Trajectree 0.0.0__py3-none-any.whl → 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +3 -0
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +3 -3
- trajectree/fock_optics/utils.py +6 -6
- trajectree/quimb/docs/_pygments/_pygments_dark.py +118 -0
- trajectree/quimb/docs/_pygments/_pygments_light.py +118 -0
- trajectree/quimb/docs/conf.py +158 -0
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +62 -0
- trajectree/quimb/quimb/__init__.py +507 -0
- trajectree/quimb/quimb/calc.py +1491 -0
- trajectree/quimb/quimb/core.py +2279 -0
- trajectree/quimb/quimb/evo.py +712 -0
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +129 -0
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +109 -0
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +397 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +653 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +571 -0
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +775 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +316 -0
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +537 -0
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +194 -0
- trajectree/quimb/quimb/experimental/cluster_update.py +286 -0
- trajectree/quimb/quimb/experimental/merabuilder.py +865 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +15 -0
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +1631 -0
- trajectree/quimb/quimb/experimental/schematic.py +7 -0
- trajectree/quimb/quimb/experimental/tn_marginals.py +130 -0
- trajectree/quimb/quimb/experimental/tnvmc.py +1483 -0
- trajectree/quimb/quimb/gates.py +36 -0
- trajectree/quimb/quimb/gen/__init__.py +2 -0
- trajectree/quimb/quimb/gen/operators.py +1167 -0
- trajectree/quimb/quimb/gen/rand.py +713 -0
- trajectree/quimb/quimb/gen/states.py +479 -0
- trajectree/quimb/quimb/linalg/__init__.py +6 -0
- trajectree/quimb/quimb/linalg/approx_spectral.py +1109 -0
- trajectree/quimb/quimb/linalg/autoblock.py +258 -0
- trajectree/quimb/quimb/linalg/base_linalg.py +719 -0
- trajectree/quimb/quimb/linalg/mpi_launcher.py +397 -0
- trajectree/quimb/quimb/linalg/numpy_linalg.py +244 -0
- trajectree/quimb/quimb/linalg/rand_linalg.py +514 -0
- trajectree/quimb/quimb/linalg/scipy_linalg.py +293 -0
- trajectree/quimb/quimb/linalg/slepc_linalg.py +892 -0
- trajectree/quimb/quimb/schematic.py +1518 -0
- trajectree/quimb/quimb/tensor/__init__.py +401 -0
- trajectree/quimb/quimb/tensor/array_ops.py +610 -0
- trajectree/quimb/quimb/tensor/circuit.py +4824 -0
- trajectree/quimb/quimb/tensor/circuit_gen.py +411 -0
- trajectree/quimb/quimb/tensor/contraction.py +336 -0
- trajectree/quimb/quimb/tensor/decomp.py +1255 -0
- trajectree/quimb/quimb/tensor/drawing.py +1646 -0
- trajectree/quimb/quimb/tensor/fitting.py +385 -0
- trajectree/quimb/quimb/tensor/geometry.py +583 -0
- trajectree/quimb/quimb/tensor/interface.py +114 -0
- trajectree/quimb/quimb/tensor/networking.py +1058 -0
- trajectree/quimb/quimb/tensor/optimize.py +1818 -0
- trajectree/quimb/quimb/tensor/tensor_1d.py +4778 -0
