Trajectree 0.0.0__py3-none-any.whl → 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +3 -0
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +3 -3
- trajectree/fock_optics/utils.py +6 -6
- trajectree/quimb/docs/_pygments/_pygments_dark.py +118 -0
- trajectree/quimb/docs/_pygments/_pygments_light.py +118 -0
- trajectree/quimb/docs/conf.py +158 -0
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +62 -0
- trajectree/quimb/quimb/__init__.py +507 -0
- trajectree/quimb/quimb/calc.py +1491 -0
- trajectree/quimb/quimb/core.py +2279 -0
- trajectree/quimb/quimb/evo.py +712 -0
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +129 -0
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +109 -0
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +397 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +653 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +571 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +775 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +537 -0
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +194 -0
- trajectree/quimb/quimb/experimental/cluster_update.py +286 -0
- trajectree/quimb/quimb/experimental/merabuilder.py +865 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +15 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +1631 -0
- trajectree/quimb/quimb/experimental/schematic.py +7 -0
- trajectree/quimb/quimb/experimental/tn_marginals.py +130 -0
- trajectree/quimb/quimb/experimental/tnvmc.py +1483 -0
- trajectree/quimb/quimb/gates.py +36 -0
- trajectree/quimb/quimb/gen/__init__.py +2 -0
- trajectree/quimb/quimb/gen/operators.py +1167 -0
- trajectree/quimb/quimb/gen/rand.py +713 -0
- trajectree/quimb/quimb/gen/states.py +479 -0
- trajectree/quimb/quimb/linalg/__init__.py +6 -0
- trajectree/quimb/quimb/linalg/approx_spectral.py +1109 -0
- trajectree/quimb/quimb/linalg/autoblock.py +258 -0
- trajectree/quimb/quimb/linalg/base_linalg.py +719 -0
- trajectree/quimb/quimb/linalg/mpi_launcher.py +397 -0
- trajectree/quimb/quimb/linalg/numpy_linalg.py +244 -0
- trajectree/quimb/quimb/linalg/rand_linalg.py +514 -0
- trajectree/quimb/quimb/linalg/scipy_linalg.py +293 -0
- trajectree/quimb/quimb/linalg/slepc_linalg.py +892 -0
- trajectree/quimb/quimb/schematic.py +1518 -0
- trajectree/quimb/quimb/tensor/__init__.py +401 -0
- trajectree/quimb/quimb/tensor/array_ops.py +610 -0
- trajectree/quimb/quimb/tensor/circuit.py +4824 -0
- trajectree/quimb/quimb/tensor/circuit_gen.py +411 -0
- trajectree/quimb/quimb/tensor/contraction.py +336 -0
- trajectree/quimb/quimb/tensor/decomp.py +1255 -0
- trajectree/quimb/quimb/tensor/drawing.py +1646 -0
- trajectree/quimb/quimb/tensor/fitting.py +385 -0
- trajectree/quimb/quimb/tensor/geometry.py +583 -0
- trajectree/quimb/quimb/tensor/interface.py +114 -0
- trajectree/quimb/quimb/tensor/networking.py +1058 -0
- trajectree/quimb/quimb/tensor/optimize.py +1818 -0
- trajectree/quimb/quimb/tensor/tensor_1d.py +4778 -0
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +1854 -0
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +662 -0
- trajectree/quimb/quimb/tensor/tensor_2d.py +5954 -0
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +96 -0
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +1230 -0
- trajectree/quimb/quimb/tensor/tensor_3d.py +2869 -0
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +46 -0
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +60 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +3237 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +565 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +1138 -0
- trajectree/quimb/quimb/tensor/tensor_builder.py +5411 -0
- trajectree/quimb/quimb/tensor/tensor_core.py +11179 -0
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +1472 -0
- trajectree/quimb/quimb/tensor/tensor_mera.py +204 -0
- trajectree/quimb/quimb/utils.py +892 -0
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +501 -0
- trajectree/quimb/tests/test_calc.py +788 -0
- trajectree/quimb/tests/test_core.py +847 -0
- trajectree/quimb/tests/test_evo.py +565 -0
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +361 -0
- trajectree/quimb/tests/test_gen/test_rand.py +296 -0
- trajectree/quimb/tests/test_gen/test_states.py +261 -0
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +368 -0
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +351 -0
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +127 -0
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +84 -0
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +134 -0
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +283 -0
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +39 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +67 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +64 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +51 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +142 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +101 -0
- trajectree/quimb/tests/test_tensor/test_circuit.py +816 -0
- trajectree/quimb/tests/test_tensor/test_contract.py +67 -0
- trajectree/quimb/tests/test_tensor/test_decomp.py +40 -0
- trajectree/quimb/tests/test_tensor/test_mera.py +52 -0
- trajectree/quimb/tests/test_tensor/test_optimizers.py +488 -0
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +1171 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +606 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +144 -0
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +123 -0
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +226 -0
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +441 -0
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +2066 -0
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +388 -0
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +63 -0
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +270 -0
- trajectree/quimb/tests/test_utils.py +85 -0
- trajectree/trajectory.py +2 -2
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/METADATA +2 -2
- trajectree-0.0.1.dist-info/RECORD +126 -0
- trajectree-0.0.0.dist-info/RECORD +0 -16
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/WHEEL +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1171 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pytest
|
|
3
|
+
from numpy.testing import assert_allclose
|
|
4
|
+
|
|
5
|
+
import quimb as qu
|
|
6
|
+
import quimb.tensor as qtn
|
|
7
|
+
|
|
8
|
+
dtypes = ["float32", "float64", "complex64", "complex128"]
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestMatrixProductState:
|
|
12
|
+
def test_matrix_product_state(self):
|
|
13
|
+
tensors = (
|
|
14
|
+
[np.random.rand(5, 2)]
|
|
15
|
+
+ [np.random.rand(5, 5, 2) for _ in range(3)]
|
|
16
|
+
+ [np.random.rand(5, 2)]
|
|
17
|
+
)
|
|
18
|
+
mps = qtn.MatrixProductState(tensors)
|
|
19
|
+
mps.check()
|
|
20
|
+
assert len(mps.tensors) == 5
|
|
21
|
+
nmps = mps.reindex_sites("foo{}", inplace=False, where=slice(0, 3))
|
|
22
|
+
assert nmps.site_ind_id == "k{}"
|
|
23
|
+
