Trajectree 0.0.0__py3-none-any.whl → 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +3 -0
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +3 -3
- trajectree/fock_optics/utils.py +6 -6
- trajectree/quimb/docs/_pygments/_pygments_dark.py +118 -0
- trajectree/quimb/docs/_pygments/_pygments_light.py +118 -0
- trajectree/quimb/docs/conf.py +158 -0
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +62 -0
- trajectree/quimb/quimb/__init__.py +507 -0
- trajectree/quimb/quimb/calc.py +1491 -0
- trajectree/quimb/quimb/core.py +2279 -0
- trajectree/quimb/quimb/evo.py +712 -0
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +129 -0
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +109 -0
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +397 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +653 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +571 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +775 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +537 -0
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +194 -0
- trajectree/quimb/quimb/experimental/cluster_update.py +286 -0
- trajectree/quimb/quimb/experimental/merabuilder.py +865 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +15 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +1631 -0
- trajectree/quimb/quimb/experimental/schematic.py +7 -0
- trajectree/quimb/quimb/experimental/tn_marginals.py +130 -0
- trajectree/quimb/quimb/experimental/tnvmc.py +1483 -0
- trajectree/quimb/quimb/gates.py +36 -0
- trajectree/quimb/quimb/gen/__init__.py +2 -0
- trajectree/quimb/quimb/gen/operators.py +1167 -0
- trajectree/quimb/quimb/gen/rand.py +713 -0
- trajectree/quimb/quimb/gen/states.py +479 -0
- trajectree/quimb/quimb/linalg/__init__.py +6 -0
- trajectree/quimb/quimb/linalg/approx_spectral.py +1109 -0
- trajectree/quimb/quimb/linalg/autoblock.py +258 -0
- trajectree/quimb/quimb/linalg/base_linalg.py +719 -0
- trajectree/quimb/quimb/linalg/mpi_launcher.py +397 -0
- trajectree/quimb/quimb/linalg/numpy_linalg.py +244 -0
- trajectree/quimb/quimb/linalg/rand_linalg.py +514 -0
- trajectree/quimb/quimb/linalg/scipy_linalg.py +293 -0
- trajectree/quimb/quimb/linalg/slepc_linalg.py +892 -0
- trajectree/quimb/quimb/schematic.py +1518 -0
- trajectree/quimb/quimb/tensor/__init__.py +401 -0
- trajectree/quimb/quimb/tensor/array_ops.py +610 -0
- trajectree/quimb/quimb/tensor/circuit.py +4824 -0
- trajectree/quimb/quimb/tensor/circuit_gen.py +411 -0
- trajectree/quimb/quimb/tensor/contraction.py +336 -0
- trajectree/quimb/quimb/tensor/decomp.py +1255 -0
- trajectree/quimb/quimb/tensor/drawing.py +1646 -0
- trajectree/quimb/quimb/tensor/fitting.py +385 -0
- trajectree/quimb/quimb/tensor/geometry.py +583 -0
- trajectree/quimb/quimb/tensor/interface.py +114 -0
- trajectree/quimb/quimb/tensor/networking.py +1058 -0
- trajectree/quimb/quimb/tensor/optimize.py +1818 -0
- trajectree/quimb/quimb/tensor/tensor_1d.py +4778 -0
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +1854 -0
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +662 -0
- trajectree/quimb/quimb/tensor/tensor_2d.py +5954 -0
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +96 -0
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +1230 -0
- trajectree/quimb/quimb/tensor/tensor_3d.py +2869 -0
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +46 -0
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +60 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +3237 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +565 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +1138 -0
- trajectree/quimb/quimb/tensor/tensor_builder.py +5411 -0
- trajectree/quimb/quimb/tensor/tensor_core.py +11179 -0
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +1472 -0
- trajectree/quimb/quimb/tensor/tensor_mera.py +204 -0
- trajectree/quimb/quimb/utils.py +892 -0
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +501 -0
- trajectree/quimb/tests/test_calc.py +788 -0
- trajectree/quimb/tests/test_core.py +847 -0
- trajectree/quimb/tests/test_evo.py +565 -0