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +1854 -0
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +662 -0
- trajectree/quimb/quimb/tensor/tensor_2d.py +5954 -0
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +96 -0
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +1230 -0
- trajectree/quimb/quimb/tensor/tensor_3d.py +2869 -0
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +46 -0
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +60 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +3237 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +565 -0
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +1138 -0
- trajectree/quimb/quimb/tensor/tensor_builder.py +5411 -0
- trajectree/quimb/quimb/tensor/tensor_core.py +11179 -0
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +1472 -0
- trajectree/quimb/quimb/tensor/tensor_mera.py +204 -0
- trajectree/quimb/quimb/utils.py +892 -0
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +501 -0
- trajectree/quimb/tests/test_calc.py +788 -0
- trajectree/quimb/tests/test_core.py +847 -0
- trajectree/quimb/tests/test_evo.py +565 -0
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +361 -0
- trajectree/quimb/tests/test_gen/test_rand.py +296 -0
- trajectree/quimb/tests/test_gen/test_states.py +261 -0
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +368 -0
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +351 -0
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +127 -0
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +84 -0
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +134 -0
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +283 -0
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +39 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +67 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +64 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +51 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +142 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +101 -0
- trajectree/quimb/tests/test_tensor/test_circuit.py +816 -0
- trajectree/quimb/tests/test_tensor/test_contract.py +67 -0
- trajectree/quimb/tests/test_tensor/test_decomp.py +40 -0
- trajectree/quimb/tests/test_tensor/test_mera.py +52 -0
- trajectree/quimb/tests/test_tensor/test_optimizers.py +488 -0
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +1171 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +606 -0
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +144 -0
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +123 -0
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +226 -0
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +441 -0
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +2066 -0
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +388 -0
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +63 -0
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +270 -0
- trajectree/quimb/tests/test_utils.py +85 -0
- trajectree/trajectory.py +2 -2
