Trajectree 0.0.0__py3-none-any.whl → 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +3 -0
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/quimb/docs/_pygments/_pygments_dark.py +118 -0
  7. trajectree/quimb/docs/_pygments/_pygments_light.py +118 -0
  8. trajectree/quimb/docs/conf.py +158 -0
  9. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +62 -0
  10. trajectree/quimb/quimb/__init__.py +507 -0
  11. trajectree/quimb/quimb/calc.py +1491 -0
  12. trajectree/quimb/quimb/core.py +2279 -0
  13. trajectree/quimb/quimb/evo.py +712 -0
  14. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  15. trajectree/quimb/quimb/experimental/autojittn.py +129 -0
  16. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +109 -0
  17. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +397 -0
  18. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +316 -0
  19. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +653 -0
  20. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +571 -0
  21. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +775 -0
  22. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +316 -0
  23. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +537 -0
  24. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +194 -0
  25. trajectree/quimb/quimb/experimental/cluster_update.py +286 -0
  26. trajectree/quimb/quimb/experimental/merabuilder.py +865 -0
  27. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +15 -0
  28. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +1631 -0
  29. trajectree/quimb/quimb/experimental/schematic.py +7 -0
  30. trajectree/quimb/quimb/experimental/tn_marginals.py +130 -0
  31. trajectree/quimb/quimb/experimental/tnvmc.py +1483 -0
  32. trajectree/quimb/quimb/gates.py +36 -0
  33. trajectree/quimb/quimb/gen/__init__.py +2 -0
  34. trajectree/quimb/quimb/gen/operators.py +1167 -0
  35. trajectree/quimb/quimb/gen/rand.py +713 -0
  36. trajectree/quimb/quimb/gen/states.py +479 -0
  37. trajectree/quimb/quimb/linalg/__init__.py +6 -0
  38. trajectree/quimb/quimb/linalg/approx_spectral.py +1109 -0
  39. trajectree/quimb/quimb/linalg/autoblock.py +258 -0
  40. trajectree/quimb/quimb/linalg/base_linalg.py +719 -0
  41. trajectree/quimb/quimb/linalg/mpi_launcher.py +397 -0
  42. trajectree/quimb/quimb/linalg/numpy_linalg.py +244 -0
  43. trajectree/quimb/quimb/linalg/rand_linalg.py +514 -0
  44. trajectree/quimb/quimb/linalg/scipy_linalg.py +293 -0
  45. trajectree/quimb/quimb/linalg/slepc_linalg.py +892 -0
  46. trajectree/quimb/quimb/schematic.py +1518 -0
  47. trajectree/quimb/quimb/tensor/__init__.py +401 -0
  48. trajectree/quimb/quimb/tensor/array_ops.py +610 -0
  49. trajectree/quimb/quimb/tensor/circuit.py +4824 -0
  50. trajectree/quimb/quimb/tensor/circuit_gen.py +411 -0
  51. trajectree/quimb/quimb/tensor/contraction.py +336 -0
  52. trajectree/quimb/quimb/tensor/decomp.py +1255 -0
  53. trajectree/quimb/quimb/tensor/drawing.py +1646 -0
  54. trajectree/quimb/quimb/tensor/fitting.py +385 -0
  55. trajectree/quimb/quimb/tensor/geometry.py +583 -0
  56. trajectree/quimb/quimb/tensor/interface.py +114 -0
  57. trajectree/quimb/quimb/tensor/networking.py +1058 -0
  58. trajectree/quimb/quimb/tensor/optimize.py +1818 -0
  59. trajectree/quimb/quimb/tensor/tensor_1d.py +4778 -0
  60. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +1854 -0
  61. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +662 -0
  62. trajectree/quimb/quimb/tensor/tensor_2d.py +5954 -0
  63. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +96 -0
  64. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +1230 -0
  65. trajectree/quimb/quimb/tensor/tensor_3d.py +2869 -0
  66. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +46 -0
  67. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +60 -0
  68. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +3237 -0
  69. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +565 -0
  70. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +1138 -0
  71. trajectree/quimb/quimb/tensor/tensor_builder.py +5411 -0
  72. trajectree/quimb/quimb/tensor/tensor_core.py +11179 -0
  73. trajectree/quimb/quimb/tensor/tensor_dmrg.py +1472 -0
  74. trajectree/quimb/quimb/tensor/tensor_mera.py +204 -0
  75. trajectree/quimb/quimb/utils.py +892 -0
  76. trajectree/quimb/tests/__init__.py +0 -0
  77. trajectree/quimb/tests/test_accel.py +501 -0
  78. trajectree/quimb/tests/test_calc.py +788 -0
  79. trajectree/quimb/tests/test_core.py +847 -0
  80. trajectree/quimb/tests/test_evo.py +565 -0
  81. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  82. trajectree/quimb/tests/test_gen/test_operators.py +361 -0
  83. trajectree/quimb/tests/test_gen/test_rand.py +296 -0
  84. trajectree/quimb/tests/test_gen/test_states.py +261 -0
