eyeling 1.6.4 → 1.6.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/cobalt-kepler-kitchen.n3 +3544 -3543
- package/examples/output/complex.n3 +25 -24
- package/examples/output/control-system.n3 +21 -20
- package/examples/output/cranberry-calculus.n3 +509 -508
- package/examples/output/drone-corridor-planner.n3 +154 -153
- package/examples/output/ev-roundtrip-planner.n3 +81 -80
- package/examples/output/gps.n3 +15 -14
- package/examples/output/jade-eigen-loom.n3 +2033 -2032
- package/examples/output/light-eaters.n3 +51 -50
- package/examples/output/lldm.n3 +244 -243
- package/examples/output/math-builtins-tests.n3 +40 -40
- package/examples/output/oslo-steps-library-scholarly.n3 +197 -196
- package/examples/output/oslo-steps-workflow-composition.n3 +29 -28
- package/examples/output/pi.n3 +5 -4
- package/examples/output/ruby-runge-workshop.n3 +106 -105
- package/examples/output/saffron-slopeworks.n3 +455 -454
- package/examples/output/spectral-week.n3 +81 -80
- package/examples/output/topaz-markov-mill.n3 +1618 -1617
- package/examples/output/ultramarine-simpson-forge.n3 +1213 -1212
- package/eyeling.js +315 -134
- package/package.json +1 -1
package/examples/output/lldm.n3
CHANGED
|
@@ -1,13 +1,14 @@
|
|
|
1
1
|
@prefix : <http://www.agfa.com/w3c/2002/10/medicad/op/lldmP#> .
|
|
2
|
+
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
2
3
|
|
|
3
4
|
# ----------------------------------------------------------------------
|
|
4
5
|
# Proof for derived triple:
|
|
5
|
-
# :meas47 :dx12Cm -35 .
|
|
6
|
+
# :meas47 :dx12Cm "-35"^^xsd:decimal .
|
|
6
7
|
# It holds because the following instance of the rule body is provable:
|
|
7
8
|
# :meas47 a :Measurement .
|
|
8
9
|
# :meas47 :p1xCm 10.1 .
|
|
9
10
|
# :meas47 :p2xCm 45.1 .
|
|
10
|
-
# (10.1 45.1) math:difference -35 .
|
|
11
|
+
# (10.1 45.1) math:difference "-35"^^xsd:decimal .
|
|
11
12
|
# via the schematic forward rule:
|
|
12
13
|
# {
|
|
13
14
|
# ?M a :Measurement .
|
|
@@ -21,20 +22,20 @@
|
|
|
21
22
|
# ?M = :meas47
|
|
22
23
|
# ?X = 10.1
|
|
23
24
|
# ?Y = 45.1
|
|
24
|
-
# ?Z = -35
|
|
25
|
+
# ?Z = "-35"^^xsd:decimal
|
|
25
26
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
26
27
|
# ----------------------------------------------------------------------
|
|
27
28
|
|
|
28
|
-
:meas47 :dx12Cm -35 .
|
|
29
|
+
:meas47 :dx12Cm "-35"^^xsd:decimal .
|
|
29
30
|
|
|
30
31
|
# ----------------------------------------------------------------------
|
|
31
32
|
# Proof for derived triple:
|
|
32
|
-
# :meas47 :dy12Cm 2.2 .
|
|
33
|
+
# :meas47 :dy12Cm "2.2"^^xsd:decimal .
|
|
33
34
|
# It holds because the following instance of the rule body is provable:
|
|
34
35
|
# :meas47 a :Measurement .
|
|
35
36
|
# :meas47 :p1yCm 7.8 .
|
|
36
37
|
# :meas47 :p2yCm 5.6 .
|
|
37
|
-
# (7.8 5.6) math:difference 2.2 .
|
|
38
|
+
# (7.8 5.6) math:difference "2.2"^^xsd:decimal .
|
|
38
39
|
# via the schematic forward rule:
|
|
39
40
|
# {
|
|
40
41
|
# ?M a :Measurement .
|
|
@@ -48,20 +49,20 @@
|
|
|
48
49
|
# ?M = :meas47
|
|
49
50
|
# ?X = 7.8
|
|
50
51
|
# ?Y = 5.6
|
|
51
|
-
# ?Z = 2.2
|
|
52
|
+
# ?Z = "2.2"^^xsd:decimal
|
|
52
53
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
53
54
|
# ----------------------------------------------------------------------
|
|
54
55
|
|
|
55
|
-
:meas47 :dy12Cm 2.2 .
