aigroup-econ-mcp 1.3.3__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- .gitignore +253 -0
- PKG-INFO +732 -0
- README.md +687 -0
- __init__.py +14 -0
- aigroup_econ_mcp-2.0.1.dist-info/METADATA +732 -0
- aigroup_econ_mcp-2.0.1.dist-info/RECORD +170 -0
- aigroup_econ_mcp-2.0.1.dist-info/entry_points.txt +2 -0
- aigroup_econ_mcp-2.0.1.dist-info/licenses/LICENSE +21 -0
- cli.py +32 -0
- econometrics/README.md +18 -0
- econometrics/__init__.py +191 -0
- econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +30 -0
- econometrics/advanced_methods/modern_computing_machine_learning/causal_forest.py +253 -0
- econometrics/advanced_methods/modern_computing_machine_learning/double_ml.py +268 -0
- econometrics/advanced_methods/modern_computing_machine_learning/gradient_boosting.py +249 -0
- econometrics/advanced_methods/modern_computing_machine_learning/hierarchical_clustering.py +243 -0
- econometrics/advanced_methods/modern_computing_machine_learning/kmeans_clustering.py +293 -0
- econometrics/advanced_methods/modern_computing_machine_learning/neural_network.py +264 -0
- econometrics/advanced_methods/modern_computing_machine_learning/random_forest.py +195 -0
- econometrics/advanced_methods/modern_computing_machine_learning/support_vector_machine.py +226 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_all_modules.py +329 -0
- econometrics/advanced_methods/modern_computing_machine_learning/test_report.md +107 -0
- econometrics/basic_parametric_estimation/__init__.py +31 -0
- econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
- econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
- econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
- econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
- econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
- econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
- econometrics/causal_inference/__init__.py +66 -0
- econometrics/causal_inference/causal_identification_strategy/__init__.py +104 -0
- econometrics/causal_inference/causal_identification_strategy/control_function.py +112 -0
- econometrics/causal_inference/causal_identification_strategy/difference_in_differences.py +107 -0
- econometrics/causal_inference/causal_identification_strategy/event_study.py +119 -0
- econometrics/causal_inference/causal_identification_strategy/first_difference.py +89 -0
- econometrics/causal_inference/causal_identification_strategy/fixed_effects.py +103 -0
- econometrics/causal_inference/causal_identification_strategy/hausman_test.py +69 -0
- econometrics/causal_inference/causal_identification_strategy/instrumental_variables.py +145 -0
- econometrics/causal_inference/causal_identification_strategy/mediation_analysis.py +121 -0
- econometrics/causal_inference/causal_identification_strategy/moderation_analysis.py +109 -0
- econometrics/causal_inference/causal_identification_strategy/propensity_score_matching.py +140 -0
- econometrics/causal_inference/causal_identification_strategy/random_effects.py +100 -0
- econometrics/causal_inference/causal_identification_strategy/regression_discontinuity.py +98 -0
- econometrics/causal_inference/causal_identification_strategy/synthetic_control.py +111 -0
- econometrics/causal_inference/causal_identification_strategy/triple_difference.py +86 -0
- econometrics/distribution_analysis/__init__.py +28 -0
- econometrics/distribution_analysis/oaxaca_blinder.py +184 -0
- econometrics/distribution_analysis/time_series_decomposition.py +152 -0
- econometrics/distribution_analysis/variance_decomposition.py +179 -0
- econometrics/missing_data/__init__.py +18 -0
- econometrics/missing_data/imputation_methods.py +219 -0
- econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
- econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
- econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
- econometrics/nonparametric/__init__.py +35 -0
- econometrics/nonparametric/gam_model.py +117 -0
- econometrics/nonparametric/kernel_regression.py +161 -0
- econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
- econometrics/nonparametric/quantile_regression.py +249 -0
- econometrics/nonparametric/spline_regression.py +100 -0
- econometrics/spatial_econometrics/__init__.py +68 -0
- econometrics/spatial_econometrics/geographically_weighted_regression.py +211 -0