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +361 -0
- trajectree/quimb/tests/test_gen/test_rand.py +296 -0
- trajectree/quimb/tests/test_gen/test_states.py +261 -0
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +368 -0
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +351 -0
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +127 -0
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +84 -0
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +134 -0
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +283 -0
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +39 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +67 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +64 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +51 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +142 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +101 -0
- trajectree/quimb/tests/test_tensor/test_circuit.py +816 -0
- trajectree/quimb/tests/test_tensor/test_contract.py +67 -0
- trajectree/quimb/tests/test_tensor/test_decomp.py +40 -0
- trajectree/quimb/tests/test_tensor/test_mera.py +52 -0
- trajectree/quimb/tests/test_tensor/test_optimizers.py +488 -0
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +1171 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +606 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +144 -0
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +123 -0
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +226 -0
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +441 -0
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +2066 -0
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +388 -0
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +63 -0
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +270 -0
- trajectree/quimb/tests/test_utils.py +85 -0
- trajectree/trajectory.py +2 -2
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/METADATA +2 -2
- trajectree-0.0.1.dist-info/RECORD +126 -0
- trajectree-0.0.0.dist-info/RECORD +0 -16
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/WHEEL +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,816 @@
|
|
|
1
|
+
import math
|
|
2
|
+
import itertools
|
|
3
|
+
|
|
4
|
+
import pytest
|
|
5
|
+
import numpy as np
|
|
6
|
+
from numpy.testing import assert_allclose
|
|
7
|
+
|
|
8
|
+
import quimb as qu
|
|
9
|
+
import quimb.tensor as qtn
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def rand_reg_graph(reg, n, seed=None):
|
|
13
|
+
import networkx as nx
|
|
14
|
+
|
|
15
|
+
G = nx.random_regular_graph(reg, n, seed=seed)
|
|
16
|
+
return G
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def graph_to_qsim(G, gamma0=-0.743043, beta0=0.754082):
|
|
20
|
+
n = G.number_of_nodes()
|
|
21
|
+
|
|
22
|
+
# add all the gates
|
|
23
|
+
circ = f"{n}\n"
|
|
24
|
+
for i in range(n):
|
|
25
|
+
circ += f"H {i}\n"
|
|
26
|
+
for i, j in G.edges:
|
|
27
|
+
circ += f"Rzz {gamma0} {i} {j}\n"
|
|
28
|
+
for i in range(n):
|
|
29
|
+
circ += f"Rx {beta0} {i}\n"
|
|
30
|
+
|
|
31
|
+
return circ
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def random_a2a_circ(L, depth, seed=42):
|
|
35
|
+
rng = np.random.default_rng(seed)
|
|
36
|
+
|
|
37
|
+
qubits = np.arange(L)
|
|
38
|
+
gates = []
|
|
39
|
+
|
|
40
|
+
for i in range(L):
|
|
41
|
+
gates.append((0, "h", i))
|
|
42
|
+
|
|
43
|
+
for d in range(depth):
|
|
44
|
+
rng.shuffle(qubits)
|
|
45
|
+
|
|
46
|
+
for i in range(0, L - 1, 2):
|
|
47
|
+
g = rng.choice(["cx", "cy", "cz", "iswap"])
|
|
48
|
+
gates.append((d, g, qubits[i], qubits[i + 1]))
|
|
49
|
+
|
|
50
|
+
for q in qubits:
|
|
51
|
+
g = rng.choice(["rx", "ry", "rz"])
|
|
52
|
+
gates.append((d, g, rng.normal(1.0, 0.5), q))
|
|
53
|
+
|
|
54
|
+
circ = qtn.Circuit(L)
|
|
55
|
+
circ.apply_gates(gates)
|
|
56
|
+
|
|
57
|
+
return circ
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def qft_circ(n, swaps=True, **circuit_opts):
|
|
61
|
+
circ = qtn.Circuit(n, **circuit_opts)
|
|
62
|
+
|
|
63
|
+
for i in range(n):
|
|
64
|
+