  85. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  86. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +368 -0
  87. trajectree/quimb/tests/test_linalg/test_base_linalg.py +351 -0
  88. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +127 -0
  89. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +84 -0
  90. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +134 -0
  91. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +283 -0
  92. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  93. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  94. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +39 -0
  95. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +67 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +64 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +51 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +142 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +101 -0
  100. trajectree/quimb/tests/test_tensor/test_circuit.py +816 -0
  101. trajectree/quimb/tests/test_tensor/test_contract.py +67 -0
  102. trajectree/quimb/tests/test_tensor/test_decomp.py +40 -0
  103. trajectree/quimb/tests/test_tensor/test_mera.py +52 -0
  104. trajectree/quimb/tests/test_tensor/test_optimizers.py +488 -0
  105. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +1171 -0
  106. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +606 -0
  107. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +144 -0
  108. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +123 -0
  109. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +226 -0
  110. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +441 -0
  111. trajectree/quimb/tests/test_tensor/test_tensor_core.py +2066 -0
  112. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +388 -0
  113. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +63 -0
  114. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +270 -0
  115. trajectree/quimb/tests/test_utils.py +85 -0
  116. trajectree/trajectory.py +2 -2
  117. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/METADATA +2 -2
  118. trajectree-0.0.1.dist-info/RECORD +126 -0
  119. trajectree-0.0.0.dist-info/RECORD +0 -16
  120. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,816 @@
1
+ import math
2
+ import itertools
3
+
4
+ import pytest
5
+ import numpy as np
6
+ from numpy.testing import assert_allclose
7
+
8
+ import quimb as qu
9
+ import quimb.tensor as qtn
10
+
11
+
12
+ def rand_reg_graph(reg, n, seed=None):
13
+ import networkx as nx
14
+
15
+ G = nx.random_regular_graph(reg, n, seed=seed)
16
+ return G
17
+
18
+
19
+ def graph_to_qsim(G, gamma0=-0.743043, beta0=0.754082):
20
+ n = G.number_of_nodes()
21
+
22
+ # add all the gates
23
+ circ = f"{n}\n"
24
+ for i in range(n):
25
+ circ += f"H {i}\n"
26
+ for i, j in G.edges:
27
+ circ += f"Rzz {gamma0} {i} {j}\n"
28
+ for i in range(n):
29
+ circ += f"Rx {beta0} {i}\n"
30
+
31
+ return circ
32
+
33
+
34
+ def random_a2a_circ(L, depth, seed=42):
35
+ rng = np.random.default_rng(seed)
36
+
37
+ qubits = np.arange(L)
38
+ gates = []
39
+
40
+ for i in range(L):
41
+ gates.append((0, "h", i))
42
+
43
+ for d in range(depth):
44
+ rng.shuffle(qubits)
45
+
46
+ for i in range(0, L - 1, 2):
47
+ g = rng.choice(["cx", "cy", "cz", "iswap"])
48
+ gates.append((d, g, qubits[i], qubits[i + 1]))
49
+
50
+ for q in qubits:
51
+ g = rng.choice(["rx", "ry", "rz"])
52
+ gates.append((d, g, rng.normal(1.0, 0.5), q))
53
+
54
+ circ = qtn.Circuit(L)
55
+ circ.apply_gates(gates)
56
+
57
+ return circ
58
+
59
+
60
+ def qft_circ(n, swaps=True, **circuit_opts):
61
+ circ = qtn.Circuit(n, **circuit_opts)
62
+
63
+ for i in range(n):
64
+ circ.h(i)
65
+ for j, m in zip(range(i + 1, n), itertools.count(2)):
66
+ circ.cu1(2 * math.pi / 2**m, j, i)
67
+
68
+ if swaps:
69
+ for i in range(n // 2):
70
+ circ.swap(i, n - i - 1)
71
+
72
+ return circ
73
+
74
+
75
+ def swappy_circ(n, depth):
76
+ circ = qtn.Circuit(n)
77
+
78
+ for d in range(depth):
79
+ pairs = np.random.permutation(np.arange(n))
80
+
81
+ for i in range(n // 2):
82
+ qi = pairs[2 * i]
83
+ qj = pairs[2 * i + 1]
84
+
85
+ gate = np.random.choice(["FSIM", "SWAP"])
86
+ if gate == "FSIM":
87
+ params = np.random.randn(2)
88
+ elif gate == "FSIMG":
89
+ params = np.random.randn(5)
90
+ else:
91
+ params = ()
92
+
93
+ circ.apply_gate(gate, *params, qi, qj)
94
+
95
+ return circ
96
+
97
+
98
+ def example_openqasm2_qft():
99
+ return """
100
+ // quantum Fourier transform
101
+
102
+ OPENQASM 2.0;
103
+ include "qelib1.inc";
104
+
105
+ qreg q[4];
106
+ creg c[4];
107
+ x q[0];
108
+ x q[2];
109
+ barrier q;
110
+ h q[0];
111
+ cu1(pi/2) q[1],q[0];
112
+ h q[1];
113
+ cu1(pi/4) q[2],q[0];
114
+ cu1(pi/2) q[2],q[1];
115
+ /*
116
+ This is a multi line comment.