assert isinstance(nmps, qtn.MatrixProductState)
|
|
24
|
+
assert set(nmps.outer_inds()) == {"foo0", "foo1", "foo2", "k3", "k4"}
|
|
25
|
+
assert set(mps.outer_inds()) == {"k0", "k1", "k2", "k3", "k4"}
|
|
26
|
+
mps.site_ind_id = "foo{}"
|
|
27
|
+
assert set(mps.outer_inds()) == {
|
|
28
|
+
"foo0",
|
|
29
|
+
"foo1",
|
|
30
|
+
"foo2",
|
|
31
|
+
"foo3",
|
|
32
|
+
"foo4",
|
|
33
|
+
}
|
|
34
|
+
assert mps.site_inds == ("foo0", "foo1", "foo2", "foo3", "foo4")
|
|
35
|
+
assert mps.site_ind_id == "foo{}"
|
|
36
|
+
mps.show()
|
|
37
|
+
|
|
38
|
+
@pytest.mark.parametrize(
|
|
39
|
+
"dtype", [float, complex, np.complex128, np.float64, "raise"]
|
|
40
|
+
)
|
|
41
|
+
def test_rand_mps_dtype(self, dtype):
|
|
42
|
+
if dtype == "raise":
|
|
43
|
+
with pytest.raises(TypeError):
|
|
44
|
+
qtn.MPS_rand_state(10, 7, dtype=dtype)
|
|
45
|
+
else:
|
|
46
|
+
p = qtn.MPS_rand_state(10, 7, dtype=dtype)
|
|
47
|
+
assert p[0].dtype == dtype
|
|
48
|
+
assert p[7].dtype == dtype
|
|
49
|
+
|
|
50
|
+
def test_trans_invar(self):
|
|
51
|
+
with pytest.raises(ValueError):
|
|
52
|
+
psi = qtn.MPS_rand_state(10, 7, cyclic=False, trans_invar=True)
|
|
53
|
+
|
|
54
|
+
psi = qtn.MPS_rand_state(10, 7, cyclic=True, trans_invar=True)
|
|
55
|
+
z0 = psi.expec(psi.gate(qu.pauli("Z"), 0, contract=True))
|
|
56
|
+
z3 = psi.expec(psi.gate(qu.pauli("Z"), 0, contract=True))
|
|
57
|
+
z7 = psi.expec(psi.gate(qu.pauli("Z"), 0, contract=True))
|
|
58
|
+
|
|
59
|
+
assert_allclose(z0, z3)
|
|
60
|
+
assert_allclose(z3, z7)
|
|
61
|
+
|
|
62
|
+
def test_from_dense(self):
|
|
63
|
+
L = 8
|
|
64
|
+
psi = qu.rand_ket(2**L)
|
|
65
|
+
mps = qtn.MatrixProductState.from_dense(psi)
|
|
66
|
+
assert mps.tags == qtn.oset(f"I{i}" for i in range(L))
|
|
67
|
+
assert mps.site_inds == tuple(f"k{i}" for i in range(L))
|
|
68
|
+
assert mps.L == L
|
|
69
|
+
assert mps.bond_sizes() == [2, 4, 8, 16, 8, 4, 2]
|
|
70
|
+
mpod = mps.to_qarray()
|
|
71
|
+
assert qu.expec(mpod, psi) == pytest.approx(1)
|
|
72
|
+
|
|
73
|
+
def test_from_dense_low_rank(self):
|
|
74
|
+
L = 6
|
|
75
|
+
psi = qu.ghz_state(L)
|
|
76
|
+
mps = qtn.MatrixProductState.from_dense(psi, dims=[2] * L)
|
|
77
|
+
assert mps.tags == qtn.oset(f"I{i}" for i in range(L))
|
|
78
|
+
assert mps.site_inds == tuple(f"k{i}" for i in range(L))
|
|
79
|
+
assert mps.L == L
|
|
80
|
+
assert mps.bond_sizes() == [2, 2, 2, 2, 2]
|
|
81
|
+
mpod = mps.to_qarray()
|
|
82
|
+
assert qu.expec(mpod, psi) == pytest.approx(1)
|
|
83
|
+
|
|
84
|
+
def test_left_canonize_site(self):
|
|
85
|
+
a = np.random.randn(7, 2) + 1.0j * np.random.randn(7, 2)
|
|
86
|
+
b = np.random.randn(7, 7, 2) + 1.0j * np.random.randn(7, 7, 2)
|
|
87
|
+
c = np.random.randn(7, 2) + 1.0j * np.random.randn(7, 2)
|
|
88
|
+
mps = qtn.MatrixProductState([a, b, c], site_tag_id="I{}")
|
|
89
|
+
|
|
90
|
+
mps.left_canonize_site(0)
|
|
91
|
+
assert mps["I0"].shape == (2, 2)
|
|
92
|
+
assert mps["I0"].tags == qtn.oset(("I0",))
|
|
93
|
+
assert mps["I1"].tags == qtn.oset(("I1",))
|
|
94
|
+
|
|
95
|
+
U = mps["I0"].data
|
|
96
|
+
assert_allclose(U.conj().T @ U, np.eye(2), atol=1e-13)
|
|
97
|
+
assert_allclose(U @ U.conj().T, np.eye(2), atol=1e-13)
|
|
98
|
+
|
|
99
|
+
# combined two site contraction is identity also
|
|
100
|
+
mps.left_canonize_site(1)
|
|
101
|
+
ptn = (mps.H & mps) ^ ["I0", "I1"]
|
|
102
|
+
assert_allclose(ptn["I1"].data, np.eye(4), atol=1e-13)
|
|
103
|
+
|
|
104
|
+
# try normalizing the state
|
|
105
|
+
mps["I2"] /= mps["I2"].norm()
|
|
106
|
+
|
|
107
|
+
assert_allclose(abs(mps.H @ mps), 1.0)
|
|
108
|
+
|
|
109
|
+
def test_right_canonize_site(self):
|
|
110
|
+
a = np.random.randn(7, 2) + 1.0j * np.random.randn(7, 2)
|
|
111
|
+
b = np.random.randn(7, 7, 2) + 1.0j * np.random.randn(7, 7, 2)
|
|
112
|
+
c = np.random.randn(7, 2) + 1.0j * np.random.randn(7, 2)
|
|
113
|
+
mps = qtn.MatrixProductState([a, b, c], site_tag_id="I{}")
|
|
114
|
+
|
|
115
|
+
mps.right_canonize_site(2)
|
|
116
|
+
assert mps["I2"].shape == (2, 2)
|
|
117
|
+
assert mps["I2"].tags == qtn.oset(("I2",))
|
|
118
|
+
assert mps["I1"].tags == qtn.oset(("I1",))
|
|
119
|
+
|
|
120
|
+
U = mps["I2"].data
|
|
121
|
+
assert_allclose(U.conj().T @ U, np.eye(2), atol=1e-13)
|
|
122
|
+
assert_allclose(U @ U.conj().T, np.eye(2), atol=1e-13)
|
|
123
|
+
|
|
124
|
+
# combined two site contraction is identity also
|
|
125
|
+
mps.right_canonize_site(1)
|
|
126
|
+
ptn = (mps.H & mps) ^ ["I1", "I2"]
|
|
127
|
+
assert_allclose(ptn["I1"].data, np.eye(4), atol=1e-13)
|
|
128
|
+
|
|
129
|
+
# try normalizing the state
|
|
130
|
+
mps["I0"] /= mps["I0"].norm()
|
|
131
|
+
|
|
132
|
+
assert_allclose(mps.H @ mps, 1)
|
|
133
|
+
|
|
134
|
+
def test_rand_mps_left_canonize(self):
|
|
135
|
+
n = 10
|
|
136
|
+
k = qtn.MPS_rand_state(
|
|
137
|
+
n, 10, site_tag_id="foo{}", tags="bar", normalize=False
|
|
138
|
+
)
|
|
139
|
+
k.left_canonicalize_(normalize=True)
|
|
140
|
+
|
|
141
|
+
assert k.count_canonized() == (9, 0)
|
|
142
|
+
|
|
143
|
+
assert_allclose(k.H @ k, 1)
|
|
144
|
+
p_tn = (k.H & k) ^ slice(0, 9)
|
|
145
|
+
assert_allclose(p_tn["foo8"].data, np.eye(10), atol=1e-13)
|
|
146
|
+
|
|
147
|
+
def test_rand_mps_left_canonize_with_bra(self):
|
|
148
|
+
n = 10
|
|
149
|
+
k = qtn.MPS_rand_state(
|
|
150
|
+
n, 10, site_tag_id="foo{}", tags="bar", normalize=False
|
|
151
|
+
)
|
|
152
|
+
b = k.H
|
|
153
|
+
k.left_canonicalize_(normalize=True, bra=b)
|
|
154
|
+
assert_allclose(b @ k, 1)
|
|
155
|
+
p_tn = (b & k) ^ slice(0, 9)
|
|
156
|
+
assert_allclose(p_tn["foo8"].data, np.eye(10), atol=1e-13)
|
|
157
|
+
|
|
158
|
+
def test_rand_mps_right_canonize(self):
|
|
159
|
+
n = 10
|
|
160
|
+
k = qtn.MPS_rand_state(
|
|
161
|
+
n, 10, site_tag_id="foo{}", tags="bar", normalize=False
|
|
162
|
+
)
|
|
163
|
+
k.right_canonicalize_(normalize=True)
|
|
164
|
+
assert_allclose(k.H @ k, 1)
|
|
165
|
+
p_tn = (k.H & k) ^ slice(..., 0, -1)
|
|
166
|
+
assert_allclose(p_tn["foo1"].data, np.eye(10), atol=1e-13)
|
|
167
|
+
|
|
168
|
+
def test_rand_mps_right_canonize_with_bra(self):
|
|
169
|
+
n = 10
|
|
170
|
+
k = qtn.MPS_rand_state(
|
|
171
|
+
n, 10, site_tag_id="foo{}", tags="bar", normalize=False
|
|
172
|
+
)
|
|
173
|
+
b = k.H
|
|
174
|
+
k.right_canonicalize_(normalize=True, bra=b)
|
|
175
|
+
assert_allclose(b @ k, 1)
|
|
176
|
+
p_tn = (b & k) ^ slice(..., 0, -1)
|
|
177
|
+
assert_allclose(p_tn["foo1"].data, np.eye(10), atol=1e-13)
|
|
178
|
+
|
|
179
|
+
def test_rand_mps_mixed_canonize(self):
|
|
180
|
+
n = 10
|
|
181
|
+
rmps = qtn.MPS_rand_state(
|
|
182
|
+
n, 10, site_tag_id="foo{}", tags="bar", normalize=True
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
# move to the center
|
|
186
|
+
rmps.canonicalize_(4)
|
|
187
|
+
assert rmps.count_canonized() == (4, 5)
|
|
188
|
+
assert_allclose(rmps.H @ rmps, 1)
|
|
189
|
+
p_tn = (rmps.H & rmps) ^ slice(0, 4) ^ slice(..., 4, -1)
|
|
190
|
+
assert_allclose(p_tn["foo3"].data, np.eye(10), atol=1e-13)
|
|
191
|
+
assert_allclose(p_tn["foo5"].data, np.eye(10), atol=1e-13)
