Trajectree 0.0.0__py3-none-any.whl → 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +3 -0
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +3 -3
- trajectree/fock_optics/utils.py +6 -6
- trajectree/quimb/docs/_pygments/_pygments_dark.py +118 -0
- trajectree/quimb/docs/_pygments/_pygments_light.py +118 -0
- trajectree/quimb/docs/conf.py +158 -0
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +62 -0
- trajectree/quimb/quimb/__init__.py +507 -0
- trajectree/quimb/quimb/calc.py +1491 -0
- trajectree/quimb/quimb/core.py +2279 -0
- trajectree/quimb/quimb/evo.py +712 -0
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +129 -0
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +109 -0
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +397 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +653 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +571 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +775 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +537 -0
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +194 -0
- trajectree/quimb/quimb/experimental/cluster_update.py +286 -0
- trajectree/quimb/quimb/experimental/merabuilder.py +865 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +15 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +1631 -0
- trajectree/quimb/quimb/experimental/schematic.py +7 -0
- trajectree/quimb/quimb/experimental/tn_marginals.py +130 -0
- trajectree/quimb/quimb/experimental/tnvmc.py +1483 -0
- trajectree/quimb/quimb/gates.py +36 -0
- trajectree/quimb/quimb/gen/__init__.py +2 -0
- trajectree/quimb/quimb/gen/operators.py +1167 -0
- trajectree/quimb/quimb/gen/rand.py +713 -0
- trajectree/quimb/quimb/gen/states.py +479 -0
- trajectree/quimb/quimb/linalg/__init__.py +6 -0
- trajectree/quimb/quimb/linalg/approx_spectral.py +1109 -0
- trajectree/quimb/quimb/linalg/autoblock.py +258 -0
- trajectree/quimb/quimb/linalg/base_linalg.py +719 -0
- trajectree/quimb/quimb/linalg/mpi_launcher.py +397 -0
- trajectree/quimb/quimb/linalg/numpy_linalg.py +244 -0
- trajectree/quimb/quimb/linalg/rand_linalg.py +514 -0
- trajectree/quimb/quimb/linalg/scipy_linalg.py +293 -0
- trajectree/quimb/quimb/linalg/slepc_linalg.py +892 -0
- trajectree/quimb/quimb/schematic.py +1518 -0
- trajectree/quimb/quimb/tensor/__init__.py +401 -0
- trajectree/quimb/quimb/tensor/array_ops.py +610 -0
- trajectree/quimb/quimb/tensor/circuit.py +4824 -0
- trajectree/quimb/quimb/tensor/circuit_gen.py +411 -0
- trajectree/quimb/quimb/tensor/contraction.py +336 -0
- trajectree/quimb/quimb/tensor/decomp.py +1255 -0
- trajectree/quimb/quimb/tensor/drawing.py +1646 -0
- trajectree/quimb/quimb/tensor/fitting.py +385 -0
- trajectree/quimb/quimb/tensor/geometry.py +583 -0
- trajectree/quimb/quimb/tensor/interface.py +114 -0
- trajectree/quimb/quimb/tensor/networking.py +1058 -0
- trajectree/quimb/quimb/tensor/optimize.py +1818 -0
- trajectree/quimb/quimb/tensor/tensor_1d.py +4778 -0
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +1854 -0
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +662 -0
- trajectree/quimb/quimb/tensor/tensor_2d.py +5954 -0
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +96 -0
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +1230 -0
- trajectree/quimb/quimb/tensor/tensor_3d.py +2869 -0
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +46 -0
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +60 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +3237 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +565 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +1138 -0
- trajectree/quimb/quimb/tensor/tensor_builder.py +5411 -0
- trajectree/quimb/quimb/tensor/tensor_core.py +11179 -0
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +1472 -0
- trajectree/quimb/quimb/tensor/tensor_mera.py +204 -0
- trajectree/quimb/quimb/utils.py +892 -0
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +501 -0
- trajectree/quimb/tests/test_calc.py +788 -0
- trajectree/quimb/tests/test_core.py +847 -0
- trajectree/quimb/tests/test_evo.py +565 -0
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +361 -0
- trajectree/quimb/tests/test_gen/test_rand.py +296 -0
- trajectree/quimb/tests/test_gen/test_states.py +261 -0
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +368 -0
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +351 -0
