Trajectree 0.0.0__py3-none-any.whl → 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +3 -0
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/quimb/docs/_pygments/_pygments_dark.py +118 -0
  7. trajectree/quimb/docs/_pygments/_pygments_light.py +118 -0
  8. trajectree/quimb/docs/conf.py +158 -0
  9. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +62 -0
  10. trajectree/quimb/quimb/__init__.py +507 -0
  11. trajectree/quimb/quimb/calc.py +1491 -0
  12. trajectree/quimb/quimb/core.py +2279 -0
  13. trajectree/quimb/quimb/evo.py +712 -0
  14. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  15. trajectree/quimb/quimb/experimental/autojittn.py +129 -0
  16. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +109 -0
  17. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +397 -0
  18. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +316 -0
  19. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +653 -0
  20. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +571 -0
  21. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +775 -0
  22. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +316 -0
  23. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +537 -0
  24. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +194 -0
  25. trajectree/quimb/quimb/experimental/cluster_update.py +286 -0
  26. trajectree/quimb/quimb/experimental/merabuilder.py +865 -0
  27. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +15 -0
  28. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +1631 -0
  29. trajectree/quimb/quimb/experimental/schematic.py +7 -0
  30. trajectree/quimb/quimb/experimental/tn_marginals.py +130 -0
  31. trajectree/quimb/quimb/experimental/tnvmc.py +1483 -0
  32. trajectree/quimb/quimb/gates.py +36 -0
  33. trajectree/quimb/quimb/gen/__init__.py +2 -0
  34. trajectree/quimb/quimb/gen/operators.py +1167 -0
  35. trajectree/quimb/quimb/gen/rand.py +713 -0
  36. trajectree/quimb/quimb/gen/states.py +479 -0
  37. trajectree/quimb/quimb/linalg/__init__.py +6 -0
  38. trajectree/quimb/quimb/linalg/approx_spectral.py +1109 -0
  39. trajectree/quimb/quimb/linalg/autoblock.py +258 -0
  40. trajectree/quimb/quimb/linalg/base_linalg.py +719 -0
  41. trajectree/quimb/quimb/linalg/mpi_launcher.py +397 -0
  42. trajectree/quimb/quimb/linalg/numpy_linalg.py +244 -0
  43. trajectree/quimb/quimb/linalg/rand_linalg.py +514 -0
  44. trajectree/quimb/quimb/linalg/scipy_linalg.py +293 -0
  45. trajectree/quimb/quimb/linalg/slepc_linalg.py +892 -0
  46. trajectree/quimb/quimb/schematic.py +1518 -0
  47. trajectree/quimb/quimb/tensor/__init__.py +401 -0
  48. trajectree/quimb/quimb/tensor/array_ops.py +610 -0
  49. trajectree/quimb/quimb/tensor/circuit.py +4824 -0
  50. trajectree/quimb/quimb/tensor/circuit_gen.py +411 -0
  51. trajectree/quimb/quimb/tensor/contraction.py +336 -0
  52. trajectree/quimb/quimb/tensor/decomp.py +1255 -0
  53. trajectree/quimb/quimb/tensor/drawing.py +1646 -0
  54. trajectree/quimb/quimb/tensor/fitting.py +385 -0
  55. trajectree/quimb/quimb/tensor/geometry.py +583 -0
  56. trajectree/quimb/quimb/tensor/interface.py +114 -0