|
|
192
|
+
|
|
193
|
+
# try shifting to the right
|
|
194
|
+
rmps.shift_orthogonality_center(current=4, new=8)
|
|
195
|
+
assert_allclose(rmps.H @ rmps, 1)
|
|
196
|
+
p_tn = (rmps.H & rmps) ^ slice(0, 8) ^ slice(..., 8, -1)
|
|
197
|
+
assert_allclose(p_tn["foo7"].data, np.eye(4), atol=1e-13)
|
|
198
|
+
assert_allclose(p_tn["foo9"].data, np.eye(2), atol=1e-13)
|
|
199
|
+
|
|
200
|
+
# try shifting to the left
|
|
201
|
+
rmps.shift_orthogonality_center(current=8, new=6)
|
|
202
|
+
assert_allclose(rmps.H @ rmps, 1)
|
|
203
|
+
p_tn = (rmps.H & rmps) ^ slice(0, 6) ^ slice(..., 6, -1)
|
|
204
|
+
assert_allclose(p_tn["foo5"].data, np.eye(10), atol=1e-13)
|
|
205
|
+
assert_allclose(p_tn["foo7"].data, np.eye(8), atol=1e-13)
|
|
206
|
+
|
|
207
|
+
@pytest.mark.parametrize("dtype", dtypes)
|
|
208
|
+
def test_canonize_and_calc_current_orthog_center(self, dtype):
|
|
209
|
+
p = qtn.MPS_rand_state(20, 3, dtype=dtype)
|
|
210
|
+
co = p.calc_current_orthog_center()
|
|
211
|
+
assert co == (0, 19)
|
|
212
|
+
p.canonicalize_((5, 15), co)
|
|
213
|
+
co = p.calc_current_orthog_center()
|
|
214
|
+
assert co == (5, 15)
|
|
215
|
+
p.canonicalize_((8, 11), co)
|
|
216
|
+
co = p.calc_current_orthog_center()
|
|
217
|
+
assert co == (8, 11)
|
|
218
|
+
assert p.dtype == dtype
|
|
219
|
+
|
|
220
|
+
def test_can_change_data(self):
|
|
221
|
+
p = qtn.MPS_rand_state(3, 10)
|
|
222
|
+
assert_allclose(p.H @ p, 1)
|
|
223
|
+
p[1].modify(data=np.random.randn(10, 10, 2))
|
|
224
|
+
assert abs(p.H @ p - 1) > 1e-13
|
|
225
|
+
|
|
226
|
+
def test_can_change_data_using_subnetwork(self):
|
|
227
|
+
p = qtn.MPS_rand_state(3, 10)
|
|
228
|
+
pH = p.H
|
|
229
|
+
p.add_tag("__ket__")
|
|
230
|
+
pH.add_tag("__bra__")
|
|
231
|
+
tn = p | pH
|
|
232
|
+
assert_allclose((tn ^ ...), 1)
|
|
233
|
+
assert_allclose(
|
|
234
|
+
tn[("__ket__", "I1")].data, tn[("__bra__", "I1")].data.conj()
|
|
235
|
+
)
|
|
236
|
+
p[1].modify(data=np.random.randn(10, 10, 2))
|
|
237
|
+
assert abs((tn ^ ...) - 1) > 1e-13
|
|
238
|
+
assert not np.allclose(
|
|
239
|
+
tn[("__ket__", "I1")].data, tn[("__bra__", "I1")].data.conj()
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
def test_adding_mps(self):
|
|
243
|
+
p = qtn.MPS_rand_state(10, 7)
|
|
244
|
+
assert max(p["I4"].shape) == 7
|
|
245
|
+
p2 = p + p
|
|
246
|
+
assert max(p2["I4"].shape) == 14
|
|
247
|
+
assert_allclose(p2.H @ p, 2)
|
|
248
|
+
p += p
|
|
249
|
+
assert max(p["I4"].shape) == 14
|
|
250
|
+
assert_allclose(p.H @ p, 4)
|
|
251
|
+
|
|
252
|
+
@pytest.mark.parametrize("method", ["svd", "eig"])
|
|
253
|
+
@pytest.mark.parametrize("cutoff_mode", ["abs", "rel", "sum2"])
|
|
254
|
+
def test_compress_mps(self, method, cutoff_mode):
|
|
255
|
+
n = 10
|
|
256
|
+
chi = 7
|
|
257
|
+
p = qtn.MPS_rand_state(n, chi)
|
|
258
|
+
assert max(p["I4"].shape) == chi
|
|
259
|
+
p2 = p + p
|
|
260
|
+
assert max(p2["I4"].shape) == chi * 2
|
|
261
|
+
assert_allclose(p2.H @ p, 2)
|
|
262
|
+
p2.left_compress(method=method, cutoff=1e-6, cutoff_mode=cutoff_mode)
|
|
263
|
+
assert max(p2["I4"].shape) == chi
|
|
264
|
+
assert_allclose(p2.H @ p, 2)
|
|
265
|
+
assert p2.count_canonized() == (n - 1, 0)
|
|
266
|
+
|
|
267
|
+
def test_compress_mps_right(self):
|
|
268
|
+
p = qtn.MPS_rand_state(10, 7)
|
|
269
|
+
assert max(p["I4"].shape) == 7
|
|
270
|
+
p2 = p + p
|
|
271
|
+
assert max(p2["I4"].shape) == 14
|
|
272
|
+
assert_allclose(p2.H @ p, 2)
|
|
273
|
+
p2.right_compress()
|
|
274
|
+
assert max(p2["I4"].shape) == 7
|
|
275
|
+
assert_allclose(p2.H @ p, 2)
|
|
276
|
+
|
|
277
|
+
@pytest.mark.parametrize("method", ["svd", "eig"])
|
|
278
|
+
def test_compress_trim_max_bond(self, method):
|
|
279
|
+
p0 = qtn.MPS_rand_state(20, 20)
|
|
280
|
+
p = p0.copy()
|
|
281
|
+
p.compress(method=method, renorm=True)
|
|
282
|
+
assert max(p["I4"].shape) == 20
|
|
283
|
+
p.compress(max_bond=13, method=method, renorm=True)
|
|
284
|
+
assert max(p["I4"].shape) == 13
|
|
285
|
+
assert_allclose(p.H @ p, p0.H @ p0)
|
|
286
|
+
|
|
287
|
+
def test_compress_form(self):
|
|
288
|
+
p = qtn.MPS_rand_state(20, 20)
|
|
289
|
+
p.compress("left")
|
|
290
|
+
assert p.count_canonized() == (19, 0)
|
|
291
|
+
p.compress("right")
|
|
292
|
+
assert p.count_canonized() == (0, 19)
|
|
293
|
+
p.compress(7)
|
|
294
|
+
assert p.count_canonized() == (7, 12)
|
|
295
|
+
p = qtn.MPS_rand_state(20, 20)
|
|
296
|
+
p.compress("flat", absorb="left")
|
|
297
|
+
assert p.count_canonized() == (0, 0)
|
|
298
|
+
|
|
299
|
+
def test_compress_site(self):
|
|
300
|
+
psi = qtn.MPS_rand_state(10, 7)
|
|
301
|
+
psi.compress_site(3, max_bond=1)
|
|
302
|
+
assert psi.bond_sizes() == [2, 4, 1, 1, 7, 7, 7, 4, 2]
|
|
303
|
+
assert psi.calc_current_orthog_center() == (3, 3)
|
|
304
|
+
|
|
305
|
+
psi = qtn.MPS_rand_state(10, 7)
|
|
306
|
+
psi.compress_site(0, max_bond=1)
|
|
307
|
+
assert psi.bond_sizes() == [1, 7, 7, 7, 7, 7, 7, 4, 2]
|
|
308
|
+
assert psi.calc_current_orthog_center() == (0, 0)
|
|
309
|
+
|
|
310
|
+
psi = qtn.MPS_rand_state(10, 7)
|
|
311
|
+
psi.compress_site(9, max_bond=1)
|
|
312
|
+
assert psi.bond_sizes() == [2, 4, 7, 7, 7, 7, 7, 7, 1]
|
|
313
|
+
assert psi.calc_current_orthog_center() == (9, 9)
|
|
314
|
+
|
|
315
|
+
@pytest.mark.parametrize("method", ["svd", "eig"])
|
|
316
|
+
@pytest.mark.parametrize("form", ["left", "right", "raise"])
|
|
317
|
+
def test_add_and_compress_mps(self, method, form):
|
|
318
|
+
p = qtn.MPS_rand_state(10, 7)
|
|
319
|
+
assert max(p["I4"].shape) == 7
|
|
320
|
+
|
|
321
|
+
if form == "raise":
|
|
322
|
+
with pytest.raises(ValueError):
|
|
323
|
+
p.add_MPS(
|
|
324
|
+
p, compress=True, method=method, form=form, cutoff=1e-6
|
|
325
|
+
)
|
|
326
|
+
return
|
|
327
|
+
|
|
328
|
+
p2 = p.add_MPS(p, compress=True, method=method, form=form, cutoff=1e-6)
|
|
329
|
+
assert max(p2["I4"].shape) == 7
|
|
330
|
+
assert_allclose(p2.H @ p, 2, rtol=1e-5)
|
|
331
|
+
|
|
332
|
+
def test_subtract(self):
|
|
333
|
+
a, b, c = (qtn.MPS_rand_state(10, 7) for _ in "abc")
|
|
334
|
+
ab = a.H @ b
|
|
335
|
+
ac = a.H @ c
|
|
336
|
+
abmc = a.H @ (b - c)
|
|
337
|
+
assert_allclose(ab - ac, abmc)
|
|
338
|
+
|
|
339
|
+
def test_subtract_inplace(self):
|
|
340
|
+
a, b, c = (qtn.MPS_rand_state(10, 7) for _ in "abc")
|
|
341
|
+
ab = a.H @ b
|
|
342
|
+
ac = a.H @ c
|
|
343
|
+
b -= c
|
|
344
|
+
abmc = a.H @ b
|
|
345
|
+
assert_allclose(ab - ac, abmc)
|
|
346
|
+
|
|
347
|
+
def test_amplitude(self):
|
|
348
|
+
mps = qtn.MPS_rand_state(10, 7)
|
|
349
|
+
k = mps.to_qarray()
|
|
350
|
+
idx = np.random.randint(0, k.shape[0])
|
|
351
|
+
c_b = mps.amplitude(f"{idx:0>10b}")
|
|
352
|
+
assert k[idx, 0] == pytest.approx(c_b)
|
|
353
|
+
|
|
354
|
+
def test_schmidt_values_entropy_gap_simple(self):
|
|
355
|
+
n = 12
|
|
356
|
+
p = qtn.MPS_rand_state(n, 16)
|
|
357
|
+
p.right_canonicalize_()
|
|
358
|
+
svns = []
|
|
359
|
+
sgs = []
|
|
360
|
+
info = {}
|
|
361
|
+
for i in range(1, n):
|
|
362
|
+