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +127 -0
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +84 -0
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +134 -0
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +283 -0
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +39 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +67 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +64 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +51 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +142 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +101 -0
- trajectree/quimb/tests/test_tensor/test_circuit.py +816 -0
- trajectree/quimb/tests/test_tensor/test_contract.py +67 -0
- trajectree/quimb/tests/test_tensor/test_decomp.py +40 -0
- trajectree/quimb/tests/test_tensor/test_mera.py +52 -0
- trajectree/quimb/tests/test_tensor/test_optimizers.py +488 -0
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +1171 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +606 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +144 -0
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +123 -0
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +226 -0
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +441 -0
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +2066 -0
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +388 -0
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +63 -0
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +270 -0
- trajectree/quimb/tests/test_utils.py +85 -0
- trajectree/trajectory.py +2 -2
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/METADATA +2 -2
- trajectree-0.0.1.dist-info/RECORD +126 -0
- trajectree-0.0.0.dist-info/RECORD +0 -16
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/WHEEL +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,351 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
import numpy as np
|
|
3
|
+
import scipy.sparse as sp
|
|
4
|
+
from numpy.testing import assert_allclose
|
|
5
|
+
|
|
6
|
+
import quimb as qu
|
|
7
|
+
from quimb.linalg import SLEPC4PY_FOUND
|
|
8
|
+
from quimb.linalg.base_linalg import _rel_window_to_abs_window
|
|
9
|
+
|
|
10
|
+
eigs_backends = ["auto", "numpy", "scipy"]
|
|
11
|
+
svds_backends = ["numpy", "scipy"]
|
|
12
|
+
|
|
13
|
+
if SLEPC4PY_FOUND:
|
|
14
|
+
eigs_backends += ["slepc-nompi", "slepc"]
|
|
15
|
+
svds_backends += ["slepc-nompi", "slepc"]
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
# --------------------------------------------------------------------------- #
|
|
19
|
+
# Fixtures #
|
|
20
|
+
# --------------------------------------------------------------------------- #
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@pytest.fixture
|
|
24
|
+
def mat_herm_dense():
|
|
25
|
+
np.random.seed(1)
|
|
26
|
+
u = qu.rand_uni(4)
|
|
27
|
+
a = u @ qu.ldmul(np.array([-1, 2, 4, -3]), u.H)
|
|
28
|
+
# |--|--|--|--|--|--|--|
|
|
29
|
+
# -3 -1 2 4
|
|
30
|
+
return u, a
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@pytest.fixture
|
|
34
|
+
def mat_herm_sparse():
|
|
35
|
+
np.random.seed(1)
|
|
36
|
+
u = qu.rand_uni(4)
|
|
37
|
+
a = u @ qu.ldmul(np.array([-1, 2, 4, -3]), u.H)
|
|
38
|
+
a = qu.sparse(a)
|
|
39
|
+
return u, a
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
@pytest.fixture
|
|
43
|
+
def mat_nherm_dense():
|
|
44
|
+
np.random.seed(1)
|
|
45
|
+
u, v = qu.rand_uni(5), qu.rand_uni(5)
|
|
46
|
+
a = u @ qu.ldmul(np.array([1, 2, 4, 3, 0.1]), v.H)
|
|
47
|
+
return u, v, a
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@pytest.fixture
|
|
51
|
+
def mat_nherm_sparse():
|
|
52
|
+
np.random.seed(1)
|
|
53
|
+
u, v = qu.rand_uni(5), qu.rand_uni(5)
|
|
54
|
+
a = u @ qu.ldmul(np.array([1, 2, 4, 3, 0.1]), v.H)
|
|
55
|
+
a = qu.sparse(a)
|
|
56
|
+
return u, v, a
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
@pytest.fixture
|
|
60
|
+
def ham1():
|
|
61
|
+
u = qu.rand_uni(7)
|
|
62
|
+
el = np.array([-3, 0, 1, 2, 3, 4, 7])
|
|
63
|
+
return u @ qu.ldmul(el, u.H)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
@pytest.fixture
|
|
67
|
+
def ham2():
|
|
68
|
+
u = qu.rand_uni(7)
|
|
69
|
+
el = np.array([-3.72, 0, 1, 1.1, 2.1, 2.2, 6.28])
|
|
70
|
+
return u @ qu.ldmul(el, u.H)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