117
+ */
118
+ h q[2];
119
+ cu1(pi/8) q[3],q[0];
120
+ cu1(pi/4) q[3],q[1];
121
+ cu1(pi/2) q[3],q[2];
122
+ h q[3];
123
+
124
+ measure q -> c;
125
+ """
126
+
127
+
128
+ class TestCircuit:
129
+ def test_prepare_GHZ(self):
130
+ qc = qtn.Circuit(3)
131
+ gates = [
132
+ ("H", 0),
133
+ ("H", 1),
134
+ ("CNOT", 1, 2),
135
+ ("CNOT", 0, 2),
136
+ ("H", 0),
137
+ ("H", 1),
138
+ ("H", 2),
139
+ ]
140
+ qc.apply_gates(gates)
141
+ assert qu.expec(qc.psi.to_dense(), qu.ghz_state(3)) == pytest.approx(1)
142
+ counts = qc.simulate_counts(1024)
143
+ assert len(counts) == 2
144
+ assert "000" in counts
145
+ assert "111" in counts
146
+ assert counts["000"] + counts["111"] == 1024
147
+
148
+ def test_from_qsim(self):
149
+ G = rand_reg_graph(reg=3, n=18, seed=42)
150
+ qsim = graph_to_qsim(G)
151
+ qc = qtn.Circuit.from_qsim_str(qsim)
152
+ assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
153
+
154
+ def test_from_openqasm2(self):
155
+ qc = qtn.Circuit.from_openqasm2_str(example_openqasm2_qft())
156
+ assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
157
+
158
+ def test_openqasm2_custom_gates(self):
159
+ circ = qtn.Circuit.from_openqasm2_str(
160
+ """
161
+ OPENQASM 2.0;
162
+ include "qelib1.inc";
163
+ qreg q[3];
164
+
165
+ gate hello a, b {
166
+ h a;
167
+ cx a, b;
168
+ u3(0.1, 0.2, 0.3) b;
169
+ }
170
+
171
+ gate world(param1, θ) q
172
+ {
173
+ u2(θ / 2, param1) q;
174
+ u2(param1, θ / 2) q;
175
+ }
176
+
177
+ hello q[0], q[1];
178
+ world(0.1, 0.2) q[2];
179
+ hello q[2], q[1];
180
+ """
181
+ )
182
+ assert [g.label for g in circ.gates] == [
183
+ "H",
184
+ "CX",
185
+ "U3",
186
+ "U2",
187
+ "U2",
188
+ "H",
189
+ "CX",
190
+ "U3",
191
+ ]
192
+
193
+ def test_openqasm2_custom_nested_gates(self):
194
+ circ = qtn.Circuit.from_openqasm2_str(
195
+ """
196
+ OPENQASM 2.0;
197
+ include "qelib1.inc";
198
+ qreg q[3];
199
+
200
+ gate cphase(θ) a, b
201
+ {
202
+ U3(0, 0, θ / 2) a;
203
+ CX a, b;
204
+ U3(0, 0, -θ / 2) b;
205
+ CX a, b;
206
+ U3(0, 0, θ / 2) b;
207
+ }
208
+
209
+ gate doublecphase(θ) a, b, c {
210
+ cphase(θ) a, b;
211
+ cphase(θ) b, c;
212
+ }
213
+
214
+ doublecphase(0.1) q[0], q[1], q[2];
215
+ doublecphase(0.2) q[2], q[0], q[1];
216
+ """
217
+ )
218
+ assert [g.label for g in circ.gates] == [
219
+ "U3",
220
+ "CX",
221
+ "U3",
222
+ "CX",
223
+ "U3",
224
+ ] * 4
225
+
226
+ @pytest.mark.parametrize(
227
+ "Circ", [qtn.Circuit, qtn.CircuitMPS, qtn.CircuitDense]
228
+ )
229
+ def test_all_gate_methods(self, Circ):
230
+ import random
231
+
232
+ g_nq_np = [
233
+ # single qubit
234
+ ("x", 1, 0),
235
+ ("y", 1, 0),
236
+ ("z", 1, 0),
237
+ ("s", 1, 0),
238
+ ("t", 1, 0),
239
+ ("h", 1, 0),
240
+ ("iden", 1, 0),
241
+ ("x_1_2", 1, 0),
242
+ ("y_1_2", 1, 0),
243
+ ("z_1_2", 1, 0),
244
+ ("w_1_2", 1, 0),
245
+ ("hz_1_2", 1, 0),
246
+ # single qubit parametrizable
247
+ ("rx", 1, 1),
248
+ ("ry", 1, 1),
249
+ ("rz", 1, 1),
250
+ ("u3", 1, 3),
251
+ ("u2", 1, 2),
252
+ ("u1", 1, 1),
253
+ ("phase", 1, 1),
254
+ # two qubit
255
+ ("cx", 2, 0),
256
+ ("cy", 2, 0),
257
+ ("cz", 2, 0),
258
+ ("cnot", 2, 0),