  57. trajectree/quimb/quimb/tensor/networking.py +1058 -0
  58. trajectree/quimb/quimb/tensor/optimize.py +1818 -0
  59. trajectree/quimb/quimb/tensor/tensor_1d.py +4778 -0
  60. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +1854 -0
  61. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +662 -0
  62. trajectree/quimb/quimb/tensor/tensor_2d.py +5954 -0
  63. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +96 -0
  64. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +1230 -0
  65. trajectree/quimb/quimb/tensor/tensor_3d.py +2869 -0
  66. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +46 -0
  67. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +60 -0
  68. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +3237 -0
  69. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +565 -0
  70. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +1138 -0
  71. trajectree/quimb/quimb/tensor/tensor_builder.py +5411 -0
  72. trajectree/quimb/quimb/tensor/tensor_core.py +11179 -0
  73. trajectree/quimb/quimb/tensor/tensor_dmrg.py +1472 -0
  74. trajectree/quimb/quimb/tensor/tensor_mera.py +204 -0
  75. trajectree/quimb/quimb/utils.py +892 -0
  76. trajectree/quimb/tests/__init__.py +0 -0
  77. trajectree/quimb/tests/test_accel.py +501 -0
  78. trajectree/quimb/tests/test_calc.py +788 -0
  79. trajectree/quimb/tests/test_core.py +847 -0
  80. trajectree/quimb/tests/test_evo.py +565 -0
  81. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  82. trajectree/quimb/tests/test_gen/test_operators.py +361 -0
  83. trajectree/quimb/tests/test_gen/test_rand.py +296 -0
  84. trajectree/quimb/tests/test_gen/test_states.py +261 -0
  85. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  86. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +368 -0
  87. trajectree/quimb/tests/test_linalg/test_base_linalg.py +351 -0
  88. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +127 -0
  89. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +84 -0
  90. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +134 -0
  91. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +283 -0
  92. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  93. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  94. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +39 -0
  95. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +67 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +64 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +51 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +142 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +101 -0
  100. trajectree/quimb/tests/test_tensor/test_circuit.py +816 -0
  101. trajectree/quimb/tests/test_tensor/test_contract.py +67 -0
  102. trajectree/quimb/tests/test_tensor/test_decomp.py +40 -0
  103. trajectree/quimb/tests/test_tensor/test_mera.py +52 -0
  104. trajectree/quimb/tests/test_tensor/test_optimizers.py +488 -0
  105. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +1171 -0
  106. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +606 -0