sgs.append(p.schmidt_gap(i, info=info))
|
|
363
|
+
svns.append(p.entropy(i, info=info))
|
|
364
|
+
|
|
365
|
+
pd = p.to_qarray()
|
|
366
|
+
ex_svns = [
|
|
367
|
+
qu.entropy_subsys(pd, [2] * n, range(i)) for i in range(1, n)
|
|
368
|
+
]
|
|
369
|
+
ex_sgs = [qu.schmidt_gap(pd, [2] * n, range(i)) for i in range(1, n)]
|
|
370
|
+
assert_allclose(ex_svns, svns)
|
|
371
|
+
assert_allclose(ex_sgs, sgs)
|
|
372
|
+
|
|
373
|
+
def test_magnetization(self):
|
|
374
|
+
binary = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
|
375
|
+
p = qtn.MPS_computational_state(binary)
|
|
376
|
+
mzs = [p.magnetization(i) for i in range(len(binary))]
|
|
377
|
+
assert_allclose(mzs, 0.5 - np.array(binary))
|
|
378
|
+
|
|
379
|
+
@pytest.mark.parametrize("rescale", [False, True])
|
|
380
|
+
@pytest.mark.parametrize(
|
|
381
|
+
"keep", [(2, 3, 4, 6, 8), slice(-2, 4), slice(3, -1, -1), [1]]
|
|
382
|
+
)
|
|
383
|
+
def test_partial_trace(self, rescale, keep):
|
|
384
|
+
n = 10
|
|
385
|
+
p = qtn.MPS_rand_state(n, 7)
|
|
386
|
+
r = p.partial_trace_to_mpo(
|
|
387
|
+
keep=keep, upper_ind_id="u{}", rescale_sites=rescale
|
|
388
|
+
)
|
|
389
|
+
rd = r.to_qarray()
|
|
390
|
+
if isinstance(keep, slice):
|
|
391
|
+
keep = p.slice2sites(keep)
|
|
392
|
+
else:
|
|
393
|
+
if rescale:
|
|
394
|
+
if keep == [1]:
|
|
395
|
+
assert r.lower_inds_present == ("u0",)
|
|
396
|
+
assert r.upper_inds_present == ("k0",)
|
|
397
|
+
else:
|
|
398
|
+
assert r.lower_inds_present == (
|
|
399
|
+
"u0",
|
|
400
|
+
"u1",
|
|
401
|
+
"u2",
|
|
402
|
+
"u3",
|
|
403
|
+
"u4",
|
|
404
|
+
)
|
|
405
|
+
assert r.upper_inds_present == (
|
|
406
|
+
"k0",
|
|
407
|
+
"k1",
|
|
408
|
+
"k2",
|
|
409
|
+
"k3",
|
|
410
|
+
"k4",
|
|
411
|
+
)
|
|
412
|
+
else:
|
|
413
|
+
if keep == [1]:
|
|
414
|
+
assert r.lower_inds_present == ("u1",)
|
|
415
|
+
assert r.upper_inds_present == ("k1",)
|
|
416
|
+
else:
|
|
417
|
+
assert r.lower_inds_present == (
|
|
418
|
+
"u2",
|
|
419
|
+
"u3",
|
|
420
|
+
"u4",
|
|
421
|
+
"u6",
|
|
422
|
+
"u8",
|
|
423
|
+
)
|
|
424
|
+
assert r.upper_inds_present == (
|
|
425
|
+
"k2",
|
|
426
|
+
"k3",
|
|
427
|
+
"k4",
|
|
428
|
+
"k6",
|
|
429
|
+
"k8",
|
|
430
|
+
)
|
|
431
|
+
assert_allclose(r.trace(), 1.0)
|
|
432
|
+
assert qu.isherm(rd)
|
|
433
|
+
pd = p.to_qarray()
|
|
434
|
+
rdd = pd.ptr([2] * n, keep=keep)
|
|
435
|
+
assert_allclose(rd, rdd)
|
|
436
|
+
|
|
437
|
+
def test_bipartite_schmidt_state(self):
|
|
438
|
+
psi = qtn.MPS_rand_state(16, 5)
|
|
439
|
+
psid = psi.to_qarray()
|
|
440
|
+
eln = qu.logneg(psid, [2**7, 2**9])
|
|
441
|
+
|
|
442
|
+
s_d_ket = psi.bipartite_schmidt_state(7, get="ket-dense")
|
|
443
|
+
ln_d_ket = qu.logneg(s_d_ket, [5, 5])
|
|
444
|
+
assert_allclose(eln, ln_d_ket, rtol=1e-5)
|
|
445
|
+
|
|
446
|
+
s_d_rho = psi.bipartite_schmidt_state(7, get="rho-dense")
|
|
447
|
+
ln_d_rho = qu.logneg(s_d_rho, [5, 5])
|
|
448
|
+
assert_allclose(eln, ln_d_rho, rtol=1e-5)
|
|
449
|
+
|
|
450
|
+
T_s_ket = psi.bipartite_schmidt_state(7, get="ket")
|
|
451
|
+
assert set(T_s_ket.inds) == {"kA", "kB"}
|
|
452
|
+
assert_allclose(T_s_ket.H @ T_s_ket, 1.0)
|
|
453
|
+
|
|
454
|
+
T_s_rho = psi.bipartite_schmidt_state(7, get="rho")
|
|
455
|
+
assert set(T_s_rho.outer_inds()) == {"kA", "kB", "bA", "bB"}
|
|
456
|
+
assert_allclose(T_s_rho.H @ T_s_rho, 1.0)
|
|
457
|
+
|
|
458
|
+
@pytest.mark.parametrize(
|
|
459
|
+
"method", ["isvd", "svds", ("isvd", "eigsh"), ("isvd", "cholesky")]
|
|
460
|
+
)
|
|
461
|
+
@pytest.mark.parametrize("cyclic", [True, False])
|
|
462
|
+
@pytest.mark.parametrize(
|
|
463
|
+
"sysa", [range(0, 10), range(10, 20), range(20, 30), range(0, 30)]
|
|
464
|
+
)
|
|
465
|
+
@pytest.mark.parametrize(
|
|
466
|
+
"sysb", [range(30, 40), range(40, 50), range(50, 60), range(30, 60)]
|
|
467
|
+
)
|
|
468
|
+
def test_partial_trace_compress(self, method, cyclic, sysa, sysb):
|
|
469
|
+
k = qtn.MPS_rand_state(60, 5, cyclic=cyclic)
|
|
470
|
+
kws = dict(sysa=sysa, sysb=sysb, eps=1e-6, method=method, verbosity=2)
|
|
471
|
+
rhoc_ab = k.partial_trace_compress(**kws)
|
|
472
|
+
assert set(rhoc_ab.outer_inds()) == {"kA", "kB", "bA", "bB"}
|
|
473
|
+
inds = ["kA", "kB"], ["bA", "bB"]
|
|
474
|
+
x = rhoc_ab.trace(*inds)
|
|
475
|
+
assert_allclose(1.0, x, rtol=1e-3)
|
|
476
|
+
|
|
477
|
+
@pytest.mark.parametrize("cyclic", [True, False])
|
|
478
|
+
def test_known_bad_case(self, cyclic):
|
|
479
|
+
k = qtn.MPS_rand_state(5, 10, cyclic=cyclic)
|
|
480
|
+
rhoc_ab = k.partial_trace_compress(sysa=range(2), sysb=range(2, 4))
|
|
481
|
+
inds = ["kA", "kB"], ["bA", "bB"]
|
|
482
|
+
x = rhoc_ab.trace(*inds)
|
|
483
|
+
assert_allclose(1.0, x, rtol=1e-3)
|
|
484
|
+
|
|
485
|
+
@pytest.mark.parametrize(
|
|
486
|
+
"block",
|
|
487
|
+
[
|
|
488
|
+
0,
|
|
489
|
+
20,
|
|
490
|
+
39,
|
|
491
|
+
slice(0, 5),
|
|
492
|
+
slice(20, 25),
|
|
493
|
+
slice(35, 40),
|
|
494
|
+
slice(38, 42),
|
|
495
|
+
slice(-3, 2),
|
|
496
|
+
],
|
|
497
|
+
)
|
|
498
|
+
@pytest.mark.parametrize("dtype", [float, complex])
|
|
499
|
+
def test_canonize_cyclic(self, dtype, block):
|
|
500
|
+
k = qtn.MPS_rand_state(40, 10, dtype=dtype, cyclic=True)
|
|
501
|
+
b = k.H
|
|
502
|
+
k.add_tag("KET")
|
|
503
|
+
b.add_tag("BRA")
|
|
504
|
+
kb = b | k
|
|
505
|
+
|
|
506
|
+
assert not np.allclose(k[block].H @ k[block], 1.0)
|
|
507
|
+
assert not np.allclose(b[block].H @ b[block], 1.0)
|
|
508
|
+
k.canonize_cyclic(block, bra=b)
|
|
509
|
+
assert_allclose(k[block].H @ k[block], 1.0, rtol=2e-4)
|
|
510
|
+
assert_allclose(b[block].H @ b[block], 1.0, rtol=2e-4)
|
|
511
|
+
|
|
512
|
+
ii = kb.select(block, which="!any") ^ all
|
|
513
|
+
|
|
514
|
+
if isinstance(block, slice):
|
|
515
|
+
start, stop = block.start, block.stop
|
|
516
|
+
else:
|
|
517
|
+
start, stop = block, block + 1
|
|
518
|
+
|
|
519
|
+
assert len(kb.select_tensors(block, "any")) == 2 * (stop - start)
|
|
520
|
+
|
|
521
|
+
(ul,) = qtn.bonds(
|
|
522
|
+
kb[k.site_tag(start - 1), "BRA"], kb[k.site_tag(start), "BRA"]
|
|
523
|
+
)
|
|
524
|
+
(ur,) = qtn.bonds(
|
|
525
|
+
kb[k.site_tag(stop - 1), "BRA"], kb[k.site_tag(stop), "BRA"]
|
|
526
|
+
)
|
|
527
|
+
(ll,) = qtn.bonds(
|
|
528
|
+
kb[k.site_tag(start - 1), "KET"], kb[k.site_tag(start), "KET"]
|
|
529
|
+
)
|
|
530
|
+
(lr,) = qtn.bonds(
|
|
531
|
+
kb[k.site_tag(stop - 1), "KET"], kb[k.site_tag(stop), "KET"]
|
|
532
|
+
)
|
|
533
|
+
|
|
534
|
+
ii = ii.to_qarray((ul, ur), (ll, lr))
|
|
535
|
+
assert_allclose(ii, np.eye(ii.shape[0]), rtol=0.001, atol=0.001)
|
|
536
|
+
|
|
537
|
+
@pytest.mark.parametrize("bsz", [1, 2])
|
|
538
|
+
@pytest.mark.parametrize("propagate_tags", [False, True])
|
|
539
|
+
@pytest.mark.parametrize("contract", [False, True])
|
|
540
|
+
def test_gate_no_contract(self, bsz, propagate_tags, contract):
|
|
541
|
+
p = qtn.MPS_rand_state(5, 7, tags={"PSI0"})
|
|
542
|
+
q = p.copy()
|
|
543
|
+
G = qu.rand_uni(2**bsz)
|
|
544
|
+
p = p.gate_(
|
|
545
|
+
G,
|
|
546
|
+
where=[i for i in range(2, 2 + bsz)],
|
|
547
|
+