|
|
56
|
+
:meas47 :dy12Cm "2.2"^^xsd:decimal .
|
|
56
57
|
|
|
57
58
|
# ----------------------------------------------------------------------
|
|
58
59
|
# Proof for derived triple:
|
|
59
|
-
# :meas47 :dy13Cm -22 .
|
|
60
|
+
# :meas47 :dy13Cm "-22"^^xsd:decimal .
|
|
60
61
|
# It holds because the following instance of the rule body is provable:
|
|
61
62
|
# :meas47 a :Measurement .
|
|
62
63
|
# :meas47 :p1yCm 7.8 .
|
|
63
64
|
# :meas47 :p3yCm 29.8 .
|
|
64
|
-
# (7.8 29.8) math:difference -22 .
|
|
65
|
+
# (7.8 29.8) math:difference "-22"^^xsd:decimal .
|
|
65
66
|
# via the schematic forward rule:
|
|
66
67
|
# {
|
|
67
68
|
# ?M a :Measurement .
|
|
@@ -75,20 +76,20 @@
|
|
|
75
76
|
# ?M = :meas47
|
|
76
77
|
# ?X = 7.8
|
|
77
78
|
# ?Y = 29.8
|
|
78
|
-
# ?Z = -22
|
|
79
|
+
# ?Z = "-22"^^xsd:decimal
|
|
79
80
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
80
81
|
# ----------------------------------------------------------------------
|
|
81
82
|
|
|
82
|
-
:meas47 :dy13Cm -22 .
|
|
83
|
+
:meas47 :dy13Cm "-22"^^xsd:decimal .
|
|
83
84
|
|
|
84
85
|
# ----------------------------------------------------------------------
|
|
85
86
|
# Proof for derived triple:
|
|
86
|
-
# :meas47 :dy24Cm -22.9 .
|
|
87
|
+
# :meas47 :dy24Cm "-22.9"^^xsd:decimal .
|
|
87
88
|
# It holds because the following instance of the rule body is provable:
|
|
88
89
|
# :meas47 a :Measurement .
|
|
89
90
|
# :meas47 :p2yCm 5.6 .
|
|
90
91
|
# :meas47 :p4yCm 28.5 .
|
|
91
|
-
# (5.6 28.5) math:difference -22.9 .
|
|
92
|
+
# (5.6 28.5) math:difference "-22.9"^^xsd:decimal .
|
|
92
93
|
# via the schematic forward rule:
|
|
93
94
|
# {
|
|
94
95
|
# ?M a :Measurement .
|
|
@@ -102,20 +103,20 @@
|
|
|
102
103
|
# ?M = :meas47
|
|
103
104
|
# ?X = 5.6
|
|
104
105
|
# ?Y = 28.5
|
|
105
|
-
# ?Z = -22.9
|
|
106
|
+
# ?Z = "-22.9"^^xsd:decimal
|
|
106
107
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
107
108
|
# ----------------------------------------------------------------------
|
|
108
109
|
|
|
109
|
-
:meas47 :dy24Cm -22.9 .
|
|
110
|
+
:meas47 :dy24Cm "-22.9"^^xsd:decimal .