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/METADATA +2 -2
- trajectree-0.0.1.dist-info/RECORD +126 -0
- trajectree-0.0.0.dist-info/RECORD +0 -16
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/WHEEL +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.0.dist-info → trajectree-0.0.1.dist-info}/top_level.txt +0 -0
|
File without changes
|
|
@@ -0,0 +1,501 @@
|
|
|
1
|
+
from pytest import fixture, mark, raises
|
|
2
|
+
import numpy as np
|
|
3
|
+
from numpy.testing import assert_allclose
|
|
4
|
+
import scipy.sparse as sp
|
|
5
|
+
|
|
6
|
+
from quimb import (
|
|
7
|
+
qu,
|
|
8
|
+
rand_matrix,
|
|
9
|
+
rand_ket,
|
|
10
|
+
)
|
|
11
|
+
from quimb.core import (
|
|
12
|
+
qarray,
|
|
13
|
+
ensure_qarray,
|
|
14
|
+
issparse,
|
|
15
|
+
isdense,
|
|
16
|
+
isket,
|
|
17
|
+
isop,
|
|
18
|
+
isbra,
|
|
19
|
+
isvec,
|
|
20
|
+
isherm,
|
|
21
|
+
mul,
|
|
22
|
+
dot,
|
|
23
|
+
vdot,
|
|
24
|
+
rdot,
|
|
25
|
+
ldmul,
|
|
26
|
+
rdmul,
|
|
27
|
+
outer,
|
|
28
|
+
explt,
|
|
29
|
+
make_immutable,
|
|
30
|
+
realify,
|
|
31
|
+
dot_sparse,
|
|
32
|
+
par_dot_csr_matvec,
|
|
33
|
+
kron_dense,
|
|
34
|
+
kron_sparse,
|
|
35
|
+
)
|
|
36
|
+
from quimb.core import kron, kronpow
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
# ----------------------------- FIXTURES ------------------------------------ #
|
|
40
|
+
|
|
41
|
+
_SPARSE_FORMATS = ("csr", "bsr", "csc", "coo")
|
|
42
|
+
_TEST_SZ = 4
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@fixture
|
|
46
|
+
def mat_d():
|
|
47
|
+
return rand_matrix(_TEST_SZ)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@fixture
|
|
51
|
+
def mat_d2():
|
|
52
|
+
return rand_matrix(_TEST_SZ)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@fixture
|
|
56
|
+
def mat_d3():
|
|
57
|
+
return rand_matrix(_TEST_SZ)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
@fixture
|
|
61
|
+
def mat_s():
|
|
62
|
+
return rand_matrix(_TEST_SZ, sparse=True, density=0.5)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
@fixture
|
|
66
|
+
def mat_s2():
|
|
67
|
+
return rand_matrix(_TEST_SZ, sparse=True, density=0.5)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
@fixture
|
|
71
|
+
def ket_d():
|
|
72
|
+
return rand_ket(_TEST_SZ)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
@fixture
|
|
76
|
+
def ket_d2():
|
|
77
|
+
return rand_ket(_TEST_SZ)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
@fixture
|
|
81
|
+
def l1d():
|
|
82
|
+
return np.random.randn(_TEST_SZ) + 1.0j * np.random.randn(_TEST_SZ)
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
@fixture
|
|
86
|
+
def mat_s_nnz():
|
|
87
|
+
return rand_matrix(_TEST_SZ, sparse=True, density=0.75)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
# --------------------------------------------------------------------------- #
|
|
91
|
+
# TESTS #
|
|
92
|
+
# --------------------------------------------------------------------------- #
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
class TestMakeImmutable:
|
|
96
|
+
