**、**泊松/负二项回归**、**Heckman选择模型** |
11
+ | &nbsp;&nbsp;**• 时间序列与面板数据** | 分析具有时间维度数据的动态依赖、预测和非平稳性。 | **ARIMA**、**指数平滑法**、**VAR/SVAR**、**GARCH**、**协整分析/VECM**、**面板VAR**<br><br>**平稳性与单位根检验**:ADF检验、PP检验、KPSS检验<br><br>**动态面板模型**:Arellano-Bond估计(差分GMM)、Blundell-Bond估计(系统GMM)<br><br>**结构突变检验**:Chow检验、Quandt-Andrews检验、Bai-Perron检验(多重断点)<br><br>**面板数据诊断**:Hausman检验(FE vs RE)、F检验(Pooled vs FE)、LM检验(Pooled vs RE)、组内相关性检验<br><br>**时变参数模型**:门限模型/转换回归(TAR/STAR)、马尔科夫转换模型 |
12
+ | &nbsp;&nbsp;**• 生存/持续时间数据** | 分析"事件发生时间"数据并处理右删失。 | **Kaplan-Meier估计量**、**Cox比例风险模型**、**加速失效时间模型** |
13
+ | **5. 空间计量经济学** | 处理数据的空间依赖性和空间异质性。 | **空间权重矩阵构建**(邻接、距离、K近邻矩阵)<br><br>**空间自相关检验**:Moran's I、Geary's C、局部空间自相关 (LISA)<br><br>**空间回归模型**:空间滞后模型 (SAR)、空间误差模型 (SEM)、空间杜宾模型 (SDM)、地理加权回归 (GWR)、空间面板数据模型 |
14
+ | **6. 非参数与半参数方法** | 放宽函数形式的线性或参数化假设,让数据本身驱动关系形态。 | **核回归**、**局部回归**、**样条回归**、**广义可加模型 (GAM)**、**部分线性模型**、**非参数工具变量估计** |
15
+ | **7. 分布分析与分解方法** | 分析因变量整个条件分布的特征,而非仅仅条件均值;对差异或变化进行分解。 | **分位数回归**<br><br>**分解方法**:Oaxaca-Blinder分解、DiNardo-Fortin-Lemieux反事实分解、方差分解、ANOVA分解、Shapley值分解、时间序列分解(趋势-季节-随机) |
16
+ | **8. 现代计算与机器学习** | 处理高维数据、复杂模式识别、预测以及为因果推断提供辅助工具。 | **监督学习**:随机森林、梯度提升机 (GBM/XGBoost)、支持向量机 (SVM)、神经网络<br><br>**无监督学习**:聚类分析(K-means、层次聚类)<br><br>**因果推断增强**:双重机器学习 (Double ML)、因果森林 (Causal Forest) |
17
+ | **9. 统计推断技术** | 在理论分布难以推导或模型复杂时,进行可靠的区间估计与假设检验。 | **重采样方法**:自助法 (Bootstrap)、Pairs Bootstrap、Residual Bootstrap、Wild Bootstrap(异方差)、Block Bootstrap(时间序列/面板)、刀切法 (Jackknife)<br><br>**模拟方法**:蒙特卡洛模拟、置换检验 (Permutation Test)<br><br>**渐近方法**:Delta方法、聚类稳健推断 |
18
+ | **10. 缺失数据与测量误差** | 处理数据不完整或变量测量不准确的问题。 | **缺失数据处理**:列表删除法、均值插补、回归插补、多重插补 (Multiple Imputation - MICE/Amelia)、期望最大化算法 (EM)<br><br>**测量误差**:工具变量法、SIMEX方法 |
@@ -0,0 +1,191 @@
1
+ # 基础与参数估计模块
2
+ from .basic_parametric_estimation import (
3
+ OLSResult,
4
+ ols_regression,
5
+ MLEResult,
6
+ mle_estimation,
7
+ GMMResult,
8
+ gmm_estimation
9
+ )
10
+
11
+ # 二元选择模型模块
12
+ # from .discrete_choice.binary_choice import (
13
+ # logit_model,
14
+ # probit_model,
15
+ # BinaryChoiceResult
16
+ # )
17
+
18
+ # 多项选择模型模块
19
+ # from .discrete_choice.multinomial_choice import (
20
+ # multinomial_logit,
21
+ # ordered_choice_model,
22
+ # MultinomialResult,
23
+ # OrderedResult
24
+ # )
25
+
26
+ # 计数数据模型模块
27
+ # from .discrete_choice.count_data_models import (
28
+ # poisson_regression,
29
+ # negative_binomial_regression,
30
+ # tobit_model,
31
+ # PoissonResult,
32
+ # NegativeBinomialResult,
33
+ # TobitResult
34
+ # )
35
+
36
+ # 非参数回归模块
37
+ # from .nonparametric.nonparametric_regression import (
38
+ # kernel_regression,
39
+ # local_polynomial_regression,
40
+ # NonparametricRegressionResult
41
+ # )
42
+
43
+ # 样条和GAM模块
44
+ # from .nonparametric.spline_gam import (
45
+ # spline_regression,
46
+ # generalized_additive_model,
47
+ # SplineResult,
48
+ # GAMResult
49
+ # )
50
+
51
+ # 条件期望函数
52
+ # from .nonparametric.conditional_expectation_functions import (
53
+ # conditional_expectation_function,
54
+ # CEFResult
55
+ # )
56
+
57
+ # 面板数据分析模块
58
+ # from .panel_data.panel_data_models import (
59
+ # fixed_effects_model,
60
+ # random_effects_model,
61
+ # PanelDataResult
62
+ # )
63
+
64
+ # from .panel_data.panel_unit_root_tests import (
65
+ # levin_lin_test,
66
+ # im_pesaran_shin_test,
67
+ # madwu_test
68
+ # )
69
+
70
+ # 时间序列分析模块
71
+ # from .time_series.time_series_models import (
72
+ # ar_model,
73
+ # arma_model,
74
+ # var_model,
75
+ # TimeSeriesResult
76
+ # )
77
+
78
+ # from .time_series.advanced_time_series import (
79
+ # garch_model,
80
+ # state_space_model,
81
+ # variance_decomposition
82
+ # )
83
+
84
+ # 高级计量方法模块
85
+ # from .advanced_methods.advanced_methods import (
86
+ # psm_model,
87
+ # did_model,
88
+ # rdd_model,
89
+ # AdvancedMethodsResult
90
+ # )
91
+
92