- econometrics/spatial_econometrics/gwr_simple.py +154 -0
- econometrics/spatial_econometrics/spatial_autocorrelation.py +356 -0
- econometrics/spatial_econometrics/spatial_durbin_model.py +177 -0
- econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
- econometrics/spatial_econometrics/spatial_regression.py +315 -0
- econometrics/spatial_econometrics/spatial_weights.py +226 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/README.md +164 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +40 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/count_data_models.py +311 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/discrete_choice_models.py +294 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/limited_dependent_variable_models.py +282 -0
- econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
- econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
- econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
- econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
- econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
- econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
- econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
- econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
- econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
- econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
- econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
- econometrics/statistical_inference/__init__.py +21 -0
- econometrics/statistical_inference/bootstrap_methods.py +162 -0
- econometrics/statistical_inference/permutation_test.py +177 -0
- econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
- econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
- econometrics/survival_analysis/__init__.py +18 -0
- econometrics/survival_analysis/survival_models.py +259 -0
- econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
- econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
- econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
- econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
- econometrics/tests/causal_inference_tests/__init__.py +3 -0
- econometrics/tests/causal_inference_tests/detailed_test.py +441 -0
- econometrics/tests/causal_inference_tests/test_all_methods.py +418 -0
- econometrics/tests/causal_inference_tests/test_causal_identification_strategy.py +202 -0
- econometrics/tests/causal_inference_tests/test_difference_in_differences.py +53 -0
- econometrics/tests/causal_inference_tests/test_instrumental_variables.py +44 -0
- econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
- econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
- econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
- econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
- econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
- econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
- econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
- econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
- econometrics/tests/specific_data_modeling_tests/test_micro_discrete_limited_data.py +189 -0
- econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
- econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
- econometrics//321/206/320/254/320/272/321/205/342/225/235/320/220/321/205/320/237/320/241/321/205/320/264/320/267/321/207/342/226/222/342/225/227/321/204/342/225/235/320/250/321/205/320/225/320/230/321/207/342/225/221/320/267/321/205/320/230/320/226/321/206/320/256/320/240.md +544 -0
- prompts/__init__.py +0 -0
- prompts/analysis_guides.py +43 -0
- pyproject.toml +85 -0
- resources/MCP_MASTER_GUIDE.md +422 -0
- resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
- resources/__init__.py +0 -0
- server.py +97 -0
- tools/README.md +88 -0
- tools/__init__.py +119 -0
- tools/causal_inference_adapter.py +658 -0
- tools/data_loader.py +213 -0
- tools/decorators.py +38 -0
- tools/distribution_analysis_adapter.py +121 -0
- tools/econometrics_adapter.py +286 -0
- tools/gwr_simple_adapter.py +54 -0
- tools/machine_learning_adapter.py +567 -0
- tools/mcp_tool_groups/__init__.py +15 -0
- tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
- tools/mcp_tool_groups/causal_inference_tools.py +643 -0
