Trajectree 0.0.0__py3-none-any.whl → 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +3 -0
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +3 -3
- trajectree/fock_optics/utils.py +6 -6
- trajectree/quimb/docs/_pygments/_pygments_dark.py +118 -0
- trajectree/quimb/docs/_pygments/_pygments_light.py +118 -0
- trajectree/quimb/docs/conf.py +158 -0
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +62 -0
- trajectree/quimb/quimb/__init__.py +507 -0
- trajectree/quimb/quimb/calc.py +1491 -0
- trajectree/quimb/quimb/core.py +2279 -0
- trajectree/quimb/quimb/evo.py +712 -0
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +129 -0
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +109 -0
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +397 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +653 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +571 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +775 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +537 -0
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +194 -0
- trajectree/quimb/quimb/experimental/cluster_update.py +286 -0
- trajectree/quimb/quimb/experimental/merabuilder.py +865 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +15 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +1631 -0
- trajectree/quimb/quimb/experimental/schematic.py +7 -0
- trajectree/quimb/quimb/experimental/tn_marginals.py +130 -0
- trajectree/quimb/quimb/experimental/tnvmc.py +1483 -0
- trajectree/quimb/quimb/gates.py +36 -0
- trajectree/quimb/quimb/gen/__init__.py +2 -0
- trajectree/quimb/quimb/gen/operators.py +1167 -0
- trajectree/quimb/quimb/gen/rand.py +713 -0
- trajectree/quimb/quimb/gen/states.py +479 -0
- trajectree/quimb/quimb/linalg/__init__.py +6 -0
- trajectree/quimb/quimb/linalg/approx_spectral.py +1109 -0
- trajectree/quimb/quimb/linalg/autoblock.py +258 -0
- trajectree/quimb/quimb/linalg/base_linalg.py +719 -0
- trajectree/quimb/quimb/linalg/mpi_launcher.py +397 -0
- trajectree/quimb/quimb/linalg/numpy_linalg.py +244 -0
- trajectree/quimb/quimb/linalg/rand_linalg.py +514 -0
- trajectree/quimb/quimb/linalg/scipy_linalg.py +293 -0
- trajectree/quimb/quimb/linalg/slepc_linalg.py +892 -0
- trajectree/quimb/quimb/schematic.py +1518 -0
- trajectree/quimb/quimb/tensor/__init__.py +401 -0
- trajectree/quimb/quimb/tensor/array_ops.py +610 -0
- trajectree/quimb/quimb/tensor/circuit.py +4824 -0
- trajectree/quimb/quimb/tensor/circuit_gen.py +411 -0
- trajectree/quimb/quimb/tensor/contraction.py +336 -0
- trajectree/quimb/quimb/tensor/decomp.py +1255 -0
- trajectree/quimb/quimb/tensor/drawing.py +1646 -0
- trajectree/quimb/quimb/tensor/fitting.py +385 -0
- trajectree/quimb/quimb/tensor/geometry.py +583 -0
- trajectree/quimb/quimb/tensor/interface.py +114 -0
- trajectree/quimb/quimb/tensor/networking.py +1058 -0
- trajectree/quimb/quimb/tensor/optimize.py +1818 -0
- trajectree/quimb/quimb/tensor/tensor_1d.py +4778 -0
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +1854 -0
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +662 -0
- trajectree/quimb/quimb/tensor/tensor_2d.py +5954 -0
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +96 -0
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +1230 -0
- trajectree/quimb/quimb/tensor/tensor_3d.py +2869 -0
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +46 -0
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +60 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +3237 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +565 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +1138 -0
- trajectree/quimb/quimb/tensor/tensor_builder.py +5411 -0
- trajectree/quimb/quimb/tensor/tensor_core.py +11179 -0
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +1472 -0
- trajectree/quimb/quimb/tensor/tensor_mera.py +204 -0
- trajectree/quimb/quimb/utils.py +892 -0
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +501 -0
- trajectree/quimb/tests/test_calc.py +788 -0
- trajectree/quimb/tests/test_core.py +847 -0
- trajectree/quimb/tests/test_evo.py +565 -0
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +361 -0
- trajectree/quimb/tests/test_gen/test_rand.py +296 -0
- trajectree/quimb/tests/test_gen/test_states.py +261 -0
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +368 -0
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +351 -0
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +127 -0
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +84 -0
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +134 -0
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +283 -0
