aigroup-econ-mcp 1.3.3__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- .gitignore +253 -0
- PKG-INFO +732 -0
- README.md +687 -0
- __init__.py +14 -0
- aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
- aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
- aigroup_econ_mcp-2.0.1.dist-info/entry_points.txt +2 -0
- aigroup_econ_mcp-2.0.1.dist-info/licenses/LICENSE +21 -0
- cli.py +32 -0
- econometrics/README.md +18 -0
- econometrics/__init__.py +191 -0
- econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
- econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
- econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
- econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
- econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
- econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
- econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
- econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
- econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
- econometrics/basic_parametric_estimation/__init__.py +31 -0
- econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
- econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
- econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
- econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
- econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
- econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
- econometrics/causal_inference/__init__.py +66 -0
- econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
- econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
- econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
- econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
- econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
- econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
- econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
- econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
- econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
- econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
- econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
- econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
- econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
- econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
- econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
- econometrics/distribution_analysis/__init__.py +28 -0
- econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
- econometrics/distribution_analysis/time_series_decomposition.py +152 -0
- econometrics/distribution_analysis/variance_decomposition.py +179 -0
- econometrics/missing_data/__init__.py +18 -0
- econometrics/missing_data/imputation_methods.py +219 -0
- econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
- econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
- econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
- econometrics/nonparametric/__init__.py +35 -0
- econometrics/nonparametric/gam_model.py +117 -0
- econometrics/nonparametric/kernel_regression.py +161 -0
- econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
- econometrics/nonparametric/quantile_regression.py +249 -0
- econometrics/nonparametric/spline_regression.py +100 -0
- econometrics/spatial_econometrics/__init__.py +68 -0
- econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
- econometrics/spatial_econometrics/gwr_simple.py +154 -0
- econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
- econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
- econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
- econometrics/spatial_econometrics/spatial_regression.py +315 -0
- econometrics/spatial_econometrics/spatial_weights.py +226 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
- econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
- econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
- econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
- econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
- econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
- econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
- econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
- econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
- econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
- econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
- econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
- econometrics/statistical_inference/__init__.py +21 -0
- econometrics/statistical_inference/bootstrap_methods.py +162 -0
- econometrics/statistical_inference/permutation_test.py +177 -0
- econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
- econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
- econometrics/survival_analysis/__init__.py +18 -0
- econometrics/survival_analysis/survival_models.py +259 -0
- econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
- econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
- econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
- econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
- econometrics/tests/causal_inference_tests/__init__.py +3 -0
- econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
- econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
- econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
- econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
- econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
- econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
- econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
- econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
- econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
- econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
- econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
- econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
- econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
- econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
- econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
- econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
- econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
- prompts/__init__.py +0 -0
- prompts/analysis_guides.py +43 -0
- pyproject.toml +85 -0
- resources/MCP_MASTER_GUIDE.md +422 -0
- resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
- resources/__init__.py +0 -0
- server.py +97 -0
- tools/README.md +88 -0
- tools/__init__.py +119 -0
- tools/causal_inference_adapter.py +658 -0
- tools/data_loader.py +213 -0
- tools/decorators.py +38 -0
- tools/distribution_analysis_adapter.py +121 -0
- tools/econometrics_adapter.py +286 -0
- tools/gwr_simple_adapter.py +54 -0
- tools/machine_learning_adapter.py +567 -0
- tools/mcp_tool_groups/__init__.py +15 -0
- tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
- tools/mcp_tool_groups/causal_inference_tools.py +643 -0
- tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
- tools/mcp_tool_groups/machine_learning_tools.py +422 -0
- tools/mcp_tool_groups/microecon_tools.py +325 -0
- tools/mcp_tool_groups/missing_data_tools.py +117 -0
- tools/mcp_tool_groups/model_specification_tools.py +402 -0
- tools/mcp_tool_groups/nonparametric_tools.py +225 -0
- tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
- tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
- tools/mcp_tool_groups/time_series_tools.py +494 -0
- tools/mcp_tools_registry.py +124 -0
- tools/microecon_adapter.py +412 -0
- tools/missing_data_adapter.py +73 -0
- tools/model_specification_adapter.py +369 -0
- tools/nonparametric_adapter.py +190 -0
- tools/output_formatter.py +563 -0
- tools/spatial_econometrics_adapter.py +318 -0
- tools/statistical_inference_adapter.py +90 -0
- tools/survival_analysis_adapter.py +46 -0
- tools/time_series_panel_data_adapter.py +858 -0
- tools/time_series_panel_data_tools.py +65 -0
- aigroup_econ_mcp/__init__.py +0 -19
- aigroup_econ_mcp/cli.py +0 -82
- aigroup_econ_mcp/config.py +0 -561
- aigroup_econ_mcp/server.py +0 -452
- aigroup_econ_mcp/tools/__init__.py +0 -19
- aigroup_econ_mcp/tools/base.py +0 -470
- aigroup_econ_mcp/tools/cache.py +0 -533
- aigroup_econ_mcp/tools/data_loader.py +0 -195
- aigroup_econ_mcp/tools/file_parser.py +0 -1027