circ.h(i)
|
|
65
|
+
for j, m in zip(range(i + 1, n), itertools.count(2)):
|
|
66
|
+
circ.cu1(2 * math.pi / 2**m, j, i)
|
|
67
|
+
|
|
68
|
+
if swaps:
|
|
69
|
+
for i in range(n // 2):
|
|
70
|
+
circ.swap(i, n - i - 1)
|
|
71
|
+
|
|
72
|
+
return circ
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
def swappy_circ(n, depth):
|
|
76
|
+
circ = qtn.Circuit(n)
|
|
77
|
+
|
|
78
|
+
for d in range(depth):
|
|
79
|
+
pairs = np.random.permutation(np.arange(n))
|
|
80
|
+
|
|
81
|
+
for i in range(n // 2):
|
|
82
|
+
qi = pairs[2 * i]
|
|
83
|
+
qj = pairs[2 * i + 1]
|
|
84
|
+
|
|
85
|
+
gate = np.random.choice(["FSIM", "SWAP"])
|
|
86
|
+
if gate == "FSIM":
|
|
87
|
+
params = np.random.randn(2)
|
|
88
|
+
elif gate == "FSIMG":
|
|
89
|
+
params = np.random.randn(5)
|
|
90
|
+
else:
|
|
91
|
+
params = ()
|
|
92
|
+
|
|
93
|
+
circ.apply_gate(gate, *params, qi, qj)
|
|
94
|
+
|
|
95
|
+
return circ
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def example_openqasm2_qft():
|
|
99
|
+
return """
|
|
100
|
+
// quantum Fourier transform
|
|
101
|
+
|
|
102
|
+
OPENQASM 2.0;
|
|
103
|
+
include "qelib1.inc";
|
|
104
|
+
|
|
105
|
+
qreg q[4];
|
|
106
|
+
creg c[4];
|
|
107
|
+
x q[0];
|
|
108
|
+
x q[2];
|
|
109
|
+
barrier q;
|
|
110
|
+
h q[0];
|
|
111
|
+
cu1(pi/2) q[1],q[0];
|
|
112
|
+
h q[1];
|
|
113
|
+
cu1(pi/4) q[2],q[0];
|
|
114
|
+
cu1(pi/2) q[2],q[1];
|
|
115
|
+
/*
|
|
116
|
+
This is a multi line comment.
|
|
117
|
+
*/
|
|
118
|
+
h q[2];
|
|
119
|
+
cu1(pi/8) q[3],q[0];
|
|
120
|
+
cu1(pi/4) q[3],q[1];
|
|
121
|
+
cu1(pi/2) q[3],q[2];
|
|
122
|
+
h q[3];
|
|
123
|
+
|
|
124
|
+
measure q -> c;
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
class TestCircuit:
|
|
129
|
+
def test_prepare_GHZ(self):
|
|
130
|
+
qc = qtn.Circuit(3)
|
|
131
|
+
gates = [
|
|
132
|
+
("H", 0),
|
|
133
|
+
("H", 1),
|
|
134
|
+
("CNOT", 1, 2),
|
|
135
|
+
("CNOT", 0, 2),
|
|
136
|
+
("H", 0),
|
|
137
|
+
("H", 1),
|
|
138
|
+
("H", 2),
|
|
139
|
+
]
|
|
140
|
+
qc.apply_gates(gates)
|
|
141
|
+
assert qu.expec(qc.psi.to_dense(), qu.ghz_state(3)) == pytest.approx(1)
|
|
142
|
+
counts = qc.simulate_counts(1024)
|
|
143
|
+
assert len(counts) == 2
|
|
144
|
+
assert "000" in counts
|
|
145
|
+
assert "111" in counts
|
|
146
|
+
assert counts["000"] + counts["111"] == 1024
|
|
147
|
+
|
|
148
|
+
def test_from_qsim(self):
|
|
149
|
+
G = rand_reg_graph(reg=3, n=18, seed=42)
|
|
150
|
+
qsim = graph_to_qsim(G)
|
|
151
|
+
qc = qtn.Circuit.from_qsim_str(qsim)
|
|
152
|
+
assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
|
|
153
|
+
|
|
154
|
+
def test_from_openqasm2(self):
|
|
155
|
+
qc = qtn.Circuit.from_openqasm2_str(example_openqasm2_qft())
|
|
156
|
+
assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
|
|
157
|
+
|
|
158
|
+
def test_openqasm2_custom_gates(self):
|
|
159
|
+
circ = qtn.Circuit.from_openqasm2_str(
|
|
160
|
+
"""
|
|
161
|
+
OPENQASM 2.0;
|
|
162
|
+
include "qelib1.inc";
|
|
163
|
+
qreg q[3];
|
|
164
|
+
|
|
165
|
+
gate hello a, b {
|
|
166
|
+
h a;
|
|
167
|
+
cx a, b;
|
|
168
|
+
u3(0.1, 0.2, 0.3) b;
|
|
169
|
+
}
|
|
170
|
+
|
|
171
|
+
gate world(param1, θ) q
|
|
172
|
+
{
|
|
173
|
+
u2(θ / 2, param1) q;
|
|
174
|
+
u2(param1, θ / 2) q;
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
hello q[0], q[1];
|
|
178
|
+
world(0.1, 0.2) q[2];
|
|
179
|
+
hello q[2], q[1];
|
|
180
|
+
"""
|
|
181
|
+
)
|
|
182
|
+
assert [g.label for g in circ.gates] == [
|
|
183
|
+
"H",
|
|
184
|
+
"CX",
|
|
185
|
+
"U3",
|
|
186
|
+
"U2",
|
|
187
|
+
"U2",
|
|
188
|
+
"H",
|
|
189
|
+
"CX",
|
|
190
|
+
"U3",
|
|
191
|
+
]
|
|
192
|
+
|
|
193
|
+
def test_openqasm2_custom_nested_gates(self):
|
|
194
|
+
circ = qtn.Circuit.from_openqasm2_str(
|
|
195
|
+
"""
|
|
196
|
+
OPENQASM 2.0;
|
|
197
|
+
include "qelib1.inc";
|
|
198
|
+
qreg q[3];
|
|
199
|
+
|
|
200
|
+
gate cphase(θ) a, b
|
|
201
|
+
{
|
|
202
|
+
U3(0, 0, θ / 2) a;
|
|
203
|
+
CX a, b;
|
|
204
|
+
U3(0, 0, -θ / 2) b;
|
|
205
|
+
CX a, b;
|
|
206
|
+
U3(0, 0, θ / 2) b;
|
|
207
|
+
}