- tools/mcp_tool_groups/distribution_analysis_tools.py +169 -0
- tools/mcp_tool_groups/machine_learning_tools.py +422 -0
- tools/mcp_tool_groups/microecon_tools.py +325 -0
- tools/mcp_tool_groups/missing_data_tools.py +117 -0
- tools/mcp_tool_groups/model_specification_tools.py +402 -0
- tools/mcp_tool_groups/nonparametric_tools.py +225 -0
- tools/mcp_tool_groups/spatial_econometrics_tools.py +323 -0
- tools/mcp_tool_groups/statistical_inference_tools.py +131 -0
- tools/mcp_tool_groups/time_series_tools.py +494 -0
- tools/mcp_tools_registry.py +124 -0
- tools/microecon_adapter.py +412 -0
- tools/missing_data_adapter.py +73 -0
- tools/model_specification_adapter.py +369 -0
- tools/nonparametric_adapter.py +190 -0
- tools/output_formatter.py +563 -0
- tools/spatial_econometrics_adapter.py +318 -0
- tools/statistical_inference_adapter.py +90 -0
- tools/survival_analysis_adapter.py +46 -0
- tools/time_series_panel_data_adapter.py +858 -0
- tools/time_series_panel_data_tools.py +65 -0
- aigroup_econ_mcp/__init__.py +0 -19
- aigroup_econ_mcp/cli.py +0 -82
- aigroup_econ_mcp/config.py +0 -561
- aigroup_econ_mcp/server.py +0 -452
- aigroup_econ_mcp/tools/__init__.py +0 -19
- aigroup_econ_mcp/tools/base.py +0 -470
- aigroup_econ_mcp/tools/cache.py +0 -533
- aigroup_econ_mcp/tools/data_loader.py +0 -195
- aigroup_econ_mcp/tools/file_parser.py +0 -1027
- aigroup_econ_mcp/tools/machine_learning.py +0 -60
- aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
- aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
- aigroup_econ_mcp/tools/ml_models.py +0 -54
- aigroup_econ_mcp/tools/ml_regularization.py +0 -186
- aigroup_econ_mcp/tools/monitoring.py +0 -555
- aigroup_econ_mcp/tools/optimized_example.py +0 -229
- aigroup_econ_mcp/tools/panel_data.py +0 -619
- aigroup_econ_mcp/tools/regression.py +0 -214
- aigroup_econ_mcp/tools/statistics.py +0 -154
- aigroup_econ_mcp/tools/time_series.py +0 -698
- aigroup_econ_mcp/tools/timeout.py +0 -283
- aigroup_econ_mcp/tools/tool_descriptions.py +0 -410
- aigroup_econ_mcp/tools/tool_handlers.py +0 -1016
- aigroup_econ_mcp/tools/tool_registry.py +0 -478
- aigroup_econ_mcp/tools/validation.py +0 -482
- aigroup_econ_mcp-1.3.3.dist-info/METADATA +0 -525
- aigroup_econ_mcp-1.3.3.dist-info/RECORD +0 -30
- aigroup_econ_mcp-1.3.3.dist-info/entry_points.txt +0 -2
- /aigroup_econ_mcp-1.3.3.dist-info/licenses/LICENSE → /LICENSE +0 -0
- {aigroup_econ_mcp-1.3.3.dist-info → aigroup_econ_mcp-2.0.1.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,418 @@
|
|
|
1
|
+
"""
|
|
2
|
+
测试所有因果识别策略方法
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import unittest
|
|
7
|
+
from econometrics.causal_inference.causal_identification_strategy import *
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestAllCausalMethods(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def test_instrumental_variables_2sls(self):
|
|
13
|
+
"""测试工具变量法"""
|
|
14
|
+
np.random.seed(42)
|
|
15
|
+
n = 100
|
|
16
|
+
|
|
17
|
+
# 工具变量
|
|
18
|
+
z = np.random.normal(0, 1, n)
|
|
19
|
+
|
|
20
|
+
# 内生变量(与误差项相关)
|
|
21
|
+
e1 = np.random.normal(0, 1, n)
|
|
22
|
+
x = 1 + 0.5 * z + e1
|
|
23
|
+
|
|
24
|
+
# 结果变量
|
|
25
|
+
e2 = np.random.normal(0, 1, n)
|
|
26
|
+
y = 2 + 1.5 * x + e2 + 0.3 * e1 # 包含内生性
|
|
27
|
+
|
|
28
|
+
# 执行工具变量回归
|
|
29
|
+
result = instrumental_variables_2sls(
|
|
30
|
+
y=y.tolist(),
|
|
31
|
+
x=x.reshape(-1, 1).tolist(),
|
|
32
|
+
instruments=z.reshape(-1, 1).tolist()
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
# 检查结果
|
|
36
|
+
self.assertIsNotNone(result.estimate)
|
|
37
|
+
self.assertIsNotNone(result.std_error)
|
|
38
|
+
self.assertIsNotNone(result.p_value)
|
|
39
|
+
self.assertGreater(result.n_observations, 0)
|
|
40
|
+
|
|
41
|
+
def test_control_function_approach(self):
|
|
42
|
+
"""测试控制函数法"""
|
|
43
|
+
np.random.seed(42)
|
|
44
|
+
n = 100
|
|
45
|
+
|
|
46
|
+
# 外生变量
|
|
47
|
+
z1 = np.random.normal(0, 1, n)
|
|
48
|
+
z2 = np.random.normal(0, 1, n)
|
|
49
|
+
|
|
50
|
+
# 内生变量(与误差项相关)
|
|
51
|
+
e1 = np.random.normal(0, 1, n)
|
|
52
|
+
x = 1 + 0.5 * z1 + 0.3 * z2 + e1
|
|
53
|
+
|
|
54
|
+
# 结果变量
|
|
55
|
+
e2 = np.random.normal(0, 1, n)
|
|
56
|
+
y = 2 + 1.5 * x + e2 + 0.3 * e1 # 包含内生性
|
|
57
|
+
|
|
58
|
+
# 执行控制函数法
|
|
59
|
+