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +39 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +67 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +64 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +51 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +142 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +101 -0
- trajectree/quimb/tests/test_tensor/test_circuit.py +816 -0
- trajectree/quimb/tests/test_tensor/test_contract.py +67 -0
- trajectree/quimb/tests/test_tensor/test_decomp.py +40 -0
- trajectree/quimb/tests/test_tensor/test_mera.py +52 -0
- trajectree/quimb/tests/test_tensor/test_optimizers.py +488 -0
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +1171 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +606 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +144 -0
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +123 -0
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +226 -0
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +441 -0
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +2066 -0
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +388 -0
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +63 -0
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +270 -0
- trajectree/quimb/tests/test_utils.py +85 -0
- trajectree/trajectory.py +2 -2
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/METADATA +2 -2
- trajectree-0.0.1.dist-info/RECORD +126 -0
- trajectree-0.0.0.dist-info/RECORD +0 -16
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/WHEEL +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,788 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
import itertools
|
|
3
|
+
import math
|
|
4
|
+
import numpy as np
|
|
5
|
+
from numpy.testing import assert_allclose
|
|
6
|
+
import quimb as qu
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@pytest.fixture
|
|
10
|
+
def p1():
|
|
11
|
+
return qu.rand_rho(3)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@pytest.fixture
|
|
15
|
+
def p2():
|
|
16
|
+
return qu.rand_rho(3)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@pytest.fixture
|
|
20
|
+
def k1():
|
|
21
|
+
return qu.rand_ket(3)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@pytest.fixture
|
|
25
|
+
def k2():
|
|
26
|
+
return qu.rand_ket(3)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@pytest.fixture
|
|
30
|
+
def orthog_ks():
|
|
31
|
+
p = qu.rand_rho(3)
|
|
32
|
+
v = qu.eigvecsh(p)
|
|
33
|
+
return (v[:, [0]], v[:, [1]], v[:, [2]])
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
# --------------------------------------------------------------------------- #
|
|
37
|
+
# TESTS #
|
|
38
|
+
# --------------------------------------------------------------------------- #
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class TestFidelity:
|
|
42
|
+
def test_both_pure(self, k1, k2):
|
|
43
|
+
f = qu.fidelity(k1, k1)
|
|
44
|
+
assert_allclose(f, 1.0)
|
|
45
|
+
f = qu.fidelity(k1, k2)
|
|
46
|
+
assert f > 0 and f < 1
|
|
47
|
+
|
|
48
|
+
def test_both_mixed(self, p1, p2):
|
|
49
|
+
f = qu.fidelity(qu.eye(3) / 3, qu.eye(3) / 3)
|
|
50
|
+
assert_allclose(f, 1.0)
|
|
51
|
+
f = qu.fidelity(p1, p1)
|
|
52
|
+
assert_allclose(f, 1.0)
|
|
53
|
+
f = qu.fidelity(p1, p2)
|
|
54
|
+
assert f > 0 and f < 1
|
|
55
|
+
|
|
56
|
+
def test_orthog_pure(self, orthog_ks):
|
|
57
|
+
k1, k2, k3 = orthog_ks
|
|
58
|
+
for (
|
|
59
|
+
s1,
|
|
60
|
+
s2,
|
|
61
|
+
) in (
|
|
62
|
+
[k1, k2],
|
|
63
|
+
[k2, k3],
|
|
64
|
+
[k3, k1],
|
|
65
|
+
[k1 @ k1.H, k2],
|
|
66
|
+
[k1, k2 @ k2.H],
|
|
67
|
+
[k3 @ k3.H, k2],
|
|
68
|
+
[k3, k2 @ k2.H],
|
|
69
|
+
[k1 @ k1.H, k3],
|
|
70
|
+
[k1, k3 @ k3.H],
|
|
71
|
+
[k1 @ k1.H, k2 @ k2.H],
|
|
72
|
+
[k2 @ k2.H, k3 @ k3.H],
|
|
73
|
+
[k1 @ k1.H, k3 @ k3.H],
|
|
74
|
+
):
|
|
75
|
+
f = qu.fidelity(s1, s2)
|
|
76
|
+
assert_allclose(f, 0.0, atol=1e-6)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
class TestPurify:
|
|
80
|
+
def test_d2(self):
|
|
81
|
+
rho = qu.eye(2) / 2
|
|
82
|
+
psi = qu.purify(rho)
|
|
83
|
+
assert qu.expec(psi, qu.bell_state("phi+")) > 1 - 1e-14
|
|
84
|
+
|
|
85
|
+
def test_pure(self):
|
|
86
|
+
rho = qu.up(qtype="dop")
|
|
87
|
+
psi = qu.purify(rho)
|
|
88
|
+
assert abs(qu.concurrence(psi)) < 1e-14
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class TestDephase:
|
|
92
|
+
@pytest.mark.parametrize("rand_rank", [None, 0.3, 2])
|
|
93
|
+
def test_basic(self, rand_rank):
|
|
94
|
+
rho = qu.rand_rho(9)
|
|
95
|
+
ln = qu.logneg(rho, [3, 3])
|
|
96
|