|
|
208
|
+
|
|
209
|
+
gate doublecphase(θ) a, b, c {
|
|
210
|
+
cphase(θ) a, b;
|
|
211
|
+
cphase(θ) b, c;
|
|
212
|
+
}
|
|
213
|
+
|
|
214
|
+
doublecphase(0.1) q[0], q[1], q[2];
|
|
215
|
+
doublecphase(0.2) q[2], q[0], q[1];
|
|
216
|
+
"""
|
|
217
|
+
)
|
|
218
|
+
assert [g.label for g in circ.gates] == [
|
|
219
|
+
"U3",
|
|
220
|
+
"CX",
|
|
221
|
+
"U3",
|
|
222
|
+
"CX",
|
|
223
|
+
"U3",
|
|
224
|
+
] * 4
|
|
225
|
+
|
|
226
|
+
@pytest.mark.parametrize(
|
|
227
|
+
"Circ", [qtn.Circuit, qtn.CircuitMPS, qtn.CircuitDense]
|
|
228
|
+
)
|
|
229
|
+
def test_all_gate_methods(self, Circ):
|
|
230
|
+
import random
|
|
231
|
+
|
|
232
|
+
g_nq_np = [
|
|
233
|
+
# single qubit
|
|
234
|
+
("x", 1, 0),
|
|
235
|
+
("y", 1, 0),
|
|
236
|
+
("z", 1, 0),
|
|
237
|
+
("s", 1, 0),
|
|
238
|
+
("t", 1, 0),
|
|
239
|
+
("h", 1, 0),
|
|
240
|
+
("iden", 1, 0),
|
|
241
|
+
("x_1_2", 1, 0),
|
|
242
|
+
("y_1_2", 1, 0),
|
|
243
|
+
("z_1_2", 1, 0),
|
|
244
|
+
("w_1_2", 1, 0),
|
|
245
|
+
("hz_1_2", 1, 0),
|
|
246
|
+
# single qubit parametrizable
|
|
247
|
+
("rx", 1, 1),
|
|
248
|
+
("ry", 1, 1),
|
|
249
|
+
("rz", 1, 1),
|
|
250
|
+
("u3", 1, 3),
|
|
251
|
+
("u2", 1, 2),
|
|
252
|
+
("u1", 1, 1),
|
|
253
|
+
("phase", 1, 1),
|
|
254
|
+
# two qubit
|
|
255
|
+
("cx", 2, 0),
|
|
256
|
+
("cy", 2, 0),
|
|
257
|
+
("cz", 2, 0),
|
|
258
|
+
("cnot", 2, 0),
|
|
259
|
+
("swap", 2, 0),
|
|
260
|
+
("iswap", 2, 0),
|
|
261
|
+
# two qubit parametrizable
|
|
262
|
+
("rxx", 2, 1),
|
|
263
|
+
("ryy", 2, 1),
|
|
264
|
+
("rzz", 2, 1),
|
|
265
|
+
("crx", 2, 1),
|
|
266
|
+
("cry", 2, 1),
|
|
267
|
+
("crz", 2, 1),
|
|
268
|
+
("cu3", 2, 3),
|
|
269
|
+
("cu2", 2, 2),
|
|
270
|
+
("cu1", 2, 1),
|
|
271
|
+
("cphase", 2, 1),
|
|
272
|
+
("fsim", 2, 2),
|
|
273
|
+
("fsimg", 2, 5),
|
|
274
|
+
("givens", 2, 1),
|
|
275
|
+
("givens2", 2, 2),
|
|
276
|
+
("su4", 2, 15),
|
|
277
|
+
]
|
|
278
|
+
random.shuffle(g_nq_np)
|
|
279
|
+
|
|
280
|
+
psi0 = qtn.MPS_rand_state(2, 2)
|
|
281
|
+
circ = Circ(2, psi0=psi0, tags="PSI0")
|
|
282
|
+
|
|
283
|
+
for g, n_q, n_p in g_nq_np:
|
|
284
|
+
args = [
|
|
285
|
+
*np.random.uniform(0, 2 * np.pi, size=n_p),
|
|
286
|
+
*np.random.choice([0, 1], replace=False, size=n_q),
|
|
287
|
+
]
|
|
288
|
+
getattr(circ, g)(*args)
|
|
289
|
+
|
|
290
|
+
assert circ.psi.H @ circ.psi == pytest.approx(1.0)
|
|
291
|
+
assert abs((circ.psi.H & psi0) ^ all) < 0.99999999
|
|
292
|
+
|
|
293
|
+
def test_su4(self):
|
|
294
|
+
psi0 = qtn.MPS_rand_state(2, 2)
|
|
295
|
+
circ_a = qtn.Circuit(psi0=psi0)
|
|
296
|
+
params = qu.randn(15)
|
|
297
|
+
|
|
298
|
+
circ_a.su4(*params, 0, 1)
|
|
299
|
+
psi_a = circ_a.to_dense()
|
|
300
|
+
|
|
301
|
+
circ_b = qtn.Circuit(psi0=psi0)
|
|
302
|
+
(
|
|
303
|
+
theta1,
|
|
304
|
+
phi1,
|
|
305
|
+
lamda1,
|
|
306
|
+
theta2,
|
|
307
|
+
phi2,
|
|
308
|
+
lamda2,
|
|
309
|
+
theta3,
|
|
310
|
+
phi3,
|
|
311
|
+
lamda3,
|
|
312
|
+
theta4,
|
|
313
|
+
phi4,
|
|
314
|
+
lamda4,
|
|
315
|
+
t1,
|
|
316
|
+
t2,
|
|
317
|
+
t3,
|
|
318
|
+
) = params
|
|
319
|
+
circ_b.u3(theta1, phi1, lamda1, 0)
|
|
320
|
+
circ_b.u3(theta2, phi2, lamda2, 1)
|
|
321
|
+
circ_b.cnot(1, 0)
|
|
322
|
+
circ_b.rz(t1, 0)
|
|
323
|
+
circ_b.ry(t2, 1)
|
|
324
|
+
circ_b.cnot(0, 1)
|
|
325
|
+
circ_b.ry(t3, 1)
|
|
326
|
+
circ_b.cnot(1, 0)
|
|
327
|
+
circ_b.u3(theta3, phi3, lamda3, 0)
|
|
328
|
+
circ_b.u3(theta4, phi4, lamda4, 1)
|
|
329
|
+
psi_b = circ_b.to_dense()
|
|
330
|
+
|
|
331
|
+
assert qu.fidelity(psi_a, psi_b) == pytest.approx(1.0)
|
|
332
|
+
|
|
333
|
+
def test_three_qubit_gates(self):
|
|
334
|
+
psi0 = qtn.MPS_rand_state(3, 2)
|
|
335
|
+
circ = qtn.Circuit(psi0=psi0)
|
|
336
|
+
circ.ccx(0, 1, 2)
|
|
337
|
+
circ.cswap(2, 1, 0)
|
|
338
|
+
circ.toffoli(0, 1, 2)
|
|
339
|
+
circ.ccy(1, 0, 2)
|
|
340
|
+
circ.ccz(1, 2, 0)
|
|
341
|
+
circ.fredkin(2, 1, 0)
|
|
342
|
+
psi = circ.psi.to_dense()
|
|
343
|
+
assert qu.expec(psi, psi) == pytest.approx(1.0)
|
|
344
|
+
|
|
345
|
+
def test_auto_split_gate(self):
|
|
346
|
+
n = 3
|