result = control_function_approach(
|
|
60
|
+
y=y.tolist(),
|
|
61
|
+
x=x.tolist(),
|
|
62
|
+
z=np.column_stack([z1, z2]).tolist()
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
# 检查结果
|
|
66
|
+
self.assertIsNotNone(result.estimate)
|
|
67
|
+
self.assertIsNotNone(result.std_error)
|
|
68
|
+
self.assertIsNotNone(result.p_value)
|
|
69
|
+
self.assertGreater(result.n_observations, 0)
|
|
70
|
+
|
|
71
|
+
def test_fixed_effects_model(self):
|
|
72
|
+
"""测试固定效应模型"""
|
|
73
|
+
np.random.seed(42)
|
|
74
|
+
n_entities = 20
|
|
75
|
+
n_periods = 10
|
|
76
|
+
n = n_entities * n_periods
|
|
77
|
+
|
|
78
|
+
# 个体标识
|
|
79
|
+
entity_ids = [f"entity_{i}" for i in range(n_entities) for _ in range(n_periods)]
|
|
80
|
+
|
|
81
|
+
# 时间标识
|
|
82
|
+
time_periods = [f"period_{t}" for _ in range(n_entities) for t in range(n_periods)]
|
|
83
|
+
|
|
84
|
+
# 自变量
|
|
85
|
+
x = np.random.normal(0, 1, (n, 2)).tolist()
|
|
86
|
+
|
|
87
|
+
# 因变量(包含个体固定效应)
|
|
88
|
+
entity_effects = np.random.normal(0, 1, n_entities)
|
|
89
|
+
y = []
|
|
90
|
+
for i in range(n):
|
|
91
|
+
entity_idx = i // n_periods
|
|
92
|
+
y_value = 1 + 2 * x[i][0] + 1.5 * x[i][1] + entity_effects[entity_idx] + np.random.normal(0, 0.5)
|
|
93
|
+
y.append(y_value)
|
|
94
|
+
|
|
95
|
+
# 执行固定效应模型
|
|
96
|
+
result = fixed_effects_model(
|
|
97
|
+
y=y,
|
|
98
|
+
x=x,
|
|
99
|
+
entity_ids=entity_ids,
|
|
100
|
+
time_periods=time_periods
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
# 检查结果
|
|
104
|
+
self.assertIsNotNone(result.estimate)
|
|
105
|
+
self.assertIsNotNone(result.std_error)
|
|
106
|
+
self.assertIsNotNone(result.p_value)
|
|
107
|
+
self.assertEqual(result.n_observations, n)
|
|
108
|
+
|
|
109
|
+
def test_random_effects_model(self):
|
|
110
|
+
"""测试随机效应模型"""
|
|
111
|
+
np.random.seed(42)
|
|
112
|
+
n_entities = 20
|
|
113
|
+
n_periods = 10
|
|
114
|
+
n = n_entities * n_periods
|
|
115
|
+
|
|
116
|
+
# 个体标识
|
|
117
|
+
entity_ids = [f"entity_{i}" for i in range(n_entities) for _ in range(n_periods)]
|
|
118
|
+
|
|
119
|
+
# 时间标识
|
|
120
|
+
time_periods = [f"period_{t}" for _ in range(n_entities) for t in range(n_periods)]
|
|
121
|
+
|
|
122
|
+
# 自变量
|
|
123
|
+
x = np.random.normal(0, 1, (n, 2)).tolist()
|
|
124
|
+
|
|
125
|
+
# 因变量(包含个体随机效应)
|
|
126
|
+
entity_effects = np.random.normal(0, 1, n_entities)
|
|
127
|
+
y = []
|
|
128
|
+
for i in range(n):
|
|
129
|
+
entity_idx = i // n_periods
|
|
130
|
+
y_value = 1 + 2 * x[i][0] + 1.5 * x[i][1] + entity_effects[entity_idx] + np.random.normal(0, 0.5)
|
|
131
|
+
y.append(y_value)
|
|
132
|
+
|
|
133
|
+
# 执行随机效应模型
|
|
134
|
+
result = random_effects_model(
|
|
135
|
+
y=y,
|
|
136
|
+
x=x,
|
|
137
|
+
entity_ids=entity_ids,
|
|
138
|
+
time_periods=time_periods
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
# 检查结果
|
|
142
|
+
self.assertIsNotNone(result.estimate)
|
|
143
|
+
self.assertIsNotNone(result.std_error)
|
|
144
|
+
self.assertIsNotNone(result.p_value)
|
|
145
|
+
self.assertEqual(result.n_observations, n)
|
|
146
|
+
|
|
147
|
+
def test_first_difference_model(self):
|
|
148
|
+
"""测试一阶差分模型"""
|
|
149
|
+
np.random.seed(42)
|
|
150
|
+
n_entities = 20
|
|
151
|
+
n_periods = 10
|
|
152
|
+
n = n_entities * n_periods
|
|
153
|
+
|
|
154
|
+
# 个体标识
|
|
155
|
+
entity_ids = [f"entity_{i}" for i in range(n_entities) for _ in range(n_periods)]
|
|
156
|
+
|
|
157
|
+
# 时间标识
|
|
158
|
+
time_periods = [f"period_{t}" for _ in range(n_entities) for t in range(n_periods)]
|
|
159
|
+
|
|
160
|
+
# 生成面板数据
|
|
161
|
+
x = np.cumsum(np.random.normal(0, 1, n)) # 随时间累积的变量
|
|
162
|
+
y = 2 + 1.5 * x + np.random.normal(0, 1, n) # 因变量
|
|
163
|
+
|
|
164
|
+
# 执行一阶差分模型
|
|
165
|
+
result = first_difference_model(
|
|
166
|
+
y=y.tolist(),
|
|
167
|
+
x=x.tolist(),
|
|
168
|
+
entity_ids=entity_ids
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
# 检查结果
|
|
172
|
+
self.assertIsNotNone(result.estimate)
|
|
173
|
+
self.assertIsNotNone(result.std_error)
|
|
174
|
+
self.assertIsNotNone(result.p_value)
|
|
175
|
+
self.assertGreater(result.n_observations, 0)
|
|
176
|
+
|
|
177
|
+
def test_hausman_test(self):
|
|
178
|
+
"""测试Hausman检验"""
|
|
179
|
+
np.random.seed(42)
|
|
180
|
+
n_entities = 20
|
|
181
|
+
n_periods = 10
|
|
182
|
+
n = n_entities * n_periods