def test_dense(self):
|
|
97
|
+
mat = qu([[1, 2], [3, 4]])
|
|
98
|
+
make_immutable(mat)
|
|
99
|
+
with raises(ValueError):
|
|
100
|
+
mat[-1, -1] = 1
|
|
101
|
+
|
|
102
|
+
@mark.parametrize("stype", _SPARSE_FORMATS)
|
|
103
|
+
def test_sparse(self, stype):
|
|
104
|
+
mat = qu([[1, 2], [3, 4]], stype=stype)
|
|
105
|
+
make_immutable(mat)
|
|
106
|
+
if stype in {"csr", "csc"}:
|
|
107
|
+
with raises(ValueError):
|
|
108
|
+
mat[-1, -1] = 1
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
class TestEnsureQarray:
|
|
112
|
+
def test_ensure_qarray(self):
|
|
113
|
+
def foo(n):
|
|
114
|
+
return np.random.randn(n, n)
|
|
115
|
+
|
|
116
|
+
a = foo(2)
|
|
117
|
+
assert not isinstance(a, qarray)
|
|
118
|
+
|
|
119
|
+
@ensure_qarray
|
|
120
|
+
def foo2(n):
|
|
121
|
+
return np.random.randn(n, n)
|
|
122
|
+
|
|
123
|
+
a = foo2(2)
|
|
124
|
+
assert isinstance(a, qarray)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
class TestRealify:
|
|
128
|
+
def test_realify(self):
|
|
129
|
+
def foo(a, b):
|
|
130
|
+
return a + 1j * b
|
|
131
|
+
|
|
132
|
+
a = foo(1, 1e-15)
|
|
133
|
+
assert a.real == 1
|
|
134
|
+
assert a.imag == 1e-15
|
|
135
|
+
|
|
136
|
+
@realify
|
|
137
|
+
def foo2(a, b):
|
|
138
|
+
return a + 1j * b
|
|
139
|
+
|
|
140
|
+
a = foo2(1, 1e-15)
|
|
141
|
+
assert a.real == 1
|
|
142
|
+
assert a.imag == 0
|
|
143
|
+
|
|
144
|
+
def test_wrong_type(self):
|
|
145
|
+
@realify
|
|
146
|
+
def foo(a, b):
|
|
147
|
+
return str(a) + str(b)
|
|
148
|
+
|
|
149
|
+
assert foo(1, 2) == "12"
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class TestShapes:
|
|
153
|
+
def test_sparse(self):
|
|
154
|
+
x = np.array([[1], [0]])
|
|
155
|
+
assert not issparse(x)
|
|
156
|
+
assert isdense(x)
|
|
157
|
+
x = sp.csr_matrix(x)
|
|
158
|
+
assert issparse(x)
|
|
159
|
+
|
|
160
|
+
def test_ket(self):
|
|
161
|
+
x = np.array([[1], [0]])
|
|
162
|
+
assert isket(x)
|
|
163
|
+
assert not isbra(x)
|
|
164
|
+
assert not isop(x)
|
|
165
|
+
assert isvec(x)
|
|
166
|
+
x = sp.csr_matrix(x)
|
|
167
|
+
assert isket(x)
|
|
168
|
+
assert isvec(x)
|
|
169
|
+
assert not isbra(x)
|
|
170
|
+
assert not isop(x)
|
|
171
|
+
|
|
172
|
+
def test_bra(self):
|
|
173
|
+
x = np.array([[1, 0]])
|
|
174
|
+
assert not isket(x)
|
|
175
|
+
assert isbra(x)
|
|
176
|
+
assert not isop(x)
|
|
177
|
+
assert isvec(x)
|
|
178
|
+
x = sp.csr_matrix(x)
|
|
179
|
+
assert not isket(x)
|
|
180
|
+
assert isbra(x)
|
|
181
|
+
assert not isop(x)
|
|
182
|
+
assert isvec(x)
|
|
183
|
+
|
|
184
|
+
def test_op(self):
|
|
185
|
+
x = np.array([[1, 0], [0, 0]])
|
|
186
|
+
assert not isket(x)
|
|
187
|
+
assert not isbra(x)
|
|
188
|
+
assert isop(x)
|
|
189
|
+
assert not isvec(x)
|
|
190
|
+
x = sp.csr_matrix(x)
|
|
191
|
+
assert not isket(x)
|
|
192
|
+
assert not isbra(x)
|
|
193
|
+
assert isop(x)
|
|
194
|
+
assert not isvec(x)
|
|
195
|
+
|
|
196
|
+
def test_isherm(self):
|
|
197
|
+
a = np.array([[1.0, 2.0 + 3.0j], [2.0 - 3.0j, 1.0]])
|
|
198