  107. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +144 -0
  108. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +123 -0
  109. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +226 -0
  110. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +441 -0
  111. trajectree/quimb/tests/test_tensor/test_tensor_core.py +2066 -0
  112. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +388 -0
  113. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +63 -0
  114. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +270 -0
  115. trajectree/quimb/tests/test_utils.py +85 -0
  116. trajectree/trajectory.py +2 -2
  117. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/METADATA +2 -2
  118. trajectree-0.0.1.dist-info/RECORD +126 -0
  119. trajectree-0.0.0.dist-info/RECORD +0 -16
  120. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,441 @@
1
+ import numpy as np
2
+ import pytest
3
+ from numpy.testing import assert_allclose
4
+
5
+ import quimb as qu
6
+ import quimb.tensor as qtn
7
+
8
+
9
+ class TestGeometries:
10
+ @pytest.mark.parametrize("cyclic", [False, True])
11
+ @pytest.mark.parametrize(
12
+ "edge_fn,shape,percell,coordination",
13
+ [
14
+ (qtn.edges_2d_square, (3, 3), 1, 4),
15
+ (qtn.edges_2d_hexagonal, (3, 3), 2, 3),
16
+ (qtn.edges_2d_kagome, (3, 3), 3, 4),
17
+ (qtn.edges_2d_triangular, (3, 3), 1, 6),
18
+ (qtn.edges_2d_triangular_rectangular, (3, 3), 2, 6),
19
+ (qtn.edges_3d_cubic, (3, 3, 3), 1, 6),
20
+ (qtn.edges_3d_pyrochlore, (3, 3, 3), 4, 6),
21
+ (qtn.edges_3d_diamond, (3, 3, 3), 2, 4),
22
+ (qtn.edges_3d_diamond_cubic, (2, 2, 2), 8, 4),
23
+ ],
24
+ )
25
+ def test_basic(self, cyclic, edge_fn, shape, percell, coordination):
26
+ edges = edge_fn(*shape, cyclic=cyclic)
27
+ tn = qtn.TN_rand_from_edges(edges, D=2)
28
+ assert tn.num_tensors == qu.prod(shape) * percell
29
+ assert max(t.ndim for t in tn) == coordination
30
+
31
+
32
+ class TestSpinHam1D:
33
+ @pytest.mark.parametrize("cyclic", [False, True])
34
+ def test_var_terms(self, cyclic):
35
+ n = 8
36
+ Hd = qu.ham_mbl(n, dh=0.77, seed=42, cyclic=cyclic)
37
+ Ht = qtn.MPO_ham_mbl(n, dh=0.77, seed=42, cyclic=cyclic).to_dense()
38
+ assert_allclose(Hd, Ht)
39
+
40
+ @pytest.mark.parametrize("var_two", ["none", "some", "only"])
41
+ @pytest.mark.parametrize(
42
+ "var_one", ["some", "only", "only-some", "def-only", "none"]
43
+ )
44
+ def test_specials(self, var_one, var_two):
45
+ K1 = qu.rand_herm(2**1)
46
+
47
+ n = 10
48
+ HB = qtn.SpinHam1D(S=1 / 2)
49
+
50
+ if var_two == "some":
51
+ HB += 1, K1, K1
52
+ HB[4, 5] += 1, K1, K1
53
+ HB[7, 8] += 1, K1, K1
54
+ elif var_two == "only":
55
+ for i in range(n - 1):
56
+ HB[i, i + 1] += 1, K1, K1
57
+ else:
58
+ HB += 1, K1, K1
59
+
60
+ if var_one == "some":
61
+ HB += 1, K1
62
+ HB[2] += 1, K1
63
+ HB[3] += 1, K1
64
+ elif var_one == "only":
65
+ for i in range(n - 1):
66
+ HB[i] += 1, K1
67
+ elif var_one == "only-some":
68
+ HB[1] += 1, K1
69
+ elif var_one == "def-only":
70
+ HB += 1, K1
71
+
72
+ HB.build_local_ham(n)
73
+ H_mpo = HB.build_mpo(n)
74
+ H_sps = HB.build_sparse(n)
75
+
76
+ assert_allclose(H_mpo.to_dense(), H_sps.toarray())