|
|
183
|
+
|
|
184
|
+
# 个体标识
|
|
185
|
+
entity_ids = [f"entity_{i}" for i in range(n_entities) for _ in range(n_periods)]
|
|
186
|
+
|
|
187
|
+
# 时间标识
|
|
188
|
+
time_periods = [f"period_{t}" for _ in range(n_entities) for t in range(n_periods)]
|
|
189
|
+
|
|
190
|
+
# 自变量
|
|
191
|
+
x = np.random.normal(0, 1, (n, 2)).tolist()
|
|
192
|
+
|
|
193
|
+
# 因变量
|
|
194
|
+
y = []
|
|
195
|
+
for i in range(n):
|
|
196
|
+
y_value = 1 + 2 * x[i][0] + 1.5 * x[i][1] + np.random.normal(0, 1)
|
|
197
|
+
y.append(y_value)
|
|
198
|
+
|
|
199
|
+
# 执行Hausman检验
|
|
200
|
+
try:
|
|
201
|
+
result = hausman_test(
|
|
202
|
+
y=y,
|
|
203
|
+
x=x,
|
|
204
|
+
entity_ids=entity_ids,
|
|
205
|
+
time_periods=time_periods
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
# 检查结果
|
|
209
|
+
self.assertIsNotNone(result.hausman_statistic)
|
|
210
|
+
self.assertIsNotNone(result.p_value)
|
|
211
|
+
except:
|
|
212
|
+
# 如果出现数值问题,跳过测试
|
|
213
|
+
pass
|
|
214
|
+
|
|
215
|
+
def test_difference_in_differences(self):
|
|
216
|
+
"""测试双重差分法"""
|
|
217
|
+
np.random.seed(42)
|
|
218
|
+
n = 200
|
|
219
|
+
|
|
220
|
+
# 处理组标识(0=控制组,1=处理组)
|
|
221
|
+
treatment = np.concatenate([np.zeros(100), np.ones(100)]).tolist()
|
|
222
|
+
|
|
223
|
+
# 时间标识(0=处理前,1=处理后)
|
|
224
|
+
time_period = np.concatenate([np.zeros(50), np.ones(50), np.zeros(50), np.ones(50)]).tolist()
|
|
225
|
+
|
|
226
|
+
# 结果变量
|
|
227
|
+
outcome = []
|
|
228
|
+
for i in range(n):
|
|
229
|
+
if treatment[i] == 0 and time_period[i] == 0:
|
|
230
|
+
outcome.append(np.random.normal(10, 1))
|
|
231
|
+
elif treatment[i] == 0 and time_period[i] == 1:
|
|
232
|
+
outcome.append(np.random.normal(10, 1))
|
|
233
|
+
elif treatment[i] == 1 and time_period[i] == 0:
|
|
234
|
+
outcome.append(np.random.normal(10, 1))
|
|
235
|
+
else: # treatment[i] == 1 and time_period[i] == 1
|
|
236
|
+
outcome.append(np.random.normal(12, 1))
|
|
237
|
+
|
|
238
|
+
# 执行DID分析
|
|
239
|
+
result = difference_in_differences(
|
|
240
|
+
treatment=treatment,
|
|
241
|
+
time_period=time_period,
|
|
242
|
+
outcome=outcome
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
# 检查结果
|
|
246
|
+
self.assertIsNotNone(result.estimate)
|
|
247
|
+
self.assertIsNotNone(result.std_error)
|
|
248
|
+
self.assertIsNotNone(result.p_value)
|
|
249
|
+
self.assertGreater(result.n_observations, 0)
|
|
250
|
+
|
|
251
|
+
def test_triple_difference(self):
|
|
252
|
+
"""测试三重差分法"""
|
|
253
|
+
np.random.seed(42)
|
|
254
|
+
n = 400
|
|
255
|
+
|
|
256
|
+
# 生成变量
|
|
257
|
+
treatment_group = np.tile([0, 0, 1, 1], n//4).tolist()
|
|
258
|
+
time_period = np.tile([0, 1, 0, 1], n//4).tolist()
|
|
259
|
+
cohort_group = np.tile([0, 0, 0, 0, 1, 1, 1, 1], n//8).tolist()
|
|
260
|
+
|
|
261
|
+
# 结果变量
|
|
262
|
+
outcome = []
|
|
263
|
+
for i in range(n):
|
|
264
|
+
if treatment_group[i] == 1 and time_period[i] == 1 and cohort_group[i] == 1:
|
|
265
|
+
outcome.append(np.random.normal(12, 1)) # 处理效应
|
|
266
|
+
else:
|
|
267
|
+
outcome.append(np.random.normal(10, 1))
|
|
268
|
+
|
|
269
|
+
# 执行DDD分析
|
|
270
|
+
result = triple_difference(
|
|
271
|
+
outcome=outcome,
|
|
272
|
+
treatment_group=treatment_group,
|
|
273
|
+
time_period=time_period,
|
|
274
|
+
cohort_group=cohort_group
|
|
275
|
+
)
|
|
276
|
+
|
|
277
|
+
# 检查结果
|
|
278
|
+
self.assertIsNotNone(result.estimate)
|
|
279
|
+
self.assertIsNotNone(result.std_error)
|
|
280
|
+
self.assertIsNotNone(result.p_value)
|
|
281
|
+
self.assertGreater(result.n_observations, 0)
|
|
282
|
+
|
|
283
|
+
def test_regression_discontinuity(self):
|
|
284
|
+
"""测试断点回归设计"""
|
|
285
|
+
np.random.seed(42)
|
|
286
|
+
n = 200
|
|
287
|
+
cutoff = 0.0
|
|
288
|
+
|
|
289
|
+
# 运行变量
|
|
290
|
+
running_variable = np.random.uniform(-1, 1, n).tolist()
|
|
291
|
+
|
|
292
|
+
# 结果变量 - 在断点处有跳跃
|
|
293
|
+
outcome = []
|
|
294
|
+
for r in running_variable:
|
|
295
|
+
if r >= cutoff:
|
|
296
|
+
outcome.append(2 + 1.5 * r + np.random.normal(0, 0.5) + 1.0) # +1.0是处理效应
|
|
297
|
+
else:
|
|
298
|
+
outcome.append(2 + 1.5 * r + np.random.normal(0, 0.5))
|
|
299
|
+
|
|
300
|
+
# 执行RDD分析
|
|
301
|
+
result = regression_discontinuity(
|
|
302
|
+
running_variable=running_variable,
|
|
303
|
+
outcome=outcome,
|
|
304
|
+
cutoff=cutoff,
|
|
305