|
+
assert isherm(a)
|
|
199
|
+
a = np.array([[1.0, 2.0 - 3.0j], [2.0 - 3.0j, 1.0]])
|
|
200
|
+
assert not isherm(a)
|
|
201
|
+
|
|
202
|
+
def test_isherm_sparse(self):
|
|
203
|
+
a = sp.csr_matrix([[1.0, 2.0 + 3.0j], [2.0 - 3.0j, 1.0]])
|
|
204
|
+
assert isherm(a)
|
|
205
|
+
a = sp.csr_matrix([[1.0, 2.0 - 3.0j], [2.0 - 3.0j, 1.0]])
|
|
206
|
+
assert not isherm(a)
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
class TestMul:
|
|
210
|
+
def test_mul_dense_same(self, mat_d, mat_d2):
|
|
211
|
+
ca = mul(mat_d, mat_d2)
|
|
212
|
+
assert isinstance(ca, qarray)
|
|
213
|
+
cn = np.multiply(mat_d, mat_d2)
|
|
214
|
+
assert_allclose(ca, cn)
|
|
215
|
+
|
|
216
|
+
def test_mul_broadcast(self, mat_d, ket_d):
|
|
217
|
+
ca = mul(mat_d, ket_d)
|
|
218
|
+
assert isinstance(ca, qarray)
|
|
219
|
+
cn = np.multiply(mat_d, ket_d)
|
|
220
|
+
assert_allclose(ca, cn)
|
|
221
|
+
ca = mul(mat_d.H, ket_d)
|
|
222
|
+
assert isinstance(ca, qarray)
|
|
223
|
+
cn = np.multiply(mat_d.H, ket_d)
|
|
224
|
+
assert_allclose(ca, cn)
|
|
225
|
+
|
|
226
|
+
def test_mul_sparse(self, mat_s, mat_s2):
|
|
227
|
+
cq = mul(mat_s, mat_s2)
|
|
228
|
+
cn = mat_s.toarray() * mat_s2.toarray()
|
|
229
|
+
assert issparse(cq)
|
|
230
|
+
assert_allclose(cq.toarray(), cn)
|
|
231
|
+
cq = mul(mat_s2.toarray(), mat_s)
|
|
232
|
+
cn = mat_s2.toarray() * mat_s.toarray()
|
|
233
|
+
assert issparse(cq)
|
|
234
|
+
assert_allclose(cq.toarray(), cn)
|
|
235
|
+
|
|
236
|
+
def test_mul_sparse_broadcast(self, mat_s, ket_d):
|
|
237
|
+
ca = mul(mat_s, ket_d)
|
|
238
|
+
cn = np.multiply(mat_s.toarray(), ket_d)
|
|
239
|
+
assert_allclose(ca.toarray(), cn)
|
|
240
|
+
ca = mul(mat_s.H, ket_d)
|
|
241
|
+
cn = np.multiply(mat_s.H.toarray(), ket_d)
|
|
242
|
+
assert_allclose(ca.toarray(), cn)
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
class TestDot:
|
|
246
|
+
def test_dot_matrix(self, mat_d, mat_d2):
|
|
247
|
+
ca = dot(mat_d, mat_d2)
|
|
248
|
+
assert isinstance(ca, qarray)
|
|
249
|
+
cn = mat_d @ mat_d2
|
|
250
|
+
assert_allclose(ca, cn)
|
|
251
|
+
|
|
252
|
+
def test_dot_ket(self, mat_d, ket_d):
|
|
253
|
+
ca = dot(mat_d, ket_d)
|
|
254
|
+
assert isinstance(ca, qarray)
|
|
255
|
+
cn = mat_d @ ket_d
|
|
256
|
+
assert_allclose(ca, cn)
|
|
257
|
+
|
|
258
|
+
def test_dot_sparse_sparse(self, mat_s, mat_s2):
|
|
259
|
+
cq = dot(mat_s, mat_s2)
|
|
260
|
+
cn = mat_s @ mat_s2
|
|
261
|
+
assert issparse(cq)
|
|
262
|
+
assert_allclose(cq.toarray(), cn.toarray())
|
|
263
|
+
|
|
264
|
+
def test_dot_sparse_dense(self, mat_s, ket_d):
|
|
265
|
+
cq = dot(mat_s, ket_d)
|
|
266
|
+
assert isinstance(cq, qarray)
|
|
267
|
+
cq = mat_s @ ket_d
|
|
268
|
+
assert isinstance(cq, qarray)
|
|
269
|
+
try:
|
|
270
|
+
cn = mat_s._matmul_vector(ket_d)
|
|
271
|
+
except AttributeError:
|
|
272
|
+
cn = mat_s._mul_vector(ket_d)
|
|
273
|
+
assert not issparse(cq)
|
|
274
|
+
assert isdense(cq)
|
|
275
|
+
assert_allclose(cq.toarray().ravel(), cn)
|
|
276
|
+
|
|
277
|
+