+
for p in (0.2, 0.5, 0.8, 1.0):
|
|
97
|
+
rho_d = qu.dephase(rho, p, rand_rank=rand_rank)
|
|
98
|
+
assert qu.logneg(rho_d, [3, 3]) <= ln
|
|
99
|
+
assert rho_d.tr() == pytest.approx(1.0)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
class TestKrausOp:
|
|
103
|
+
@pytest.mark.parametrize("stack", [False, True])
|
|
104
|
+
def test_depolarize(self, stack):
|
|
105
|
+
rho = qu.rand_rho(2)
|
|
106
|
+
I, X, Y, Z = (qu.pauli(s) for s in "IXYZ")
|
|
107
|
+
es = [qu.expec(rho, A) for A in (X, Y, Z)]
|
|
108
|
+
p = 0.1
|
|
109
|
+
Ek = [
|
|
110
|
+
(1 - p) ** 0.5 * I,
|
|
111
|
+
(p / 3) ** 0.5 * X,
|
|
112
|
+
(p / 3) ** 0.5 * Y,
|
|
113
|
+
(p / 3) ** 0.5 * Z,
|
|
114
|
+
]
|
|
115
|
+
if stack:
|
|
116
|
+
Ek = np.stack(Ek, axis=0)
|
|
117
|
+
sigma = qu.kraus_op(rho, Ek, check=True)
|
|
118
|
+
es2 = [qu.expec(sigma, A) for A in (X, Y, Z)]
|
|
119
|
+
assert qu.tr(sigma) == pytest.approx(1.0)
|
|
120
|
+
assert all(abs(e2) < abs(e) for e, e2 in zip(es, es2))
|
|
121
|
+
sig_exp = sum(E @ rho @ qu.dag(E) for E in Ek)
|
|
122
|
+
assert_allclose(sig_exp, sigma)
|
|
123
|
+
|
|
124
|
+
def test_subsystem(self):
|
|
125
|
+
rho = qu.rand_rho(6)
|
|
126
|
+
dims = [3, 2]
|
|
127
|
+
I, X, Y, Z = (qu.pauli(s) for s in "IXYZ")
|
|
128
|
+
mi_i = qu.mutual_information(rho, dims)
|
|
129
|
+
p = 0.1
|
|
130
|
+
Ek = [
|
|
131
|
+
(1 - p) ** 0.5 * I,
|
|
132
|
+
(p / 3) ** 0.5 * X,
|
|
133
|
+
(p / 3) ** 0.5 * Y,
|
|
134
|
+
(p / 3) ** 0.5 * Z,
|
|
135
|
+
]
|
|
136
|
+
|
|
137
|
+
with pytest.raises(ValueError):
|
|
138
|
+
qu.kraus_op(
|
|
139
|
+
rho, qu.randn((3, 2, 2)), check=True, dims=dims, where=1
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
sigma = qu.kraus_op(rho, Ek, check=True, dims=dims, where=1)
|
|
143
|
+
mi_f = qu.mutual_information(sigma, dims)
|
|
144
|
+
assert mi_f < mi_i
|
|
145
|
+
assert qu.tr(sigma) == pytest.approx(1.0)
|
|
146
|
+
sig_exp = sum(
|
|
147
|
+
(qu.eye(3) & E) @ rho @ qu.dag(qu.eye(3) & E) for E in Ek
|
|
148
|
+
)
|
|
149
|
+
assert_allclose(sig_exp, sigma)
|
|
150
|
+
|
|
151
|
+
def test_multisubsystem(self):
|
|
152
|
+
qu.seed_rand(42)
|
|
153
|
+
dims = [2, 2, 2]
|
|
154
|
+
IIX = qu.ikron(qu.rand_matrix(2), dims, 2)
|
|
155
|
+
dcmp = qu.pauli_decomp(IIX, mode="c")
|
|
156
|
+
for p, x in dcmp.items():
|
|
157
|
+
if abs(x) < 1e-12:
|
|
158
|
+
assert (p[0] != "I") or (p[1] != "I")
|
|
159
|
+
else:
|
|
160
|
+
assert p[0] == p[1] == "I"
|
|
161
|
+
K = qu.rand_iso(3 * 4, 4).reshape(3, 4, 4)
|
|
162
|
+
KIIXK = qu.kraus_op(IIX, K, dims=dims, where=[0, 2], check=True)
|
|
163
|
+
dcmp = qu.pauli_decomp(KIIXK, mode="c")
|
|
164
|
+
for p, x in dcmp.items():
|
|
165
|
+
if abs(x) > 1e-12:
|
|
166
|
+
assert (p == "III") or p[1] == "I"
|
|
167
|
+
|
|
168
|
+
@pytest.mark.parametrize("subsystem", [(0, 1), (1, 2), (2, 0)])
|
|
169
|
+
def test_multisubsytem_kraus_identity(self, subsystem):
|
|
170
|
+
n = 3
|
|
171
|
+
qu.seed_rand(7)
|
|
172
|
+
rho = qu.rand_rho(2**n)
|
|
173
|
+
Ek = np.array([qu.eye(2 ** len(subsystem))])
|
|
174
|
+
sigma = qu.kraus_op(rho, Ek, dims=[2] * n, where=[0, 1], check=True)
|
|
175
|
+
assert qu.fidelity(rho, sigma) == pytest.approx(1.0)
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class TestProjector:
|
|
179
|
+
def test_simple(self):
|
|
180
|
+
Z = qu.pauli("Z")
|
|
181
|
+
P = qu.projector(Z & Z)
|
|
182
|
+
uu = qu.dop(qu.up()) & qu.dop(qu.up())
|
|
183
|
+
dd = qu.dop(qu.down()) & qu.dop(qu.down())
|
|
184
|
+
assert_allclose(P, uu + dd)
|
|
185
|
+
assert qu.expec(P, qu.bell_state("phi+")) == pytest.approx(1.0)
|
|
186
|
+
assert qu.expec(P, qu.bell_state("psi+")) == pytest.approx(0.0)
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
class TestMeasure:
|
|
190
|
+
def test_pure(self):
|
|
191
|
+
psi = qu.bell_state("psi-")
|
|
192
|
+
IZ = qu.pauli("I") & qu.pauli("Z")
|
|
193
|
+
ZI = qu.pauli("Z") & qu.pauli("I")
|
|
194
|
+
res, psi_after = qu.measure(psi, IZ)
|
|
195
|
+
# normalized
|
|
196
|
+
assert qu.expectation(psi_after, psi_after) == pytest.approx(1.0)
|
|
197
|
+
# anticorrelated
|
|
198
|
+
assert qu.expectation(psi_after, IZ) == pytest.approx(res)
|
|
199
|
+
assert qu.expectation(psi_after, ZI) == pytest.approx(-res)
|
|
200
|
+
assert isinstance(psi_after, qu.qarray)
|
|
201
|
+
|
|
202
|
+
def test_bigger(self):
|
|
203
|
+
psi = qu.rand_ket(2**5)
|
|
204
|
+
assert np.sum(abs(psi) < 1e-12) == 0
|
|
205
|
+
A = qu.kronpow(qu.pauli("Z"), 5)
|
|
206
|
+
res, psi_after = qu.measure(psi, A, eigenvalue=-1.0)
|
|
207
|
+
# should have projected to half subspace
|
|
208