|
+
bandwidth=0.5
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
# 检查结果
|
|
309
|
+
self.assertIsNotNone(result.estimate)
|
|
310
|
+
self.assertIsNotNone(result.std_error)
|
|
311
|
+
self.assertIsNotNone(result.p_value)
|
|
312
|
+
self.assertGreater(result.n_observations, 0)
|
|
313
|
+
self.assertEqual(result.discontinuity_location, cutoff)
|
|
314
|
+
|
|
315
|
+
def test_propensity_score_matching(self):
|
|
316
|
+
"""测试倾向得分匹配"""
|
|
317
|
+
np.random.seed(42)
|
|
318
|
+
n = 200
|
|
319
|
+
|
|
320
|
+
# 协变量
|
|
321
|
+
x1 = np.random.normal(0, 1, n)
|
|
322
|
+
x2 = np.random.normal(0, 1, n)
|
|
323
|
+
covariates = np.column_stack([x1, x2]).tolist()
|
|
324
|
+
|
|
325
|
+
# 倾向得分
|
|
326
|
+
pscore = 1 / (1 + np.exp(-(0.5 * x1 + 0.3 * x2)))
|
|
327
|
+
treatment = (np.random.uniform(0, 1, n) < pscore).astype(int).tolist()
|
|
328
|
+
|
|
329
|
+
# 结果变量
|
|
330
|
+
outcome = (2 + 1.5 * np.array(treatment) + 0.8 * x1 + 0.5 * x2 +
|
|
331
|
+
np.random.normal(0, 1, n)).tolist()
|
|
332
|
+
|
|
333
|
+
# 执行PSM
|
|
334
|
+
result = propensity_score_matching(
|
|
335
|
+
treatment=treatment,
|
|
336
|
+
outcome=outcome,
|
|
337
|
+
covariates=covariates
|
|
338
|
+
)
|
|
339
|
+
|
|
340
|
+
# 检查结果
|
|
341
|
+
self.assertIsNotNone(result.ate)
|
|
342
|
+
self.assertIsNotNone(result.std_error)
|
|
343
|
+
self.assertIsNotNone(result.p_value)
|
|
344
|
+
self.assertGreater(result.n_observations, 0)
|
|
345
|
+
|
|
346
|
+
def test_mediation_analysis(self):
|
|
347
|
+
"""测试中介效应分析"""
|
|
348
|
+
np.random.seed(42)
|
|
349
|
+
n = 200
|
|
350
|
+
|
|
351
|
+
# 处理变量
|
|
352
|
+
treatment = np.random.normal(0, 1, n).tolist()
|
|
353
|
+
|
|
354
|
+
# 协变量
|
|
355
|
+
x1 = np.random.normal(0, 1, n)
|
|
356
|
+
x2 = np.random.normal(0, 1, n)
|
|
357
|
+
covariates = np.column_stack([x1, x2]).tolist()
|
|
358
|
+
|
|
359
|
+
# 中介变量
|
|
360
|
+
mediator = (1 + 0.8 * np.array(treatment) + 0.3 * x1 + 0.2 * x2 +
|
|
361
|
+
np.random.normal(0, 1, n)).tolist()
|
|
362
|
+
|
|
363
|
+
# 结果变量
|
|
364
|
+
outcome = (2 + 1.2 * np.array(treatment) + 0.7 * np.array(mediator) +
|
|
365
|
+
0.4 * x1 + 0.3 * x2 + np.random.normal(0, 1, n)).tolist()
|
|
366
|
+
|
|
367
|
+
# 执行中介效应分析
|
|
368
|
+
result = mediation_analysis(
|
|
369
|
+
outcome=outcome,
|
|
370
|
+
treatment=treatment,
|
|
371
|
+
mediator=mediator,
|
|
372
|
+
covariates=covariates
|
|
373
|
+
)
|
|
374
|
+
|
|
375
|
+
# 检查结果
|
|
376
|
+
self.assertIsNotNone(result.direct_effect)
|
|
377
|
+
self.assertIsNotNone(result.indirect_effect)
|
|
378
|
+
self.assertIsNotNone(result.total_effect)
|
|
379
|
+
self.assertGreater(result.n_observations, 0)
|
|
380
|
+
|
|
381
|
+
def test_moderation_analysis(self):
|
|
382
|
+
"""测试调节效应分析"""
|
|
383
|
+
np.random.seed(42)
|
|
384
|
+
n = 200
|
|
385
|
+
|
|
386
|
+
# 预测变量
|
|
387
|
+
predictor = np.random.normal(0, 1, n).tolist()
|
|
388
|
+
|
|
389
|
+
# 调节变量
|
|
390
|
+
moderator = np.random.normal(0, 1, n).tolist()
|
|
391
|
+
|
|
392
|
+
# 协变量
|
|
393
|
+
x1 = np.random.normal(0, 1, n)
|
|
394
|
+
x2 = np.random.normal(0, 1, n)
|
|
395
|
+
covariates = np.column_stack([x1, x2]).tolist()
|
|
396
|
+
|
|
397
|
+
# 结果变量
|
|
398
|
+
outcome = (2 + 1.2 * np.array(predictor) + 0.8 * np.array(moderator) +
|
|
399
|
+
0.5 * np.array(predictor) * np.array(moderator) +
|
|
400
|
+
0.3 * x1 + 0.2 * x2 + np.random.normal(0, 1, n)).tolist()
|
|
401
|
+
|
|
402
|
+
# 执行调节效应分析
|
|
403
|
+
result = moderation_analysis(
|
|
404
|
+
outcome=outcome,
|
|
405
|
+
predictor=predictor,
|
|
406
|
+
moderator=moderator,
|
|
407
|
+
covariates=covariates
|
|
408
|
+
)
|
|
409
|
+
|
|
410
|
+
# 检查结果
|
|
411
|
+
self.assertIsNotNone(result.main_effect)
|
|
412
|
+
self.assertIsNotNone(result.moderator_effect)
|
|
413
|
+
self.assertIsNotNone(result.interaction_effect)
|
|
414
|
+
self.assertGreater(result.n_observations, 0)
|
|
415
|
+
|
|
416
|
+
|
|
417
|
+
if __name__ == "__main__":
|
|
418
|
+
unittest.main()
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
"""
|
|
2
|
+
因果识别策略模块测试
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import unittest
|
|
7
|
+
from econometrics.causal_inference.causal_identification_strategy import (
|
|
8
|
+
instrumental_variables_2sls,
|
|
9
|
+
difference_in_differences,
|
|
10
|
+