|
|
110
111
|
|
|
111
112
|
# ----------------------------------------------------------------------
|
|
112
113
|
# Proof for derived triple:
|
|
113
|
-
# :meas47 :cL1 -0.06285714285714286 .
|
|
114
|
+
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
114
115
|
# It holds because the following instance of the rule body is provable:
|
|
115
116
|
# :meas47 a :Measurement .
|
|
116
|
-
# :meas47 :dy12Cm 2.2 .
|
|
117
|
-
# :meas47 :dx12Cm -35 .
|
|
118
|
-
# (2.2 -35) math:quotient -0.06285714285714286 .
|
|
117
|
+
# :meas47 :dy12Cm "2.2"^^xsd:decimal .
|
|
118
|
+
# :meas47 :dx12Cm "-35"^^xsd:decimal .
|
|
119
|
+
# ("2.2"^^xsd:decimal "-35"^^xsd:decimal) math:quotient "-0.06285714285714286"^^xsd:decimal .
|
|
119
120
|
# via the schematic forward rule:
|
|
120
121
|
# {
|
|
121
122
|
# ?M a :Measurement .
|
|
@@ -127,21 +128,21 @@
|
|
|
127
128
|
# } .
|
|
128
129
|
# with substitution (on rule variables):
|
|
129
130
|
# ?M = :meas47
|
|
130
|
-
# ?X = -35
|
|
131
|
-
# ?Y = 2.2
|
|
132
|
-
# ?Z = -0.06285714285714286
|
|
131
|
+
# ?X = "-35"^^xsd:decimal
|
|
132
|
+
# ?Y = "2.2"^^xsd:decimal
|
|
133
|
+
# ?Z = "-0.06285714285714286"^^xsd:decimal
|
|
133
134
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
134
135
|
# ----------------------------------------------------------------------
|
|
135
136
|
|
|
136
|
-
:meas47 :cL1 -0.06285714285714286 .
|
|
137
|
+
:meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
137
138
|
|
|
138
139
|
# ----------------------------------------------------------------------
|
|
139
140
|
# Proof for derived triple:
|
|
140
|
-
# :meas47 :dL3m -15.909090909090908 .
|
|
141
|
+
# :meas47 :dL3m "-15.909090909090908"^^xsd:decimal .
|
|
141
142
|
# It holds because the following instance of the rule body is provable:
|
|
142
143
|
# :meas47 a :Measurement .
|
|
143
|
-
# :meas47 :cL1 -0.06285714285714286 .
|
|
144
|
-
# (1 -0.06285714285714286) math:quotient -15.909090909090908 .
|
|
144
|
+
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
145
|
+
# (1 "-0.06285714285714286"^^xsd:decimal) math:quotient "-15.909090909090908"^^xsd:decimal .
|
|
145
146
|
# via the schematic forward rule:
|
|
146
147
|
# {
|
|
147
148
|
# ?M a :Measurement .
|
|
@@ -152,20 +153,20 @@
|
|
|
152
153
|
# } .
|
|
153
154
|
# with substitution (on rule variables):
|
|
154
155
|
# ?M = :meas47
|
|
155
|
-
# ?X = -0.06285714285714286
|
|
156
|
-
# ?Z = -15.909090909090908
|
|
156
|
+
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
157
|
+
# ?Z = "-15.909090909090908"^^xsd:decimal
|
|
157
158
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
158
159
|
# ----------------------------------------------------------------------
|
|
159
160
|
|
|
160
|
-
:meas47 :dL3m -15.909090909090908 .
|
|
161
|
+
:meas47 :dL3m "-15.909090909090908"^^xsd:decimal .