|
+
assert np.sum(abs(psi_after) < 1e-12) == 2**4
|
|
209
|
+
assert res == -1.0
|
|
210
|
+
|
|
211
|
+
def test_mixed(self):
|
|
212
|
+
rho = qu.dop(qu.bell_state("psi-"))
|
|
213
|
+
IZ = qu.pauli("I") & qu.pauli("Z")
|
|
214
|
+
ZI = qu.pauli("Z") & qu.pauli("I")
|
|
215
|
+
res, rho_after = qu.measure(rho, IZ)
|
|
216
|
+
# normalized
|
|
217
|
+
assert qu.tr(rho_after) == pytest.approx(1.0)
|
|
218
|
+
# anticorrelated
|
|
219
|
+
assert qu.expectation(rho_after, IZ) == pytest.approx(res)
|
|
220
|
+
assert qu.expectation(rho_after, ZI) == pytest.approx(-res)
|
|
221
|
+
assert isinstance(rho_after, qu.qarray)
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
class TestSimulateCounts:
|
|
225
|
+
@pytest.mark.parametrize("qtype", ["ket", "dop"])
|
|
226
|
+
def test_ghz(self, qtype):
|
|
227
|
+
psi = qu.ghz_state(3, qtype=qtype)
|
|
228
|
+
results = qu.simulate_counts(psi, 1024)
|
|
229
|
+
assert len(results) == 2
|
|
230
|
+
assert "000" in results
|
|
231
|
+
assert "111" in results
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
class TestCPrint:
|
|
235
|
+
def test_basic(self):
|
|
236
|
+
psi = qu.ghz_state(2)
|
|
237
|
+
qu.cprint(psi)
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
class TestEntropy:
|
|
241
|
+
def test_entropy_pure(self):
|
|
242
|
+
a = qu.bell_state(1, qtype="dop")
|
|
243
|
+
assert_allclose(0.0, qu.entropy(a), atol=1e-12)
|
|
244
|
+
|
|
245
|
+
def test_entropy_mixed(self):
|
|
246
|
+
a = 0.5 * (
|
|
247
|
+
qu.bell_state(1, qtype="dop") + qu.bell_state(2, qtype="dop")
|
|
248
|
+
)
|
|
249
|
+
assert_allclose(1.0, qu.entropy(a), atol=1e-12)
|
|
250
|
+
|
|
251
|
+
@pytest.mark.parametrize(
|
|
252
|
+
"evals, e",
|
|
253
|
+
[
|
|
254
|
+
([0, 1, 0, 0], 0),
|
|
255
|
+
([0, 0.5, 0, 0.5], 1),
|
|
256
|
+
([0.25, 0.25, 0.25, 0.25], 2),
|
|
257
|
+
],
|
|
258
|
+
)
|
|
259
|
+
def test_list(self, evals, e):
|
|
260
|
+
assert_allclose(qu.entropy(evals), e)
|
|
261
|
+
|
|
262
|
+
@pytest.mark.parametrize(
|
|
263
|
+
"evals, e",
|
|
264
|
+
[
|
|
265
|
+
([0, 1, 0, 0], 0),
|
|
266
|
+
([0, 0.5, 0, 0.5], 1),
|
|
267
|
+
([0.25, 0.25, 0.25, 0.25], 2),
|
|
268
|
+
],
|
|
269
|
+
)
|
|
270
|
+
def test_1darray(self, evals, e):
|
|
271
|
+
assert_allclose(qu.entropy(np.asarray(evals)), e)
|
|
272
|
+
|
|
273
|
+
@pytest.mark.parametrize("m", [1, 2, 3])
|
|
274
|
+
def test_rank(self, m):
|
|
275
|
+
k = qu.rand_ket(2**4)
|
|
276
|
+
pab = qu.ptr(k, [2, 2, 2, 2], range(m))
|
|
277
|
+
ef = qu.entropy(pab)
|
|
278
|
+
er = qu.entropy(pab, rank=2**m)
|
|
279
|
+
assert_allclose(ef, er)
|
|
280
|
+
|
|
281
|
+
def test_entropy_subsystem(self):
|
|
282
|
+
p = qu.rand_ket(2**9)
|
|
283
|
+
# exact
|
|
284
|
+
e1 = qu.entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1e30)
|
|
285
|
+
# approx
|
|
286
|
+
e2 = qu.entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1)
|
|
287
|
+
assert e1 != e2
|
|
288
|
+
assert_allclose(e1, e2, rtol=0.2)
|
|
289
|
+
|
|
290
|
+
assert (
|
|
291
|
+
qu.entropy_subsys(p, (2**5, 2**4), [0, 1], approx_thresh=1) == 0.0
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
class TestMutualInformation:
|
|
296
|
+
def test_mutual_information_pure(self):
|
|
297
|
+
a = qu.bell_state(0)
|
|
298
|
+
assert_allclose(qu.mutual_information(a), 2.0)
|
|
299
|
+
a = qu.rand_product_state(2)
|
|
300
|
+
assert_allclose(qu.mutual_information(a), 0.0, atol=1e-12)
|
|
301
|
+
|
|
302
|
+
def test_mutual_information_pure_sub(self):
|
|
303
|
+
a = qu.up() & qu.bell_state(1)
|
|
304
|
+
ixy = qu.mutual_information(a, [2, 2, 2], 0, 1)
|
|
305
|
+
assert_allclose(0.0, ixy, atol=1e-12)
|
|
306
|
+
ixy = qu.mutual_information(a, [2, 2, 2], 0, 2)
|
|
307
|
+
assert_allclose(0.0, ixy, atol=1e-12)
|
|
308
|
+
ixy = qu.mutual_information(a, [2, 2, 2], 2, 1)
|
|
309
|
+
assert_allclose(2.0, ixy, atol=1e-12)
|
|
310
|
+
|
|
311
|
+
@pytest.mark.parametrize("inds", [(0, 1), (1, 2), (0, 2)])
|
|
312
|
+
def test_mixed_sub(self, inds):
|
|
313
|
+
a = qu.rand_rho(2**3)
|
|
314
|
+
rho_ab = qu.ptr(a, [2, 2, 2], inds)
|
|
315
|
+
ixy = qu.mutual_information(rho_ab, (2, 2))
|
|
316
|
+
assert 0 <= ixy <= 2.0
|
|
317
|
+
|
|
318
|
+
def test_mutinf_interleave(self):
|
|
319
|
+
p = qu.dop(qu.singlet() & qu.singlet())
|
|
320
|
+
ixy = qu.mutual_information(p, [2] * 4, sysa=(0, 2))
|
|
321
|
+
assert_allclose(ixy, 4)
|
|
322
|
+
|
|
323
|
+
def test_mutinf_interleave_pure(self):
|
|
324
|
+
p = qu.singlet() & qu.singlet()
|
|
325
|
+
ixy = qu.mutual_information(p, [2] * 4, sysa=(0, 2))
|
|
326
|
+
assert_allclose(ixy, 4)
|
|
327
|
+
|