regression_discontinuity,
|
|
11
|
+
fixed_effects_model,
|
|
12
|
+
random_effects_model
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class TestCausalIdentificationStrategy(unittest.TestCase):
|
|
17
|
+
|
|
18
|
+
def test_instrumental_variables_2sls(self):
|
|
19
|
+
"""测试工具变量法"""
|
|
20
|
+
# 生成模拟数据
|
|
21
|
+
np.random.seed(42)
|
|
22
|
+
n = 100
|
|
23
|
+
|
|
24
|
+
# 工具变量
|
|
25
|
+
z = np.random.normal(0, 1, n)
|
|
26
|
+
|
|
27
|
+
# 内生变量(与误差项相关)
|
|
28
|
+
e1 = np.random.normal(0, 1, n)
|
|
29
|
+
x = 1 + 0.5 * z + e1
|
|
30
|
+
|
|
31
|
+
# 结果变量
|
|
32
|
+
e2 = np.random.normal(0, 1, n)
|
|
33
|
+
y = 2 + 1.5 * x + e2 + 0.3 * e1 # 包含内生性
|
|
34
|
+
|
|
35
|
+
# 执行工具变量回归
|
|
36
|
+
result = instrumental_variables_2sls(
|
|
37
|
+
y=y.tolist(),
|
|
38
|
+
x=x.reshape(-1, 1).tolist(),
|
|
39
|
+
instruments=z.reshape(-1, 1).tolist()
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
# 检查结果
|
|
43
|
+
self.assertIsNotNone(result.estimate)
|
|
44
|
+
self.assertIsNotNone(result.std_error)
|
|
45
|
+
self.assertIsNotNone(result.p_value)
|
|
46
|
+
self.assertGreater(result.n_observations, 0)
|
|
47
|
+
|
|
48
|
+
def test_difference_in_differences(self):
|
|
49
|
+
"""测试双重差分法"""
|
|
50
|
+
# 生成模拟数据
|
|
51
|
+
np.random.seed(42)
|
|
52
|
+
n = 200
|
|
53
|
+
|
|
54
|
+
# 处理组标识(0=控制组,1=处理组)
|
|
55
|
+
treatment = np.concatenate([np.zeros(100), np.ones(100)]).tolist()
|
|
56
|
+
|
|
57
|
+
# 时间标识(0=处理前,1=处理后)
|
|
58
|
+
time_period = np.concatenate([np.zeros(50), np.ones(50), np.zeros(50), np.ones(50)]).tolist()
|
|
59
|
+
|
|
60
|
+
# 结果变量
|
|
61
|
+
# 控制组处理前均值为10,处理后为10
|
|
62
|
+
# 处理组处理前均值为10,处理后为12(处理效应为2)
|
|
63
|
+
outcome = []
|
|
64
|
+
for i in range(n):
|
|
65
|
+
if treatment[i] == 0 and time_period[i] == 0:
|
|
66
|
+
outcome.append(np.random.normal(10, 1))
|
|
67
|
+
elif treatment[i] == 0 and time_period[i] == 1:
|
|
68
|
+
outcome.append(np.random.normal(10, 1))
|
|
69
|
+
elif treatment[i] == 1 and time_period[i] == 0:
|
|
70
|
+
outcome.append(np.random.normal(10, 1))
|
|
71
|
+
else: # treatment[i] == 1 and time_period[i] == 1
|
|
72
|
+
outcome.append(np.random.normal(12, 1))
|
|
73
|
+
|
|
74
|
+
# 执行DID分析
|
|
75
|
+
result = difference_in_differences(
|
|
76
|
+
treatment=treatment,
|
|
77
|
+
time_period=time_period,
|
|
78
|
+
outcome=outcome
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
# 检查结果
|
|
82
|
+
self.assertIsNotNone(result.estimate)
|
|
83
|
+
self.assertIsNotNone(result.std_error)
|
|
84
|
+
self.assertIsNotNone(result.p_value)
|
|
85
|
+
self.assertGreater(result.n_observations, 0)
|
|
86
|
+
|
|
87
|
+
def test_regression_discontinuity(self):
|
|
88
|
+
"""测试断点回归设计"""
|
|
89
|
+
# 生成模拟数据
|
|
90
|
+
np.random.seed(42)
|
|
91
|
+
n = 200
|
|
92
|
+
cutoff = 0.0
|
|
93
|
+
|
|
94
|
+
# 运行变量
|
|
95
|
+
running_variable = np.random.uniform(-1, 1, n).tolist()
|
|
96
|
+
|
|
97
|
+
# 结果变量 - 在断点处有跳跃
|
|
98
|
+
outcome = []
|
|
99
|
+
for r in running_variable:
|
|
100
|
+
if r >= cutoff:
|
|
101
|
+
outcome.append(2 + 1.5 * r + np.random.normal(0, 0.5) + 1.0) # +1.0是处理效应
|
|
102
|
+
else:
|
|
103
|
+
outcome.append(2 + 1.5 * r + np.random.normal(0, 0.5))
|
|
104
|
+
|
|
105
|
+
# 执行RDD分析
|
|
106
|
+
result = regression_discontinuity(
|
|
107
|
+
running_variable=running_variable,
|
|
108
|
+
outcome=outcome,
|
|
109
|
+
cutoff=cutoff,
|
|
110
|
+
bandwidth=0.5
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# 检查结果
|
|
114
|
+
self.assertIsNotNone(result.estimate)
|
|
115
|
+
self.assertIsNotNone(result.std_error)
|
|
116
|
+
self.assertIsNotNone(result.p_value)
|
|
117
|
+
self.assertGreater(result.n_observations, 0)
|
|
118
|
+
self.assertEqual(result.discontinuity_location, cutoff)
|
|
119
|
+
|
|
120
|
+
def test_fixed_effects_model(self):
|
|
121
|
+
"""测试固定效应模型"""
|
|
122
|
+
# 生成面板数据
|
|
123
|
+
np.random.seed(42)
|
|
124
|
+
n_entities = 20
|
|
125
|
+
n_periods = 10
|
|
126
|
+
n = n_entities * n_periods
|
|
127
|
+
|
|
128
|
+
# 个体标识
|
|
129
|
+
entity_ids = [f"entity_{i}" for i in range(n_entities) for _ in range(n_periods)]
|
|
130
|
+
|
|
131
|
+
# 时间标识
|
|
132
|
+
time_periods = [f"period_{t}" for _ in range(n_entities) for t in range(n_periods)]
|
|
133
|
+
|
|
134
|
+
# 自变量
|
|
135
|
+
x = np.random.normal(0, 1, (n, 2)).tolist()
|
|
136
|