|
|
161
162
|
|
|
162
163
|
# ----------------------------------------------------------------------
|
|
163
164
|
# Proof for derived triple:
|
|
164
|
-
# :meas47 :cL3 15.909090909090908 .
|
|
165
|
+
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
165
166
|
# It holds because the following instance of the rule body is provable:
|
|
166
167
|
# :meas47 a :Measurement .
|
|
167
|
-
# :meas47 :dL3m -15.909090909090908 .
|
|
168
|
-
# (0 -15.909090909090908) math:difference 15.909090909090908 .
|
|
168
|
+
# :meas47 :dL3m "-15.909090909090908"^^xsd:decimal .
|
|
169
|
+
# (0 "-15.909090909090908"^^xsd:decimal) math:difference "15.909090909090908"^^xsd:decimal .
|
|
169
170
|
# via the schematic forward rule:
|
|
170
171
|
# {
|
|
171
172
|
# ?M a :Measurement .
|
|
@@ -176,21 +177,21 @@
|
|
|
176
177
|
# } .
|
|
177
178
|
# with substitution (on rule variables):
|
|
178
179
|
# ?M = :meas47
|
|
179
|
-
# ?X = -15.909090909090908
|
|
180
|
-
# ?Z = 15.909090909090908
|
|
180
|
+
# ?X = "-15.909090909090908"^^xsd:decimal
|
|
181
|
+
# ?Z = "15.909090909090908"^^xsd:decimal
|
|
181
182
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
182
183
|
# ----------------------------------------------------------------------
|
|
183
184
|
|
|
184
|
-
:meas47 :cL3 15.909090909090908 .
|
|
185
|
+
:meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
185
186
|
|
|
186
187
|
# ----------------------------------------------------------------------
|
|
187
188
|
# Proof for derived triple:
|
|
188
|
-
# :meas47 :pL1x1Cm -0.6348571428571429 .
|
|
189
|
+
# :meas47 :pL1x1Cm "-0.6348571428571429"^^xsd:decimal .
|
|
189
190
|
# It holds because the following instance of the rule body is provable:
|
|
190
191
|
# :meas47 a :Measurement .
|
|
191
|
-
# :meas47 :cL1 -0.06285714285714286 .
|
|
192
|
+
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
192
193
|
# :meas47 :p1xCm 10.1 .
|
|
193
|
-
# (-0.06285714285714286 10.1) math:product -0.6348571428571429 .
|
|
194
|
+
# ("-0.06285714285714286"^^xsd:decimal 10.1) math:product "-0.6348571428571429"^^xsd:decimal .
|
|
194
195
|
# via the schematic forward rule:
|
|
195
196
|
# {
|
|
196
197
|
# ?M a :Measurement .
|
|
@@ -202,22 +203,22 @@
|
|
|
202
203
|
# } .
|
|
203
204
|
# with substitution (on rule variables):
|
|
204
205
|
# ?M = :meas47
|
|
205
|
-
# ?X = -0.06285714285714286
|
|
206
|
+
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
206
207
|
# ?Y = 10.1
|
|
207
|
-
# ?Z = -0.6348571428571429
|
|
208
|
+
# ?Z = "-0.6348571428571429"^^xsd:decimal
|
|
208
209
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
209
210
|
# ----------------------------------------------------------------------
|
|
210
211
|
|
|
211
|
-
:meas47 :pL1x1Cm -0.6348571428571429 .
|
|
212
|
+
:meas47 :pL1x1Cm "-0.6348571428571429"^^xsd:decimal .
|
|
212
213
|
|
|
213
214
|
# ----------------------------------------------------------------------
|
|
214
215
|
# Proof for derived triple:
|
|
215
|
-
# :meas47 :pL1x2Cm -2.834857142857143 .
|
|
216
|
+
# :meas47 :pL1x2Cm "-2.834857142857143"^^xsd:decimal .
|
|
216
217
|
# It holds because the following instance of the rule body is provable:
|
|
217
218
|
# :meas47 a :Measurement .
|
|
218
|
-
# :meas47 :cL1 -0.06285714285714286 .
|
|
219
|
+
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
219
220
|
# :meas47 :p2xCm 45.1 .
|
|
220
|
-
# (-0.06285714285714286 45.1) math:product -2.834857142857143 .
|
|
221
|
+
# ("-0.06285714285714286"^^xsd:decimal 45.1) math:product "-2.834857142857143"^^xsd:decimal .
|
|
221
222
|
# via the schematic forward rule:
|
|
222
223
|
# {
|
|
223
224
|
# ?M a :Measurement .
|
|
@@ -229,22 +230,22 @@
|
|
|
229
230
|
# } .
|
|
230
231
|
# with substitution (on rule variables):
|
|
231
232
|
# ?M = :meas47
|
|
232
|
-
# ?X = -0.06285714285714286
|
|
233
|
+
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
233
234
|
# ?Y = 45.1
|
|
234
|
-
# ?Z = -2.834857142857143
|
|
235
|
+
# ?Z = "-2.834857142857143"^^xsd:decimal
|
|
235
236
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
236
237
|
# ----------------------------------------------------------------------
|
|
237
238
|
|
|
238
|
-
:meas47 :pL1x2Cm -2.834857142857143 .