tags="G",
|
|
548
|
+
contract=contract,
|
|
549
|
+
propagate_tags=propagate_tags,
|
|
550
|
+
)
|
|
551
|
+
TG = p["G"]
|
|
552
|
+
if propagate_tags or contract:
|
|
553
|
+
assert p.site_tag(2) in TG.tags
|
|
554
|
+
assert ("PSI0" in TG.tags) == (propagate_tags is True) or contract
|
|
555
|
+
assert (p.H & p) ^ all == pytest.approx(1.0)
|
|
556
|
+
assert abs((q.H & p) ^ all) < 1.0
|
|
557
|
+
assert len(p.tensors) == 6 - int(contract) * bsz
|
|
558
|
+
assert set(p.outer_inds()) == {f"k{i}" for i in range(5)}
|
|
559
|
+
|
|
560
|
+
@pytest.mark.parametrize(
|
|
561
|
+
"propagate_tags", [False, "sites", "register", True]
|
|
562
|
+
)
|
|
563
|
+
def test_gate_split_gate(self, propagate_tags):
|
|
564
|
+
p = qtn.MPS_rand_state(5, 7, tags={"PSI0"})
|
|
565
|
+
q = p.copy()
|
|
566
|
+
G = qu.CNOT()
|
|
567
|
+
p = p.gate_(
|
|
568
|
+
G,
|
|
569
|
+
where=[i for i in range(2, 4)],
|
|
570
|
+
tags="G",
|
|
571
|
+
contract="split-gate",
|
|
572
|
+
propagate_tags=propagate_tags,
|
|
573
|
+
)
|
|
574
|
+
|
|
575
|
+
TG = sorted(p["G"], key=lambda t: sorted(t.tags))
|
|
576
|
+
|
|
577
|
+
if propagate_tags is False:
|
|
578
|
+
assert TG[0].tags == qtn.oset(("G",))
|
|
579
|
+
assert TG[1].tags == qtn.oset(("G",))
|
|
580
|
+
|
|
581
|
+
elif propagate_tags == "register":
|
|
582
|
+
assert TG[0].tags == qtn.oset(["G", "I2"])
|
|
583
|
+
assert TG[1].tags == qtn.oset(["G", "I3"])
|
|
584
|
+
|
|
585
|
+
elif propagate_tags == "sites":
|
|
586
|
+
assert TG[0].tags == qtn.oset(["G", "I2", "I3"])
|
|
587
|
+
assert TG[1].tags == qtn.oset(["G", "I2", "I3"])
|
|
588
|
+
|
|
589
|
+
elif propagate_tags is True:
|
|
590
|
+
assert TG[0].tags == qtn.oset(["PSI0", "G", "I2", "I3"])
|
|
591
|
+
assert TG[1].tags == qtn.oset(["PSI0", "G", "I2", "I3"])
|
|
592
|
+
|
|
593
|
+
assert (p.H & p) ^ all == pytest.approx(1.0)
|
|
594
|
+
assert abs((q.H & p) ^ all) < 1.0
|
|
595
|
+
assert len(p.tensors) == 7
|
|
596
|
+
assert set(p.outer_inds()) == {f"k{i}" for i in range(5)}
|
|
597
|
+
|
|
598
|
+
def test_gate_swap_and_split_bond_sizes(self):
|
|
599
|
+
n = 10
|
|
600
|
+
p = qtn.MPS_computational_state("0" * n)
|
|
601
|
+
assert p.bond_sizes() == [1] * (n - 1)
|
|
602
|
+
G = qu.rand_uni(4)
|
|
603
|
+
p.gate_(G, (1, n - 2), contract="swap+split")
|
|
604
|
+
assert p.bond_sizes() == [1] + [2] * (n - 3) + [1]
|
|
605
|
+
|
|
606
|
+
def test_gate_swap_and_split_matches(self):
|
|
607
|
+
k = qtn.MPS_rand_state(6, 7)
|
|
608
|
+
kr = k.copy()
|
|
609
|
+
|
|
610
|
+
gates = [qu.rand_uni(4) for _ in range(3)]
|
|
611
|
+
wheres = [(0, 5), (3, 2), (4, 1)]
|
|
612
|
+
|
|
613
|
+
for G, (i, j) in zip(gates, wheres):
|
|
614
|
+
k.gate_(G, (i, j), contract="swap+split")
|
|
615
|
+
kr.gate_inds_(G, (k.site_ind(i), k.site_ind(j)))
|
|
616
|
+
|
|
617
|
+
assert_allclose(k.to_dense(), kr.to_dense())
|
|
618
|
+
|
|
619
|
+
def test_flip(self):
|
|
620
|
+
p = qtn.MPS_rand_state(5, 3)
|
|
621
|
+
pf = p.flip()
|
|
622
|
+
# we want a single index per dimension, not all combined into one
|
|
623
|
+
inds = [[ix] for ix in p.site_inds]
|
|
624
|
+
assert_allclose(p.to_qarray(*inds), pf.to_qarray(*inds).transpose())
|
|
625
|
+
|
|
626
|
+
def test_correlation(self):
|
|
627
|
+
ghz = (
|
|
628
|
+
qtn.MPS_computational_state("0000")
|
|
629
|
+
+ qtn.MPS_computational_state("1111")
|
|
630
|
+
) / 2**0.5
|
|
631
|
+
|
|
632
|
+
assert ghz.correlation(qu.pauli("Z"), 0, 1) == pytest.approx(1.0)
|
|
633
|
+
assert ghz.correlation(qu.pauli("Z"), 1, 2) == pytest.approx(1.0)
|
|
634
|
+
assert ghz.correlation(qu.pauli("Z"), 3, 1) == pytest.approx(1.0)
|
|
635
|
+
assert ghz.correlation(
|
|
636
|
+
qu.pauli("Z"), 3, 1, B=qu.pauli("Y")
|
|
637
|
+
) == pytest.approx(0.0)
|
|
638
|
+
|
|
639
|
+
assert ghz.H @ ghz == pytest.approx(1.0)
|
|
640
|
+
|
|
641
|
+
def test_gate_split(self):
|
|
642
|
+
psi = qtn.MPS_rand_state(10, 3)
|
|
643
|
+
psi2 = psi.copy()
|
|
644
|
+
G = qu.eye(2) & qu.eye(2)
|
|
645
|
+
psi.gate_split_(G, (2, 3), cutoff=0)
|
|
646
|
+
assert psi.bond_size(2, 3) == 6
|
|
647
|
+
assert psi.H @ psi2 == pytest.approx(1.0)
|
|
648
|
+
|
|
649
|
+
# check a unitary application
|
|
650
|
+
G = qu.rand_uni(2**2)
|
|
651
|
+
psi.gate_split_(G, (7, 8))
|
|
652
|
+
psi.compress()
|
|
653
|
+
assert psi.bond_size(2, 3) == 3
|
|
654
|
+
assert psi.bond_size(7, 8) > 3
|
|
655
|
+
assert psi.H @ psi == pytest.approx(1.0)
|
|
656
|
+
assert abs(psi2.H @ psi) < 1.0
|
|
657
|
+
|
|
658
|
+
# check matches dense application of gate
|
|
659
|
+
psid = psi2.to_qarray()
|
|
660
|
+
Gd = qu.ikron(G, [2] * 10, (7, 8))
|
|
661
|
+
assert psi.to_qarray().H @ (Gd @ psid) == pytest.approx(1.0)
|
|
662
|
+
|
|
663
|
+
def test_swap_far_sites(self):
|
|
664
|
+
psi = qtn.MPS_rand_state(7, 2)
|
|
665
|
+
for i, j in [(0, 6), (6, 1), (5, 2)]:
|
|
666
|
+
k1 = psi.to_qarray(
|
|
667
|
+
[
|
|
668
|
+
psi.site_ind(j if site == i else i if site == j else site)
|
|
669
|
+
for site in psi.sites
|
|
670
|
+
]
|
|
671
|
+
)
|
|
672
|
+
k2 = psi.swap_sites_with_compress(i, j).to_qarray()
|
|
673
|
+
assert qu.fidelity(k1, k2) == pytest.approx(1.0)
|
|
674
|
+
|
|
675
|
+
def test_swap_gating(self):
|
|
676
|
+
psi0 = qtn.MPS_rand_state(20, 5)
|
|
677
|
+
CNOT = qu.controlled("not")
|
|
678
|
+
psi0XX = psi0.gate(CNOT, (4, 13))
|
|
679
|
+
psi0XX_s = psi0.gate_with_auto_swap(CNOT, (4, 13))
|
|
680
|
+
assert psi0XX.H @ psi0XX_s == pytest.approx(1.0)
|
|
681
|
+
|
|
682
|
+
def test_auto_split_detection(self):
|
|
683
|
+
psi0 = qtn.MPS_computational_state("00")
|
|
684
|
+
CNOT = qu.controlled("not")
|
|
685
|
+
ISWAP = qu.iswap()
|
|
686
|
+
G = qu.rand_uni(4)
|
|
687
|
+
|
|
688
|
+
opts = {"contract": "auto-split-gate", "where": (0, 1)}
|
|
689
|
+
|
|
690
|
+
psi_cnot = psi0.gate(CNOT, **opts)
|
|
691
|
+
psi_iswap = psi0.gate(ISWAP, **opts)
|
|
692
|
+
psi_G = psi0.gate(G, **opts)
|
|
693
|
+
|
|
694
|
+
assert (
|
|
695
|
+
psi_cnot.max_bond()
|
|
696
|
+
== psi_iswap.max_bond()
|
|
697
|
+
== psi_G.max_bond()
|
|
698
|
+
== 2
|
|
699
|
+
)
|
|
700
|
+
|
|
701
|
+
assert len(psi_cnot.tensors) == len(psi_iswap.tensors) == 4
|
|
702
|
+
assert len(psi_G.tensors) == 3
|
|
703
|
+
|
|
704
|
+
@pytest.mark.parametrize("cur_orthog", (None, 3))
|
|
705
|
+
@pytest.mark.parametrize("site", (0, 5, 9))
|
|
706
|
+
@pytest.mark.parametrize("outcome", (None, 2))
|
|
707
|
+
@pytest.mark.parametrize("renorm", (True, False))
|
|
708
|
+
@pytest.mark.parametrize("remove", (True, False))
|
|
709
|
+
def test_mps_measure(self, cur_orthog, site, outcome, renorm, remove):
|
|
710
|
+
psi = qtn.MPS_rand_state(10, 7, phys_dim=3, dtype=complex)
|
|
711
|
+
if cur_orthog:
|
|
712
|
+
psi.canonicalize_(cur_orthog)
|
|
713
|
+
outcome, psim = psi.measure(
|
|
714
|
+
site,
|
|
715
|
+
outcome=outcome,
|
|
716
|
+
cur_orthog=cur_orthog,
|
|
717
|
+
renorm=renorm,
|
|
718
|
+
remove=remove,
|
|
719
|
+
)
|
|
720
|
+
newL = 10 - int(remove)
|
|
721
|
+
assert psim.L == newL
|
|
722
|
+
assert psim.num_tensors == newL
|
|
723
|
+