- aigroup_econ_mcp/tools/machine_learning.py +0 -60
- aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
- aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
- aigroup_econ_mcp/tools/ml_models.py +0 -54
- aigroup_econ_mcp/tools/ml_regularization.py +0 -186
- aigroup_econ_mcp/tools/monitoring.py +0 -555
- aigroup_econ_mcp/tools/optimized_example.py +0 -229
- aigroup_econ_mcp/tools/panel_data.py +0 -619
- aigroup_econ_mcp/tools/regression.py +0 -214
- aigroup_econ_mcp/tools/statistics.py +0 -154
- aigroup_econ_mcp/tools/time_series.py +0 -698
- aigroup_econ_mcp/tools/timeout.py +0 -283
- aigroup_econ_mcp/tools/tool_descriptions.py +0 -410
- aigroup_econ_mcp/tools/tool_handlers.py +0 -1016
- aigroup_econ_mcp/tools/tool_registry.py +0 -478
- aigroup_econ_mcp/tools/validation.py +0 -482
- aigroup_econ_mcp-1.3.3.dist-info/METADATA +0 -525
- aigroup_econ_mcp-1.3.3.dist-info/RECORD +0 -30
- aigroup_econ_mcp-1.3.3.dist-info/entry_points.txt +0 -2
- /aigroup_econ_mcp-1.3.3.dist-info/licenses/LICENSE → /LICENSE +0 -0
- {aigroup_econ_mcp-1.3.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
"""
|
|
2
|
+
因果推断模块
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
# 从因果识别策略模块导入
|
|
6
|
+
from .causal_identification_strategy import (
|
|
7
|
+
instrumental_variables_2sls,
|
|
8
|
+
difference_in_differences,
|
|
9
|
+
regression_discontinuity,
|
|
10
|
+
fixed_effects_model,
|
|
11
|
+
random_effects_model,
|
|
12
|
+
control_function_approach,
|
|
13
|
+
first_difference_model,
|
|
14
|
+
triple_difference,
|
|
15
|
+
event_study,
|
|
16
|
+
synthetic_control_method,
|
|
17
|
+
propensity_score_matching,
|
|
18
|
+
mediation_analysis,
|
|
19
|
+
moderation_analysis,
|
|
20
|
+
hausman_test,
|
|
21
|
+
IVResult,
|
|
22
|
+
DIDResult,
|
|
23
|
+
RDDResult,
|
|
24
|
+
FixedEffectsResult,
|
|
25
|
+
RandomEffectsResult,
|
|
26
|
+
ControlFunctionResult,
|
|
27
|
+
FirstDifferenceResult,
|
|
28
|
+
TripeDifferenceResult,
|
|
29
|
+
EventStudyResult,
|
|
30
|
+
SyntheticControlResult,
|
|
31
|
+
PSMMatchResult,
|
|
32
|
+
MediationResult,
|
|
33
|
+
ModerationResult,
|
|
34
|
+
HausmanResult
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
__all__ = [
|
|
38
|
+
"instrumental_variables_2sls",
|
|
39
|
+
"difference_in_differences",
|
|
40
|
+
"regression_discontinuity",
|
|
41
|
+
"fixed_effects_model",
|
|
42
|
+
"random_effects_model",
|
|
43
|
+
"control_function_approach",
|
|
44
|
+
"first_difference_model",
|
|
45
|
+
"triple_difference",
|
|
46
|
+
"event_study",
|
|
47
|
+
"synthetic_control_method",
|
|
48
|
+
"propensity_score_matching",
|
|
49
|
+
"mediation_analysis",
|
|
50
|
+
"moderation_analysis",
|
|
51
|
+
"hausman_test",
|
|
52
|
+
"IVResult",
|
|
53
|
+
"DIDResult",
|
|
54
|
+
"RDDResult",
|
|
55
|
+
"FixedEffectsResult",
|
|
56
|
+
"RandomEffectsResult",
|
|
57
|
+
"ControlFunctionResult",
|
|
58
|
+
"FirstDifferenceResult",
|
|
59
|
+
"TripeDifferenceResult",
|
|
60
|
+
"EventStudyResult",
|
|
61
|
+
"SyntheticControlResult",
|
|
62
|
+
"PSMMatchResult",
|
|
63
|
+
"MediationResult",
|
|
64
|
+
"ModerationResult",
|
|
65
|
+
"HausmanResult"
|
|
66
|
+
]
|
|
@@ -0,0 +1,104 @@
|
|
|
1
|
+
"""
|
|
2
|
+
因果识别策略模块
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from .instrumental_variables import (
|
|
6
|
+
instrumental_variables_2sls,
|
|
7
|
+
IVResult
|
|
8
|
+
)
|
|
9
|
+
|
|
10
|
+
from .difference_in_differences import (
|
|
11
|
+
difference_in_differences,
|
|
12
|
+
DIDResult
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
from .regression_discontinuity import (
|
|
16
|
+
regression_discontinuity,
|
|
17
|
+
RDDResult
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
from .fixed_effects import (
|
|
21
|
+
fixed_effects_model,
|
|
22
|
+
FixedEffectsResult
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
from .random_effects import (
|
|
26
|
+
random_effects_model,
|
|
27
|
+
RandomEffectsResult
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
from .control_function import (
|
|
31
|
+
control_function_approach,
|
|
32
|
+
ControlFunctionResult
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
from .first_difference import (
|