|
|
239
|
+
:meas47 :pL1x2Cm "-2.834857142857143"^^xsd:decimal .
|
|
239
240
|
|
|
240
241
|
# ----------------------------------------------------------------------
|
|
241
242
|
# Proof for derived triple:
|
|
242
|
-
# :meas47 :pL3x3Cm 57.27272727272727 .
|
|
243
|
+
# :meas47 :pL3x3Cm "57.27272727272727"^^xsd:decimal .
|
|
243
244
|
# It holds because the following instance of the rule body is provable:
|
|
244
245
|
# :meas47 a :Measurement .
|
|
245
|
-
# :meas47 :cL3 15.909090909090908 .
|
|
246
|
+
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
246
247
|
# :meas47 :p3xCm 3.6 .
|
|
247
|
-
# (15.909090909090908 3.6) math:product 57.27272727272727 .
|
|
248
|
+
# ("15.909090909090908"^^xsd:decimal 3.6) math:product "57.27272727272727"^^xsd:decimal .
|
|
248
249
|
# via the schematic forward rule:
|
|
249
250
|
# {
|
|
250
251
|
# ?M a :Measurement .
|
|
@@ -256,22 +257,22 @@
|
|
|
256
257
|
# } .
|
|
257
258
|
# with substitution (on rule variables):
|
|
258
259
|
# ?M = :meas47
|
|
259
|
-
# ?X = 15.909090909090908
|
|
260
|
+
# ?X = "15.909090909090908"^^xsd:decimal
|
|
260
261
|
# ?Y = 3.6
|
|
261
|
-
# ?Z = 57.27272727272727
|
|
262
|
+
# ?Z = "57.27272727272727"^^xsd:decimal
|
|
262
263
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
263
264
|
# ----------------------------------------------------------------------
|
|
264
265
|
|
|
265
|
-
:meas47 :pL3x3Cm 57.27272727272727 .
|
|
266
|
+
:meas47 :pL3x3Cm "57.27272727272727"^^xsd:decimal .
|
|
266
267
|
|
|
267
268
|
# ----------------------------------------------------------------------
|
|
268
269
|
# Proof for derived triple:
|
|
269
|
-
# :meas47 :pL3x4Cm 870.2272727272727 .
|
|
270
|
+
# :meas47 :pL3x4Cm "870.2272727272727"^^xsd:decimal .
|
|
270
271
|
# It holds because the following instance of the rule body is provable:
|
|
271
272
|
# :meas47 a :Measurement .
|
|
272
|
-
# :meas47 :cL3 15.909090909090908 .
|
|
273
|
+
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
273
274
|
# :meas47 :p4xCm 54.7 .
|
|
274
|
-
# (15.909090909090908 54.7) math:product 870.2272727272727 .
|
|
275
|
+
# ("15.909090909090908"^^xsd:decimal 54.7) math:product "870.2272727272727"^^xsd:decimal .
|
|
275
276
|
# via the schematic forward rule:
|
|
276
277
|
# {
|
|
277
278
|
# ?M a :Measurement .
|
|
@@ -283,22 +284,22 @@
|
|
|
283
284
|
# } .
|
|
284
285
|
# with substitution (on rule variables):
|
|
285
286
|
# ?M = :meas47
|
|
286
|
-
# ?X = 15.909090909090908
|
|
287
|
+
# ?X = "15.909090909090908"^^xsd:decimal
|
|
287
288
|
# ?Y = 54.7
|
|
288
|
-
# ?Z = 870.2272727272727
|
|
289
|
+
# ?Z = "870.2272727272727"^^xsd:decimal
|
|
289
290
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
290
291
|
# ----------------------------------------------------------------------
|
|
291
292
|
|
|
292
|
-
:meas47 :pL3x4Cm 870.2272727272727 .
|
|
293
|
+
:meas47 :pL3x4Cm "870.2272727272727"^^xsd:decimal .