|
328
|
+
def test_mutinf_subsys(self):
|
|
329
|
+
p = qu.rand_ket(2**9)
|
|
330
|
+
dims = (2**3, 2**2, 2**4)
|
|
331
|
+
# exact
|
|
332
|
+
rho_ab = qu.ptr(p, dims, [0, 2])
|
|
333
|
+
mi0 = qu.mutual_information(rho_ab, [8, 16])
|
|
334
|
+
mi1 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1e30)
|
|
335
|
+
assert_allclose(mi1, mi0)
|
|
336
|
+
# approx
|
|
337
|
+
mi2 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1)
|
|
338
|
+
assert_allclose(mi1, mi2, rtol=0.1)
|
|
339
|
+
|
|
340
|
+
def test_mutinf_subsys_pure(self):
|
|
341
|
+
p = qu.rand_ket(2**7)
|
|
342
|
+
dims = (2**3, 2**4)
|
|
343
|
+
# exact
|
|
344
|
+
mi0 = qu.mutual_information(p, dims, sysa=0)
|
|
345
|
+
mi1 = qu.mutinf_subsys(p, dims, sysa=0, sysb=1, approx_thresh=1e30)
|
|
346
|
+
assert_allclose(mi1, mi0)
|
|
347
|
+
# approx
|
|
348
|
+
mi2 = qu.mutinf_subsys(
|
|
349
|
+
p, dims, sysa=0, sysb=1, approx_thresh=1, tol=5e-3
|
|
350
|
+
)
|
|
351
|
+
assert_allclose(mi1, mi2, rtol=0.1)
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
class TestSchmidtGap:
|
|
355
|
+
def test_bell_state(self):
|
|
356
|
+
p = qu.bell_state("psi-")
|
|
357
|
+
assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 0.0)
|
|
358
|
+
p = qu.up() & qu.down()
|
|
359
|
+
assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 1.0)
|
|
360
|
+
p = qu.rand_ket(2**3)
|
|
361
|
+
assert 0 < qu.schmidt_gap(p, [2] * 3, sysa=[0, 1]) < 1.0
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+
class TestPartialTranspose:
|
|
365
|
+
def test_partial_transpose(self):
|
|
366
|
+
a = qu.bell_state(0, qtype="dop")
|
|
367
|
+
b = qu.partial_transpose(a)
|
|
368
|
+
assert isinstance(b, qu.qarray)
|
|
369
|
+
assert_allclose(
|
|
370
|
+
b,
|
|
371
|
+
np.array(
|
|
372
|
+
[
|
|
373
|
+
[0, 0, 0, -0.5],
|
|
374
|
+
[0, 0.5, 0, 0],
|
|
375
|
+
[0, 0, 0.5, 0],
|
|
376
|
+
[-0.5, 0, 0, 0],
|
|
377
|
+
]
|
|
378
|
+
),
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
def test_tr_sqrt_rank(self):
|
|
382
|
+
psi = qu.rand_ket(2**5)
|
|
383
|
+
rhoa = psi.ptr([2] * 5, range(4))
|
|
384
|
+
assert_allclose(qu.tr_sqrt(rhoa), qu.tr_sqrt(rhoa, rank=2))
|
|
385
|
+
|
|
386
|
+
|
|
387
|
+
class TestNegativity:
|
|
388
|
+
@pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
|
|
389
|
+
@pytest.mark.parametrize("qtype", ["ket", "dop"])
|
|
390
|
+
def test_simple(self, qtype, bs):
|
|
391
|
+
p = qu.bell_state(bs, qtype=qtype)
|
|
392
|
+
assert qu.negativity(p) > 0.5 - 1e-14
|
|
393
|
+
|
|
394
|
+
def test_subsystem(self):
|
|
395
|
+
p = qu.singlet_pairs(4)
|
|
396
|
+
rhoab = p.ptr([2, 2, 2, 2], [0, 1])
|
|
397
|
+
assert qu.negativity(rhoab, [2] * 2) > 0.5 - 1e-14
|
|
398
|
+
rhoab = p.ptr([2, 2, 2, 2], [1, 2])
|
|
399
|
+
assert qu.negativity(rhoab, [2] * 2) < 1e-14
|
|
400
|
+
rhoab = p.ptr([2, 2, 2, 2], [2, 3])
|
|
401
|
+
assert qu.negativity(rhoab, [2] * 2) > 0.5 - 1e-14
|
|
402
|
+
|
|
403
|
+
|
|
404
|
+
class TestLogarithmicNegativity:
|
|
405
|
+
@pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
|
|
406
|
+
@pytest.mark.parametrize("qtype", ["ket", "dop"])
|
|
407
|
+
def test_bell_states(self, qtype, bs):
|
|
408
|
+
p = qu.bell_state(bs, qtype=qtype)
|
|
409
|
+
assert qu.logneg(p) > 1.0 - 1e-14
|
|
410
|
+
|
|
411
|
+
def test_subsystem(self):
|
|
412
|
+
p = qu.singlet_pairs(4)
|
|
413
|
+
rhoab = p.ptr([2, 2, 2, 2], [0, 1])
|
|
414
|
+
assert qu.logneg(rhoab, [2] * 2) > 1 - 1e-14
|
|
415
|
+
rhoab = p.ptr([2, 2, 2, 2], [1, 2])
|
|
416
|
+
assert qu.logneg(rhoab, [2] * 2) < 1e-14
|
|
417
|
+
rhoab = p.ptr([2, 2, 2, 2], [2, 3])
|
|
418
|
+
assert qu.logneg(rhoab, [2] * 2) > 1 - 1e-14
|
|
419
|
+
|
|
420
|
+
def test_interleaving(self):
|
|
421
|
+
p = qu.permute(qu.singlet() & qu.singlet(), [2, 2, 2, 2], [0, 2, 1, 3])
|
|
422
|
+
assert qu.logneg(p, [2] * 4, sysa=[0, 3]) > 2 - 1e-13
|
|
423
|
+
|
|
424
|
+
def test_logneg_subsys(self):
|
|
425
|
+
p = qu.rand_ket(2 ** (2 + 3 + 1 + 2))
|
|
426
|
+
dims = (2**2, 2**3, 2**1, 2**2)
|
|
427
|
+
sysa = [0, 3]
|
|
428
|
+
sysb = 1
|
|
429
|
+
# exact 1
|
|
430
|
+
ln0 = qu.logneg(qu.ptr(p, dims, [0, 1, 3]), [4, 8, 4], [0, 2])
|
|
431
|
+
# exact 2
|
|
432
|
+
ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
|
|
433
|
+
assert_allclose(ln0, ln1)
|
|
434
|
+
# approx
|
|
435
|
+
ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1)
|
|
436
|
+
assert ln1 != ln2
|
|
437
|
+
assert_allclose(ln1, ln2, rtol=5e-2)
|
|
438
|
+
|
|
439
|
+
def test_logneg_subsys_pure(self):
|
|
440
|
+
p = qu.rand_ket(2 ** (3 + 4))
|
|
441
|
+
dims = (2**3, 2**4)
|
|
442
|
+
sysa = 0