|
36
|
+
first_difference_model,
|
|
37
|
+
FirstDifferenceResult
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
from .triple_difference import (
|
|
41
|
+
triple_difference,
|
|
42
|
+
TripeDifferenceResult
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
from .event_study import (
|
|
46
|
+
event_study,
|
|
47
|
+
EventStudyResult
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
from .synthetic_control import (
|
|
51
|
+
synthetic_control_method,
|
|
52
|
+
SyntheticControlResult
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
from .propensity_score_matching import (
|
|
56
|
+
propensity_score_matching,
|
|
57
|
+
PSMMatchResult
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
from .mediation_analysis import (
|
|
61
|
+
mediation_analysis,
|
|
62
|
+
MediationResult
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
from .moderation_analysis import (
|
|
66
|
+
moderation_analysis,
|
|
67
|
+
ModerationResult
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
from .hausman_test import (
|
|
71
|
+
hausman_test,
|
|
72
|
+
HausmanResult
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
__all__ = [
|
|
76
|
+
"instrumental_variables_2sls",
|
|
77
|
+
"difference_in_differences",
|
|
78
|
+
"regression_discontinuity",
|
|
79
|
+
"fixed_effects_model",
|
|
80
|
+
"random_effects_model",
|
|
81
|
+
"control_function_approach",
|
|
82
|
+
"first_difference_model",
|
|
83
|
+
"triple_difference",
|
|
84
|
+
"event_study",
|
|
85
|
+
"synthetic_control_method",
|
|
86
|
+
"propensity_score_matching",
|
|
87
|
+
"mediation_analysis",
|
|
88
|
+
"moderation_analysis",
|
|
89
|
+
"hausman_test",
|
|
90
|
+
"IVResult",
|
|
91
|
+
"DIDResult",
|
|
92
|
+
"RDDResult",
|
|
93
|
+
"FixedEffectsResult",
|
|
94
|
+
"RandomEffectsResult",
|
|
95
|
+
"ControlFunctionResult",
|
|
96
|
+
"FirstDifferenceResult",
|
|
97
|
+
"TripeDifferenceResult",
|
|
98
|
+
"EventStudyResult",
|
|
99
|
+
"SyntheticControlResult",
|
|
100
|
+
"PSMMatchResult",
|
|
101
|
+
"MediationResult",
|
|
102
|
+
"ModerationResult",
|
|
103
|
+
"HausmanResult"
|
|
104
|
+
]
|
|
@@ -0,0 +1,112 @@
|
|
|
1
|
+
"""
|
|
2
|
+
控制函数法实现
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Optional
|
|
6
|
+
import numpy as np
|
|
7
|
+
import pandas as pd
|
|
8
|
+
from pydantic import BaseModel, Field
|
|
9
|
+
import statsmodels.api as sm
|
|
10
|
+
from scipy import stats
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class ControlFunctionResult(BaseModel):
|
|
14
|
+
"""控制函数法结果"""
|
|
15
|
+
method: str = Field(default="Control Function Approach", description="使用的因果识别方法")
|
|
16
|
+
estimate: float = Field(..., description="因果效应估计值")
|
|
17
|
+
std_error: float = Field(..., description="标准误")
|
|
18
|
+
t_statistic: float = Field(..., description="t统计量")
|
|
19
|
+
p_value: float = Field(..., description="p值")
|
|
20
|
+
confidence_interval: List[float] = Field(..., description="置信区间")
|
|
21
|
+
n_observations: int = Field(..., description="观测数量")
|
|
22
|
+
endogeneity_test: Optional[dict] = Field(None, description="内生性检验结果")
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def control_function_approach(
|
|
26
|
+
y: List[float],
|
|
27
|
+
x: List[float],
|
|
28
|
+
z: List[List[float]],
|
|
29
|
+
constant: bool = True
|
|
30
|
+
) -> ControlFunctionResult:
|
|
31
|
+
"""
|
|
32
|
+
控制函数法
|
|
33
|
+
|
|
34
|
+
控制函数法是一种解决内生性问题的方法,通过在第二阶段回归中加入第一阶段回归的残差来控制内生性。
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
y: 因变量
|
|
38
|
+
x: 内生自变量
|
|
39
|
+
z: 外生变量(包括工具变量和外生控制变量)
|
|
40
|
+
constant: 是否包含常数项
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
ControlFunctionResult: 控制函数法结果
|
|
44
|
+
"""
|
|
45
|
+
# 转换为numpy数组
|
|
46
|
+
y_array = np.array(y)
|
|
47
|
+
x_array = np.array(x)
|
|
48
|
+
z_array = np.array(z)
|
|
49
|
+
|
|
50
|
+
if z_array.ndim == 1:
|
|
51
|
+
z_array = z_array.reshape(-1, 1)
|
|
52
|
+
|
|
53
|
+
n = len(y)
|
|
54
|
+
|
|
55
|
+
# 第一阶段:将内生变量x对所有外生变量z回归
|
|
56
|
+
if constant:
|
|
57
|
+
Z = np.column_stack([np.ones(n), z_array])
|
|
58
|
+
else:
|
|
59
|
+
Z = z_array
|
|
60
|
+
|
|
61
|
+
# 第一阶段回归
|
|
62
|
+
first_stage_model = sm.OLS(x_array, Z)