77
+
78
+ def test_no_default_term(self):
79
+ N = 10
80
+ builder = qtn.SpinHam1D(1 / 2)
81
+
82
+ for i in range(N - 1):
83
+ builder[i, i + 1] += 1.0, "Z", "Z"
84
+
85
+ H = builder.build_mpo(N)
86
+
87
+ dmrg = qtn.DMRG2(H)
88
+ dmrg.solve(verbosity=1)
89
+
90
+ assert dmrg.energy == pytest.approx(-2.25)
91
+
92
+
93
+ class TestMPSSpecificStates:
94
+ def test_site_varying_phys_dim(self):
95
+ k = qtn.MPS_rand_state(5, 4, phys_dim=[2, 3, 3, 2, 5])
96
+ assert k.H @ k == pytest.approx(1.0)
97
+ assert k.outer_dims_inds() == (
98
+ (2, "k0"),
99
+ (3, "k1"),
100
+ (3, "k2"),
101
+ (2, "k3"),
102
+ (5, "k4"),
103
+ )
104
+
105
+ @pytest.mark.parametrize("dtype", ["float32", "complex64"])
106
+ def test_ghz_state(self, dtype):
107
+ mps = qtn.MPS_ghz_state(5, dtype=dtype)
108
+ assert mps.dtype == dtype
109
+ psi = qu.ghz_state(5, dtype=dtype)
110
+ assert mps.H @ mps == pytest.approx(1.0)
111
+ assert mps.bond_sizes() == [2, 2, 2, 2]
112
+ assert qu.fidelity(psi, mps.to_dense()) == pytest.approx(1.0)
113
+
114
+ @pytest.mark.parametrize("dtype", ["float32", "complex64"])
115
+ def test_w_state(self, dtype):
116
+ mps = qtn.MPS_w_state(5, dtype=dtype)
117
+ assert mps.dtype == dtype
118
+ psi = qu.w_state(5, dtype=dtype)
119
+ assert mps.H @ mps == pytest.approx(1.0)
120
+ assert mps.bond_sizes() == [2, 2, 2, 2]
121
+ assert qu.fidelity(psi, mps.to_dense()) == pytest.approx(1.0)
122
+
123
+ def test_computational_state(self):
124
+ mps = qtn.MPS_computational_state("01+-")
125
+ assert_allclose(
126
+ mps.to_dense(), qu.up() & qu.down() & qu.plus() & qu.minus()
127
+ )
128
+
129
+
130
+ class TestMatrixProductOperatorSpecifics:
131
+ def test_MPO_product_operator(self):
132
+ psis = [qu.rand_ket(2) for _ in range(5)]
133
+ ops = [qu.rand_matrix(2) for _ in range(5)]
134
+ psif = qu.kron(*ops) @ qu.kron(*psis)
135
+ mps = qtn.MPS_product_state(psis)
136
+ mpo = qtn.MPO_product_operator(ops)
137
+ assert mpo.bond_sizes() == [1, 1, 1, 1]
138
+ mpsf = mpo.apply(mps)
139
+ assert_allclose(mpsf.to_dense(), psif)
140
+
141
+
142
+ class TestGenericTN:
143
+ def test_TN_rand_reg(self):
144
+ n = 6
145
+ reg = 3
146
+ D = 2
147
+ tn = qtn.TN_rand_reg(n, reg, D=D)
148
+ assert tn.outer_inds() == ()
149
+ assert tn.max_bond() == D
150
+ assert {t.ndim for t in tn} == {reg}
151
+ ket = qtn.TN_rand_reg(n, reg, D=2, phys_dim=2)
152
+ assert set(ket.outer_inds()) == {f"k{i}" for i in range(n)}
153
+ assert ket.max_bond() == D
154
+
155
+ @pytest.mark.parametrize("Lx", [3])
156
+ @pytest.mark.parametrize("Ly", [2, 4])
157
+ @pytest.mark.parametrize("beta", [0.13, 0.44])
158
+ @pytest.mark.parametrize("j", [-1.0, +1.0])
159
+ @pytest.mark.parametrize("h", [0.0, 0.1])
160
+ @pytest.mark.parametrize(
161
+ "cyclic", [False, True, (False, True), (True, False)]
162
+ )
163
+ def test_2D_classical_ising_model(self, Lx, Ly, beta, j, h, cyclic):
164
+ tn = qtn.TN2D_classical_ising_partition_function(
165
+ Lx, Ly, beta=beta, j=j, h=h, cyclic=cyclic
166
+ )
167
+ htn = qtn.HTN2D_classical_ising_partition_function(
168
+ Lx, Ly, beta=beta, j=j, h=h, cyclic=cyclic