# --------------------------------------------------------------------------- #
|
|
74
|
+
# Tests #
|
|
75
|
+
# --------------------------------------------------------------------------- #
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class TestEigh:
|
|
79
|
+
def test_eigsys(self, mat_herm_dense):
|
|
80
|
+
u, a = mat_herm_dense
|
|
81
|
+
evals, v = qu.eigh(a)
|
|
82
|
+
assert set(np.rint(evals)) == set((-1, 2, 4, -3))
|
|
83
|
+
assert_allclose(evals, [-3, -1, 2, 4])
|
|
84
|
+
for i, j in zip([3, 0, 1, 2], range(4)):
|
|
85
|
+
o = u[:, [i]].H @ v[:, [j]]
|
|
86
|
+
assert_allclose(abs(o), 1.0)
|
|
87
|
+
|
|
88
|
+
def test_eigvals(self, mat_herm_dense):
|
|
89
|
+
_, a = mat_herm_dense
|
|
90
|
+
evals = qu.eigvalsh(a)
|
|
91
|
+
assert_allclose(evals, [-3, -1, 2, 4])
|
|
92
|
+
|
|
93
|
+
def test_eigvecs(self, mat_herm_dense):
|
|
94
|
+
u, a = mat_herm_dense
|
|
95
|
+
v = qu.eigvecsh(a)
|
|
96
|
+
for i, j in zip([3, 0, 1, 2], range(4)):
|
|
97
|
+
o = u[:, [i]].H @ v[:, [j]]
|
|
98
|
+
assert_allclose(abs(o), 1.0)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
class TestSeigs:
|
|
102
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
103
|
+
def test_eigs_small_dense_wvecs(self, mat_herm_dense, backend):
|
|
104
|
+
u, a = mat_herm_dense
|
|
105
|
+
assert not qu.issparse(a)
|
|
106
|
+
lk, vk = qu.eigh(a, k=2, backend=backend)
|
|
107
|
+
assert_allclose(lk, (-3, -1))
|
|
108
|
+
for i, j in zip([3, 0], [0, 1]):
|
|
109
|
+
o = u[:, [i]].H @ vk[:, [j]]
|
|
110
|
+
assert_allclose(abs(o), 1.0)
|
|
111
|
+
vk = qu.eigvecsh(a, k=2, backend=backend)
|
|
112
|
+
for i, j in zip([3, 0], [0, 1]):
|
|
113
|
+
o = u[:, [i]].H @ vk[:, [j]]
|
|
114
|
+
assert_allclose(abs(o), 1.0)
|
|
115
|
+
|
|
116
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
117
|
+
def test_eigs_small_dense_novecs(self, mat_herm_dense, backend):
|
|
118
|
+
_, a = mat_herm_dense
|
|
119
|
+
assert not qu.issparse(a)
|
|
120
|
+
lk = qu.eigvalsh(a, k=2, backend=backend)
|
|
121
|
+
assert_allclose(lk, (-3, -1))
|
|
122
|
+
|
|
123
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
124
|
+
def test_eigs_sparse_wvecs(self, mat_herm_sparse, backend):
|
|
125
|
+
u, a = mat_herm_sparse
|
|
126
|
+
assert qu.issparse(a)
|
|
127
|
+
lk, vk = qu.eigh(a, k=2, backend=backend)
|
|
128
|
+
assert_allclose(lk, (-3, -1))
|
|
129
|
+
for i, j in zip([3, 0], [0, 1]):
|
|
130
|
+
o = u[:, [i]].H @ vk[:, [j]]
|
|
131
|
+
assert_allclose(abs(o), 1.0)
|
|
132
|
+
vk = qu.eigvecsh(a, k=2, backend=backend)
|
|
133
|
+
for i, j in zip([3, 0], [0, 1]):
|
|
134
|
+
o = u[:, [i]].H @ vk[:, [j]]
|
|
135
|
+
assert_allclose(abs(o), 1.0)
|
|
136
|
+
|
|
137
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
138
|
+
def test_eigs_small_sparse_novecs(self, mat_herm_sparse, backend):
|
|
139
|
+
_, a = mat_herm_sparse
|
|
140
|
+
assert qu.issparse(a)
|
|
141
|
+
lk = qu.eigvalsh(a, k=2, backend=backend)
|
|
142
|
+
assert_allclose(lk, (-3, -1))
|
|
143
|
+
|
|
144
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
145
|
+
def test_groundstate(self, mat_herm_dense, backend):
|
|
146
|
+
u, a = mat_herm_dense
|
|
147
|
+
gs = qu.groundstate(a, backend=backend)
|
|
148
|
+
assert_allclose(abs(u[:, [3]].H @ gs), 1.0)
|
|
149
|
+
|
|
150
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
151
|
+
def test_groundenergy(self, mat_herm_dense, backend):
|
|
152
|
+
_, a = mat_herm_dense
|
|
153
|
+
ge = qu.groundenergy(a, backend=backend)
|
|
154
|
+
assert_allclose(ge, -3)
|
|
155
|
+
|
|
156
|
+
@pytest.mark.parametrize("which", [None, "SA", "LA", "LM", "SM", "TR"])
|
|
157
|
+
@pytest.mark.parametrize("k", [1, 2])
|
|
158
|
+
def test_cross_equality(self, mat_herm_sparse, k, which):
|
|
159
|
+
_, a = mat_herm_sparse
|
|
160
|
+
sigma = 1 if which in {None, "TR"} else None
|
|
161
|
+
lks, vks = zip(
|
|
162
|
+
*(
|
|
163
|
+
qu.eigh(a, k=k, which=which, sigma=sigma, backend=b)
|
|
164
|
+
for b in eigs_backends
|
|
165
|
+
)
|
|
166
|
+
)
|
|
167
|
+
lks, vks = tuple(lks), tuple(vks)
|
|
168
|
+
for i in range(len(lks) - 1):
|
|
169
|
+
assert_allclose(lks[i], lks[i + 1])
|
|
170
|
+
assert_allclose(abs(vks[i].H @ vks[i + 1]), qu.eye(k), atol=1e-14)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
class TestLOBPCG:
|
|
174
|
+
def test_against_arpack(self):
|
|
175
|
+
A = qu.rand_herm(32, dtype=float)