|
|
63
|
+
first_stage_results = first_stage_model.fit()
|
|
64
|
+
|
|
65
|
+
# 获取第一阶段残差
|
|
66
|
+
x_residuals = first_stage_results.resid
|
|
67
|
+
|
|
68
|
+
# 第二阶段:将y对x和第一阶段残差回归
|
|
69
|
+
if constant:
|
|
70
|
+
X_second = np.column_stack([np.ones(n), x_array, x_residuals])
|
|
71
|
+
else:
|
|
72
|
+
X_second = np.column_stack([x_array, x_residuals])
|
|
73
|
+
|
|
74
|
+
second_stage_model = sm.OLS(y_array, X_second)
|
|
75
|
+
second_stage_results = second_stage_model.fit()
|
|
76
|
+
|
|
77
|
+
# 提取x的系数作为因果效应估计
|
|
78
|
+
# 如果有常数项,x是第2列;否则是第1列
|
|
79
|
+
x_coef_idx = 1 if constant else 0
|
|
80
|
+
coef = second_stage_results.params[x_coef_idx]
|
|
81
|
+
stderr = second_stage_results.bse[x_coef_idx]
|
|
82
|
+
tstat = second_stage_results.tvalues[x_coef_idx]
|
|
83
|
+
pval = second_stage_results.pvalues[x_coef_idx]
|
|
84
|
+
|
|
85
|
+
# 计算置信区间
|
|
86
|
+
ci_lower = coef - 1.96 * stderr
|
|
87
|
+
ci_upper = coef + 1.96 * stderr
|
|
88
|
+
|
|
89
|
+
# 内生性检验(检验控制函数/残差项的系数是否显著)
|
|
90
|
+
residual_coef_idx = 2 if constant else 1
|
|
91
|
+
residual_coef = second_stage_results.params[residual_coef_idx]
|
|
92
|
+
residual_stderr = second_stage_results.bse[residual_coef_idx]
|
|
93
|
+
residual_tstat = second_stage_results.tvalues[residual_coef_idx]
|
|
94
|
+
residual_pval = second_stage_results.pvalues[residual_coef_idx]
|
|
95
|
+
|
|
96
|
+
endogeneity_test = {
|
|
97
|
+
"residual_coefficient": float(residual_coef),
|
|
98
|
+
"residual_std_error": float(residual_stderr),
|
|
99
|
+
"t_statistic": float(residual_tstat),
|
|
100
|
+
"p_value": float(residual_pval),
|
|
101
|
+
"interpretation": "如果残差项系数显著,表明存在内生性问题"
|
|
102
|
+
}
|
|
103
|
+
|
|
104
|
+
return ControlFunctionResult(
|
|
105
|
+
estimate=float(coef),
|
|
106
|
+
std_error=float(stderr),
|
|
107
|
+
t_statistic=float(tstat),
|
|
108
|
+
p_value=float(pval),
|
|
109
|
+
confidence_interval=[float(ci_lower), float(ci_upper)],
|
|
110
|
+
n_observations=n,
|
|
111
|
+
endogeneity_test=endogeneity_test
|
|
112
|
+
)
|
|
@@ -0,0 +1,107 @@
|
|
|
1
|
+
"""
|
|
2
|
+
双重差分法 (DID) 实现
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Optional, Dict, Any
|
|
6
|
+
import numpy as np
|
|
7
|
+
import pandas as pd
|
|
8
|
+
from pydantic import BaseModel, Field
|
|
9
|
+
from scipy import stats
|
|
10
|
+
import statsmodels.api as sm
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class DIDResult(BaseModel):
|
|
14
|
+
"""双重差分法结果"""
|
|
15
|
+
method: str = Field(default="Difference-in-Differences", description="使用的因果识别方法")
|
|
16
|
+
estimate: float = Field(..., description="因果效应估计值")
|
|
17
|
+
std_error: float = Field(..., description="标准误")
|
|
18
|
+
t_statistic: float = Field(..., description="t统计量")
|
|
19
|
+
p_value: float = Field(..., description="p值")
|
|
20
|
+
confidence_interval: List[float] = Field(..., description="置信区间")
|
|
21
|
+
n_observations: int = Field(..., description="观测数量")
|
|
22
|
+
parallel_trend_test: Optional[Dict[str, Any]] = Field(None, description="平行趋势检验")
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def difference_in_differences(
|
|
26
|
+
treatment: List[int],
|
|
27
|
+
time_period: List[int],
|
|
28
|
+
outcome: List[float],
|
|
29
|
+
covariates: Optional[List[List[float]]] = None
|
|
30
|
+
) -> DIDResult:
|
|
31
|
+
"""
|
|
32
|
+
双重差分法 (DID)
|
|
33
|
+
|
|
34
|
+
使用statsmodels实现双重差分法,评估处理效应。
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
treatment: 处理组虚拟变量 (0/1)
|
|
38
|
+
time_period: 时间虚拟变量 (0/1)
|
|
39
|
+
outcome: 结果变量
|
|
40
|
+
covariates: 协变量
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
DIDResult: 双重差分法结果
|
|
44
|
+
"""
|
|
45
|
+
# 构建数据
|
|
46
|
+
data = {
|
|
47
|
+
'treatment': treatment,
|
|
48
|
+
'time': time_period,
|
|
49
|
+
'outcome': outcome
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
# 添加协变量
|
|
53
|
+
if covariates:
|
|
54
|
+
covariates_array = np.array(covariates)
|
|
55
|
+
if covariates_array.ndim == 1:
|
|
56
|
+
covariates_array = covariates_array.reshape(-1, 1)
|
|
57
|
+
|
|
58
|
+
k_cov = covariates_array.shape[1]
|
|
59
|
+
for i in range(k_cov):
|
|
60
|
+