259
+ ("swap", 2, 0),
260
+ ("iswap", 2, 0),
261
+ # two qubit parametrizable
262
+ ("rxx", 2, 1),
263
+ ("ryy", 2, 1),
264
+ ("rzz", 2, 1),
265
+ ("crx", 2, 1),
266
+ ("cry", 2, 1),
267
+ ("crz", 2, 1),
268
+ ("cu3", 2, 3),
269
+ ("cu2", 2, 2),
270
+ ("cu1", 2, 1),
271
+ ("cphase", 2, 1),
272
+ ("fsim", 2, 2),
273
+ ("fsimg", 2, 5),
274
+ ("givens", 2, 1),
275
+ ("givens2", 2, 2),
276
+ ("su4", 2, 15),
277
+ ]
278
+ random.shuffle(g_nq_np)
279
+
280
+ psi0 = qtn.MPS_rand_state(2, 2)
281
+ circ = Circ(2, psi0=psi0, tags="PSI0")
282
+
283
+ for g, n_q, n_p in g_nq_np:
284
+ args = [
285
+ *np.random.uniform(0, 2 * np.pi, size=n_p),
286
+ *np.random.choice([0, 1], replace=False, size=n_q),
287
+ ]
288
+ getattr(circ, g)(*args)
289
+
290
+ assert circ.psi.H @ circ.psi == pytest.approx(1.0)
291
+ assert abs((circ.psi.H & psi0) ^ all) < 0.99999999
292
+
293
+ def test_su4(self):
294
+ psi0 = qtn.MPS_rand_state(2, 2)
295
+ circ_a = qtn.Circuit(psi0=psi0)
296
+ params = qu.randn(15)
297
+
298
+ circ_a.su4(*params, 0, 1)
299
+ psi_a = circ_a.to_dense()
300
+
301
+ circ_b = qtn.Circuit(psi0=psi0)
302
+ (
303
+ theta1,
304
+ phi1,
305
+ lamda1,
306
+ theta2,
307
+ phi2,
308
+ lamda2,
309
+ theta3,
310
+ phi3,
311
+ lamda3,
312
+ theta4,
313
+ phi4,
314
+ lamda4,
315
+ t1,
316
+ t2,
317
+ t3,
318
+ ) = params
319
+ circ_b.u3(theta1, phi1, lamda1, 0)
320
+ circ_b.u3(theta2, phi2, lamda2, 1)
321
+ circ_b.cnot(1, 0)
322
+ circ_b.rz(t1, 0)
323
+ circ_b.ry(t2, 1)
324
+ circ_b.cnot(0, 1)
325
+ circ_b.ry(t3, 1)
326
+ circ_b.cnot(1, 0)
327
+ circ_b.u3(theta3, phi3, lamda3, 0)
328
+ circ_b.u3(theta4, phi4, lamda4, 1)
329
+ psi_b = circ_b.to_dense()
330
+
331
+ assert qu.fidelity(psi_a, psi_b) == pytest.approx(1.0)
332
+
333
+ def test_three_qubit_gates(self):
334
+ psi0 = qtn.MPS_rand_state(3, 2)
335
+ circ = qtn.Circuit(psi0=psi0)
336
+ circ.ccx(0, 1, 2)
337
+ circ.cswap(2, 1, 0)
338
+ circ.toffoli(0, 1, 2)
339
+ circ.ccy(1, 0, 2)
340
+ circ.ccz(1, 2, 0)
341
+ circ.fredkin(2, 1, 0)
342
+ psi = circ.psi.to_dense()
343
+ assert qu.expec(psi, psi) == pytest.approx(1.0)
344
+
345
+ def test_auto_split_gate(self):
346
+ n = 3
347
+ ops = [
348
+ ("u3", 1.0, 2.0, 3.0, 0),
349
+ ("u3", 2.0, 3.0, 1.0, 1),
350
+ ("u3", 3.0, 1.0, 2.0, 2),
351
+ ("cz", 0, 1),
352
+ ("iswap", 1, 2),
353
+ ("cx", 2, 0),
354
+ ("iswap", 2, 1),
355
+ ("h", 0),
356
+ ("h", 1),
357
+ ("h", 2),
358
+ ]
359
+ cnorm = qtn.Circuit(n, gate_opts=dict(contract="split-gate"))
360
+ cnorm.apply_gates(ops)
361
+ assert cnorm.psi.max_bond() == 4
362
+
363
+ cswap = qtn.Circuit(n, gate_opts=dict(contract="swap-split-gate"))
364
+ cswap.apply_gates(ops)
365
+ assert cswap.psi.max_bond() == 4
366
+
367
+ cauto = qtn.Circuit(n, gate_opts=dict(contract="auto-split-gate"))
368
+ cauto.apply_gates(ops)
369
+ assert cauto.psi.max_bond() == 2
370
+
371
+ assert qu.fidelity(
372
+ cnorm.psi.to_dense(), cswap.psi.to_dense()
373
+ ) == pytest.approx(1.0)
374
+ assert qu.fidelity(
375
+ cswap.psi.to_dense(), cauto.psi.to_dense()
376
+ ) == pytest.approx(1.0)
377
+
378
+ @pytest.mark.parametrize("gate2", ["cx", "iswap"])