|
|
176
|
+
lk, vk = qu.eigh(A, k=6, backend="lobpcg")
|
|
177
|
+
slk, svk = qu.eigh(A, k=6, backend="scipy")
|
|
178
|
+
assert_allclose(lk, slk)
|
|
179
|
+
assert_allclose(np.eye(6), abs(vk.H @ svk), atol=1e-9, rtol=1e-9)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
class TestEvalsWindowed:
|
|
183
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
184
|
+
def test_bound_spectrum(self, ham1, backend):
|
|
185
|
+
h = ham1
|
|
186
|
+
lmin, lmax = qu.bound_spectrum(h, backend=backend)
|
|
187
|
+
assert_allclose((lmin, lmax), (-3, 7), atol=1e-13)
|
|
188
|
+
|
|
189
|
+
def test_rel_window_to_abs_window(self):
|
|
190
|
+
el0 = _rel_window_to_abs_window(5, 10, 0.5)
|
|
191
|
+
assert_allclose(el0, 7.5)
|
|
192
|
+
el0, eli, elf = _rel_window_to_abs_window(-20, -10, 0.5, 0.2)
|
|
193
|
+
assert_allclose([el0, eli, elf], [-15, -16, -14])
|
|
194
|
+
|
|
195
|
+
def test_dense(self, ham2):
|
|
196
|
+
h = ham2
|
|
197
|
+
el = qu.eigvalsh_window(h, 0.5, 2, w_sz=0.1)
|
|
198
|
+
assert_allclose(el, [1, 1.1])
|
|
199
|
+
|
|
200
|
+
def test_dense_cut(self, ham1):
|
|
201
|
+
h = ham1
|
|
202
|
+
el = qu.eigvalsh_window(h, 0.5, 5, w_sz=0.3)
|
|
203
|
+
assert_allclose(el, [1, 2, 3])
|
|
204
|
+
|
|
205
|
+
@pytest.mark.parametrize("backend", eigs_backends)
|
|
206
|
+
def test_sparse(self, ham2, backend):
|
|
207
|
+
h = qu.sparse(ham2)
|
|
208
|
+
el = qu.eigvalsh_window(h, 0.5, 2, w_sz=0.1, backend=backend)
|
|
209
|
+
assert_allclose(el, [1, 1.1])
|
|
210
|
+
|
|
211
|
+
def test_sparse_cut(self, ham1):
|
|
212
|
+
h = qu.sparse(ham1)
|
|
213
|
+
el = qu.eigvalsh_window(h, 0.5, 5, w_sz=0.3)
|
|
214
|
+
assert_allclose(el, [1, 2, 3])
|
|
215
|
+
|
|
216
|
+
def test_dense_return_vecs(self, mat_herm_dense):
|
|
217
|
+
u, a = mat_herm_dense
|
|
218
|
+
ev = qu.eigvecsh_window(a, w_0=0.5, k=2, w_sz=0.8)
|
|
219
|
+
assert ev.shape == (4, 2)
|
|
220
|
+
assert_allclose(abs(u[:, :2].H @ ev[:,]), [[1, 0], [0, 1]], atol=1e-14)
|
|
221
|
+
|
|
222
|
+
def test_sparse_return_vecs(self, mat_herm_sparse):
|
|
223
|
+
u, a = mat_herm_sparse
|
|
224
|
+
ev = qu.eigvecsh_window(a, w_0=0.5, k=2, w_sz=0.8)
|
|
225
|
+
assert ev.shape == (4, 2)
|
|
226
|
+
assert_allclose(abs(u[:, :2].H @ ev[:,]), [[1, 0], [0, 1]], atol=1e-14)
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
class TestSVD:
|
|
230
|
+
def test_svd_full(self, mat_nherm_dense):
|
|
231
|
+
u, v, a = mat_nherm_dense
|
|
232
|
+
un, sn, vn = qu.svd(a)
|
|
233
|
+
assert_allclose(sn, [4, 3, 2, 1, 0.1], atol=1e-14)
|
|
234
|
+
for (
|
|
235
|
+
i,
|
|
236
|
+
j,
|
|
237
|
+
) in zip((0, 1, 2, 3, 4), (2, 3, 1, 0, 4)):
|
|
238
|
+
o = abs(un[:, [i]].H @ u[:, [j]])
|
|
239
|
+
assert_allclose(o, 1.0)
|
|
240
|
+
o = abs(vn[[i], :] @ v[:, [j]])
|
|
241
|
+
assert_allclose(o, 1.0)
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
class TestSVDS:
|
|
245
|
+
@pytest.mark.parametrize("backend", svds_backends)
|
|
246
|
+
def test_svds_smalldense_wvecs(self, mat_nherm_dense, backend):
|
|
247
|
+
u, v, a = mat_nherm_dense
|
|
248
|
+
uk, sk, vk = qu.svds(a, k=3, return_vecs=True, backend=backend)
|
|
249
|
+
assert_allclose(sk, [4, 3, 2])
|
|
250
|
+
for i, j in zip((0, 1, 2), (2, 3, 1)):
|
|
251
|
+
o = abs(uk[:, [i]].H @ u[:, [j]])
|
|
252
|
+
assert_allclose(o, 1.0)
|
|
253
|
+
o = abs(vk[[i], :] @ v[:, [j]])
|
|
254
|
+
assert_allclose(o, 1.0)
|
|
255
|
+
|
|
256
|
+
@pytest.mark.parametrize("backend", svds_backends)
|
|
257
|
+
def test_svds_smalldense_nvecs(self, mat_nherm_dense, backend):
|
|
258
|
+
_, _, a = mat_nherm_dense
|
|
259
|
+
sk = qu.svds(a, k=3, return_vecs=False, backend=backend)
|
|
260
|
+
assert_allclose(sk, [4, 3, 2])
|
|
261
|
+
|
|
262
|
+
@pytest.mark.parametrize("backend", svds_backends)
|
|
263
|
+
def test_svds_sparse_wvecs(self, mat_nherm_sparse, backend):
|
|
264
|
+
u, v, a = mat_nherm_sparse
|
|
265
|
+
uk, sk, vk = qu.svds(a, k=3, return_vecs=True, backend=backend)
|
|
266
|
+
assert_allclose(sk, [4, 3, 2])
|
|
267
|
+
for i, j in zip((0, 1, 2), (2, 3, 1)):
|
|
268
|
+
o = abs(uk[:, [i]].H @ u[:, [j]])
|
|
269
|
+
assert_allclose(o, 1.0)
|
|
270
|
+
o = abs(vk[[i], :] @ v[:, [j]])
|
|
271
|
+
assert_allclose(o, 1.0)
|
|
272
|
+
|
|
273
|
+
@pytest.mark.parametrize("backend", svds_backends)
|
|
274
|
+
def test_svds_sparse_nvecs(self, mat_nherm_sparse, backend):
|