|
|
443
|
+
sysb = 1
|
|
444
|
+
# exact 1
|
|
445
|
+
ln0 = qu.logneg(p, dims, 0)
|
|
446
|
+
# exact 2
|
|
447
|
+
ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
|
|
448
|
+
assert_allclose(ln0, ln1)
|
|
449
|
+
# approx
|
|
450
|
+
ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=5e-3)
|
|
451
|
+
assert ln1 != ln2
|
|
452
|
+
assert_allclose(ln1, ln2, rtol=1e-1)
|
|
453
|
+
|
|
454
|
+
def test_logneg_subsys_pure_should_swap_subsys(self):
|
|
455
|
+
p = qu.rand_ket(2 ** (5 + 2))
|
|
456
|
+
dims = (2**5, 2**2)
|
|
457
|
+
sysa = 0
|
|
458
|
+
sysb = 1
|
|
459
|
+
# exact 1
|
|
460
|
+
ln0 = qu.logneg(p, dims, 0)
|
|
461
|
+
# exact 2
|
|
462
|
+
ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
|
|
463
|
+
assert_allclose(ln0, ln1)
|
|
464
|
+
# approx
|
|
465
|
+
ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=0.005)
|
|
466
|
+
assert ln1 != ln2
|
|
467
|
+
assert_allclose(ln1, ln2, rtol=0.2)
|
|
468
|
+
|
|
469
|
+
|
|
470
|
+
class TestConcurrence:
|
|
471
|
+
@pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
|
|
472
|
+
@pytest.mark.parametrize("qtype", ["ket", "dop"])
|
|
473
|
+
def test_bell_states(self, qtype, bs):
|
|
474
|
+
p = qu.bell_state(bs, qtype=qtype)
|
|
475
|
+
assert qu.concurrence(p) > 1.0 - 1e-14
|
|
476
|
+
|
|
477
|
+
def test_subsystem(self):
|
|
478
|
+
p = qu.rand_rho(2**4)
|
|
479
|
+
e = qu.concurrence(p, [2, 2, 2, 2], 1, 2)
|
|
480
|
+
assert 0 <= e <= 1
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
class TestQuantumDiscord:
|
|
484
|
+
def test_owci(self):
|
|
485
|
+
a = qu.qu([1, 0], qtype="op")
|
|
486
|
+
b = qu.qu([0, 1], qtype="op")
|
|
487
|
+
for _ in (0, 1, 2, 3):
|
|
488
|
+
p = qu.rand_product_state(2)
|
|
489
|
+
ci = qu.one_way_classical_information(p @ p.H, [a, b])
|
|
490
|
+
assert_allclose(ci, 0.0, atol=1e-12)
|
|
491
|
+
for i in (0, 1, 2, 3):
|
|
492
|
+
p = qu.bell_state(i)
|
|
493
|
+
ci = qu.one_way_classical_information(p @ p.H, [a, b])
|
|
494
|
+
assert_allclose(ci, 1.0, atol=1e-12)
|
|
495
|
+
|
|
496
|
+
def test_quantum_discord_sep(self):
|
|
497
|
+
for _ in range(10):
|
|
498
|
+
p = qu.rand_product_state(2)
|
|
499
|
+
p = p @ p.H
|
|
500
|
+
qd = qu.quantum_discord(p)
|
|
501
|
+
assert_allclose(0.0, qd, atol=1e-12)
|
|
502
|
+
|
|
503
|
+
def test_quantum_discord_pure(self):
|
|
504
|
+
for _ in range(10):
|
|
505
|
+
p = qu.rand_ket(4)
|
|
506
|
+
p = p @ p.H
|
|
507
|
+
iab = qu.mutual_information(p)
|
|
508
|
+
qd = qu.quantum_discord(p)
|
|
509
|
+
assert_allclose(iab / 2, qd)
|
|
510
|
+
|
|
511
|
+
def test_quantum_discord_mixed(self):
|
|
512
|
+
for _ in range(10):
|
|
513
|
+
p = qu.rand_mix(4)
|
|
514
|
+
p = p @ p.H
|
|
515
|
+
qd = qu.quantum_discord(p)
|
|
516
|
+
assert 0 <= qd and qd <= 1
|
|
517
|
+
|
|
518
|
+
def test_auto_trace_out(self):
|
|
519
|
+
p = qu.rand_rho(2**3)
|
|
520
|
+
qd = qu.quantum_discord(p, [2, 2, 2], 0, 2)
|
|
521
|
+
assert 0 <= qd and qd <= 1
|
|
522
|
+
|
|
523
|
+
@pytest.mark.parametrize("seed", range(10))
|
|
524
|
+
def test_qu_discord_diagonal(self, seed):
|
|
525
|
+
rng = np.random.RandomState(seed)
|
|
526
|
+
p = rng.random(size=4)
|
|
527
|
+
p /= np.sum(p)
|
|
528
|
+
rho = np.diag(p)
|
|
529
|
+
assert qu.quantum_discord(rho) < 1e-10
|
|
530
|
+
|
|
531
|
+
|
|
532
|
+
class TestTraceDistance:
|
|
533
|
+
def test_types(self, k1, k2):
|
|
534
|
+
td1 = qu.trace_distance(k1, k2)
|
|
535
|
+
td2 = qu.trace_distance(qu.dop(k1), k2)
|
|
536
|
+
td3 = qu.trace_distance(k1, qu.dop(k2))
|
|
537
|
+
td4 = qu.trace_distance(qu.dop(k1), qu.dop(k2))
|
|
538
|
+
assert_allclose([td1] * 3, [td2, td3, td4])
|
|
539
|
+
|
|
540
|
+
def test_same(self, p1):
|
|
541
|
+
assert abs(qu.trace_distance(p1, p1)) < 1e-14
|
|
542
|
+
|
|
543
|
+
@pytest.mark.parametrize("uqtype", ["ket", "dop"])
|
|
544
|
+
@pytest.mark.parametrize("dqtype", ["ket", "dop"])
|
|
545
|
+
def test_distinguishable(self, uqtype, dqtype):
|
|
546
|
+
assert (
|
|
547
|
+
qu.trace_distance(qu.up(qtype=uqtype), qu.down(qtype=dqtype))
|
|
548
|
+
> 1 - 1e-10
|
|
549
|
+
)
|
|
550
|
+
|
|
551
|
+
|
|
552
|
+
class TestDecomp:
|
|
553
|
+
@pytest.mark.parametrize("qtype", ["ket", "dop"])
|
|
554
|
+
def test_pauli_decomp_singlet(self, qtype):
|
|
555
|
+
p = qu.singlet(qtype=qtype)
|
|
556
|
+
names_cffs = qu.pauli_decomp(p, mode="cp")
|
|
557
|
+
assert_allclose(names_cffs["II"], 0.25)
|
|
558
|
+
assert_allclose(names_cffs["ZZ"], -0.25)
|
|
559
|
+
assert_allclose(names_cffs["YY"], -0.25)
|
|
560
|
+
assert_allclose(names_cffs["ZZ"], -0.25)
|
|
561
|
+