data[f"covariate_{i+1}"] = covariates_array[:, i]
|
|
61
|
+
|
|
62
|
+
df = pd.DataFrame(data)
|
|
63
|
+
|
|
64
|
+
# 构建交互项
|
|
65
|
+
df['treatment_time'] = df['treatment'] * df['time']
|
|
66
|
+
|
|
67
|
+
# 构建回归公式
|
|
68
|
+
independent_vars = ['treatment', 'time', 'treatment_time']
|
|
69
|
+
if covariates:
|
|
70
|
+
independent_vars.extend([f"covariate_{i+1}" for i in range(k_cov)])
|
|
71
|
+
|
|
72
|
+
# 添加常数项
|
|
73
|
+
df['const'] = 1
|
|
74
|
+
independent_vars = ['const'] + independent_vars
|
|
75
|
+
|
|
76
|
+
# 使用statsmodels进行OLS回归
|
|
77
|
+
X = df[independent_vars]
|
|
78
|
+
y = df['outcome']
|
|
79
|
+
|
|
80
|
+
model = sm.OLS(y, X)
|
|
81
|
+
results = model.fit()
|
|
82
|
+
|
|
83
|
+
# 提取DID估计结果(交互项系数)
|
|
84
|
+
coef = results.params['treatment_time']
|
|
85
|
+
stderr = results.bse['treatment_time']
|
|
86
|
+
tstat = results.tvalues['treatment_time']
|
|
87
|
+
pval = results.pvalues['treatment_time']
|
|
88
|
+
|
|
89
|
+
# 计算置信区间
|
|
90
|
+
ci_lower = coef - 1.96 * stderr
|
|
91
|
+
ci_upper = coef + 1.96 * stderr
|
|
92
|
+
|
|
93
|
+
# 平行趋势检验(简化处理)
|
|
94
|
+
# 这里只是一个示例,实际的平行趋势检验需要更多的前期数据
|
|
95
|
+
parallel_trend = {
|
|
96
|
+
"description": "Simplified parallel trend test - full test requires pre-treatment periods"
|
|
97
|
+
}
|
|
98
|
+
|
|
99
|
+
return DIDResult(
|
|
100
|
+
estimate=float(coef),
|
|
101
|
+
std_error=float(stderr),
|
|
102
|
+
t_statistic=float(tstat),
|
|
103
|
+
p_value=float(pval),
|
|
104
|
+
confidence_interval=[float(ci_lower), float(ci_upper)],
|
|
105
|
+
n_observations=len(df),
|
|
106
|
+
parallel_trend_test=parallel_trend
|
|
107
|
+
)
|
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
"""
|
|
2
|
+
事件研究法 (Event Study) 实现
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Optional
|
|
6
|
+
import numpy as np
|
|
7
|
+
import pandas as pd
|
|
8
|
+
from pydantic import BaseModel, Field
|
|
9
|
+
import statsmodels.api as sm
|
|
10
|
+
from scipy import stats
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class EventStudyResult(BaseModel):
|
|
14
|
+
"""事件研究法结果"""
|
|
15
|
+
method: str = Field(default="Event Study", description="使用的因果识别方法")
|
|
16
|
+
estimates: List[float] = Field(..., description="各期效应估计值")
|
|
17
|
+
std_errors: List[float] = Field(..., description="各期效应标准误")
|
|
18
|
+
t_statistics: List[float] = Field(..., description="各期效应t统计量")
|
|
19
|
+
p_values: List[float] = Field(..., description="各期效应p值")
|
|
20
|
+
confidence_intervals: List[List[float]] = Field(..., description="各期效应置信区间")
|
|
21
|
+
n_observations: int = Field(..., description="观测数量")
|
|
22
|
+
event_time_periods: List[int] = Field(..., description="事件时间期列表")
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def event_study(
|
|
26
|
+
outcome: List[float],
|
|
27
|
+
treatment: List[int],
|
|
28
|
+
entity_ids: List[str],
|
|
29
|
+
time_periods: List[str],
|
|
30
|
+
event_time: List[int]
|
|
31
|
+
) -> EventStudyResult:
|
|
32
|
+
"""
|
|
33
|
+
事件研究法 (Event Study)
|
|
34
|
+
|
|
35
|
+
事件研究法通过分析处理前后多个时间点的效应,验证处理效应的动态变化模式。
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
outcome: 结果变量
|
|
39
|
+
treatment: 处理状态变量
|
|
40
|
+
entity_ids: 个体标识符
|
|
41
|
+
time_periods: 时间标识符
|
|
42
|
+
event_time: 相对于事件发生时间的时间标识(如-2, -1, 0, 1, 2)
|
|
43
|
+
|
|
44
|
+
Returns:
|
|
45
|
+
EventStudyResult: 事件研究法结果
|
|
46
|
+
"""
|
|
47
|
+
# 构建数据
|
|
48
|
+
df = pd.DataFrame({
|
|
49
|
+
'outcome': outcome,
|
|
50
|
+
'treatment': treatment,
|
|
51
|
+
'entity': entity_ids,
|
|
52
|
+
'time': time_periods,
|
|
53
|
+
'event_time': event_time
|
|
54
|
+
})
|
|
55
|
+
|
|
56
|
+
# 创建时间虚拟变量
|
|
57
|
+
time_dummies = pd.get_dummies(df['event_time'], prefix='time')
|
|
58
|
+
df = pd.concat([df, time_dummies], axis=1)
|
|
59
|
+
|
|
60
|
+
# 与处理状态交互
|
|
61
|
+
for col in time_dummies.columns:
|
|
62
|
+
df[f'{col}_treated'] = df[col] * df['treatment']
|
|
63
|
+
|
|
64
|
+
# 构建回归设计矩阵
|
|
65
|
+
interaction_vars = [col for col in df.columns if col.endswith('_treated')]
|
|
66
|
+
X = df[interaction_vars]
|
|
67
|
+
X = sm.add_constant(X) # 添加常数项
|
|
68
|
+
y = df['outcome']
|
|
69
|
+
|
|
70
|
+
# OLS回归
|
|
71
|
+
model = sm.OLS(y, X)