assert set(psim.site_tags) == {f"I{i}" for i in range(newL)}
|
|
724
|
+
assert set(psim.site_inds) == {f"k{i}" for i in range(newL)}
|
|
725
|
+
if renorm:
|
|
726
|
+
assert psim.H @ psim == pytest.approx(1.0)
|
|
727
|
+
else:
|
|
728
|
+
assert 0.0 < psim.H @ psim < 1.0
|
|
729
|
+
new_can_cen = min(site, newL - 1)
|
|
730
|
+
t = psim[new_can_cen]
|
|
731
|
+
if renorm:
|
|
732
|
+
assert t.H @ t == pytest.approx(1.0)
|
|
733
|
+
else:
|
|
734
|
+
0.0 < t.H @ t < 1.0
|
|
735
|
+
|
|
736
|
+
def test_measure_known_outcome(self):
|
|
737
|
+
mps = qtn.MPS_computational_state("010101")
|
|
738
|
+
assert mps.measure_(3, get="outcome") == 1
|
|
739
|
+
|
|
740
|
+
def test_permute_arrays(self):
|
|
741
|
+
mps = qtn.MPS_rand_state(7, 5)
|
|
742
|
+
k0 = mps.to_qarray()
|
|
743
|
+
mps.canonicalize_(3)
|
|
744
|
+
mps.permute_arrays("prl")
|
|
745
|
+
assert mps[0].shape == (2, 2)
|
|
746
|
+
assert mps[1].shape == (2, 4, 2)
|
|
747
|
+
assert mps[2].shape == (2, 5, 4)
|
|
748
|
+
kf = mps.to_qarray()
|
|
749
|
+
assert qu.fidelity(k0, kf) == pytest.approx(1.0)
|
|
750
|
+
|
|
751
|
+
@pytest.mark.parametrize("where", [(7, 2, 4), (0, 1), (6, 7), (0, 3, 7)])
|
|
752
|
+
@pytest.mark.parametrize("phys_dim", [2, 3])
|
|
753
|
+
def test_gate_non_local(self, where, phys_dim):
|
|
754
|
+
psi = qtn.MPS_rand_state(8, 3, phys_dim=phys_dim, dtype="complex128")
|
|
755
|
+
G = qu.rand_uni(phys_dim ** len(where))
|
|
756
|
+
Gpsi = psi.gate_nonlocal(G, where=where)
|
|
757
|
+
assert Gpsi.H @ Gpsi == pytest.approx(1.0)
|
|
758
|
+
assert Gpsi.distance_normalized(
|
|
759
|
+
psi.gate(G, where, contract=False)
|
|
760
|
+
) == pytest.approx(0.0, abs=1e-6)
|
|
761
|
+
|
|
762
|
+
def test_sample_configuration(self):
|
|
763
|
+
psi = qtn.MPS_rand_state(10, 7)
|
|
764
|
+
config, omega = psi.sample_configuration()
|
|
765
|
+
assert len(config) == 10
|
|
766
|
+
assert abs(
|
|
767
|
+
psi.isel(
|
|
768
|
+
{psi.site_ind(i): xi for i, xi in enumerate(config)}
|
|
769
|
+
).contract()
|
|
770
|
+
) ** 2 == pytest.approx(omega)
|
|
771
|
+
|
|
772
|
+
def test_sample_seed(self):
|
|
773
|
+
psi = qtn.MPS_rand_state(10, 7)
|
|
774
|
+
configs = [
|
|
775
|
+
"".join(map(str, config))
|
|
776
|
+
for config, _ in psi.sample(10, seed=1234)
|
|
777
|
+
]
|
|
778
|
+
assert len(set(configs)) > 1
|
|
779
|
+
|
|
780
|
+
def test_compute_local_expectation(self):
|
|
781
|
+
psi = qtn.MPS_rand_state(10, 7, dtype="complex128")
|
|
782
|
+
terms = {(i, i + 1): qu.rand_herm(4) for i in range(9)}
|
|
783
|
+
|
|
784
|
+
ex = psi.compute_local_expectation_exact(terms)
|
|
785
|
+
xa = psi.compute_local_expectation(terms, method="canonical")
|
|
786
|
+
assert xa == pytest.approx(ex)
|
|
787
|
+
xb = psi.compute_local_expectation(terms, method="envs")
|
|
788
|
+
assert xb == pytest.approx(ex)
|
|
789
|
+
|
|
790
|
+
|
|
791
|
+
class TestMatrixProductOperator:
|
|
792
|
+
@pytest.mark.parametrize("cyclic", [False, True])
|
|
793
|
+
def test_matrix_product_operator(self, cyclic):
|
|
794
|
+
end_shape = (5, 5, 2, 2) if cyclic else (5, 2, 2)
|
|
795
|
+
|
|
796
|
+
tensors = (
|
|
797
|
+
[np.random.rand(*end_shape)]
|
|
798
|
+
+ [np.random.rand(5, 5, 2, 2) for _ in range(3)]
|
|
799
|
+
+ [np.random.rand(*end_shape)]
|
|
800
|
+
)
|
|
801
|
+
mpo = qtn.MatrixProductOperator(tensors)
|
|
802
|
+
|
|
803
|
+
mpo.show()
|
|
804
|
+
assert len(mpo.tensors) == 5
|
|
805
|
+
assert mpo.upper_inds == ("k0", "k1", "k2", "k3", "k4")
|
|
806
|
+
assert mpo.lower_inds == ("b0", "b1", "b2", "b3", "b4")
|
|
807
|
+
op = mpo ^ ...
|
|
808
|
+
# this would rely on left to right contraction if not in set form
|
|
809
|
+
assert set(op.inds) == {
|
|
810
|
+
"k0",
|
|
811
|
+
"b0",
|
|
812
|
+
"k1",
|
|
813
|
+
"b1",
|
|
814
|
+
"k2",
|
|
815
|
+
"b2",
|
|
816
|
+
"k3",
|
|
817
|
+
"b3",
|
|
818
|
+
"k4",
|
|
819
|
+
"b4",
|
|
820
|
+
}
|
|
821
|
+
|
|
822
|
+
assert set(mpo.site_tags) == {f"I{i}" for i in range(5)}
|
|
823
|
+
assert all(f"I{i}" in mpo.tags for i in range(5))
|
|
824
|
+
mpo.site_tag_id = "TEST1,{}"
|
|
825
|
+
assert set(mpo.site_tags) == {f"TEST1,{i}" for i in range(5)}
|
|
826
|
+
assert not any(f"I{i}" in mpo.tags for i in range(5))
|
|
827
|
+
assert all(f"TEST1,{i}" in mpo.tags for i in range(5))
|
|
828
|
+
|
|
829
|
+
@pytest.mark.parametrize("cyclic", [False, True])
|
|
830
|
+
def test_compress_mpo(self, cyclic):
|
|
831
|
+
A = qtn.MPO_rand(12, 5, cyclic=cyclic)
|
|
832
|
+
assert all(b == 5 for b in A.bond_sizes())
|
|
833
|
+
A.expand_bond_dimension(10)
|
|
834
|
+
assert all(b == 10 for b in A.bond_sizes())
|
|
835
|
+
A.compress()
|
|
836
|
+
assert all(b in (4, 5) for b in A.bond_sizes())
|
|
837
|
+
|
|
838
|
+
def test_add_mpo(self):
|
|
839
|
+
h = qtn.MPO_rand_herm(12, 5)
|
|
840
|
+
h2 = h + h
|
|
841
|
+
assert max(h2[6].shape) == 10
|
|
842
|
+
t = h.trace()
|
|
843
|
+
t2 = h2.trace()
|
|
844
|
+
assert_allclose(2 * t, t2)
|
|
845
|
+
|
|
846
|
+
def test_adding_mpo(self):
|
|
847
|
+
h = qtn.MPO_ham_heis(6)
|
|
848
|
+
hd = h.to_qarray()
|
|
849
|
+
assert_allclose(h @ h.H, (hd @ hd.H).tr())
|
|
850
|
+
h2 = h + h
|
|
851
|
+
assert_allclose(h2 @ h2.H, (hd @ hd.H).tr() * 4)
|
|
852
|
+
h2.right_compress()
|
|
853
|
+
assert_allclose(h2 @ h2.H, (hd @ hd.H).tr() * 4)
|
|
854
|
+
assert max(h2["I3"].shape) == 5
|
|
855
|
+
|
|
856
|
+
@pytest.mark.parametrize("cyclic", (False, True))
|
|
857
|
+
def test_subtract_mpo(self, cyclic):
|
|
858
|
+
a, b = (
|
|
859
|
+
qtn.MPO_rand(13, 7, cyclic=cyclic),
|
|
860
|
+
qtn.MPO_rand(13, 7, cyclic=cyclic),
|
|
861
|
+
)
|
|
862
|
+
x1 = a.trace() - b.trace()
|
|
863
|
+
assert_allclose(x1, (a - b).trace())
|
|
864
|
+
a -= b
|
|
865
|
+
assert_allclose(x1, a.trace())
|
|
866
|
+
|
|
867
|
+
@pytest.mark.parametrize("cyclic", (False, True))
|
|
868
|
+
@pytest.mark.parametrize("rand_strength", (0, 1e-9))
|
|
869
|
+
def test_expand_mpo(self, cyclic, rand_strength):
|
|
870
|
+
h = qtn.MPO_ham_heis(12, cyclic=cyclic)
|
|
871
|
+
assert h[0].dtype == float
|
|
872
|
+
he = h.expand_bond_dimension(13, rand_strength=rand_strength)
|
|
873
|
+
assert h[0].dtype == float
|
|
874
|
+
assert max(he[6].shape) == 13
|
|
875
|
+
|
|
876
|
+
if cyclic:
|
|
877
|
+
assert he.bond_size(0, -1) == 13
|
|
878
|
+
|
|
879
|
+
t = h.trace()
|
|
880
|
+
te = he.trace()
|
|
881
|
+
assert_allclose(t, te)
|
|
882
|
+
|
|
883
|
+
@pytest.mark.parametrize("cyclic", (False, True))
|
|
884
|
+
@pytest.mark.parametrize("rand_strength", (0, 1e-9))
|
|
885
|
+
def test_expand_mpo_limited(self, cyclic, rand_strength):
|
|
886
|
+
h = qtn.MPO_ham_heis(12, cyclic=cyclic)
|
|
887
|
+
he = h.expand_bond_dimension(3, rand_strength=rand_strength)
|
|
888
|
+
# should do nothing
|
|
889
|
+
assert max(he[6].shape) == 5
|
|
890
|
+
|
|
891
|
+
def test_mpo_identity(self):
|
|
892
|
+
k = qtn.MPS_rand_state(13, 7)
|
|
893
|
+
b = qtn.MPS_rand_state(13, 7)
|
|
894
|
+
o1 = k @ b
|
|
895
|
+
i = qtn.MPO_identity(13)
|
|
896
|
+
k, i, b = qtn.tensor_network_align(k, i, b)
|
|
897
|
+
o2 = (k & i & b) ^ ...