for name in itertools.permutations("IXYZ", 2):
|
|
562
|
+
assert_allclose(names_cffs["".join(name)], 0.0)
|
|
563
|
+
|
|
564
|
+
def test_pauli_reconstruct(self):
|
|
565
|
+
p1 = qu.rand_rho(4)
|
|
566
|
+
names_cffs = qu.pauli_decomp(p1, mode="c")
|
|
567
|
+
pr = sum(
|
|
568
|
+
qu.kron(*(qu.pauli(s) for s in name)) * names_cffs["".join(name)]
|
|
569
|
+
for name in itertools.product("IXYZ", repeat=2)
|
|
570
|
+
)
|
|
571
|
+
assert_allclose(pr, p1)
|
|
572
|
+
|
|
573
|
+
@pytest.mark.parametrize(
|
|
574
|
+
"state, out",
|
|
575
|
+
[
|
|
576
|
+
(qu.up() & qu.down(), {0: 0.5, 1: 0.5, 2: 0, 3: 0}),
|
|
577
|
+
(qu.down() & qu.down(), {0: 0, 1: 0, 2: 0.5, 3: 0.5}),
|
|
578
|
+
(qu.singlet() & qu.singlet(), {"00": 1.0, "23": 0.0}),
|
|
579
|
+
],
|
|
580
|
+
)
|
|
581
|
+
def test_bell_decomp(self, state, out):
|
|
582
|
+
names_cffs = qu.bell_decomp(state, mode="c")
|
|
583
|
+
for key in out:
|
|
584
|
+
assert_allclose(names_cffs[str(key)], out[key])
|
|
585
|
+
|
|
586
|
+
|
|
587
|
+
class TestCorrelation:
|
|
588
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
589
|
+
@pytest.mark.parametrize("p_sps", [True, False])
|
|
590
|
+
@pytest.mark.parametrize("op_sps", [True, False])
|
|
591
|
+
@pytest.mark.parametrize("dims", (None, [2, 2]))
|
|
592
|
+
def test_types(self, dims, op_sps, p_sps, pre_c):
|
|
593
|
+
p = qu.rand_rho(4, sparse=p_sps)
|
|
594
|
+
c = qu.correlation(
|
|
595
|
+
p,
|
|
596
|
+
qu.pauli("x", sparse=op_sps),
|
|
597
|
+
qu.pauli("z", sparse=op_sps),
|
|
598
|
+
0,
|
|
599
|
+
1,
|
|
600
|
+
dims=dims,
|
|
601
|
+
precomp_func=pre_c,
|
|
602
|
+
)
|
|
603
|
+
c = c(p) if pre_c else c
|
|
604
|
+
assert c >= -1.0
|
|
605
|
+
assert c <= 1.0
|
|
606
|
+
|
|
607
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
608
|
+
@pytest.mark.parametrize("qtype", ["ket", "dop"])
|
|
609
|
+
@pytest.mark.parametrize("s", ["x", "y", "z"])
|
|
610
|
+
def test_classically_no_correlated(self, s, qtype, pre_c):
|
|
611
|
+
p = qu.up(qtype=qtype) & qu.up(qtype=qtype)
|
|
612
|
+
c = qu.correlation(
|
|
613
|
+
p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
|
|
614
|
+
)
|
|
615
|
+
c = c(p) if pre_c else c
|
|
616
|
+
assert_allclose(c, 0.0)
|
|
617
|
+
|
|
618
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
619
|
+
@pytest.mark.parametrize("s, ct", [("x", 0), ("y", 0), ("z", 1)])
|
|
620
|
+
def test_classically_correlated(self, s, ct, pre_c):
|
|
621
|
+
p = 0.5 * (
|
|
622
|
+
(qu.up(qtype="dop") & qu.up(qtype="dop"))
|
|
623
|
+
+ (qu.down(qtype="dop") & qu.down(qtype="dop"))
|
|
624
|
+
)
|
|
625
|
+
c = qu.correlation(
|
|
626
|
+
p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
|
|
627
|
+
)
|
|
628
|
+
c = c(p) if pre_c else c
|
|
629
|
+
assert_allclose(c, ct)
|
|
630
|
+
|
|
631
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
632
|
+
@pytest.mark.parametrize("s, ct", [("x", -1), ("y", -1), ("z", -1)])
|
|
633
|
+
def test_entangled(self, s, ct, pre_c):
|
|
634
|
+
p = qu.bell_state("psi-")
|
|
635
|
+
c = qu.correlation(
|
|
636
|
+
p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
|
|
637
|
+
)
|
|
638
|
+
c = c(p) if pre_c else c
|
|
639
|
+
assert_allclose(c, ct)
|
|
640
|
+
|
|
641
|
+
def test_reuse_precomp(self):
|
|
642
|
+
cfn = qu.correlation(
|
|
643
|
+
None,
|
|
644
|
+
qu.pauli("z"),
|
|
645
|
+
qu.pauli("z"),
|
|
646
|
+
0,
|
|
647
|
+
1,
|
|
648
|
+
dims=[2, 2],
|
|
649
|
+
precomp_func=True,
|
|
650
|
+
)
|
|
651
|
+
assert_allclose(cfn(qu.bell_state("psi-")), -1.0)
|
|
652
|
+
assert_allclose(cfn(qu.bell_state("phi+")), 1.0)
|
|
653
|
+
|
|
654
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
655
|
+
def test_pauli_correlations_sum_abs(self, pre_c):
|
|
656
|
+
p = qu.bell_state("psi-")
|
|
657
|
+
ct = qu.pauli_correlations(p, sum_abs=True, precomp_func=pre_c)
|
|
658
|
+
ct = ct(p) if pre_c else ct
|
|
659
|
+
assert_allclose(ct, 3.0)
|
|
660
|
+
|
|
661
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
662
|
+
def test_pauli_correlations_no_sum_abs(self, pre_c):
|
|
663
|
+
p = qu.bell_state("psi-")
|
|
664
|
+
ct = qu.pauli_correlations(p, sum_abs=False, precomp_func=pre_c)
|
|
665
|
+
assert_allclose(list(c(p) for c in ct) if pre_c else ct, (-1, -1, -1))
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
class TestEntCrossMatrix:
|
|
669
|
+
def test_bell_state(self):
|
|
670
|
+
p = qu.bell_state("phi+")
|
|
671
|
+
ecm = qu.ent_cross_matrix(p, ent_fn=qu.concurrence, calc_self_ent=True)
|
|
672
|
+
assert_allclose(ecm, [[1, 1], [1, 1]])
|
|
673
|
+
|
|
674
|
+
def test_bell_state_no_self_ent(self):
|
|
675
|