def test_dot_sparse_dense_ket(self, mat_s, ket_d):
|
|
278
|
+
cq = dot(mat_s, ket_d)
|
|
279
|
+
cn = mat_s @ ket_d
|
|
280
|
+
assert not issparse(cq)
|
|
281
|
+
assert isdense(cq)
|
|
282
|
+
assert isket(cq)
|
|
283
|
+
assert_allclose(cq.toarray(), cn)
|
|
284
|
+
|
|
285
|
+
def test_par_dot_csr_matvec(self, mat_s, ket_d):
|
|
286
|
+
x = par_dot_csr_matvec(mat_s, ket_d)
|
|
287
|
+
y = dot_sparse(mat_s, ket_d)
|
|
288
|
+
assert x.dtype == complex
|
|
289
|
+
assert x.shape == (_TEST_SZ, 1)
|
|
290
|
+
assert isinstance(x, qarray)
|
|
291
|
+
assert_allclose(x, y)
|
|
292
|
+
|
|
293
|
+
def test_par_dot_csr_matvec_Array(self, mat_s, ket_d):
|
|
294
|
+
x = par_dot_csr_matvec(mat_s, np.asarray(ket_d).reshape(-1))
|
|
295
|
+
y = dot_sparse(mat_s, ket_d)
|
|
296
|
+
assert x.dtype == complex
|
|
297
|
+
assert x.shape == (_TEST_SZ,)
|
|
298
|
+
assert_allclose(y, x.reshape(-1, 1))
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
class TestAccelVdot:
|
|
302
|
+
def test_accel_vdot(self, ket_d, ket_d2):
|
|
303
|
+
ca = vdot(ket_d, ket_d2)
|
|
304
|
+
cn = (ket_d.H @ ket_d2)[0, 0]
|
|
305
|
+
assert_allclose(ca, cn)
|
|
306
|
+
|
|
307
|
+
|
|
308
|
+
class TestAccelRdot:
|
|
309
|
+
def test_accel_rdot(self, ket_d, ket_d2):
|
|
310
|
+
cq = rdot(ket_d.H, ket_d2)
|
|
311
|
+
cn = (ket_d.H @ ket_d2)[0, 0]
|
|
312
|
+
assert_allclose(cq, cn)
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
class TestFastDiagMul:
|
|
316
|
+
def test_ldmul_small(self, mat_d, l1d):
|
|
317
|
+
a = ldmul(l1d, mat_d)
|
|
318
|
+
b = np.diag(l1d) @ mat_d
|
|
319
|
+
assert isinstance(a, qarray)
|
|
320
|
+
assert_allclose(a, b)
|
|
321
|
+
|
|
322
|
+
def test_ldmul_large(self):
|
|
323
|
+
vec = np.random.randn(501)
|
|
324
|
+
mat = rand_matrix(501)
|
|
325
|
+
a = ldmul(vec, mat)
|
|
326
|
+
b = np.diag(vec) @ mat
|
|
327
|
+
assert isinstance(a, qarray)
|
|
328
|
+
assert_allclose(a, b)
|
|
329
|
+
|
|
330
|
+
def test_ldmul_sparse(self, mat_s, l1d):
|
|
331
|
+
assert issparse(mat_s)
|
|
332
|
+
a = ldmul(l1d, mat_s)
|
|
333
|
+
b = np.diag(l1d) @ mat_s.toarray()
|
|
334
|
+
assert issparse(a)
|
|
335
|
+
assert_allclose(a.toarray(), b)
|
|
336
|
+
|
|
337
|
+
def test_rdmul_small(self, mat_d, l1d):
|
|
338
|
+
a = rdmul(mat_d, l1d)
|
|
339
|
+
b = mat_d @ np.diag(l1d)
|
|
340
|
+
assert isinstance(a, qarray)
|
|
341
|
+
assert_allclose(a, b)
|
|
342
|
+
|
|
343
|
+
def test_rdmul_large(self):
|
|
344
|
+
vec = np.random.randn(501)
|
|
345
|
+
mat = rand_matrix(501)
|
|
346
|
+
a = rdmul(mat, vec)
|
|
347
|
+
b = mat @ np.diag(vec)
|
|
348
|
+
assert isinstance(a, qarray)
|
|
349
|
+
assert_allclose(a, b)
|
|
350
|
+
|
|
351
|
+
def test_rdmul_sparse(self, mat_s, l1d):
|
|
352
|
+
a = rdmul(mat_s, l1d)
|
|
353
|
+
b = mat_s.toarray() @ np.diag(l1d)
|
|
354
|
+
assert issparse(a)
|
|
355
|
+
assert_allclose(a.toarray(), b)
|
|
356
|
+
|
|
357
|
+
|
|
358
|
+
class TestOuter:
|
|
359
|
+
def test_outer_ket_ket(self, ket_d, ket_d2):
|
|
360
|
+
c = outer(ket_d, ket_d2)