|
275
|
+
_, _, a = mat_nherm_sparse
|
|
276
|
+
sk = qu.svds(a, k=3, return_vecs=False, backend=backend)
|
|
277
|
+
assert_allclose(sk, [4, 3, 2])
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
class TestNorms:
|
|
281
|
+
def test_norm_fro_dense(self):
|
|
282
|
+
a = qu.quimbify([[1, 2], [3j, 4j]])
|
|
283
|
+
assert qu.norm(a, "fro") == (1 + 4 + 9 + 16) ** 0.5
|
|
284
|
+
|
|
285
|
+
def test_norm_fro_sparse(self):
|
|
286
|
+
a = qu.sparse([[3, 0], [4j, 0]])
|
|
287
|
+
assert qu.norm(a, "fro") == (9 + 16) ** 0.5
|
|
288
|
+
|
|
289
|
+
@pytest.mark.parametrize("backend", svds_backends)
|
|
290
|
+
def test_norm_spectral_dense(self, mat_nherm_dense, backend):
|
|
291
|
+
_, _, a = mat_nherm_dense
|
|
292
|
+
assert_allclose(qu.norm(a, "spectral", backend=backend), 4.0)
|
|
293
|
+
|
|
294
|
+
@pytest.mark.parametrize("backend", svds_backends)
|
|
295
|
+
def test_norm_spectral_sparse(self, mat_nherm_sparse, backend):
|
|
296
|
+
_, _, a = mat_nherm_sparse
|
|
297
|
+
assert_allclose(qu.norm(a, "spectral", backend=backend), 4.0)
|
|
298
|
+
|
|
299
|
+
def test_norm_trace_dense(self):
|
|
300
|
+
a = qu.qarray(np.diag([-3, 1, 7]))
|
|
301
|
+
assert qu.norm(a, "trace") == 11
|
|
302
|
+
a = qu.rand_product_state(1, qtype="dop")
|
|
303
|
+
assert_allclose(qu.norm(a, "nuc"), 1)
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
class TestExpm:
|
|
307
|
+
@pytest.mark.parametrize("herm", [True, False])
|
|
308
|
+
def test_zeros_dense(self, herm):
|
|
309
|
+
p = qu.expm(np.zeros((2, 2), dtype=complex), herm=herm)
|
|
310
|
+
assert_allclose(p, qu.eye(2))
|
|
311
|
+
|
|
312
|
+
@pytest.mark.parametrize("sparse", [True, False])
|
|
313
|
+
@pytest.mark.parametrize("herm", [True, False])
|
|
314
|
+
def test_eye(self, sparse, herm):
|
|
315
|
+
p = qu.expm(qu.eye(2, sparse=sparse), herm=herm)
|
|
316
|
+
assert_allclose((p.toarray() if sparse else p) / np.e, qu.eye(2))
|
|
317
|
+
if sparse:
|
|
318
|
+
assert isinstance(p, sp.csr_matrix)
|
|
319
|
+
|
|
320
|
+
|
|
321
|
+
class TestSqrtm:
|
|
322
|
+
@pytest.mark.parametrize("sparse", [True, False])
|
|
323
|
+
@pytest.mark.parametrize("herm", [True, False])
|
|
324
|
+
def test_eye(self, herm, sparse):
|
|
325
|
+
if sparse:
|
|
326
|
+
with pytest.raises(NotImplementedError):
|
|
327
|
+
p = qu.sqrtm(qu.eye(2, sparse=sparse), herm=herm)
|
|
328
|
+
else:
|
|
329
|
+
p = qu.sqrtm(qu.eye(2), herm=herm)
|
|
330
|
+
assert_allclose(p, qu.eye(2))
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
class TestLazy:
|
|
334
|
+
@pytest.mark.parametrize("sparse", [False, True])
|
|
335
|
+
def test_basic(self, sparse):
|
|
336
|
+
ownership = (0, 7)
|
|
337
|
+
hl = qu.Lazy(qu.ham_heis, n=4, sparse=sparse, shape=(16, 16))
|
|
338
|
+
print(hl)
|
|
339
|
+
h = 1 * hl(ownership=ownership)
|
|
340
|
+
h_ex = qu.ham_heis(n=4, sparse=sparse)[slice(*ownership), :]
|
|
341
|
+
assert_allclose(h.toarray(), h_ex.toarray())
|
|
342
|
+
|
|
343
|
+
@pytest.mark.parametrize("backend", ["scipy", "lobpcg"])
|
|
344
|
+
def test_project_eig(self, backend):
|
|
345
|
+
Hl = qu.Lazy(qu.ham_heis, 4, sparse=True, shape=(16, 16), cyclic=True)
|
|
346
|
+
Pl = qu.Lazy(qu.zspin_projector, 4, shape=(16, 6))
|
|
347
|
+
|
|
348
|
+
ge, gs = qu.eigh(Hl, P=Pl, k=1, backend=backend)
|
|
349
|
+
|
|
350
|
+
assert ge == pytest.approx(-2)
|
|
351
|
+
assert qu.expec(gs, gs) == pytest.approx(1.0)
|
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
import numpy as np
|
|
3
|
+
from numpy.testing import assert_allclose
|
|
4
|
+
|
|
5
|
+
from quimb import (
|
|
6
|
+
rand_herm,
|
|
7
|
+
rand_ket,
|
|
8
|
+
eigh,
|
|
9
|
+
can_use_mpi_pool,
|
|
10
|
+
)
|
|
11
|
+
|
|
12
|
+
from quimb.linalg import SLEPC4PY_FOUND
|
|
13
|
+
from quimb.linalg.scipy_linalg import eigs_scipy
|
|
14
|
+
|
|
15
|
+
if SLEPC4PY_FOUND:
|
|
16
|
+
from quimb.linalg.mpi_launcher import (
|
|
17
|
+
eigs_slepc_spawn,
|
|
18
|
+
svds_slepc_spawn,
|
|
19
|
+
mfn_multiply_slepc_spawn,
|
|
20
|
+
ALREADY_RUNNING_AS_MPI,
|
|
21
|
+
NUM_MPI_WORKERS,
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
slepc4py_test = pytest.mark.skipif(
|
|
25
|
+
not SLEPC4PY_FOUND, reason="No SLEPc4py installation"
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
mpipooltest = pytest.mark.skipif(
|
|
29
|
+
not can_use_mpi_pool(), reason="Not allowed to use MPI pool."