|
|
898
|
+
assert_allclose(o1, o2)
|
|
899
|
+
|
|
900
|
+
@pytest.mark.parametrize("cyclic", [False, True])
|
|
901
|
+
@pytest.mark.parametrize("dtype", (complex, float))
|
|
902
|
+
def test_mpo_rand_herm_and_trace(self, dtype, cyclic):
|
|
903
|
+
op = qtn.MPO_rand_herm(
|
|
904
|
+
20, bond_dim=5, phys_dim=3, dtype=dtype, cyclic=cyclic
|
|
905
|
+
)
|
|
906
|
+
assert_allclose(op.H @ op, 1.0)
|
|
907
|
+
tr_val = op.trace()
|
|
908
|
+
assert tr_val != 0.0
|
|
909
|
+
assert_allclose(tr_val.imag, 0.0, atol=1e-14)
|
|
910
|
+
|
|
911
|
+
@pytest.mark.parametrize("cyclic", [False, True])
|
|
912
|
+
def test_mpo_rand_herm_trace_and_identity_like(self, cyclic):
|
|
913
|
+
op = qtn.MPO_rand_herm(
|
|
914
|
+
20, bond_dim=5, phys_dim=3, upper_ind_id="foo{}", cyclic=cyclic
|
|
915
|
+
)
|
|
916
|
+
t = op.trace()
|
|
917
|
+
assert t != 0.0
|
|
918
|
+
Id = qtn.MPO_identity_like(op)
|
|
919
|
+
assert_allclose(Id.trace(), 3**20)
|
|
920
|
+
Id[0] *= 3 / 3**20
|
|
921
|
+
op += Id
|
|
922
|
+
assert_allclose(op.trace(), t + 3)
|
|
923
|
+
|
|
924
|
+
def test_partial_transpose(self):
|
|
925
|
+
p = qtn.MPS_rand_state(8, 10)
|
|
926
|
+
r = p.partial_trace_to_mpo([2, 3, 4, 5, 6, 7])
|
|
927
|
+
rd = r.to_qarray()
|
|
928
|
+
|
|
929
|
+
assert qu.isherm(rd)
|
|
930
|
+
assert qu.ispos(rd)
|
|
931
|
+
|
|
932
|
+
rpt = r.partial_transpose([0, 1, 2])
|
|
933
|
+
rptd = rpt.to_qarray()
|
|
934
|
+
|
|
935
|
+
upper_inds = tuple(f"b{i}" for i in range(6))
|
|
936
|
+
lower_inds = tuple(f"k{i}" for i in range(6))
|
|
937
|
+
outer_inds = rpt.outer_inds()
|
|
938
|
+
assert all(i in outer_inds for i in upper_inds + lower_inds)
|
|
939
|
+
|
|
940
|
+
assert qu.isherm(rptd)
|
|
941
|
+
assert not qu.ispos(rptd)
|
|
942
|
+
|
|
943
|
+
def test_upper_lower_ind_id_guard(self):
|
|
944
|
+
A = qtn.MPO_rand(8, 5)
|
|
945
|
+
with pytest.raises(ValueError):
|
|
946
|
+
A.upper_ind_id = "b{}"
|
|
947
|
+
with pytest.raises(ValueError):
|
|
948
|
+
A.lower_ind_id = "k{}"
|
|
949
|
+
|
|
950
|
+
@pytest.mark.parametrize("cyclic", (False, True))
|
|
951
|
+
def test_apply_mpo(self, cyclic):
|
|
952
|
+
A = qtn.MPO_rand(8, 5, cyclic=cyclic)
|
|
953
|
+
B = qtn.MPO_rand(
|
|
954
|
+
8, 5, upper_ind_id="q{}", lower_ind_id="w{}", cyclic=cyclic
|
|
955
|
+
)
|
|
956
|
+
C = A.apply(B)
|
|
957
|
+
assert C.max_bond() == 25
|
|
958
|
+
assert C.upper_ind_id == "q{}"
|
|
959
|
+
assert C.lower_ind_id == "w{}"
|
|
960
|
+
Ad, Bd, Cd = A.to_qarray(), B.to_qarray(), C.to_qarray()
|
|
961
|
+
assert_allclose(Ad @ Bd, Cd)
|
|
962
|
+
|
|
963
|
+
@pytest.mark.parametrize("cyclic", (False, True))
|
|
964
|
+
@pytest.mark.parametrize("site_ind_id", ("k{}", "test{}"))
|
|
965
|
+
def test_apply_mps(self, cyclic, site_ind_id):
|
|
966
|
+
A = qtn.MPO_rand(8, 5, cyclic=cyclic)
|
|
967
|
+
x = qtn.MPS_rand_state(8, 4, site_ind_id=site_ind_id, cyclic=cyclic)
|
|
968
|
+
y = A.apply(x)
|
|
969
|
+
assert y.max_bond() == 20
|
|
970
|
+
assert isinstance(y, qtn.MatrixProductState)
|
|
971
|
+
assert len(y.tensors) == 8
|
|
972
|
+
assert y.site_ind_id == site_ind_id
|
|
973
|
+
Ad, xd, yd = A.to_qarray(), x.to_qarray(), y.to_qarray()
|
|
974
|
+
assert_allclose(Ad @ xd, yd)
|
|
975
|
+
|
|
976
|
+
def test_permute_arrays(self):
|
|
977
|
+
mpo = qtn.MPO_rand(4, 3)
|
|
978
|
+
A0 = mpo.to_qarray()
|
|
979
|
+
mpo.permute_arrays("drul")
|
|
980
|
+
assert mpo[0].shape == (2, 3, 2)
|
|
981
|
+
assert mpo[1].shape == (2, 3, 2, 3)
|
|
982
|
+
Af = mpo.to_qarray()
|
|
983
|
+
assert_allclose(A0, Af)
|
|
984
|
+
|
|
985
|
+
def test_from_dense(self):
|
|
986
|
+
A = qu.rand_uni(2**4)
|
|
987
|
+
mpo = qtn.MatrixProductOperator.from_dense(A)
|
|
988
|
+
assert mpo.L == 4
|
|
989
|
+
assert_allclose(A, mpo.to_dense())
|
|
990
|
+
|
|
991
|
+
def test_from_dense_sites(self):
|
|
992
|
+
dims = [2, 3, 4, 5]
|
|
993
|
+
A = qu.rand_uni(2 * 3 * 4 * 5)
|
|
994
|
+
sites = [3, 1, 0, 2]
|
|
995
|
+
mpo = qtn.MatrixProductOperator.from_dense(A, dims, sites=sites)
|
|
996
|
+
assert mpo.L == 4
|
|
997
|
+
perm = [sites.index(i) for i in range(4)]
|
|
998
|
+
assert_allclose(qu.permute(A, dims, perm), mpo.to_dense())
|
|
999
|
+
|
|
1000
|
+
def test_fill_empty_sites(self):
|
|
1001
|
+
mps = qtn.MPS_rand_state(7, 3)
|
|
1002
|
+
k = mps.to_dense()
|
|
1003
|
+
A, B, C = (qu.rand_uni(2) for _ in range(3))
|
|
1004
|
+
Ak = qu.ikron((A, B, C), [2] * 7, [5, 2, 3]) @ k
|
|
1005
|
+
|
|
1006
|
+
ABC = A & B & C
|
|
1007
|
+
mpo = qtn.MatrixProductOperator.from_dense(ABC, sites=[5, 2, 3], L=7)
|
|
1008
|
+
assert mpo.bond_size(2, 3) == 1
|
|
1009
|
+
assert mpo.num_tensors == 3
|
|
1010
|
+
assert mpo[3].bonds(mpo[5])
|
|
1011
|
+
mpo.fill_empty_sites_("minimal")
|
|
1012
|
+
assert not mpo[3].bonds(mpo[5])
|
|
1013
|
+
assert mpo.num_tensors == 4
|
|
1014
|
+
assert_allclose(
|
|
1015
|
+
mps.gate_with_op_lazy(mpo).to_dense(),
|
|
1016
|
+
Ak,
|
|
1017
|
+
)
|
|
1018
|
+
mpo.fill_empty_sites_("full")
|
|
1019
|
+
assert mpo.num_tensors == 7
|
|
1020
|
+
assert_allclose(
|
|
1021
|
+
mps.gate_with_op_lazy(mpo).to_dense(),
|
|
1022
|
+
Ak,
|
|
1023
|
+
)
|
|
1024
|
+
|
|
1025
|
+
|
|
1026
|
+
# --------------------------------------------------------------------------- #
|
|
1027
|
+
# Test specific 1D instances #
|
|
1028
|
+
# --------------------------------------------------------------------------- #
|
|
1029
|
+
|
|
1030
|
+
|
|
1031
|
+
class TestSpecificStatesOperators:
|
|
1032
|
+
@pytest.mark.parametrize("cyclic", [False, True])
|
|
1033
|
+
def test_rand_ket_mps(self, cyclic):
|
|
1034
|
+
n = 10
|
|
1035
|
+
rmps = qtn.MPS_rand_state(
|
|
1036
|
+
n, 10, site_tag_id="foo{}", tags="bar", cyclic=cyclic
|
|
1037
|
+
)
|
|
1038