169
+ )
170
+ Z1 = tn.contract(all, output_inds=())
171
+ Z2 = htn.contract(all, output_inds=())
172
+ assert Z1 == pytest.approx(Z2)
173
+
174
+ if not cyclic:
175
+ # skip cyclic as nx has no multibonds for L=2
176
+ import networkx as nx
177
+
178
+ G = nx.lattice.grid_graph((Lx, Ly))
179
+ Z3 = qtn.TN_classical_partition_function_from_edges(
180
+ G.edges, beta=beta, j=j, h=h
181
+ ).contract(all, output_inds=())
182
+ assert Z2 == pytest.approx(Z3)
183
+ Z4 = qtn.HTN_classical_partition_function_from_edges(
184
+ G.edges, beta=beta, j=j, h=h
185
+ ).contract(all, output_inds=())
186
+ assert Z3 == pytest.approx(Z4)
187
+
188
+ @pytest.mark.parametrize("Lx", [2])
189
+ @pytest.mark.parametrize("Ly", [3])
190
+ @pytest.mark.parametrize("Lz", [4])
191
+ @pytest.mark.parametrize("beta", [0.13, 1 / 4.5])
192
+ @pytest.mark.parametrize("j", [-1.0, +1.0])
193
+ @pytest.mark.parametrize("h", [0.0, 0.1])
194
+ @pytest.mark.parametrize(
195
+ "cyclic", [False, True, (False, True, False), (True, False, True)]
196
+ )
197
+ def test_3D_classical_ising_model(self, Lx, Ly, Lz, beta, j, h, cyclic):
198
+ tn = qtn.TN3D_classical_ising_partition_function(
199
+ Lx, Ly, Lz, beta=beta, j=j, h=h, cyclic=cyclic
200
+ )
201
+ htn = qtn.HTN3D_classical_ising_partition_function(
202
+ Lx, Ly, Lz, beta=beta, j=j, h=h, cyclic=cyclic
203
+ )
204
+ Z1 = tn.contract(all, output_inds=())
205
+ Z2 = htn.contract(all, output_inds=())
206
+ assert Z1 == pytest.approx(Z2)
207
+
208
+ if not cyclic:
209
+ # skip cyclic as nx has no multibonds for L=2
210
+ import networkx as nx
211
+
212
+ G = nx.lattice.grid_graph((Lx, Ly, Lz))
213
+ Z3 = qtn.TN_classical_partition_function_from_edges(
214
+ G.edges, beta=beta, j=j, h=h
215
+ ).contract(all, output_inds=())
216
+ assert Z2 == pytest.approx(Z3)
217
+ Z4 = qtn.HTN_classical_partition_function_from_edges(
218
+ G.edges, beta=beta, j=j, h=h
219
+ ).contract(all, output_inds=())
220
+ assert Z3 == pytest.approx(Z4)
221
+
222
+ def test_2d_classical_ising_varying_j(self):
223
+ L = 5
224
+ beta = 0.3
225
+ edges = qtn.edges_2d_square(L, L)
226
+ np.random.seed(666)
227
+ js = {edge: np.random.normal() for edge in edges}
228
+ tn = qtn.TN_classical_partition_function_from_edges(
229
+ edges, beta=beta, j=lambda i, j: js[i, j]
230
+ )
231
+ assert tn.dtype == "float64"
232
+ x0 = tn.contract(all, output_inds=())
233
+ tn = qtn.HTN_classical_partition_function_from_edges(
234
+ edges, beta=beta, j=lambda i, j: js[i, j]
235
+ )
236
+ assert tn.dtype == "float64"
237
+ x1 = tn.contract(all, output_inds=())
238
+ tn = qtn.TN2D_classical_ising_partition_function(
239
+ L, L, beta=beta, j=lambda i, j: js[i, j]
240
+ )
241
+ assert tn.dtype == "float64"
242
+ x2 = tn.contract(all, output_inds=())
243
+ tn = qtn.HTN2D_classical_ising_partition_function(
244
+ L, L, beta=beta, j=lambda i, j: js[i, j]
245
+ )
246
+ assert tn.dtype == "float64"
247
+ x3 = tn.contract(all, output_inds=())
248
+ assert x0 == pytest.approx(x1)
249
+ assert x1 == pytest.approx(x2)
250
+ assert x2 == pytest.approx(x3)
251
+
252