+ # from .advanced_methods.quantile_regression import (
93
+ # quantile_regression,
94
+ # QuantileRegressionResult
95
+ # )
96
+
97
+ # from .advanced_methods.survival_analysis import (
98
+ # cox_model,
99
+ # kaplan_meier_estimation,
100
+ # SurvivalAnalysisResult
101
+ # )
102
+
103
+ # 统计推断模块
104
+ # from .statistical_inference.hypothesis_testing import (
105
+ # t_test,
106
+ # f_test,
107
+ # chi2_test,
108
+ # HypothesisTestResult
109
+ # )
110
+
111
+ # from .statistical_inference.confidence_intervals import (
112
+ # confidence_interval,
113
+ # ConfidenceIntervalResult
114
+ # )
115
+
116
+ # from .statistical_inference.bootstrapping import (
117
+ # bootstrap_inference,
118
+ # BootstrapResult
119
+ # )
120
+
121
+ # 模型设定、诊断和稳健推断模块
122
+ # from .model_specification_diagnostics_robust_inference.model_specification import (
123
+ # reset_test,
124
+ # ModelSpecificationResult
125
+ # )
126
+
127
+ # from .model_specification_diagnostics_robust_inference.model_diagnostics import (
128
+ # heteroskedasticity_test,
129
+ # autocorrelation_test,
130
+ # ModelDiagnosticsResult
131
+ # )
132
+
133
+ # from .model_specification_diagnostics_robust_inference.robust_inference import (
134
+ # robust_se_estimation,
135
+ # RobustInferenceResult
136
+ # )
137
+
138
+ # 缺失数据处理模块
139
+ # from .missing_data.missing_data_methods import (
140
+ # multiple_imputation,
141
+ # inverse_probability_weighting,
142
+ # MissingDataResult
143
+ # )
144
+
145
+ # 因果推断模块
146
+ # from .causal_inference.causal_inference_methods import (
147
+ # instrumental_variables,
148
+ # regression_discontinuity,
149
+ # CausalInferenceResult
150
+ # )
151
+
152
+ # 空间计量经济学模块
153
+ # from .spatial_econometrics.spatial_econometrics import (
154
+ # spatial_lag_model,
155
+ # spatial_error_model,
156
+ # SpatialEconometricsResult
157
+ # )
158
+
159
+ # 特定数据建模模块
160
+ # from .specific_data_modeling.heterogeneous_data_models import (
161
+ # mixed_effects_model,
162
+ # HeterogeneousDataResult
163
+ # )
164
+
165
+ # from .specific_data_modeling.micro_discrete_limited_data import (
166
+ # tobit_model_2,
167
+ # MicroDiscreteDataResult
168
+ # )
169
+
170
+ # from .specific_data_modeling.censored_truncated_data import (
171
+ # tobit_model_3,
172
+ # truncated_regression,
173
+ # CensoredTruncatedDataResult
174
+ # )
175
+
176
+ # 异常类
177
+ # from .exceptions import (
178
+ # EconometricToolError,
179
+ # DataValidationError,
180
+ # ModelFittingError,
181
+ # ConfigurationError
182
+ # )
183
+
184
+ __all__ = [
185
+ "OLSResult",
186
+ "ols_regression",
187
+ "MLEResult",
188
+ "mle_estimation",
189
+ "GMMResult",
190
+ "gmm_estimation"
191
+ ]
@@ -0,0 +1,30 @@
1
+ """
2
+ Modern Computing and Machine Learning for Econometrics
3
+ """
4
+ from .random_forest import EconRandomForest, random_forest_analysis
5
+ from .gradient_boosting import EconGradientBoosting, gradient_boosting_analysis
6
+ from .support_vector_machine import EconSVM, svm_analysis
7
+ from .neural_network import EconNeuralNetwork, neural_network_analysis
8
+ from .kmeans_clustering import EconKMeans, kmeans_analysis
9
+ from .hierarchical_clustering import EconHierarchicalClustering, hierarchical_clustering_analysis
10
+ from .double_ml import DoubleML, double_ml_analysis
11
+ from .causal_forest import CausalForest, causal_forest_analysis
12
+
13
+ __all__ = [
14
+ 'EconRandomForest',
15
+ 'random_forest_analysis',
16
+ 'EconGradientBoosting',
17
+ 'gradient_boosting_analysis',
18
+ 'EconSVM',
19
+ 'svm_analysis',
20
+ 'EconNeuralNetwork',
21
+ 'neural_network_analysis',
22
+ 'EconKMeans',
23
+ 'kmeans_analysis',
24
+ 'EconHierarchicalClustering',
25
+ 'hierarchical_clustering_analysis',
26
+ 'DoubleML',
27
+ 'double_ml_analysis',
28
+ 'CausalForest',
29
+ 'causal_forest_analysis'
30
+ ]