379
+ def test_circuit_simplify_tensor_network(self, gate2):
380
+ import random
381
+ import itertools
382
+
383
+ depth = n = 8
384
+
385
+ circ = qtn.Circuit(n)
386
+
387
+ def random_single_qubit_layer():
388
+ return [
389
+ (random.choice(["X_1_2", "Y_1_2", "W_1_2"]), i)
390
+ for i in range(n)
391
+ ]
392
+
393
+ def even_two_qubit_layer():
394
+ return [(gate2, i, i + 1) for i in range(0, n, 2)]
395
+
396
+ def odd_two_qubit_layer():
397
+ return [(gate2, i, i + 1) for i in range(1, n - 1, 2)]
398
+
399
+ layering = itertools.cycle(
400
+ [
401
+ random_single_qubit_layer,
402
+ even_two_qubit_layer,
403
+ random_single_qubit_layer,
404
+ odd_two_qubit_layer,
405
+ ]
406
+ )
407
+
408
+ for i, layer_fn in zip(range(depth), layering):
409
+ for g in layer_fn():
410
+ circ.apply_gate(*g, gate_round=i)
411
+
412
+ psif = qtn.MPS_computational_state("0" * n).squeeze_()
413
+ tn = circ.psi & psif
414
+
415
+ c = tn.contract(all)
416
+ cw = tn.contraction_width()
417
+
418
+ tn_s = tn.full_simplify()
419
+ assert tn_s.num_tensors < tn.num_tensors
420
+ assert tn_s.num_indices < tn.num_indices
421
+ # need to specify output inds since we now have hyper edges
422
+ c_s = tn_s.contract(all, output_inds=[])
423
+ assert c_s == pytest.approx(c)
424
+ cw_s = tn_s.contraction_width(output_inds=[])
425
+ assert cw_s <= cw
426
+
427
+ def test_amplitude(self):
428
+ L = 5
429
+ circ = random_a2a_circ(L, 3)
430
+ psi = circ.to_dense()
431
+
432
+ for i in range(2**L):
433
+ b = f"{i:0>{L}b}"
434
+ c = circ.amplitude(b)
435
+ assert c == pytest.approx(psi[i, 0])
436
+
437
+ def test_partial_trace(self):
438
+ L = 5
439
+ circ = random_a2a_circ(L, 3)
440
+ psi = circ.to_dense()
441
+ for i in range(L - 1):
442
+ keep = (i, i + 1)
443
+ assert_allclose(
444
+ qu.partial_trace(psi, [2] * 5, keep=keep),
445
+ circ.partial_trace(keep),
446
+ atol=1e-12,
447
+ )
448
+
449
+ @pytest.mark.parametrize("group_size", (1, 2, 6))
450
+ def test_sample(self, group_size):
451
+ import collections
452
+ from scipy.stats import power_divergence
453
+
454
+ C = 2**10
455
+ L = 5
456
+ circ = random_a2a_circ(L, 3)
457
+
458
+ psi = circ.to_dense()
459
+ p_exp = abs(psi.reshape(-1)) ** 2
460
+ f_exp = p_exp * C
461
+
462
+ counts = collections.Counter(circ.sample(C, group_size=group_size))
463
+ f_obs = np.zeros(2**L)
464
+ for b, c in counts.items():
465
+ f_obs[int(b, 2)] = c
466
+
467
+ assert power_divergence(f_obs, f_exp)[0] < 100
468
+
469
+ @pytest.mark.parametrize("group_size", (1, 3))
470
+ def test_sample_gate_by_gate(self, group_size):
471
+ import collections
472
+ from scipy.stats import power_divergence
473
+
474
+ C = 2**10
475
+ L = 5
476
+ circ = random_a2a_circ(L, 3)
477
+
478
+ psi = circ.to_dense()
479
+ p_exp = abs(psi.reshape(-1)) ** 2
480
+ f_exp = p_exp * C
481
+
482
+ counts = collections.Counter(
483
+ circ.sample_gate_by_gate(C, group_size=group_size)
484
+ )
485
+ f_obs = np.zeros(2**L)
486
+ for b, c in counts.items():
487
+ f_obs[int(b, 2)] = c
488
+
489
+ assert power_divergence(f_obs, f_exp)[0] < 100
490
+
491
+ def test_sample_chaotic(self):