|
|
293
294
|
|
|
294
295
|
# ----------------------------------------------------------------------
|
|
295
296
|
# Proof for derived triple:
|
|
296
|
-
# :meas47 :dd13Cm -57.90758441558442 .
|
|
297
|
+
# :meas47 :dd13Cm "-57.90758441558442"^^xsd:decimal .
|
|
297
298
|
# It holds because the following instance of the rule body is provable:
|
|
298
299
|
# :meas47 a :Measurement .
|
|
299
|
-
# :meas47 :pL1x1Cm -0.6348571428571429 .
|
|
300
|
-
# :meas47 :pL3x3Cm 57.27272727272727 .
|
|
301
|
-
# (-0.6348571428571429 57.27272727272727) math:difference -57.90758441558442 .
|
|
300
|
+
# :meas47 :pL1x1Cm "-0.6348571428571429"^^xsd:decimal .
|
|
301
|
+
# :meas47 :pL3x3Cm "57.27272727272727"^^xsd:decimal .
|
|
302
|
+
# ("-0.6348571428571429"^^xsd:decimal "57.27272727272727"^^xsd:decimal) math:difference "-57.90758441558442"^^xsd:decimal .
|
|
302
303
|
# via the schematic forward rule:
|
|
303
304
|
# {
|
|
304
305
|
# ?M a :Measurement .
|
|
@@ -310,22 +311,22 @@
|
|
|
310
311
|
# } .
|
|
311
312
|
# with substitution (on rule variables):
|
|
312
313
|
# ?M = :meas47
|
|
313
|
-
# ?X = -0.6348571428571429
|
|
314
|
-
# ?Y = 57.27272727272727
|
|
315
|
-
# ?Z = -57.90758441558442
|
|
314
|
+
# ?X = "-0.6348571428571429"^^xsd:decimal
|
|
315
|
+
# ?Y = "57.27272727272727"^^xsd:decimal
|
|
316
|
+
# ?Z = "-57.90758441558442"^^xsd:decimal
|
|
316
317
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
317
318
|
# ----------------------------------------------------------------------
|
|
318
319
|
|
|
319
|
-
:meas47 :dd13Cm -57.90758441558442 .
|
|
320
|
+
:meas47 :dd13Cm "-57.90758441558442"^^xsd:decimal .
|
|
320
321
|
|
|
321
322
|
# ----------------------------------------------------------------------
|
|
322
323
|
# Proof for derived triple:
|
|
323
|
-
# :meas47 :ddy13Cm -35.90758441558442 .
|
|
324
|
+
# :meas47 :ddy13Cm "-35.90758441558442"^^xsd:decimal .
|
|
324
325
|
# It holds because the following instance of the rule body is provable:
|
|
325
326
|
# :meas47 a :Measurement .
|
|
326
|
-
# :meas47 :dd13Cm -57.90758441558442 .
|
|
327
|
-
# :meas47 :dy13Cm -22 .
|
|
328
|
-
# (-57.90758441558442 -22) math:difference -35.90758441558442 .
|
|
327
|
+
# :meas47 :dd13Cm "-57.90758441558442"^^xsd:decimal .
|
|
328
|
+
# :meas47 :dy13Cm "-22"^^xsd:decimal .
|
|
329
|
+
# ("-57.90758441558442"^^xsd:decimal "-22"^^xsd:decimal) math:difference "-35.90758441558442"^^xsd:decimal .
|
|
329
330
|
# via the schematic forward rule:
|
|
330
331
|
# {
|
|
331
332
|
# ?M a :Measurement .
|
|
@@ -337,22 +338,22 @@
|
|
|
337
338
|
# } .
|
|
338
339
|
# with substitution (on rule variables):
|
|
339
340
|
# ?M = :meas47
|
|
340
|
-
# ?X = -57.90758441558442
|
|
341
|
-
# ?Y = -22
|
|
342
|
-
# ?Z = -35.90758441558442
|
|
341
|
+
# ?X = "-57.90758441558442"^^xsd:decimal
|
|
342
|
+
# ?Y = "-22"^^xsd:decimal
|
|
343
|
+
# ?Z = "-35.90758441558442"^^xsd:decimal
|
|
343
344
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
344
345
|
# ----------------------------------------------------------------------
|
|
345
346
|
|
|
346
|
-
:meas47 :ddy13Cm -35.90758441558442 .