|
347
|
+
ops = [
|
|
348
|
+
("u3", 1.0, 2.0, 3.0, 0),
|
|
349
|
+
("u3", 2.0, 3.0, 1.0, 1),
|
|
350
|
+
("u3", 3.0, 1.0, 2.0, 2),
|
|
351
|
+
("cz", 0, 1),
|
|
352
|
+
("iswap", 1, 2),
|
|
353
|
+
("cx", 2, 0),
|
|
354
|
+
("iswap", 2, 1),
|
|
355
|
+
("h", 0),
|
|
356
|
+
("h", 1),
|
|
357
|
+
("h", 2),
|
|
358
|
+
]
|
|
359
|
+
cnorm = qtn.Circuit(n, gate_opts=dict(contract="split-gate"))
|
|
360
|
+
cnorm.apply_gates(ops)
|
|
361
|
+
assert cnorm.psi.max_bond() == 4
|
|
362
|
+
|
|
363
|
+
cswap = qtn.Circuit(n, gate_opts=dict(contract="swap-split-gate"))
|
|
364
|
+
cswap.apply_gates(ops)
|
|
365
|
+
assert cswap.psi.max_bond() == 4
|
|
366
|
+
|
|
367
|
+
cauto = qtn.Circuit(n, gate_opts=dict(contract="auto-split-gate"))
|
|
368
|
+
cauto.apply_gates(ops)
|
|
369
|
+
assert cauto.psi.max_bond() == 2
|
|
370
|
+
|
|
371
|
+
assert qu.fidelity(
|
|
372
|
+
cnorm.psi.to_dense(), cswap.psi.to_dense()
|
|
373
|
+
) == pytest.approx(1.0)
|
|
374
|
+
assert qu.fidelity(
|
|
375
|
+
cswap.psi.to_dense(), cauto.psi.to_dense()
|
|
376
|
+
) == pytest.approx(1.0)
|
|
377
|
+
|
|
378
|
+
@pytest.mark.parametrize("gate2", ["cx", "iswap"])
|
|
379
|
+
def test_circuit_simplify_tensor_network(self, gate2):
|
|
380
|
+
import random
|
|
381
|
+
import itertools
|
|
382
|
+
|
|
383
|
+
depth = n = 8
|
|
384
|
+
|
|
385
|
+
circ = qtn.Circuit(n)
|
|
386
|
+
|
|
387
|
+
def random_single_qubit_layer():
|
|
388
|
+
return [
|
|
389
|
+
(random.choice(["X_1_2", "Y_1_2", "W_1_2"]), i)
|
|
390
|
+
for i in range(n)
|
|
391
|
+
]
|
|
392
|
+
|
|
393
|
+
def even_two_qubit_layer():
|
|
394
|
+
return [(gate2, i, i + 1) for i in range(0, n, 2)]
|
|
395
|
+
|
|
396
|
+
def odd_two_qubit_layer():
|
|
397
|
+
return [(gate2, i, i + 1) for i in range(1, n - 1, 2)]
|
|
398
|
+
|
|
399
|
+
layering = itertools.cycle(
|
|
400
|
+
[
|
|
401
|
+
random_single_qubit_layer,
|
|
402
|
+
even_two_qubit_layer,
|
|
403
|
+
random_single_qubit_layer,
|
|
404
|
+
odd_two_qubit_layer,
|
|
405
|
+
]
|
|
406
|
+
)
|
|
407
|
+
|
|
408
|
+
for i, layer_fn in zip(range(depth), layering):
|
|
409
|
+
for g in layer_fn():
|
|
410
|
+
circ.apply_gate(*g, gate_round=i)
|
|
411
|
+
|
|
412
|
+
psif = qtn.MPS_computational_state("0" * n).squeeze_()
|
|
413
|
+
tn = circ.psi & psif
|
|
414
|
+
|
|
415
|
+
c = tn.contract(all)
|
|
416
|
+
cw = tn.contraction_width()
|
|
417
|
+
|
|
418
|
+
tn_s = tn.full_simplify()
|
|
419
|
+
assert tn_s.num_tensors < tn.num_tensors
|
|
420
|
+
assert tn_s.num_indices < tn.num_indices
|
|
421
|
+
# need to specify output inds since we now have hyper edges
|
|
422
|
+
c_s = tn_s.contract(all, output_inds=[])
|
|
423
|
+
assert c_s == pytest.approx(c)
|
|
424
|
+
cw_s = tn_s.contraction_width(output_inds=[])
|
|
425
|
+
assert cw_s <= cw
|
|
426
|
+
|
|
427
|
+
def test_amplitude(self):
|
|
428
|
+
L = 5
|
|
429
|
+
circ = random_a2a_circ(L, 3)
|
|
430
|
+
psi = circ.to_dense()
|
|
431
|
+
|
|
432
|
+
for i in range(2**L):
|
|
433
|
+
b = f"{i:0>{L}b}"
|
|
434
|
+
c = circ.amplitude(b)
|
|
435
|
+
assert c == pytest.approx(psi[i, 0])
|
|
436
|
+
|
|
437
|
+
def test_partial_trace(self):
|
|
438
|
+
L = 5
|
|
439
|
+
circ = random_a2a_circ(L, 3)
|
|
440
|
+
psi = circ.to_dense()
|
|
441
|
+
for i in range(L - 1):
|
|
442
|
+
keep = (i, i + 1)
|
|
443
|
+
assert_allclose(
|
|
444
|
+
qu.partial_trace(psi, [2] * 5, keep=keep),
|
|
445
|
+
circ.partial_trace(keep),
|
|
446
|
+
atol=1e-12,
|
|
447
|
+
)
|
|
448
|
+
|
|
449
|
+
@pytest.mark.parametrize("group_size", (1, 2, 6))
|
|
450
|
+
def test_sample(self, group_size):
|
|
451
|
+
import collections
|
|
452
|
+
from scipy.stats import power_divergence
|
|
453
|
+
|
|
454
|
+
C = 2**10
|
|
455
|
+
L = 5
|
|
456
|
+
circ = random_a2a_circ(L, 3)
|
|
457
|
+
|
|
458
|
+
psi = circ.to_dense()
|
|
459
|
+
p_exp = abs(psi.reshape(-1)) ** 2
|
|
460
|
+
f_exp = p_exp * C
|
|
461
|
+
|
|
462
|
+
counts = collections.Counter(circ.sample(C, group_size=group_size))
|
|
463
|
+
f_obs = np.zeros(2**L)
|
|
464
|
+
for b, c in counts.items():
|
|
465
|
+