492
+ import collections
493
+ from scipy.stats import power_divergence
494
+
495
+ C = 2**12
496
+ L = 5
497
+ reps = 3
498
+ depth = 2
499
+ goodnesses = [0] * 5
500
+
501
+ for _ in range(reps):
502
+ circ = random_a2a_circ(L, depth)
503
+
504
+ psi = circ.to_dense()
505
+ p_exp = abs(psi.reshape(-1)) ** 2
506
+ f_exp = p_exp * C
507
+
508
+ for num_marginal in [3, 4, 5]:
509
+ counts = collections.Counter(
510
+ circ.sample_chaotic(C, num_marginal, seed=666)
511
+ )
512
+ f_obs = np.zeros(2**L)
513
+ for b, c in counts.items():
514
+ f_obs[int(b, 2)] = c
515
+
516
+ goodness = power_divergence(f_obs, f_exp)[0]
517
+ goodnesses[num_marginal - 1] += goodness
518
+
519
+ # assert average sampling goodness gets better with larger marginal
520
+ assert sum(goodnesses[i] < goodnesses[i - 1] for i in range(1, L)) == 2
521
+
522
+ def test_local_expectation(self):
523
+ import random
524
+
525
+ L = 5
526
+ depth = 3
527
+ circ = random_a2a_circ(L, depth)
528
+ psi = circ.to_dense()
529
+ for _ in range(10):
530
+ G = qu.rand_matrix(4)
531
+ i = random.randint(0, L - 2)
532
+ where = (i, i + 1)
533
+ x1 = qu.expec(qu.ikron(G, [2] * L, where), psi)
534
+ x2 = circ.local_expectation(G, where)
535
+ assert x1 == pytest.approx(x2)
536
+
537
+ def test_local_expectation_multigate(self):
538
+ circ = qtn.Circuit(2)
539
+ circ.h(0)
540
+ circ.cnot(0, 1)
541
+ circ.y(1)
542
+ Gs = [qu.kronpow(qu.pauli(s), 2) for s in "xyz"]
543
+ exps = circ.local_expectation(Gs, [0, 1])
544
+ assert exps[0] == pytest.approx(-1)
545
+ assert exps[1] == pytest.approx(-1)
546
+ assert exps[2] == pytest.approx(-1)
547
+
548
+ def test_local_expectation_len1(self):
549
+ circ = qtn.Circuit(1)
550
+ circ.apply_gate("H", 0, gate_round=0)
551
+ circ.local_expectation([qu.pauli("X")], (0,))
552
+
553
+ def test_uni_to_dense(self):
554
+ import cmath
555
+
556
+ circ = qft_circ(3)
557
+ U = circ.uni.to_dense()
558
+ w = cmath.exp(2j * math.pi / 2**3)
559
+ ex = 2 ** (-3 / 2) * np.array(
560
+ [
561
+ [w**0, w**0, w**0, w**0, w**0, w**0, w**0, w**0],
562
+ [w**0, w**1, w**2, w**3, w**4, w**5, w**6, w**7],
563
+ [w**0, w**2, w**4, w**6, w**0, w**2, w**4, w**6],
564
+ [w**0, w**3, w**6, w**1, w**4, w**7, w**2, w**5],
565
+ [w**0, w**4, w**0, w**4, w**0, w**4, w**0, w**4],
566
+ [w**0, w**5, w**2, w**7, w**4, w**1, w**6, w**3],
567
+ [w**0, w**6, w**4, w**2, w**0, w**6, w**4, w**2],
568
+ [w**0, w**7, w**6, w**5, w**4, w**3, w**2, w**1],
569
+ ]
570
+ )
571
+ assert_allclose(U, ex)
572
+
573
+ def test_swap_lighcones(self):
574
+ circ = qtn.Circuit(3)
575
+ circ.x(0) # 0
576
+ circ.x(1) # 1
577
+ circ.x(2) # 2
578
+ circ.swap(0, 1) # 3
579
+ circ.cx(1, 2) # 4
580
+ circ.cx(0, 1) # 5
581
+ assert circ.get_reverse_lightcone_tags((2,)) == (
582
+ "PSI0",
583
+ "GATE_0",
584
+ "GATE_2",
585
+ "GATE_4",
586
+ )
587
+
588
+ def test_swappy_local_expecs(self):
589
+ circ = swappy_circ(4, 4)
590
+ Gs = [qu.rand_matrix(4) for _ in range(3)]
591
+ pairs = [(0, 1), (1, 2), (2, 3)]
592
+
593
+ psi = circ.to_dense()
594
+ dims = [2] * 4
595
+
596
+ exs = [
597
+ qu.expec(qu.ikron(G, dims, pair), psi)