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
num_workers_to_try = [None, 1, 2, 3]
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@pytest.fixture
|
|
36
|
+
def bigsparsemat():
|
|
37
|
+
import numpy as np
|
|
38
|
+
|
|
39
|
+
np.random.seed(42)
|
|
40
|
+
return rand_herm(100, sparse=True, density=0.1)
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@pytest.fixture
|
|
44
|
+
def big_vec():
|
|
45
|
+
import numpy as np
|
|
46
|
+
|
|
47
|
+
np.random.seed(2442)
|
|
48
|
+
return rand_ket(100)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@slepc4py_test
|
|
52
|
+
class TestSLEPcMPI:
|
|
53
|
+
@pytest.mark.parametrize("num_workers", num_workers_to_try)
|
|
54
|
+
def test_eigs(self, num_workers, bigsparsemat):
|
|
55
|
+
if (
|
|
56
|
+
(num_workers is not None)
|
|
57
|
+
and ALREADY_RUNNING_AS_MPI
|
|
58
|
+
and num_workers > 1
|
|
59
|
+
and num_workers != NUM_MPI_WORKERS
|
|
60
|
+
):
|
|
61
|
+
with pytest.raises(ValueError):
|
|
62
|
+
eigs_slepc_spawn(bigsparsemat, k=6, num_workers=num_workers)
|
|
63
|
+
|
|
64
|
+
else:
|
|
65
|
+
el, ev = eigs_slepc_spawn(
|
|
66
|
+
bigsparsemat, k=6, num_workers=num_workers
|
|
67
|
+
)
|
|
68
|
+
elex, evex = eigs_scipy(bigsparsemat, k=6)
|
|
69
|
+
assert_allclose(el, elex)
|
|
70
|
+
assert_allclose(np.abs(ev.H @ evex), np.eye(6), atol=1e-7)
|
|
71
|
+
|
|
72
|
+
@pytest.mark.parametrize("num_workers", num_workers_to_try)
|
|
73
|
+
def test_expm_multiply(self, num_workers, bigsparsemat, big_vec):
|
|
74
|
+
a = bigsparsemat
|
|
75
|
+
k = big_vec
|
|
76
|
+
|
|
77
|
+
if (
|
|
78
|
+
(num_workers is not None)
|
|
79
|
+
and ALREADY_RUNNING_AS_MPI
|
|
80
|
+
and num_workers > 1
|
|
81
|
+
and num_workers != NUM_MPI_WORKERS
|
|
82
|
+
):
|
|
83
|
+
with pytest.raises(ValueError):
|
|
84
|
+
mfn_multiply_slepc_spawn(a, k, num_workers=num_workers)
|
|
85
|
+
|
|
86
|
+
else:
|
|
87
|
+
out = mfn_multiply_slepc_spawn(a, k, num_workers=num_workers)
|
|
88
|
+
al, av = eigh(a.toarray())
|
|
89
|
+
expected = av @ np.diag(np.exp(al)) @ av.conj().T @ k
|
|
90
|
+
assert_allclose(out, expected)
|
|
91
|
+
|
|
92
|
+
@pytest.mark.parametrize("num_workers", num_workers_to_try)
|
|
93
|
+
def test_svds(self, num_workers):
|
|
94
|
+
a = np.random.randn(13, 7) + 1.0j * np.random.randn(13, 7)
|
|
95
|
+
|
|
96
|
+
if (
|
|
97
|
+
(num_workers is not None)
|
|
98
|
+
and ALREADY_RUNNING_AS_MPI
|
|
99
|
+
and num_workers > 1
|
|
100
|
+
and num_workers != NUM_MPI_WORKERS
|
|
101
|
+
):
|
|
102
|
+
with pytest.raises(ValueError):
|
|
103
|
+
svds_slepc_spawn(a, return_vecs=True, num_workers=num_workers)
|
|
104
|
+
|
|
105
|
+
else:
|
|
106
|
+
u, s, v = svds_slepc_spawn(
|
|
107
|
+
a, return_vecs=True, num_workers=num_workers
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
@slepc4py_test
|
|
112
|
+
@mpipooltest
|
|
113
|
+
class TestMPIPool:
|
|
114
|
+
def test_spawning_pool_in_pool(self, bigsparsemat):
|
|
115
|
+
from quimb.linalg.mpi_launcher import get_mpi_pool
|
|
116
|
+
|
|
117
|
+
l1 = eigs_slepc_spawn(bigsparsemat, k=6, return_vecs=False)
|
|
118
|
+
pool = get_mpi_pool()
|
|
119
|
+
f = pool.submit(
|
|
120
|
+
eigs_slepc_spawn,
|
|
121
|
+
bigsparsemat,
|
|
122
|
+
k=6,
|
|
123
|
+
return_vecs=False,
|
|
124
|
+
num_workers=1,
|
|
125
|
+
)
|
|
126
|
+
l2 = f.result()
|
|
127
|
+
assert_allclose(l1, l2)
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
from pytest import fixture, mark
|
|
2
|
+
import numpy as np
|
|
3
|
+
from numpy.testing import assert_equal, assert_allclose
|
|
4
|
+
|
|
5
|
+
import quimb as qu
|
|
6
|
+
from quimb.linalg.numpy_linalg import (
|
|
7
|
+
sort_inds,
|
|
8
|
+
eigs_numpy,
|
|
9
|
+
)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@fixture
|
|
13
|
+
def xs():
|
|
14
|
+
return np.array([-2.4 - 1j, -1 + 2.2j, 1 - 2.1j, 2.3 + 1j])
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@fixture