f_obs[int(b, 2)] = c
|
|
466
|
+
|
|
467
|
+
assert power_divergence(f_obs, f_exp)[0] < 100
|
|
468
|
+
|
|
469
|
+
@pytest.mark.parametrize("group_size", (1, 3))
|
|
470
|
+
def test_sample_gate_by_gate(self, group_size):
|
|
471
|
+
import collections
|
|
472
|
+
from scipy.stats import power_divergence
|
|
473
|
+
|
|
474
|
+
C = 2**10
|
|
475
|
+
L = 5
|
|
476
|
+
circ = random_a2a_circ(L, 3)
|
|
477
|
+
|
|
478
|
+
psi = circ.to_dense()
|
|
479
|
+
p_exp = abs(psi.reshape(-1)) ** 2
|
|
480
|
+
f_exp = p_exp * C
|
|
481
|
+
|
|
482
|
+
counts = collections.Counter(
|
|
483
|
+
circ.sample_gate_by_gate(C, group_size=group_size)
|
|
484
|
+
)
|
|
485
|
+
f_obs = np.zeros(2**L)
|
|
486
|
+
for b, c in counts.items():
|
|
487
|
+
f_obs[int(b, 2)] = c
|
|
488
|
+
|
|
489
|
+
assert power_divergence(f_obs, f_exp)[0] < 100
|
|
490
|
+
|
|
491
|
+
def test_sample_chaotic(self):
|
|
492
|
+
import collections
|
|
493
|
+
from scipy.stats import power_divergence
|
|
494
|
+
|
|
495
|
+
C = 2**12
|
|
496
|
+
L = 5
|
|
497
|
+
reps = 3
|
|
498
|
+
depth = 2
|
|
499
|
+
goodnesses = [0] * 5
|
|
500
|
+
|
|
501
|
+
for _ in range(reps):
|
|
502
|
+
circ = random_a2a_circ(L, depth)
|
|
503
|
+
|
|
504
|
+
psi = circ.to_dense()
|
|
505
|
+
p_exp = abs(psi.reshape(-1)) ** 2
|
|
506
|
+
f_exp = p_exp * C
|
|
507
|
+
|
|
508
|
+
for num_marginal in [3, 4, 5]:
|
|
509
|
+
counts = collections.Counter(
|
|
510
|
+
circ.sample_chaotic(C, num_marginal, seed=666)
|
|
511
|
+
)
|
|
512
|
+
f_obs = np.zeros(2**L)
|
|
513
|
+
for b, c in counts.items():
|
|
514
|
+
f_obs[int(b, 2)] = c
|
|
515
|
+
|
|
516
|
+
goodness = power_divergence(f_obs, f_exp)[0]
|
|
517
|
+
goodnesses[num_marginal - 1] += goodness
|
|
518
|
+
|
|
519
|
+
# assert average sampling goodness gets better with larger marginal
|
|
520
|
+
assert sum(goodnesses[i] < goodnesses[i - 1] for i in range(1, L)) == 2
|
|
521
|
+
|
|
522
|
+
def test_local_expectation(self):
|
|
523
|
+
import random
|
|
524
|
+
|
|
525
|
+
L = 5
|
|
526
|
+
depth = 3
|
|
527
|
+
circ = random_a2a_circ(L, depth)
|
|
528
|
+
psi = circ.to_dense()
|
|
529
|
+
for _ in range(10):
|
|
530
|
+
G = qu.rand_matrix(4)
|
|
531
|
+
i = random.randint(0, L - 2)
|
|
532
|
+
where = (i, i + 1)
|
|
533
|
+
x1 = qu.expec(qu.ikron(G, [2] * L, where), psi)
|
|
534
|
+
x2 = circ.local_expectation(G, where)
|
|
535
|
+
assert x1 == pytest.approx(x2)
|
|
536
|
+
|
|
537
|
+
def test_local_expectation_multigate(self):
|
|
538
|
+
circ = qtn.Circuit(2)
|
|
539
|
+
circ.h(0)
|
|
540
|
+
circ.cnot(0, 1)
|
|
541
|
+
circ.y(1)
|
|
542
|
+
Gs = [qu.kronpow(qu.pauli(s), 2) for s in "xyz"]
|
|
543
|
+
exps = circ.local_expectation(Gs, [0, 1])
|
|
544
|
+
assert exps[0] == pytest.approx(-1)
|
|
545
|
+
assert exps[1] == pytest.approx(-1)
|
|
546
|
+
assert exps[2] == pytest.approx(-1)
|
|
547
|
+
|
|
548
|
+
def test_local_expectation_len1(self):
|
|
549
|
+
circ = qtn.Circuit(1)
|
|
550
|
+
circ.apply_gate("H", 0, gate_round=0)
|
|
551
|
+
circ.local_expectation([qu.pauli("X")], (0,))
|
|
552
|
+
|
|
553
|
+
def test_uni_to_dense(self):
|
|
554
|
+
import cmath
|
|
555
|
+
|
|
556
|
+
circ = qft_circ(3)
|
|
557
|
+
U = circ.uni.to_dense()
|
|
558
|
+
w = cmath.exp(2j * math.pi / 2**3)
|
|
559
|
+
ex = 2 ** (-3 / 2) * np.array(
|
|
560
|
+
[
|
|
561
|
+
[w**0, w**0, w**0, w**0, w**0, w**0, w**0, w**0],
|
|
562
|
+
[w**0, w**1, w**2, w**3, w**4, w**5, w**6, w**7],
|
|
563
|
+
[w**0, w**2, w**4, w**6, w**0, w**2, w**4, w**6],
|
|
564
|
+
[w**0, w**3, w**6, w**1, w**4, w**7, w**2, w**5],
|
|
565
|
+
[w**0, w**4, w**0, w**4, w**0, w**4, w**0, w**4],
|
|
566
|
+
[w**0, w**5, w**2, w**7, w**4, w**1, w**6, w**3],
|
|
567
|
+
[w**0, w**6, w**4, w**2, w**0, w**6, w**4, w**2],
|
|
568
|
+
[w**0, w**7, w**6, w**5, w**4, w**3, w**2, w**1],
|
|
569
|
+
]
|
|
570
|
+
)
|
|
571
|
+
assert_allclose(U, ex)
|
|
572
|
+
|
|
573
|
+
def test_swap_lighcones(self):
|
|
574
|
+
circ = qtn.Circuit(3)
|
|
575
|
+
circ.x(0) # 0
|
|
576
|
+
circ.x(1) # 1
|
|
577
|
+
circ.x(2) # 2
|
|
578
|
+
circ.swap(0, 1) # 3
|