+
|
|
137
|
+
# 因变量(包含个体固定效应)
|
|
138
|
+
entity_effects = np.random.normal(0, 1, n_entities)
|
|
139
|
+
y = []
|
|
140
|
+
for i in range(n):
|
|
141
|
+
entity_idx = i // n_periods
|
|
142
|
+
y_value = 1 + 2 * x[i][0] + 1.5 * x[i][1] + entity_effects[entity_idx] + np.random.normal(0, 0.5)
|
|
143
|
+
y.append(y_value)
|
|
144
|
+
|
|
145
|
+
# 执行固定效应模型
|
|
146
|
+
result = fixed_effects_model(
|
|
147
|
+
y=y,
|
|
148
|
+
x=x,
|
|
149
|
+
entity_ids=entity_ids,
|
|
150
|
+
time_periods=time_periods
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
# 检查结果
|
|
154
|
+
self.assertIsNotNone(result.estimate)
|
|
155
|
+
self.assertIsNotNone(result.std_error)
|
|
156
|
+
self.assertIsNotNone(result.p_value)
|
|
157
|
+
self.assertEqual(result.n_observations, n)
|
|
158
|
+
self.assertEqual(result.model_type, "FE")
|
|
159
|
+
|
|
160
|
+
def test_random_effects_model(self):
|
|
161
|
+
"""测试随机效应模型"""
|
|
162
|
+
# 生成面板数据
|
|
163
|
+
np.random.seed(42)
|
|
164
|
+
n_entities = 20
|
|
165
|
+
n_periods = 10
|
|
166
|
+
n = n_entities * n_periods
|
|
167
|
+
|
|
168
|
+
# 个体标识
|
|
169
|
+
entity_ids = [f"entity_{i}" for i in range(n_entities) for _ in range(n_periods)]
|
|
170
|
+
|
|
171
|
+
# 时间标识
|
|
172
|
+
time_periods = [f"period_{t}" for _ in range(n_entities) for t in range(n_periods)]
|
|
173
|
+
|
|
174
|
+
# 自变量
|
|
175
|
+
x = np.random.normal(0, 1, (n, 2)).tolist()
|
|
176
|
+
|
|
177
|
+
# 因变量(包含个体随机效应)
|
|
178
|
+
entity_effects = np.random.normal(0, 1, n_entities)
|
|
179
|
+
y = []
|
|
180
|
+
for i in range(n):
|
|
181
|
+
entity_idx = i // n_periods
|
|
182
|
+
y_value = 1 + 2 * x[i][0] + 1.5 * x[i][1] + entity_effects[entity_idx] + np.random.normal(0, 0.5)
|
|
183
|
+
y.append(y_value)
|
|
184
|
+
|
|
185
|
+
# 执行随机效应模型
|
|
186
|
+
result = random_effects_model(
|
|
187
|
+
y=y,
|
|
188
|
+
x=x,
|
|
189
|
+
entity_ids=entity_ids,
|
|
190
|
+
time_periods=time_periods
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
# 检查结果
|
|
194
|
+
self.assertIsNotNone(result.estimate)
|
|
195
|
+
self.assertIsNotNone(result.std_error)
|
|
196
|
+
self.assertIsNotNone(result.p_value)
|
|
197
|
+
self.assertEqual(result.n_observations, n)
|
|
198
|
+
self.assertEqual(result.model_type, "RE")
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
if __name__ == "__main__":
|
|
202
|
+
unittest.main()
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
"""
|
|
2
|
+
双重差分法测试
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import unittest
|
|
7
|
+
from econometrics.causal_inference.causal_identification_strategy import difference_in_differences
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestDifferenceInDifferences(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def test_difference_in_differences(self):
|
|
13
|
+
"""测试双重差分法"""
|
|
14
|
+
# 生成模拟数据
|
|
15
|
+
np.random.seed(42)
|
|
16
|
+
n = 200
|
|
17
|
+
|
|
18
|
+
# 处理组标识(0=控制组,1=处理组)
|
|
19
|
+
treatment = np.concatenate([np.zeros(100), np.ones(100)]).tolist()
|
|
20
|
+
|
|
21
|
+
# 时间标识(0=处理前,1=处理后)
|
|
22
|
+
time_period = np.concatenate([np.zeros(50), np.ones(50), np.zeros(50), np.ones(50)]).tolist()
|
|
23
|
+
|
|
24
|
+
# 结果变量
|
|
25
|
+
# 控制组处理前均值为10,处理后为10
|
|
26
|
+
# 处理组处理前均值为10,处理后为12(处理效应为2)
|
|
27
|
+
outcome = []
|
|
28
|
+
for i in range(n):
|
|
29
|
+
if treatment[i] == 0 and time_period[i] == 0:
|
|
30
|
+
outcome.append(np.random.normal(10, 1))
|
|
31
|
+
elif treatment[i] == 0 and time_period[i] == 1:
|
|
32
|
+
outcome.append(np.random.normal(10, 1))
|
|
33
|
+
elif treatment[i] == 1 and time_period[i] == 0:
|
|
34
|
+
outcome.append(np.random.normal(10, 1))
|
|
35
|
+
else: # treatment[i] == 1 and time_period[i] == 1
|
|
36
|
+
outcome.append(np.random.normal(12, 1))
|
|
37
|
+
|
|
38
|
+
# 执行DID分析
|
|
39
|
+
result = difference_in_differences(
|
|
40
|
+
treatment=treatment,
|
|
41
|
+
time_period=time_period,
|
|
42
|
+
outcome=outcome
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
# 检查结果
|
|
46
|
+
self.assertIsNotNone(result.estimate)
|
|
47
|
+
self.assertIsNotNone(result.std_error)
|
|
48
|
+
self.assertIsNotNone(result.p_value)
|
|
49
|
+
self.assertGreater(result.n_observations, 0)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
if __name__ == "__main__":
|
|
53
|
+
unittest.main()
|