|
|
18
|
+
def ham1():
|
|
19
|
+
evecs = qu.rand_uni(5)
|
|
20
|
+
evals = np.array([-5, -3, 0.1, 2, 4])
|
|
21
|
+
return qu.dot(evecs, qu.ldmul(evals, evecs.H))
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class TestSortInds:
|
|
25
|
+
@mark.parametrize(
|
|
26
|
+
"method, inds, sigma",
|
|
27
|
+
[
|
|
28
|
+
("LM", [0, 3, 1, 2], None),
|
|
29
|
+
("SM", [2, 1, 3, 0], None),
|
|
30
|
+
("SA", [0, 1, 2, 3], None),
|
|
31
|
+
("SR", [0, 1, 2, 3], None),
|
|
32
|
+
("SI", [2, 0, 3, 1], None),
|
|
33
|
+
("LA", [3, 2, 1, 0], None),
|
|
34
|
+
("LR", [3, 2, 1, 0], None),
|
|
35
|
+
("LI", [1, 3, 0, 2], None),
|
|
36
|
+
("TM", [1, 2, 3, 0], 2.41),
|
|
37
|
+
("tm", [1, 2, 3, 0], 2.41),
|
|
38
|
+
("TR", [2, 3, 1, 0], 1.01),
|
|
39
|
+
("TI", [3, 1, 0, 2], 1.01),
|
|
40
|
+
],
|
|
41
|
+
)
|
|
42
|
+
def test_simple(self, xs, method, inds, sigma):
|
|
43
|
+
assert_equal(sort_inds(xs, method, sigma), inds)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class TestNumpyEigk:
|
|
47
|
+
@mark.parametrize(
|
|
48
|
+
"which, k, ls, sigma",
|
|
49
|
+
[
|
|
50
|
+
("lm", 3, [-5, 4, -3], None),
|
|
51
|
+
("sm", 3, [0.1, 2, -3], None),
|
|
52
|
+
("tm", 3, [-3, 2, 4], 2.9),
|
|
53
|
+
],
|
|
54
|
+
)
|
|
55
|
+
def test_evals(self, ham1, which, k, ls, sigma):
|
|
56
|
+
lk = eigs_numpy(
|
|
57
|
+
ham1, k=k, which=which, return_vecs=False, sigma=sigma, sort=False
|
|
58
|
+
)
|
|
59
|
+
assert_allclose(lk, ls)
|
|
60
|
+
|
|
61
|
+
@mark.parametrize("which, k, sigma", [("sa", 5, None)])
|
|
62
|
+
def test_evecs(self, ham1, which, k, sigma):
|
|
63
|
+
lk, vk = eigs_numpy(
|
|
64
|
+
ham1, k=k, which=which, return_vecs=True, sigma=sigma, sort=False
|
|
65
|
+
)
|
|
66
|
+
assert isinstance(vk, qu.qarray)
|
|
67
|
+
assert_allclose(qu.dot(vk, qu.ldmul(lk, vk.H)), ham1)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
class TestAutoBlock:
|
|
71
|
+
def test_eigh(self):
|
|
72
|
+
H = qu.ham_mbl(6, dh=2.5)
|
|
73
|
+
a_el, a_ev = qu.eigh(H, autoblock=False)
|
|
74
|
+
el, ev = qu.eigh(H, autoblock=True)
|
|
75
|
+
|
|
76
|
+
assert qu.norm(ev @ qu.ldmul(el, ev.H) - H, "fro") < 1e-12
|
|
77
|
+
assert_allclose(a_el, el)
|
|
78
|
+
assert_allclose(ev.H @ ev, np.eye(H.shape[0]), atol=1e-12)
|
|
79
|
+
|
|
80
|
+
def test_eigvals(self):
|
|
81
|
+
H = qu.ham_hubbard_hardcore(4)
|
|
82
|
+
a_el = qu.eigvalsh(H, autoblock=False)
|
|
83
|
+
el = qu.eigvalsh(H, autoblock=True)
|
|
84
|
+
assert_allclose(a_el, el, atol=1e-12)
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
import numpy as np
|
|
3
|
+
from numpy.testing import assert_allclose
|
|
4
|
+
|
|
5
|
+
import quimb as qu
|
|
6
|
+
import quimb.tensor as qtn
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def rand_rect(m, n, sparse=False, dtype=complex):
|
|
10
|
+
X = qu.rand_matrix(max(m, n), dtype=dtype, sparse=sparse)
|
|
11
|
+
return X[:m, :n]
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def usv2dense(U, s, VH):
|
|
15
|
+
return U @ np.diag(s) @ VH
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def rand_rank(m, n, k, dtype=complex):
|
|
19
|
+
s = np.sort(qu.randn(k) ** 2)[::-1]
|
|
20
|
+
|
|
21
|
+
U = qu.gen.rand.rand_iso(m, k, dtype=dtype)
|
|
22
|
+
VH = qu.gen.rand.rand_iso(n, k, dtype=dtype).conj().T
|
|
23
|
+
|
|
24
|
+
if U.dtype in ("float32", "complex64"):
|
|
25
|
+
s = s.astype("float32")
|
|
26
|
+
|
|
27
|
+
return usv2dense(U, s, VH)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def rand_tn1d_sect(n, bd, dtype=complex):
|
|
31
|
+
mps = qtn.MPS_rand_state(n + 2, bd, dtype=dtype)
|
|
32
|
+
mpo = qtn.MPO_rand_herm(n + 2, 5, dtype=dtype)
|
|
33
|
+
|
|
34
|
+
norm = qtn.TensorNetwork(qtn.tensor_network_align(mps.H, mpo, mps))
|
|
35
|
+
norm.view_as_(qtn.TensorNetwork1D, like=mps)
|
|
36
|
+
|
|
37
|
+
lix = qtn.bonds(norm[0], norm[1])
|
|
38
|
+
rix = qtn.bonds(norm[n], norm[n + 1])
|
|
39
|
+