|
579
|
+
circ.cx(1, 2) # 4
|
|
580
|
+
circ.cx(0, 1) # 5
|
|
581
|
+
assert circ.get_reverse_lightcone_tags((2,)) == (
|
|
582
|
+
"PSI0",
|
|
583
|
+
"GATE_0",
|
|
584
|
+
"GATE_2",
|
|
585
|
+
"GATE_4",
|
|
586
|
+
)
|
|
587
|
+
|
|
588
|
+
def test_swappy_local_expecs(self):
|
|
589
|
+
circ = swappy_circ(4, 4)
|
|
590
|
+
Gs = [qu.rand_matrix(4) for _ in range(3)]
|
|
591
|
+
pairs = [(0, 1), (1, 2), (2, 3)]
|
|
592
|
+
|
|
593
|
+
psi = circ.to_dense()
|
|
594
|
+
dims = [2] * 4
|
|
595
|
+
|
|
596
|
+
exs = [
|
|
597
|
+
qu.expec(qu.ikron(G, dims, pair), psi)
|
|
598
|
+
for G, pair in zip(Gs, pairs)
|
|
599
|
+
]
|
|
600
|
+
aps = [circ.local_expectation(G, pair) for G, pair in zip(Gs, pairs)]
|
|
601
|
+
|
|
602
|
+
assert_allclose(exs, aps)
|
|
603
|
+
|
|
604
|
+
@pytest.mark.parametrize(
|
|
605
|
+
"name, densefn, nparam, nqubit",
|
|
606
|
+
[
|
|
607
|
+
("rx", qu.Rx, 1, 1),
|
|
608
|
+
("ry", qu.Ry, 1, 1),
|
|
609
|
+
("rz", qu.Rz, 1, 1),
|
|
610
|
+
("u3", qu.U_gate, 3, 1),
|
|
611
|
+
("fsim", qu.fsim, 2, 2),
|
|
612
|
+
("fsimg", qu.fsimg, 5, 2),
|
|
613
|
+
],
|
|
614
|
+
)
|
|
615
|
+
def test_parametrized_gates_rx(self, name, densefn, nparam, nqubit):
|
|
616
|
+
k0 = qu.rand_ket(2**nqubit)
|
|
617
|
+
params = qu.randn(nparam)
|
|
618
|
+
kf = densefn(*params) @ k0
|
|
619
|
+
k0mps = qtn.MatrixProductState.from_dense(k0, [2] * nqubit)
|
|
620
|
+
circ = qtn.Circuit(psi0=k0mps, gate_opts={"contract": False})
|
|
621
|
+
getattr(circ, name)(*params, *range(nqubit), parametrize=True)
|
|
622
|
+
tn = circ.psi
|
|
623
|
+
assert isinstance(tn["GATE_0"], qtn.PTensor)
|
|
624
|
+
assert_allclose(circ.to_dense(), kf)
|
|
625
|
+
|
|
626
|
+
def test_apply_raw_gate(self):
|
|
627
|
+
k0 = qu.rand_ket(4)
|
|
628
|
+
psi0 = qtn.MatrixProductState.from_dense(k0, [2] * 2)
|
|
629
|
+
circ = qtn.Circuit(psi0=psi0)
|
|
630
|
+
U = qu.rand_uni(4)
|
|
631
|
+
circ.apply_gate_raw(U, [0, 1], tags="UCUSTOM")
|
|
632
|
+
assert len(circ.gates) == 1
|
|
633
|
+
assert "UCUSTOM" in circ.psi.tags
|
|
634
|
+
assert qu.fidelity(circ.to_dense(), U @ k0) == pytest.approx(1)
|
|
635
|
+
|
|
636
|
+
def test_apply_controlled_gate_basic_equiv(self):
|
|
637
|
+
circ = qtn.Circuit(3)
|
|
638
|
+
circ.apply_gate("x", qubits=(2,), controls=(0, 1))
|
|
639
|
+
U = circ.get_uni().to_dense()
|
|
640
|
+
assert_allclose(U, qu.toffoli())
|
|
641
|
+
|
|
642
|
+
circ = qtn.Circuit(3)
|
|
643
|
+
circ.apply_gate("swap", qubits=(1, 2), controls=(0,))
|
|
644
|
+
U = circ.get_uni().to_dense()
|
|
645
|
+
assert_allclose(U, qu.fredkin())
|
|
646
|
+
|
|
647
|
+
def test_multi_controlled_circuit(self):
|
|
648
|
+
import random
|
|
649
|
+
|
|
650
|
+
N = 10
|
|
651
|
+
circ = qtn.Circuit(N)
|
|
652
|
+
regs = list(range(N))
|
|
653
|
+
random.shuffle(regs)
|
|
654
|
+
circ.apply_gate("H", regs[0])
|
|
655
|
+
for i in range(N - 1):
|
|
656
|
+
circ.apply_gate("CNOT", regs[i], regs[i + 1])
|
|
657
|
+
circ.apply_gate("X", N - 1, controls=range(N - 1))
|
|
658
|
+
circ.apply_gate("SWAP", qubits=(N - 2, N - 1), controls=range(N - 2))
|
|
659
|
+
(b,) = circ.sample(1, group_size=3)
|
|
660
|
+
assert b[N - 2] == "0"
|
|
661
|
+
|
|
662
|
+
|
|
663
|
+
class TestCircuitMPS:
|
|
664
|
+
def test_from_qsim_mps_swapsplit(self):
|
|
665
|
+
G = rand_reg_graph(reg=3, n=18, seed=42)
|
|
666
|
+
qsim = graph_to_qsim(G)
|
|
667
|
+
qc = qtn.CircuitMPS.from_qsim_str(qsim)
|
|
668
|
+
assert len(qc.psi.tensors) == 18
|
|
669
|
+
assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
|
|
670
|
+
|
|
671
|
+
def test_multi_controlled_mps_circuit(self):
|
|
672
|
+
N = 10
|
|
673
|
+
rng = np.random.default_rng(42)
|
|
674
|
+
|
|
675
|
+
gates = []
|
|
676
|
+
for i in range(N):
|
|
677
|
+
gates.append(
|
|
678
|
+
qtn.Gate(
|
|
679
|
+
"U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
|
|
680
|
+
)
|
|
681
|
+
)
|
|
682
|
+
gates.append(
|
|
683
|
+
qtn.Gate(
|
|
684
|
+
"SU4",
|
|
685
|
+
params=rng.uniform(0, 2 * np.pi, size=15),
|
|
686
|
+
qubits=[6, 2],
|
|
687
|
+
controls=[8, 3, 4, 0],
|
|