|
|
72
|
+
results = model.fit()
|
|
73
|
+
|
|
74
|
+
# 提取各期效应估计结果
|
|
75
|
+
estimates = []
|
|
76
|
+
std_errors = []
|
|
77
|
+
t_statistics = []
|
|
78
|
+
p_values = []
|
|
79
|
+
confidence_intervals = []
|
|
80
|
+
event_time_periods = []
|
|
81
|
+
|
|
82
|
+
for col in interaction_vars:
|
|
83
|
+
# 从列名中提取时间期数
|
|
84
|
+
time_period = int(col.replace('time_', '').replace('_treated', ''))
|
|
85
|
+
event_time_periods.append(time_period)
|
|
86
|
+
|
|
87
|
+
coef = results.params[col]
|
|
88
|
+
stderr = results.bse[col]
|
|
89
|
+
tstat = results.tvalues[col]
|
|
90
|
+
pval = results.pvalues[col]
|
|
91
|
+
|
|
92
|
+
# 计算置信区间
|
|
93
|
+
ci_lower = coef - 1.96 * stderr
|
|
94
|
+
ci_upper = coef + 1.96 * stderr
|
|
95
|
+
|
|
96
|
+
estimates.append(float(coef))
|
|
97
|
+
std_errors.append(float(stderr))
|
|
98
|
+
t_statistics.append(float(tstat))
|
|
99
|
+
p_values.append(float(pval))
|
|
100
|
+
confidence_intervals.append([float(ci_lower), float(ci_upper)])
|
|
101
|
+
|
|
102
|
+
# 按时间期排序
|
|
103
|
+
sorted_indices = np.argsort(event_time_periods)
|
|
104
|
+
event_time_periods = [event_time_periods[i] for i in sorted_indices]
|
|
105
|
+
estimates = [estimates[i] for i in sorted_indices]
|
|
106
|
+
std_errors = [std_errors[i] for i in sorted_indices]
|
|
107
|
+
t_statistics = [t_statistics[i] for i in sorted_indices]
|
|
108
|
+
p_values = [p_values[i] for i in sorted_indices]
|
|
109
|
+
confidence_intervals = [confidence_intervals[i] for i in sorted_indices]
|
|
110
|
+
|
|
111
|
+
return EventStudyResult(
|
|
112
|
+
estimates=estimates,
|
|
113
|
+
std_errors=std_errors,
|
|
114
|
+
t_statistics=t_statistics,
|
|
115
|
+
p_values=p_values,
|
|
116
|
+
confidence_intervals=confidence_intervals,
|
|
117
|
+
n_observations=len(df),
|
|
118
|
+
event_time_periods=event_time_periods
|
|
119
|
+
)
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
"""
|
|
2
|
+
一阶差分模型实现
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Optional
|
|
6
|
+
import numpy as np
|
|
7
|
+
import pandas as pd
|
|
8
|
+
from pydantic import BaseModel, Field
|
|
9
|
+
import statsmodels.api as sm
|
|
10
|
+
from scipy import stats
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class FirstDifferenceResult(BaseModel):
|
|
14
|
+
"""一阶差分模型结果"""
|
|
15
|
+
method: str = Field(default="First Difference Model", description="使用的因果识别方法")
|
|
16
|
+
estimate: float = Field(..., description="因果效应估计值")
|
|
17
|
+
std_error: float = Field(..., description="标准误")
|
|
18
|
+
t_statistic: float = Field(..., description="t统计量")
|
|
19
|
+
p_value: float = Field(..., description="p值")
|
|
20
|
+
confidence_interval: List[float] = Field(..., description="置信区间")
|
|
21
|
+
n_observations: int = Field(..., description="观测数量")
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def first_difference_model(
|
|
25
|
+
y: List[float],
|
|
26
|
+
x: List[float],
|
|
27
|
+
entity_ids: List[str]
|
|
28
|
+
) -> FirstDifferenceResult:
|
|
29
|
+
"""
|
|
30
|
+
一阶差分模型
|
|
31
|
+
|
|
32
|
+
一阶差分法通过差分操作消除不随时间变化的个体固定效应,常用于面板数据分析。
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
y: 因变量(时间序列)
|
|
36
|
+
x: 自变量(时间序列)
|
|
37
|
+
entity_ids: 个体标识符
|
|
38
|
+
|
|
39
|
+
Returns:
|
|
40
|
+
FirstDifferenceResult: 一阶差分模型结果
|
|
41
|
+
"""
|
|
42
|
+
# 转换为DataFrame便于处理
|
|
43
|
+
df = pd.DataFrame({
|
|
44
|
+
'y': y,
|
|
45
|
+
'x': x,
|
|
46
|
+
'entity': entity_ids
|
|
47
|
+
})
|
|
48
|
+
|
|
49
|
+
# 按个体排序
|
|
50
|
+
df = df.sort_values(['entity'])
|
|
51
|
+
|
|
52
|
+
# 计算一阶差分
|
|
53
|
+
df['y_diff'] = df.groupby('entity')['y'].diff()
|
|
54
|
+
df['x_diff'] = df.groupby('entity')['x'].diff()
|
|
55
|
+
|
|
56
|
+
# 删除NaN值(每组的第一行)
|
|
57
|
+
df_diff = df.dropna()
|
|
58
|
+
|
|
59
|
+
# 提取差分后的数据
|
|
60
|
+
y_diff = df_diff['y_diff'].values
|
|
61
|
+
x_diff = df_diff['x_diff'].values
|
|
62
|
+
|
|
63
|
+
n = len(y_diff)
|
|
64
|
+
|
|
65
|
+
# 添加常数项
|
|
66
|
+
X = np.column_stack([np.ones(n), x_diff])
|
|
67
|
+
|
|
68
|
+
# OLS回归
|
|
69
|
+
model = sm.OLS(y_diff, X)
|
|
70
|
+
results = model.fit()
|
|
71
|
+
|
|
72
|
+
# 提取x_diff的系数作为因果效应估计
|
|
73
|
+
coef = results.params[1]
|