|
|
361
|
+
assert isinstance(c, qarray)
|
|
362
|
+
d = np.multiply(ket_d, ket_d2.T)
|
|
363
|
+
assert_allclose(c, d)
|
|
364
|
+
|
|
365
|
+
def test_outer_ket_bra(self, ket_d, ket_d2):
|
|
366
|
+
c = outer(ket_d, ket_d2.H)
|
|
367
|
+
assert isinstance(c, qarray)
|
|
368
|
+
d = np.multiply(ket_d, ket_d2.H)
|
|
369
|
+
assert_allclose(c, d)
|
|
370
|
+
|
|
371
|
+
def test_outer_bra_ket(self, ket_d, ket_d2):
|
|
372
|
+
c = outer(ket_d.H, ket_d2)
|
|
373
|
+
assert isinstance(c, qarray)
|
|
374
|
+
d = np.multiply(ket_d.H.T, ket_d2.T)
|
|
375
|
+
assert_allclose(c, d)
|
|
376
|
+
|
|
377
|
+
def test_outer_bra_bra(self, ket_d, ket_d2):
|
|
378
|
+
c = outer(ket_d.H, ket_d2.H)
|
|
379
|
+
assert isinstance(c, qarray)
|
|
380
|
+
d = np.multiply(ket_d.H.T, ket_d2.H)
|
|
381
|
+
assert_allclose(c, d)
|
|
382
|
+
|
|
383
|
+
|
|
384
|
+
class TestExplt:
|
|
385
|
+
def test_small(self):
|
|
386
|
+
evals = np.random.randn(3)
|
|
387
|
+
en = np.exp(-1.0j * evals * 7)
|
|
388
|
+
eq = explt(evals, 7)
|
|
389
|
+
assert_allclose(eq, en)
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
# --------------------------------------------------------------------------- #
|
|
393
|
+
# Kronecker (tensor) product tests #
|
|
394
|
+
# --------------------------------------------------------------------------- #
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
class TestKron:
|
|
398
|
+
@mark.parametrize("big", [False, True])
|
|
399
|
+
def test_kron_dense(self, mat_d, mat_d2, big):
|
|
400
|
+
x = kron_dense(mat_d, mat_d2, par_thresh=0 if big else 1e100)
|
|
401
|
+
assert mat_d.shape == (_TEST_SZ, _TEST_SZ)
|
|
402
|
+
assert mat_d2.shape == (_TEST_SZ, _TEST_SZ)
|
|
403
|
+
xn = np.kron(mat_d, mat_d2)
|
|
404
|
+
assert_allclose(x, xn)
|
|
405
|
+
assert isinstance(x, qarray)
|
|
406
|
+
|
|
407
|
+
def test_kron_multi_args(self, mat_d, mat_d2, mat_d3):
|
|
408
|
+
assert_allclose(kron(mat_d), mat_d)
|
|
409
|
+
assert_allclose(
|
|
410
|
+
kron(mat_d, mat_d2, mat_d3),
|
|
411
|
+
np.kron(np.kron(mat_d, mat_d2), mat_d3),
|
|
412
|
+
)
|
|
413
|
+
|
|
414
|
+
def test_kron_mixed_types(self, mat_d, mat_s):
|
|
415
|
+
assert_allclose(
|
|
416
|
+
kron(mat_d, mat_s).toarray(),
|
|
417
|
+
(sp.kron(mat_d, mat_s, "csr")).toarray(),
|
|
418
|
+
)
|
|
419
|
+
assert_allclose(
|
|
420
|
+
kron(mat_s, mat_s).toarray(),
|
|
421
|
+
(sp.kron(mat_s, mat_s, "csr")).toarray(),
|
|
422
|
+
)
|
|
423
|
+
|
|
424
|
+
|
|
425
|
+
class TestKronSparseFormats:
|
|
426
|
+
def test_sparse_sparse_auto(self, mat_s):
|
|
427
|
+
c = kron_sparse(mat_s, mat_s)
|
|
428
|
+
assert c.format == "csr"
|
|
429
|
+
|
|
430
|
+
def test_sparse_dense_auto(self, mat_s, mat_d):
|
|
431
|
+
c = kron_sparse(mat_s, mat_d)
|
|
432
|
+
assert c.format == "bsr"
|
|
433
|
+
|
|
434
|
+
def test_dense_sparse_auto(self, mat_s, mat_d):
|
|
435
|
+
c = kron_sparse(mat_d, mat_s)
|
|
436
|
+
assert c.format == "csr"
|
|
437
|
+
|
|
438
|
+
def test_sparse_sparsennz(self, mat_s, mat_s_nnz):
|
|
439
|
+