+ def test_3d_classical_ising_varying_j(self):
253
+ L = 3
254
+ beta = 0.3
255
+ edges = qtn.edges_3d_cubic(L, L, L)
256
+ np.random.seed(666)
257
+ js = {edge: np.random.normal() for edge in edges}
258
+ tn = qtn.TN_classical_partition_function_from_edges(
259
+ edges, beta=beta, j=lambda i, j: js[i, j]
260
+ )
261
+ assert tn.dtype == "float64"
262
+ x0 = tn.contract(all, output_inds=())
263
+ tn = qtn.HTN_classical_partition_function_from_edges(
264
+ edges, beta=beta, j=lambda i, j: js[i, j]
265
+ )
266
+ assert tn.dtype == "float64"
267
+ x1 = tn.contract(all, output_inds=())
268
+ tn = qtn.TN3D_classical_ising_partition_function(
269
+ L, L, L, beta=beta, j=lambda i, j: js[i, j]
270
+ )
271
+ assert tn.dtype == "float64"
272
+ x2 = tn.contract(all, output_inds=())
273
+ tn = qtn.HTN3D_classical_ising_partition_function(
274
+ L, L, L, beta=beta, j=lambda i, j: js[i, j]
275
+ )
276
+ assert tn.dtype == "float64"
277
+ x3 = tn.contract(all, output_inds=())
278
+ assert x0 == pytest.approx(x1)
279
+ assert x1 == pytest.approx(x2)
280
+ assert x2 == pytest.approx(x3)
281
+
282
+ def test_tn_dimer_covering(self):
283
+ edges = [(0, 1), (1, 2), (2, 3), (3, 0)]
284
+ tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=1)
285
+ assert tn ^ all == pytest.approx(2.0)
286
+ tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=2)
287
+ assert tn ^ all == pytest.approx(1.0)
288
+ edges = [(0, 1), (1, 2), (2, 0)]
289
+ tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=1)
290
+ assert tn ^ all == pytest.approx(0.0)
291
+
292
+ def test_tn2d_fillers(self):
293
+ tn = qtn.TN2D_empty(Lx=2, Ly=2, D=2)
294
+ assert isinstance(tn, qtn.TensorNetwork2D)
295
+ assert (
296
+ qtn.TN2D_rand(Lx=2, Ly=2, D=2, seed=42) ^ all
297
+ ) == pytest.approx(qtn.TN2D_rand(Lx=2, Ly=2, D=2, seed=42) ^ all)
298
+ tn = qtn.TN2D_with_value(1.0, Lx=2, Ly=3, D=4)
299
+ assert tn ^ all == pytest.approx(qu.prod(tn.ind_sizes().values()))
300
+
301
+ def test_tn3d_fillers(self):
302
+ tn = qtn.TN3D_empty(Lx=2, Ly=2, Lz=2, D=2)
303
+ assert isinstance(tn, qtn.TensorNetwork3D)
304
+ assert (
305
+ qtn.TN3D_rand(Lx=2, Ly=2, Lz=2, D=2, seed=42) ^ all
306
+ ) == pytest.approx(qtn.TN3D_rand(Lx=2, Ly=2, Lz=2, D=2, seed=42) ^ all)
307
+ tn = qtn.TN3D_with_value(1.0, Lx=2, Ly=3, Lz=2, D=2)
308
+ assert tn ^ all == pytest.approx(qu.prod(tn.ind_sizes().values()))
309
+
310
+
311
+ @pytest.mark.parametrize("cyclic", [False, True, (False, True), (True, False)])
312
+ def test_tn2d_classical_ising_partition_function(cyclic):
313
+ Lx = 4
314
+ Ly = 5
315
+ coupling = {
316
+ (cooa, coob): float(qu.randn())
317
+ for cooa, coob in qtn.gen_2d_bonds(Lx, Ly, cyclic=cyclic)
318
+ }
319
+ h = qu.randn()
320
+ tn = qtn.TN2D_classical_ising_partition_function(
321
+ Lx,
322
+ Ly,
323
+ beta=0.44,
324
+ j=coupling,
325
+ h=h,
326
+ outputs=[(1, 2), (3, 4)],
327
+ cyclic=cyclic,
328
+ )
329
+ assert tn.outer_inds() == ("s1,2", "s3,4")
330
+ htn = qtn.HTN2D_classical_ising_partition_function(
331
+ Lx,
332
+ Ly,
333
+ beta=0.44,
334
+ j=coupling,
335
+ h=h,
336
+ cyclic=cyclic,
337
+ )
338
+ assert htn.num_indices == Lx * Ly