598
+ for G, pair in zip(Gs, pairs)
599
+ ]
600
+ aps = [circ.local_expectation(G, pair) for G, pair in zip(Gs, pairs)]
601
+
602
+ assert_allclose(exs, aps)
603
+
604
+ @pytest.mark.parametrize(
605
+ "name, densefn, nparam, nqubit",
606
+ [
607
+ ("rx", qu.Rx, 1, 1),
608
+ ("ry", qu.Ry, 1, 1),
609
+ ("rz", qu.Rz, 1, 1),
610
+ ("u3", qu.U_gate, 3, 1),
611
+ ("fsim", qu.fsim, 2, 2),
612
+ ("fsimg", qu.fsimg, 5, 2),
613
+ ],
614
+ )
615
+ def test_parametrized_gates_rx(self, name, densefn, nparam, nqubit):
616
+ k0 = qu.rand_ket(2**nqubit)
617
+ params = qu.randn(nparam)
618
+ kf = densefn(*params) @ k0
619
+ k0mps = qtn.MatrixProductState.from_dense(k0, [2] * nqubit)
620
+ circ = qtn.Circuit(psi0=k0mps, gate_opts={"contract": False})
621
+ getattr(circ, name)(*params, *range(nqubit), parametrize=True)
622
+ tn = circ.psi
623
+ assert isinstance(tn["GATE_0"], qtn.PTensor)
624
+ assert_allclose(circ.to_dense(), kf)
625
+
626
+ def test_apply_raw_gate(self):
627
+ k0 = qu.rand_ket(4)
628
+ psi0 = qtn.MatrixProductState.from_dense(k0, [2] * 2)
629
+ circ = qtn.Circuit(psi0=psi0)
630
+ U = qu.rand_uni(4)
631
+ circ.apply_gate_raw(U, [0, 1], tags="UCUSTOM")
632
+ assert len(circ.gates) == 1
633
+ assert "UCUSTOM" in circ.psi.tags
634
+ assert qu.fidelity(circ.to_dense(), U @ k0) == pytest.approx(1)
635
+
636
+ def test_apply_controlled_gate_basic_equiv(self):
637
+ circ = qtn.Circuit(3)
638
+ circ.apply_gate("x", qubits=(2,), controls=(0, 1))
639
+ U = circ.get_uni().to_dense()
640
+ assert_allclose(U, qu.toffoli())
641
+
642
+ circ = qtn.Circuit(3)
643
+ circ.apply_gate("swap", qubits=(1, 2), controls=(0,))
644
+ U = circ.get_uni().to_dense()
645
+ assert_allclose(U, qu.fredkin())
646
+
647
+ def test_multi_controlled_circuit(self):
648
+ import random
649
+
650
+ N = 10
651
+ circ = qtn.Circuit(N)
652
+ regs = list(range(N))
653
+ random.shuffle(regs)
654
+ circ.apply_gate("H", regs[0])
655
+ for i in range(N - 1):
656
+ circ.apply_gate("CNOT", regs[i], regs[i + 1])
657
+ circ.apply_gate("X", N - 1, controls=range(N - 1))
658
+ circ.apply_gate("SWAP", qubits=(N - 2, N - 1), controls=range(N - 2))
659
+ (b,) = circ.sample(1, group_size=3)
660
+ assert b[N - 2] == "0"
661
+
662
+
663
+ class TestCircuitMPS:
664
+ def test_from_qsim_mps_swapsplit(self):
665
+ G = rand_reg_graph(reg=3, n=18, seed=42)
666
+ qsim = graph_to_qsim(G)
667
+ qc = qtn.CircuitMPS.from_qsim_str(qsim)
668
+ assert len(qc.psi.tensors) == 18
669
+ assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
670
+
671
+ def test_multi_controlled_mps_circuit(self):
672
+ N = 10
673
+ rng = np.random.default_rng(42)
674
+
675
+ gates = []
676
+ for i in range(N):
677
+ gates.append(
678
+ qtn.Gate(
679
+ "U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
680
+ )
681
+ )
682
+ gates.append(
683
+ qtn.Gate(
684
+ "SU4",
685
+ params=rng.uniform(0, 2 * np.pi, size=15),
686
+ qubits=[6, 2],
687
+ controls=[8, 3, 4, 0],
688
+ )
689
+ )
690
+ for i in range(N):
691
+ gates.append(
692
+ qtn.Gate(
693
+ "U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
694
+ )
695
+ )
696
+ gates.append(