c = kron_sparse(mat_s, mat_s_nnz)
|
|
440
|
+
assert c.format == "csr"
|
|
441
|
+
|
|
442
|
+
@mark.parametrize("stype", _SPARSE_FORMATS)
|
|
443
|
+
def test_sparse_sparse_to_sformat(self, mat_s, stype):
|
|
444
|
+
c = kron_sparse(mat_s, mat_s, stype=stype)
|
|
445
|
+
assert c.format == stype
|
|
446
|
+
|
|
447
|
+
@mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
|
|
448
|
+
def test_many_args_dense_last(self, mat_s, mat_s2, mat_d, stype):
|
|
449
|
+
c = kron(mat_s, mat_s2, mat_d, stype=stype)
|
|
450
|
+
assert c.format == (stype if stype is not None else "bsr")
|
|
451
|
+
|
|
452
|
+
@mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
|
|
453
|
+
def test_many_args_dense_not_last(self, mat_s, mat_s2, mat_d, stype):
|
|
454
|
+
c = kron(mat_d, mat_s, mat_s2, stype=stype)
|
|
455
|
+
assert c.format == (stype if stype is not None else "csr")
|
|
456
|
+
c = kron(mat_s, mat_d, mat_s2, stype=stype)
|
|
457
|
+
assert c.format == (stype if stype is not None else "csr")
|
|
458
|
+
|
|
459
|
+
@mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
|
|
460
|
+
def test_many_args_dense_last_coo_construct(
|
|
461
|
+
self, mat_s, mat_s2, mat_d, stype
|
|
462
|
+
):
|
|
463
|
+
c = kron(mat_s, mat_s2, mat_d, stype=stype, coo_build=True)
|
|
464
|
+
assert c.format == (stype if stype is not None else "csr")
|
|
465
|
+
|
|
466
|
+
@mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
|
|
467
|
+
def test_many_args_dense_not_last_coo_construct(
|
|
468
|
+
self, mat_s, mat_s2, mat_d, stype
|
|
469
|
+
):
|
|
470
|
+
c = kron(mat_s, mat_d, mat_s2, stype=stype, coo_build=True)
|
|
471
|
+
assert c.format == (stype if stype is not None else "csr")
|
|
472
|
+
c = kron(mat_d, mat_s, mat_s2, stype=stype, coo_build=True)
|
|
473
|
+
assert c.format == (stype if stype is not None else "csr")
|
|
474
|
+
|
|
475
|
+
|
|
476
|
+
class TestKronPow:
|
|
477
|
+
def test_dense(self, mat_d):
|
|
478
|
+
x = mat_d & mat_d & mat_d
|
|
479
|
+
y = kronpow(mat_d, 3)
|
|
480
|
+
assert_allclose(x, y)
|
|
481
|
+
|
|
482
|
+
def test_sparse(self, mat_s):
|
|
483
|
+
x = mat_s & mat_s & mat_s
|
|
484
|
+
y = kronpow(mat_s, 3)
|
|
485
|
+
assert_allclose(x.toarray(), y.toarray())
|
|
486
|
+
|
|
487
|
+
@mark.parametrize("stype", _SPARSE_FORMATS)
|
|
488
|
+
def test_sparse_formats(self, stype, mat_s):
|
|
489
|
+
x = mat_s & mat_s & mat_s
|
|
490
|
+
y = kronpow(mat_s, 3, stype=stype)
|
|
491
|
+
assert y.format == stype
|
|
492
|
+
assert_allclose(x.toarray(), y.toarray())
|
|
493
|
+
|
|
494
|
+
@mark.parametrize("sformat_in", _SPARSE_FORMATS)
|
|
495
|
+
@mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
|
|
496
|
+
def test_sparse_formats_coo_construct(self, sformat_in, stype, mat_s):
|
|
497
|
+
mat_s = mat_s.asformat(sformat_in)
|
|
498
|
+
x = mat_s & mat_s & mat_s
|
|
499
|
+
y = kronpow(mat_s, 3, stype=stype, coo_build=True)
|
|
500
|
+
assert y.format == stype if stype is not None else "sformat_in"
|
|
501
|
+
assert_allclose(x.toarray(), y.toarray())
|