|
74
|
+
stderr = results.bse[1]
|
|
75
|
+
tstat = results.tvalues[1]
|
|
76
|
+
pval = results.pvalues[1]
|
|
77
|
+
|
|
78
|
+
# 计算置信区间
|
|
79
|
+
ci_lower = coef - 1.96 * stderr
|
|
80
|
+
ci_upper = coef + 1.96 * stderr
|
|
81
|
+
|
|
82
|
+
return FirstDifferenceResult(
|
|
83
|
+
estimate=float(coef),
|
|
84
|
+
std_error=float(stderr),
|
|
85
|
+
t_statistic=float(tstat),
|
|
86
|
+
p_value=float(pval),
|
|
87
|
+
confidence_interval=[float(ci_lower), float(ci_upper)],
|
|
88
|
+
n_observations=n
|
|
89
|
+
)
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
"""
|
|
2
|
+
面板数据固定效应模型实现
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Optional
|
|
6
|
+
import numpy as np
|
|
7
|
+
import pandas as pd
|
|
8
|
+
from pydantic import BaseModel, Field
|
|
9
|
+
from scipy import stats
|
|
10
|
+
import statsmodels.api as sm
|
|
11
|
+
from linearmodels.panel import PanelOLS
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class FixedEffectsResult(BaseModel):
|
|
15
|
+
"""固定效应模型结果"""
|
|
16
|
+
method: str = Field(default="Fixed Effects Model", description="使用的因果识别方法")
|
|
17
|
+
estimate: float = Field(..., description="因果效应估计值")
|
|
18
|
+
std_error: float = Field(..., description="标准误")
|
|
19
|
+
t_statistic: float = Field(..., description="t统计量")
|
|
20
|
+
p_value: float = Field(..., description="p值")
|
|
21
|
+
confidence_interval: List[float] = Field(..., description="置信区间")
|
|
22
|
+
n_observations: int = Field(..., description="观测数量")
|
|
23
|
+
n_entities: int = Field(..., description="个体数量")
|
|
24
|
+
n_time_periods: int = Field(..., description="时间期数")
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def fixed_effects_model(
|
|
28
|
+
y: List[float],
|
|
29
|
+
x: List[List[float]],
|
|
30
|
+
entity_ids: List[str],
|
|
31
|
+
time_periods: List[str],
|
|
32
|
+
constant: bool = True
|
|
33
|
+
) -> FixedEffectsResult:
|
|
34
|
+
"""
|
|
35
|
+
固定效应模型
|
|
36
|
+
|
|
37
|
+
使用linearmodels.panel.PanelOLS实现固定效应模型。
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
y: 因变量
|
|
41
|
+
x: 自变量
|
|
42
|
+
entity_ids: 个体标识符
|
|
43
|
+
time_periods: 时间标识符
|
|
44
|
+
constant: 是否包含常数项
|
|
45
|
+
|
|
46
|
+
Returns:
|
|
47
|
+
FixedEffectsResult: 固定效应模型结果
|
|
48
|
+
"""
|
|
49
|
+
# 转换为DataFrame
|
|
50
|
+
x_array = np.array(x)
|
|
51
|
+
if x_array.ndim == 1:
|
|
52
|
+
x_array = x_array.reshape(-1, 1)
|
|
53
|
+
|
|
54
|
+
# 创建多重索引面板数据
|
|
55
|
+
df = pd.DataFrame({
|
|
56
|
+
'y': y,
|
|
57
|
+
'entity': entity_ids,
|
|
58
|
+
'time': [int(t.split('_')[1]) if isinstance(t, str) and '_' in t else i
|
|
59
|
+
for i, t in enumerate(time_periods)] # 处理字符串格式的时间
|
|
60
|
+
})
|
|
61
|
+
|
|
62
|
+
# 添加自变量
|
|
63
|
+
k_x = x_array.shape[1]
|
|
64
|
+
for i in range(k_x):
|
|
65
|
+
df[f'x{i+1}'] = x_array[:, i]
|
|
66
|
+
|
|
67
|
+
# 设置多重索引
|
|
68
|
+
df = df.set_index(['entity', 'time'])
|
|
69
|
+
|
|
70
|
+
# 定义因变量和自变量
|
|
71
|
+
dependent = df['y']
|
|
72
|
+
explanatory_vars = [f'x{i+1}' for i in range(k_x)]
|
|
73
|
+
explanatory = df[explanatory_vars]
|
|
74
|
+
|
|
75
|
+
# 使用linearmodels进行固定效应估计
|
|
76
|
+
model = PanelOLS(dependent, explanatory, entity_effects=True)
|
|
77
|
+
results = model.fit()
|
|
78
|
+
|
|
79
|
+
# 提取主要变量的估计结果(假设关注最后一个变量)
|
|
80
|
+
target_var = f'x{k_x}'
|
|
81
|
+
coef = results.params[target_var]
|
|
82
|
+
stderr = results.std_errors[target_var]
|
|
83
|
+
tstat = results.tstats[target_var]
|
|
84
|
+
pval = results.pvalues[target_var]
|
|
85
|
+
|
|
86
|
+
# 计算置信区间
|
|
87
|
+
ci_lower = coef - 1.96 * stderr
|
|
88
|
+
ci_upper = coef + 1.96 * stderr
|
|
89
|
+
|
|
90
|
+
# 计算实体和时间期数
|
|
91
|
+
n_entities = len(df.index.get_level_values('entity').unique())
|
|
92
|
+
n_time_periods = len(df.index.get_level_values('time').unique())
|
|
93
|
+
|
|
94
|
+
return FixedEffectsResult(
|
|
95
|
+
estimate=float(coef),
|
|
96
|
+
std_error=float(stderr),
|
|
97
|
+
t_statistic=float(tstat),
|
|
98
|
+
p_value=float(pval),
|
|
99
|
+
confidence_interval=[float(ci_lower), float(ci_upper)],
|
|
100
|
+
n_observations=len(df),
|
|
101
|
+
n_entities=n_entities,
|
|
102
|
+
n_time_periods=n_time_periods
|
|
103
|
+
)
|