|
|
40
|
+
to = norm[1 : n + 1]
|
|
41
|
+
|
|
42
|
+
return qtn.TNLinearOperator1D(to, lix, rix, 1, n + 1)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
dtypes = ["float32", "float64", "complex64", "complex128"]
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class TestRSVD:
|
|
49
|
+
@pytest.mark.parametrize("dtype", dtypes)
|
|
50
|
+
@pytest.mark.parametrize("shape", [(41, 31), (31, 41)])
|
|
51
|
+
@pytest.mark.parametrize("sparse", [False, True])
|
|
52
|
+
@pytest.mark.parametrize("q", [2, 3])
|
|
53
|
+
@pytest.mark.parametrize("p", [0, 5])
|
|
54
|
+
def test_rsvd(self, dtype, shape, sparse, q, p):
|
|
55
|
+
X = rand_rect(*shape, dtype=dtype, sparse=sparse)
|
|
56
|
+
|
|
57
|
+
k = 15
|
|
58
|
+
U, s, V = qu.rsvd(X, k, q=q, p=p)
|
|
59
|
+
|
|
60
|
+
assert U.shape == (shape[0], k)
|
|
61
|
+
assert s.shape == (k,)
|
|
62
|
+
assert V.shape == (k, shape[1])
|
|
63
|
+
|
|
64
|
+
assert U.dtype == dtype
|
|
65
|
+
assert V.dtype == dtype
|
|
66
|
+
|
|
67
|
+
assert_allclose(U.conj().T @ U, np.eye(k), rtol=1e-5, atol=1e-5)
|
|
68
|
+
assert_allclose(V @ V.conj().T, np.eye(k), rtol=1e-5, atol=1e-5)
|
|
69
|
+
|
|
70
|
+
Ue, se, Ve = qu.svds(X, k)
|
|
71
|
+
opt_err = qu.norm(X.toarray() - usv2dense(Ue, se, Ve), "fro")
|
|
72
|
+
act_err = qu.norm(X.toarray() - usv2dense(U, s, V), "fro")
|
|
73
|
+
|
|
74
|
+
assert act_err < 1.2 * opt_err
|
|
75
|
+
|
|
76
|
+
assert_allclose(s[: k // 2], se[: k // 2], rtol=0.05)
|
|
77
|
+
|
|
78
|
+
@pytest.mark.parametrize("dtype", dtypes)
|
|
79
|
+
@pytest.mark.parametrize("shape", [(41, 31), (31, 41)])
|
|
80
|
+
@pytest.mark.parametrize("q", [2, 3])
|
|
81
|
+
@pytest.mark.parametrize("p", [0, 5])
|
|
82
|
+
def test_rsvd_adaptive(self, dtype, shape, q, p):
|
|
83
|
+
X = rand_rank(*shape, 10, dtype=dtype)
|
|
84
|
+
U, s, V = qu.rsvd(X, 1e-6, q=q, p=p, k_start=10)
|
|
85
|
+
|
|
86
|
+
k = s.size
|
|
87
|
+
assert 10 <= k <= 20
|
|
88
|
+
|
|
89
|
+
assert U.dtype == dtype
|
|
90
|
+
assert V.dtype == dtype
|
|
91
|
+
|
|
92
|
+
assert_allclose(U.conj().T @ U, np.eye(k), rtol=1e-6, atol=1e-6)
|
|
93
|
+
assert_allclose(V @ V.conj().T, np.eye(k), rtol=1e-6, atol=1e-6)
|
|
94
|
+
|
|
95
|
+
Ue, se, Ve = qu.svds(X, k)
|
|
96
|
+
act_err = qu.norm(X - usv2dense(U, s, V), "fro")
|
|
97
|
+
|
|
98
|
+
assert act_err < 1e-4
|
|
99
|
+
|
|
100
|
+
assert_allclose(s[: k // 2], se[: k // 2], rtol=0.1)
|
|
101
|
+
|
|
102
|
+
@pytest.mark.parametrize("dtype", dtypes)
|
|
103
|
+
@pytest.mark.parametrize("shape", [(410, 310), (310, 410)])
|
|
104
|
+
@pytest.mark.parametrize("k_start", [4, 10, 16])
|
|
105
|
+
@pytest.mark.parametrize("use_qb", [False, 10, True])
|
|
106
|
+
def test_estimate_rank(self, dtype, shape, k_start, use_qb):
|
|
107
|
+
rnk = 100
|
|
108
|
+
X = rand_rank(*shape, rnk, dtype=dtype)
|
|
109
|
+
|
|
110
|
+
Ue, se, VHe = qu.svd(X)
|
|
111
|
+
assert_allclose(se[rnk:], 0.0, atol=1e-5)
|
|
112
|
+
|
|
113
|
+
k = qu.estimate_rank(
|
|
114
|
+
X, 1e-3, k_start=k_start, use_qb=use_qb, use_sli=False
|
|
115
|
+
)
|
|
116
|
+
assert_allclose(k, 100, rtol=0.3)
|
|
117
|
+
|
|
118
|
+
assert qu.estimate_rank(X, 1e-3, k_start=k_start, k_max=50) == 50
|
|
119
|
+
|
|
120
|
+
@pytest.mark.parametrize("dtype", dtypes)
|
|
121
|
+
@pytest.mark.parametrize("k_start", [2, 4, 8])
|
|
122
|
+
@pytest.mark.parametrize("use_qb", [False, 10, True])
|
|
123
|
+
def test_estimate_rank_lo(self, dtype, k_start, use_qb):
|
|
124
|
+
X = rand_tn1d_sect(30, 10, dtype=dtype)
|
|
125
|
+
|
|
126
|
+
Ue, se, VHe = qu.svd(X.toarray())
|
|
127
|
+
actual_rank = sum(se > se[0] * 1e-3)
|
|
128
|
+
|
|
129
|
+
k = qu.estimate_rank(
|
|
130
|
+
X, 1e-3, k_start=k_start, use_qb=use_qb, use_sli=False
|
|
131
|
+
)
|
|
132
|
+
assert_allclose(k, actual_rank, rtol=0.3 if use_qb else 0.5)
|
|
133
|
+
|
|
134
|
+
assert qu.estimate_rank(X, 1e-3, k_start=k_start, k_max=8) == 8
|