697
+ qtn.Gate.from_raw(
698
+ qu.rand_uni(2**3), qubits=[0, 9, 5], controls=[1, 2, 7]
699
+ )
700
+ )
701
+
702
+ circ = qtn.Circuit(N=10)
703
+ circ.apply_gates(gates)
704
+ psi_lazy = circ.psi
705
+ circ = qtn.CircuitMPS(N=10)
706
+ circ.apply_gates(gates)
707
+ mps = circ.psi
708
+ assert mps.norm() == pytest.approx(1.0)
709
+ assert mps.distance_normalized(psi_lazy) < 1e-6
710
+
711
+ def test_mps_sampling(self):
712
+ N = 6
713
+ circ = qtn.CircuitMPS(N)
714
+ circ.h(3)
715
+ circ.cx(3, 2)
716
+ circ.cx(2, 1)
717
+ circ.cx(1, 0)
718
+ circ.cx(0, 5)
719
+ circ.cx(5, 4)
720
+ circ.x(4)
721
+ for x in circ.sample(10):
722
+ assert x in {"000010", "111101"}
723
+
724
+ def test_mps_sampling_seed(self):
725
+ N = 1
726
+ circ = qtn.CircuitMPS(N)
727
+ circ.h(0)
728
+ samples = list(circ.sample(10, seed=1234))
729
+ assert len(set(samples)) == 2
730
+
731
+ def test_permmps_sampling(self):
732
+ N = 6
733
+ circ = qtn.CircuitPermMPS(N)
734
+ circ.h(3)
735
+ circ.cx(3, 2)
736
+ circ.cx(2, 1)
737
+ circ.cx(1, 0)
738
+ circ.cx(0, 5)
739
+ circ.cx(5, 4)
740
+ circ.x(4)
741
+ assert circ.qubits != tuple(range(N))
742
+ for x in circ.sample(10):
743
+ assert x in {"000010", "111101"}
744
+
745
+ def test_permmps_sampling_seed(self):
746
+ N = 1
747
+ circ = qtn.CircuitPermMPS(N)
748
+ circ.h(0)
749
+ samples = list(circ.sample(10, seed=1234))
750
+ assert len(set(samples)) == 2
751
+
752
+
753
+ class TestCircuitGen:
754
+ @pytest.mark.parametrize(
755
+ "ansatz,cyclic",
756
+ [
757
+ ("zigzag", False),
758
+ ("brickwork", False),
759
+ ("brickwork", True),
760
+ ("rand", False),
761
+ ("rand", True),
762
+ ],
763
+ )
764
+ @pytest.mark.parametrize("n", [4, 5])
765
+ def test_1D_ansatzes(self, ansatz, cyclic, n):
766
+ depth = 3
767
+ num_pairs = n if cyclic else n - 1
768
+
769
+ fn = {
770
+ "zigzag": qtn.circ_ansatz_1D_zigzag,
771
+ "brickwork": qtn.circ_ansatz_1D_brickwork,
772
+ "rand": qtn.circ_ansatz_1D_rand,
773
+ }[ansatz]
774
+
775
+ opts = dict(
776
+ n=n,
777
+ depth=3,
778
+ gate_opts=dict(contract=False),
779
+ )
780
+ if cyclic:
781
+ opts["cyclic"] = True
782
+ if ansatz == "rand":
783
+ opts["seed"] = 42
784
+
785
+ circ = fn(**opts)
786
+ tn = circ.uni
787
+
788
+ # total number of entangling gates
789
+ assert len(tn["CZ"]) == num_pairs * depth
790
+
791
+ # number of entangling gates per pair
792
+ for i in range(num_pairs):
793
+ assert len(tn["CZ", f"I{i}", f"I{(i + 1) % n}"]) == depth
794
+
795
+ assert all(isinstance(t, qtn.PTensor) for t in tn["U3"])
796
+
797
+ def test_qaoa(self):
798
+ G = rand_reg_graph(3, 10, seed=666)
799
+ terms = {(i, j): 1.0 for i, j in G.edges}
800
+ ZZ = qu.pauli("Z") & qu.pauli("Z")
801
+
802
+ gammas = [-0.6]
803
+ betas = [-0.4]
804
+
805
+ circ1 = qtn.circ_qaoa(terms, 1, gammas, betas)
806
+
807
+ energy1 = sum(circ1.local_expectation(ZZ, edge) for edge in terms)
808
+ assert energy1 < -4
809
+
810
+ gammas = [-0.4]
811
+ betas = [0.3]
812
+
813
+ circ2 = qtn.circ_qaoa(terms, 1, gammas, betas)
814
+
815
+ energy2 = sum(circ2.local_expectation(ZZ, edge) for edge in terms)
816
+ assert energy2 > 4