|
|
347
|
+
:meas47 :ddy13Cm "-35.90758441558442"^^xsd:decimal .
|
|
347
348
|
|
|
348
349
|
# ----------------------------------------------------------------------
|
|
349
350
|
# Proof for derived triple:
|
|
350
|
-
# :meas47 :dd24Cm -873.0621298701299 .
|
|
351
|
+
# :meas47 :dd24Cm "-873.0621298701299"^^xsd:decimal .
|
|
351
352
|
# It holds because the following instance of the rule body is provable:
|
|
352
353
|
# :meas47 a :Measurement .
|
|
353
|
-
# :meas47 :pL1x2Cm -2.834857142857143 .
|
|
354
|
-
# :meas47 :pL3x4Cm 870.2272727272727 .
|
|
355
|
-
# (-2.834857142857143 870.2272727272727) math:difference -873.0621298701299 .
|
|
354
|
+
# :meas47 :pL1x2Cm "-2.834857142857143"^^xsd:decimal .
|
|
355
|
+
# :meas47 :pL3x4Cm "870.2272727272727"^^xsd:decimal .
|
|
356
|
+
# ("-2.834857142857143"^^xsd:decimal "870.2272727272727"^^xsd:decimal) math:difference "-873.0621298701299"^^xsd:decimal .
|
|
356
357
|
# via the schematic forward rule:
|
|
357
358
|
# {
|
|
358
359
|
# ?M a :Measurement .
|
|
@@ -364,22 +365,22 @@
|
|
|
364
365
|
# } .
|
|
365
366
|
# with substitution (on rule variables):
|
|
366
367
|
# ?M = :meas47
|
|
367
|
-
# ?X = -2.834857142857143
|
|
368
|
-
# ?Y = 870.2272727272727
|
|
369
|
-
# ?Z = -873.0621298701299
|
|
368
|
+
# ?X = "-2.834857142857143"^^xsd:decimal
|
|
369
|
+
# ?Y = "870.2272727272727"^^xsd:decimal
|
|
370
|
+
# ?Z = "-873.0621298701299"^^xsd:decimal
|
|
370
371
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
371
372
|
# ----------------------------------------------------------------------
|
|
372
373
|
|
|
373
|
-
:meas47 :dd24Cm -873.0621298701299 .
|
|
374
|
+
:meas47 :dd24Cm "-873.0621298701299"^^xsd:decimal .