339
+
340
+ if not isinstance(cyclic, tuple):
341
+ cyclic = (cyclic, cyclic)
342
+
343
+ assert (tn.is_cyclic_x(), tn.is_cyclic_y()) == cyclic
344
+
345
+ assert_allclose(
346
+ tn.contract().data,
347
+ htn.contract(output_inds=("s1,2", "s3,4")).data,
348
+ )
349
+
350
+
351
+ @pytest.mark.parametrize("cyclic", [False, (0, 1, 1), (0, 0, 1)])
352
+ def test_tn3d_classical_ising_partition_function(cyclic):
353
+ Lx, Ly, Lz = 2, 3, 3
354
+ coupling = {
355
+ (cooa, coob): float(qu.randn())
356
+ for cooa, coob in qtn.gen_3d_bonds(Lx, Ly, Lz, cyclic=cyclic)
357
+ }
358
+ h = qu.randn()
359
+ tn = qtn.TN3D_classical_ising_partition_function(
360
+ Lx,
361
+ Ly,
362
+ Lz,
363
+ beta=0.44,
364
+ j=lambda cooa, coob: coupling[(cooa, coob)],
365
+ h=h,
366
+ outputs=[(1, 0, 2), (0, 2, 1)],
367
+ cyclic=cyclic,
368
+ )
369
+ assert tn.outer_inds() == ("s0,2,1", "s1,0,2")
370
+ htn = qtn.HTN3D_classical_ising_partition_function(
371
+ Lx,
372
+ Ly,
373
+ Lz,
374
+ beta=0.44,
375
+ j=lambda cooa, coob: coupling[(cooa, coob)],
376
+ h=h,
377
+ cyclic=cyclic,
378
+ )
379
+ assert htn.num_indices == Lx * Ly * Lz
380
+
381
+ if not isinstance(cyclic, tuple):
382
+ cyclic = (cyclic, cyclic, cyclic)
383
+
384
+ assert (tn.is_cyclic_x(), tn.is_cyclic_y(), tn.is_cyclic_z()) == cyclic
385
+
386
+ assert_allclose(
387
+ tn.contract().data,
388
+ htn.contract(output_inds=("s0,2,1", "s1,0,2")).data,
389
+ )
390
+
391
+
392
+ @pytest.mark.parametrize("sites_location", ["side", "diag"])
393
+ @pytest.mark.parametrize("outputs", [(), 2, (1, 3)])
394
+ def test_all_to_all_classical_partition_functions(sites_location, outputs):
395
+ import numpy as np
396
+
397
+ N = 5
398
+ rng = np.random.default_rng(42)
399
+ Jij = {(i, j): rng.normal() for i in range(N) for j in range(i + 1, N)}
400
+ htn = qtn.HTN_classical_partition_function_from_edges(
401
+ edges=Jij.keys(),
402
+ beta=0.179,
403
+ j=Jij,
404
+ )
405
+ Zex = htn.contract(all, output_inds=())
406
+
407
+ tn = qtn.TN2D_embedded_classical_ising_partition_function(
408
+ Jij,
409
+ beta=0.179,
410
+ sites_location=sites_location,
411
+ outputs=outputs,
412
+ )
413
+
414
+ sites = tuple(tn.gen_sites_present())
415
+ assert len(sites) == N * (N - 1) // 2
416
+ for i, j in sites:
417
+ assert i > j
418
+
419
+ if isinstance(outputs, tuple):
420
+ assert set(tn.outer_inds()) == {f"s{i}" for i in outputs}
421
+ else:
422
+ assert tn.outer_inds() == (f"s{outputs}",)
423
+ (t,) = tn._inds_get(f"s{outputs}")
424
+ if sites_location == "side":
425
+ assert "I2,0" in t.tags
426
+ else:
427
+ assert "I2,1" in t.tags
428
+ assert tn.contract(output_inds=()) == pytest.approx(Zex)
429
+
430
+
431
+ def test_tn2d_rand_symm():
432
+ import numpy as np
433
+
434
+ tn = qtn.TN2D_rand_symmetric(3, 4, 3)
435
+ ghash = tn.geometry_hash(strict_index_order=True)
436
+ Zex = tn.contract(all, output_inds=())
437
+ rng = np.random.default_rng(42)
438
+ for t in tn:
439
+ t.modify(inds=rng.permutation(t.inds))
440
+ assert tn.geometry_hash(strict_index_order=True) != ghash
441
+ assert tn.contract(all, output_inds=()) == pytest.approx(Zex)