+
p = qu.bell_state("phi+")
|
|
676
|
+
ecm = qu.ent_cross_matrix(
|
|
677
|
+
p, ent_fn=qu.concurrence, calc_self_ent=False
|
|
678
|
+
)
|
|
679
|
+
assert_allclose(ecm, [[np.nan, 1], [1, np.nan]])
|
|
680
|
+
|
|
681
|
+
def test_block2(self):
|
|
682
|
+
p = qu.bell_state("phi+") & qu.bell_state("phi+")
|
|
683
|
+
ecm = qu.ent_cross_matrix(p, ent_fn=qu.logneg, sz_blc=2)
|
|
684
|
+
assert_allclose(ecm[1, 1], 0)
|
|
685
|
+
assert_allclose(ecm[0, 1], 0)
|
|
686
|
+
assert_allclose(ecm[1, 0], 0)
|
|
687
|
+
|
|
688
|
+
def test_block2_no_self_ent(self):
|
|
689
|
+
p = qu.bell_state("phi+") & qu.bell_state("phi+")
|
|
690
|
+
ecm = qu.ent_cross_matrix(
|
|
691
|
+
p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2
|
|
692
|
+
)
|
|
693
|
+
assert_allclose(ecm[0, 1], 0)
|
|
694
|
+
assert_allclose(ecm[0, 0], np.nan)
|
|
695
|
+
assert_allclose(ecm[1, 0], 0)
|
|
696
|
+
|
|
697
|
+
def test_block2_upscale(self):
|
|
698
|
+
p = qu.bell_state("phi+") & qu.bell_state("phi+")
|
|
699
|
+
ecm = qu.ent_cross_matrix(
|
|
700
|
+
p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2
|
|
701
|
+
)
|
|
702
|
+
assert ecm.shape == (2, 2)
|
|
703
|
+
ecm = qu.ent_cross_matrix(
|
|
704
|
+
p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2, upscale=True
|
|
705
|
+
)
|
|
706
|
+
assert ecm.shape == (4, 4)
|
|
707
|
+
|
|
708
|
+
|
|
709
|
+
class TestEntCrossMatrixBlocked:
|
|
710
|
+
@pytest.mark.parametrize("sz_p", [2**2 for i in [2, 3, 4, 5, 6, 9, 12]])
|
|
711
|
+
@pytest.mark.parametrize("sz_blc", [1, 2, 3, 4, 5])
|
|
712
|
+
@pytest.mark.parametrize("calc_self_ent", [True, False])
|
|
713
|
+
def test_shapes_and_blocks(self, sz_blc, sz_p, calc_self_ent):
|
|
714
|
+
if sz_p // sz_blc > 0:
|
|
715
|
+
p = qu.rand_rho(2**sz_p)
|
|
716
|
+
n = sz_p // sz_blc
|
|
717
|
+
ecm = qu.ent_cross_matrix(p, sz_blc, calc_self_ent=calc_self_ent)
|
|
718
|
+
assert ecm.shape[0] == n
|
|
719
|
+
if not calc_self_ent:
|
|
720
|
+
assert_allclose(np.diag(ecm), [np.nan] * n, equal_nan=True)
|
|
721
|
+
|
|
722
|
+
|
|
723
|
+
class TestQID:
|
|
724
|
+
@pytest.mark.parametrize("bs", [0, 1, 2, 3])
|
|
725
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
726
|
+
def test_bell_state(self, bs, pre_c):
|
|
727
|
+
p = qu.bell_state(bs)
|
|
728
|
+
qids = qu.qid(p, dims=[2, 2], inds=[0, 1], precomp_func=pre_c)
|
|
729
|
+
assert_allclose(qids(p) if pre_c else qids, [3, 3])
|
|
730
|
+
|
|
731
|
+
@pytest.mark.parametrize("pre_c", [False, True])
|
|
732
|
+
def test_random_product_state(self, pre_c):
|
|
733
|
+
p = qu.rand_product_state(3)
|
|
734
|
+
qids = qu.qid(p, dims=[2, 2, 2], inds=[0, 1, 2], precomp_func=pre_c)
|
|
735
|
+
assert_allclose(qids(p) if pre_c else qids, [2, 2, 2])
|
|
736
|
+
|
|
737
|
+
|
|
738
|
+
class TestIsDegenerate:
|
|
739
|
+
def test_known_degenerate(self):
|
|
740
|
+
h = qu.ham_heis(2)
|
|
741
|
+
assert qu.is_degenerate(h) == 2
|
|
742
|
+
|
|
743
|
+
def test_known_nondegen(self):
|
|
744
|
+
h = qu.ham_heis(2, b=0.3)
|
|
745
|
+
assert qu.is_degenerate(h) == 0
|
|
746
|
+
|
|
747
|
+
def test_supply_list(self):
|
|
748
|
+
evals = [0, 1, 2, 2.0, 3]
|
|
749
|
+
assert qu.is_degenerate(evals)
|
|
750
|
+
|
|
751
|
+
def test_tol(self):
|
|
752
|
+
evals = [0, 1, 1.001, 3, 4, 5, 6, 7, 8, 9]
|
|
753
|
+
assert not qu.is_degenerate(evals)
|
|
754
|
+
assert qu.is_degenerate(evals, tol=1e-2)
|
|
755
|
+
|
|
756
|
+
|
|
757
|
+
class TestPageEntropy:
|
|
758
|
+
def test_known_qubit_qubit(self):
|
|
759
|
+
assert abs(qu.page_entropy(2, 4) - 0.4808983469629878) < 1e-12
|
|
760
|
+
|
|
761
|
+
def test_large_m_approx(self):
|
|
762
|
+
pe = qu.page_entropy(2**10, 2**20)
|
|
763
|
+
ae = 0.5 * (20 - math.log2(math.e))
|
|
764
|
+
|
|
765
|
+
assert abs(pe - ae) < 1e-5
|
|
766
|
+
|
|
767
|
+
def test_bigger_than_half(self):
|
|
768
|
+
assert_allclose(qu.page_entropy(4, 24), qu.page_entropy(6, 24))
|
|
769
|
+
|
|
770
|
+
|
|
771
|
+
class TestIsEigenvector:
|
|
772
|
+
def test_dense_true(self):
|
|
773
|
+
a = qu.rand_herm(10)
|
|
774
|
+
v = qu.eigvecsh(a)
|
|
775
|
+
for i in range(10):
|
|
776
|
+
assert qu.is_eigenvector(v[:, [i]], a)
|
|
777
|
+
|
|
778
|
+
def test_dense_false(self):
|
|
779
|
+
a = qu.rand_herm(10)
|
|
780
|
+
v = qu.rand_ket(10)
|
|
781
|
+
assert not qu.is_eigenvector(v, a)
|
|
782
|
+
|
|
783
|
+
def test_sparse(self):
|
|
784
|
+
a = qu.rand_herm(10, sparse=True, density=0.9)
|
|
785
|
+
vt = qu.eigvecsh(a, sigma=0, k=1)
|
|
786
|
+
assert qu.is_eigenvector(vt, a)
|
|
787
|
+
vf = qu.rand_ket(10)
|
|
788
|
+
assert not qu.is_eigenvector(vf, a)
|