688
|
+
)
|
|
689
|
+
)
|
|
690
|
+
for i in range(N):
|
|
691
|
+
gates.append(
|
|
692
|
+
qtn.Gate(
|
|
693
|
+
"U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
|
|
694
|
+
)
|
|
695
|
+
)
|
|
696
|
+
gates.append(
|
|
697
|
+
qtn.Gate.from_raw(
|
|
698
|
+
qu.rand_uni(2**3), qubits=[0, 9, 5], controls=[1, 2, 7]
|
|
699
|
+
)
|
|
700
|
+
)
|
|
701
|
+
|
|
702
|
+
circ = qtn.Circuit(N=10)
|
|
703
|
+
circ.apply_gates(gates)
|
|
704
|
+
psi_lazy = circ.psi
|
|
705
|
+
circ = qtn.CircuitMPS(N=10)
|
|
706
|
+
circ.apply_gates(gates)
|
|
707
|
+
mps = circ.psi
|
|
708
|
+
assert mps.norm() == pytest.approx(1.0)
|
|
709
|
+
assert mps.distance_normalized(psi_lazy) < 1e-6
|
|
710
|
+
|
|
711
|
+
def test_mps_sampling(self):
|
|
712
|
+
N = 6
|
|
713
|
+
circ = qtn.CircuitMPS(N)
|
|
714
|
+
circ.h(3)
|
|
715
|
+
circ.cx(3, 2)
|
|
716
|
+
circ.cx(2, 1)
|
|
717
|
+
circ.cx(1, 0)
|
|
718
|
+
circ.cx(0, 5)
|
|
719
|
+
circ.cx(5, 4)
|
|
720
|
+
circ.x(4)
|
|
721
|
+
for x in circ.sample(10):
|
|
722
|
+
assert x in {"000010", "111101"}
|
|
723
|
+
|
|
724
|
+
def test_mps_sampling_seed(self):
|
|
725
|
+
N = 1
|
|
726
|
+
circ = qtn.CircuitMPS(N)
|
|
727
|
+
circ.h(0)
|
|
728
|
+
samples = list(circ.sample(10, seed=1234))
|
|
729
|
+
assert len(set(samples)) == 2
|
|
730
|
+
|
|
731
|
+
def test_permmps_sampling(self):
|
|
732
|
+
N = 6
|
|
733
|
+
circ = qtn.CircuitPermMPS(N)
|
|
734
|
+
circ.h(3)
|
|
735
|
+
circ.cx(3, 2)
|
|
736
|
+
circ.cx(2, 1)
|
|
737
|
+
circ.cx(1, 0)
|
|
738
|
+
circ.cx(0, 5)
|
|
739
|
+
circ.cx(5, 4)
|
|
740
|
+
circ.x(4)
|
|
741
|
+
assert circ.qubits != tuple(range(N))
|
|
742
|
+
for x in circ.sample(10):
|
|
743
|
+
assert x in {"000010", "111101"}
|
|
744
|
+
|
|
745
|
+
def test_permmps_sampling_seed(self):
|
|
746
|
+
N = 1
|
|
747
|
+
circ = qtn.CircuitPermMPS(N)
|
|
748
|
+
circ.h(0)
|
|
749
|
+
samples = list(circ.sample(10, seed=1234))
|
|
750
|
+
assert len(set(samples)) == 2
|
|
751
|
+
|
|
752
|
+
|
|
753
|
+
class TestCircuitGen:
|
|
754
|
+
@pytest.mark.parametrize(
|
|
755
|
+
"ansatz,cyclic",
|
|
756
|
+
[
|
|
757
|
+
("zigzag", False),
|
|
758
|
+
("brickwork", False),
|
|
759
|
+
("brickwork", True),
|
|
760
|
+
("rand", False),
|
|
761
|
+
("rand", True),
|
|
762
|
+
],
|
|
763
|
+
)
|
|
764
|
+
@pytest.mark.parametrize("n", [4, 5])
|
|
765
|
+
def test_1D_ansatzes(self, ansatz, cyclic, n):
|
|
766
|
+
depth = 3
|
|
767
|
+
num_pairs = n if cyclic else n - 1
|
|
768
|
+
|
|
769
|
+
fn = {
|
|
770
|
+
"zigzag": qtn.circ_ansatz_1D_zigzag,
|
|
771
|
+
"brickwork": qtn.circ_ansatz_1D_brickwork,
|
|
772
|
+
"rand": qtn.circ_ansatz_1D_rand,
|
|
773
|
+
}[ansatz]
|
|
774
|
+
|
|
775
|
+
opts = dict(
|
|
776
|
+
n=n,
|
|
777
|
+
depth=3,
|
|
778
|
+
gate_opts=dict(contract=False),
|
|
779
|
+
)
|
|
780
|
+
if cyclic:
|
|
781
|
+
opts["cyclic"] = True
|
|
782
|
+
if ansatz == "rand":
|
|
783
|
+
opts["seed"] = 42
|
|
784
|
+
|
|
785
|
+
circ = fn(**opts)
|
|
786
|
+
tn = circ.uni
|
|
787
|
+
|
|
788
|
+
# total number of entangling gates
|
|
789
|
+
assert len(tn["CZ"]) == num_pairs * depth
|
|
790
|
+
|
|
791
|
+
# number of entangling gates per pair
|
|
792
|
+
for i in range(num_pairs):
|
|
793
|
+
assert len(tn["CZ", f"I{i}", f"I{(i + 1) % n}"]) == depth
|
|
794
|
+
|
|
795
|
+
assert all(isinstance(t, qtn.PTensor) for t in tn["U3"])
|
|
796
|
+
|
|
797
|
+
def test_qaoa(self):
|
|
798
|
+
G = rand_reg_graph(3, 10, seed=666)
|
|
799
|
+
terms = {(i, j): 1.0 for i, j in G.edges}
|
|
800
|
+
ZZ = qu.pauli("Z") & qu.pauli("Z")
|
|
801
|
+
|
|
802
|
+
gammas = [-0.6]
|
|
803
|
+
betas = [-0.4]
|
|
804
|
+
|
|
805
|
+
circ1 = qtn.circ_qaoa(terms, 1, gammas, betas)
|
|
806
|
+
|
|
807
|
+
energy1 = sum(circ1.local_expectation(ZZ, edge) for edge in terms)
|
|
808
|
+
assert energy1 < -4
|
|
809
|
+
|
|
810
|
+
gammas = [-0.4]
|
|
811
|
+
betas = [0.3]
|
|
812
|
+
|
|
813
|
+
circ2 = qtn.circ_qaoa(terms, 1, gammas, betas)
|
|
814
|
+
|
|
815
|
+
energy2 = sum(circ2.local_expectation(ZZ, edge) for edge in terms)
|
|
816
|
+
assert energy2 > 4
|