|
+
assert rmps[0].tags == qtn.oset(["foo0", "bar"])
|
|
1039
|
+
assert rmps[3].tags == qtn.oset(["foo3", "bar"])
|
|
1040
|
+
assert rmps[-1].tags == qtn.oset(["foo9", "bar"])
|
|
1041
|
+
|
|
1042
|
+
rmpsH_rmps = rmps.H & rmps
|
|
1043
|
+
assert len(rmpsH_rmps.tag_map["foo0"]) == 2
|
|
1044
|
+
assert len(rmpsH_rmps.tag_map["bar"]) == n * 2
|
|
1045
|
+
|
|
1046
|
+
assert_allclose(rmps.H @ rmps, 1)
|
|
1047
|
+
c = (rmps.H & rmps) ^ slice(0, 5) ^ slice(9, 4, -1) ^ slice(4, 6)
|
|
1048
|
+
assert_allclose(c, 1)
|
|
1049
|
+
|
|
1050
|
+
assert rmps[0].data.ndim == (3 if cyclic else 2)
|
|
1051
|
+
assert rmps[-1].data.ndim == (3 if cyclic else 2)
|
|
1052
|
+
|
|
1053
|
+
def test_mps_computation_state(self):
|
|
1054
|
+
p = qtn.MPS_neel_state(10)
|
|
1055
|
+
pd = qu.neel_state(10)
|
|
1056
|
+
assert_allclose(p.to_qarray(), pd)
|
|
1057
|
+
|
|
1058
|
+
def test_zero_state(self):
|
|
1059
|
+
z = qtn.MPS_zero_state(21, 7)
|
|
1060
|
+
p = qtn.MPS_rand_state(21, 13)
|
|
1061
|
+
assert_allclose(p.H @ z, 0.0)
|
|
1062
|
+
assert_allclose(p.H @ p, 1.0)
|
|
1063
|
+
zp = z + p
|
|
1064
|
+
assert max(zp[13].shape) == 20
|
|
1065
|
+
assert_allclose(zp.H @ p, 1.0)
|
|
1066
|
+
|
|
1067
|
+
@pytest.mark.parametrize("cyclic", [False, True])
|
|
1068
|
+
@pytest.mark.parametrize("j", [7 / 11, 1, (0.2, 0.3, 0.4)])
|
|
1069
|
+
@pytest.mark.parametrize("bz", [0, 7 / 11, 1])
|
|
1070
|
+
@pytest.mark.parametrize("n", [2, 3, 4])
|
|
1071
|
+
def test_mpo_site_ham_heis(self, cyclic, j, bz, n):
|
|
1072
|
+
hh_mpo = qtn.MPO_ham_heis(n, tags=["foo"], cyclic=cyclic, j=j, bz=bz)
|
|
1073
|
+
assert hh_mpo[0].tags == qtn.oset(["I0", "foo"])
|
|
1074
|
+
assert hh_mpo[1].tags == qtn.oset(["I1", "foo"])
|
|
1075
|
+
assert hh_mpo[-1].tags == qtn.oset([f"I{n - 1}", "foo"])
|
|
1076
|
+
assert hh_mpo.shape == (2,) * 2 * n
|
|
1077
|
+
hh_ex = qu.ham_heis(n, cyclic=cyclic, j=j, b=bz)
|
|
1078
|
+
assert_allclose(
|
|
1079
|
+
qu.eigvalsh(hh_ex), qu.eigvalsh(hh_mpo.to_qarray()), atol=1e-13
|
|
1080
|
+
)
|
|
1081
|
+
|
|
1082
|
+
def test_mpo_zeros(self):
|
|
1083
|
+
mpo0 = qtn.MPO_zeros(10)
|
|
1084
|
+
assert mpo0.trace() == 0.0
|
|
1085
|
+
assert mpo0.H @ mpo0 == 0.0
|
|
1086
|
+
|
|
1087
|
+
@pytest.mark.parametrize("cyclic", (False, True))
|
|
1088
|
+
def test_mpo_zeros_like(self, cyclic):
|
|
1089
|
+
A = qtn.MPO_rand(10, 7, phys_dim=3, normalize=False, cyclic=cyclic)
|
|
1090
|
+
Z = qtn.MPO_zeros_like(A)
|
|
1091
|
+
assert A @ Z == 0.0
|
|
1092
|
+
assert Z.cyclic == cyclic
|
|
1093
|
+
x1 = A.trace()
|
|
1094
|
+
x2 = (A + Z).trace()
|
|
1095
|
+
assert_allclose(x1, x2)
|
|
1096
|
+
|
|
1097
|
+
|
|
1098
|
+
class TestDense1D:
|
|
1099
|
+
def test_simple(self):
|
|
1100
|
+
n = 10
|
|
1101
|
+
d_psi = qu.computational_state("0" * n)
|
|
1102
|
+
|
|
1103
|
+
t_psi = qtn.Dense1D(d_psi)
|
|
1104
|
+
assert set(t_psi.outer_inds()) == {f"k{i}" for i in range(n)}
|
|
1105
|
+
assert t_psi.tags == qtn.oset(f"I{i}" for i in range(n))
|
|
1106
|
+
|
|
1107
|
+
for i in range(n):
|
|
1108
|
+
assert t_psi.H @ t_psi.gate(qu.pauli("Z"), i) == pytest.approx(1)
|
|
1109
|
+
|
|
1110
|
+
for i in range(n):
|
|
1111
|
+
t_psi.gate_(qu.hadamard(), i)
|
|
1112
|
+
|
|
1113
|
+
assert len(t_psi.tensors) == n + 1
|
|
1114
|
+
|
|
1115
|
+
# should have '++++++++++'
|
|
1116
|
+
assert t_psi.H @ t_psi == pytest.approx(1)
|
|
1117
|
+
for i in range(n):
|
|
1118
|
+
assert t_psi.H @ t_psi.gate(qu.pauli("X"), i) == pytest.approx(1)
|
|
1119
|
+
|
|
1120
|
+
def test_rand(self):
|
|
1121
|
+
t_psi = qtn.Dense1D.rand(7, dtype="complex64")
|
|
1122
|
+
assert t_psi.shape == (2,) * 7
|
|
1123
|
+
assert t_psi.dtype == "complex64"
|
|
1124
|
+
assert (t_psi.H @ t_psi) == pytest.approx(1.0)
|
|
1125
|
+
|
|
1126
|
+
|
|
1127
|
+
class TestTensor1DCompress:
|
|
1128
|
+
@pytest.mark.parametrize(
|
|
1129
|
+
"method", ["direct", "dm", "fit", "zipup", "zipup-first"]
|
|
1130
|
+
)
|
|
1131
|
+
@pytest.mark.parametrize("dtype", dtypes)
|
|
1132
|
+
def test_mps_partial_mpo_apply(self, method, dtype):
|
|
1133
|
+
mps = qtn.MPS_rand_state(10, 7, dtype=dtype)
|
|
1134
|
+
A = qu.rand_uni(2**3, dtype=dtype)
|
|
1135
|
+
where = [8, 4, 5]
|
|
1136
|
+
mpo = qtn.MatrixProductOperator.from_dense(A, sites=where)
|
|
1137
|
+
new = mps.gate_with_op_lazy(mpo)
|
|
1138
|
+
assert (
|
|
1139
|
+
qtn.tensor_network_1d_compress(new, method=method, inplace=True)
|
|
1140
|
+
is new
|
|
1141
|
+
)
|
|
1142
|
+
assert new.num_tensors == 10
|
|
1143
|
+
assert new.distance_normalized(mps.gate(A, where)) == pytest.approx(
|
|
1144
|
+
0.0, abs=1e-3 if dtype in ("float32", "complex64") else 1e-6
|
|
1145
|
+
)
|
|
1146
|
+
|
|
1147
|
+
@pytest.mark.parametrize(
|
|
1148
|
+
"method", ["direct", "dm", "fit", "zipup", "zipup-first"]
|
|
1149
|
+
)
|
|
1150
|
+
@pytest.mark.parametrize("sweep_reverse", [False, True])
|
|
1151
|
+
def test_mpo_compress_opts(self, method, sweep_reverse):
|
|
1152
|
+
L = 6
|
|
1153
|
+
A = qtn.MPO_rand(L, 2, phys_dim=3)
|
|
1154
|
+
B = qtn.MPO_rand(L, 3, phys_dim=3)
|
|
1155
|
+
AB = A.gate_upper_with_op_lazy(B)
|
|
1156
|
+
assert AB.num_tensors == 2 * L
|
|
1157
|
+
ABc = qtn.tensor_network_1d_compress(
|
|
1158
|
+
AB,
|
|
1159
|
+
method=method,
|
|
1160
|
+
max_bond=5,
|
|
1161
|
+
cutoff=1e-6,
|
|
1162
|
+
sweep_reverse=sweep_reverse,
|
|
1163
|
+
inplace=False,
|
|
1164
|
+
)
|
|
1165
|
+
assert ABc.num_tensors == L
|
|
1166
|
+
assert ABc.num_indices == 2 * L + L - 1
|
|
1167
|
+
assert ABc.max_bond() == 5
|
|
1168
|
+
if sweep_reverse:
|
|
1169
|
+
assert ABc.calc_current_orthog_center() == (L - 1, L - 1)
|
|
1170
|
+
else:
|
|
1171
|
+
assert ABc.calc_current_orthog_center() == (0, 0)
|