|
|
374
375
|
|
|
375
376
|
# ----------------------------------------------------------------------
|
|
376
377
|
# Proof for derived triple:
|
|
377
|
-
# :meas47 :ddy24Cm -850.1621298701299 .
|
|
378
|
+
# :meas47 :ddy24Cm "-850.1621298701299"^^xsd:decimal .
|
|
378
379
|
# It holds because the following instance of the rule body is provable:
|
|
379
380
|
# :meas47 a :Measurement .
|
|
380
|
-
# :meas47 :dd24Cm -873.0621298701299 .
|
|
381
|
-
# :meas47 :dy24Cm -22.9 .
|
|
382
|
-
# (-873.0621298701299 -22.9) math:difference -850.1621298701299 .
|
|
381
|
+
# :meas47 :dd24Cm "-873.0621298701299"^^xsd:decimal .
|
|
382
|
+
# :meas47 :dy24Cm "-22.9"^^xsd:decimal .
|
|
383
|
+
# ("-873.0621298701299"^^xsd:decimal "-22.9"^^xsd:decimal) math:difference "-850.1621298701299"^^xsd:decimal .
|
|
383
384
|
# via the schematic forward rule:
|
|
384
385
|
# {
|
|
385
386
|
# ?M a :Measurement .
|
|
@@ -391,22 +392,22 @@
|
|
|
391
392
|
# } .
|
|
392
393
|
# with substitution (on rule variables):
|
|
393
394
|
# ?M = :meas47
|
|
394
|
-
# ?X = -873.0621298701299
|
|
395
|
-
# ?Y = -22.9
|
|
396
|
-
# ?Z = -850.1621298701299
|
|
395
|
+
# ?X = "-873.0621298701299"^^xsd:decimal
|
|
396
|
+
# ?Y = "-22.9"^^xsd:decimal
|
|
397
|
+
# ?Z = "-850.1621298701299"^^xsd:decimal
|
|
397
398
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
398
399
|
# ----------------------------------------------------------------------
|
|
399
400
|
|
|
400
|
-
:meas47 :ddy24Cm -850.1621298701299 .
|
|
401
|
+
:meas47 :ddy24Cm "-850.1621298701299"^^xsd:decimal .
|
|
401
402
|
|
|
402
403
|
# ----------------------------------------------------------------------
|
|
403
404
|
# Proof for derived triple:
|
|
404
|
-
# :meas47 :ddL13 -15.97194805194805 .
|
|
405
|
+
# :meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
405
406
|
# It holds because the following instance of the rule body is provable:
|
|
406
407
|
# :meas47 a :Measurement .
|
|
407
|
-
# :meas47 :cL1 -0.06285714285714286 .
|
|
408
|
-
# :meas47 :cL3 15.909090909090908 .
|
|
409
|
-
# (-0.06285714285714286 15.909090909090908) math:difference -15.97194805194805 .
|
|
408
|
+
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
409
|
+
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
410
|
+
# ("-0.06285714285714286"^^xsd:decimal "15.909090909090908"^^xsd:decimal) math:difference "-15.97194805194805"^^xsd:decimal .
|
|
410
411
|
# via the schematic forward rule:
|
|
411
412
|
# {
|
|
412
413
|
# ?M a :Measurement .
|
|
@@ -418,22 +419,22 @@
|
|
|
418
419
|
# } .
|
|
419
420
|
# with substitution (on rule variables):
|
|
420
421
|
# ?M = :meas47
|
|
421
|
-
# ?X = -0.06285714285714286
|
|
422
|
-
# ?Y = 15.909090909090908
|
|
423
|
-
# ?Z = -15.97194805194805
|
|
422
|
+
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
423
|
+
# ?Y = "15.909090909090908"^^xsd:decimal
|
|
424
|
+
# ?Z = "-15.97194805194805"^^xsd:decimal
|
|
424
425
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
425
426
|
# ----------------------------------------------------------------------
|
|
426
427
|
|
|
427
|
-
:meas47 :ddL13 -15.97194805194805 .
|
|
428
|
+
:meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
428
429
|
|
|
429
430
|
# ----------------------------------------------------------------------
|
|
430
431
|
# Proof for derived triple:
|
|
431
|
-
# :meas47 :p5xCm 2.248165615039355 .
|
|
432
|
+
# :meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
432
433
|
# It holds because the following instance of the rule body is provable:
|
|
433
434
|
# :meas47 a :Measurement .
|
|
434
|
-
# :meas47 :ddy13Cm -35.90758441558442 .
|
|
435
|
-
# :meas47 :ddL13 -15.97194805194805 .
|
|
436
|
-
# (-35.90758441558442 -15.97194805194805) math:quotient 2.248165615039355 .
|
|
435
|
+
# :meas47 :ddy13Cm "-35.90758441558442"^^xsd:decimal .
|
|
436
|
+
# :meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
437
|
+
# ("-35.90758441558442"^^xsd:decimal "-15.97194805194805"^^xsd:decimal) math:quotient "2.248165615039355"^^xsd:decimal .
|
|
437
438
|
# via the schematic forward rule:
|
|
438
439
|
# {
|
|
439
440
|
# ?M a :Measurement .
|
|
@@ -445,22 +446,22 @@
|
|
|
445
446
|
# } .
|
|
446
447
|
# with substitution (on rule variables):
|
|
447
448
|
# ?M = :meas47
|
|
448
|
-
# ?X = -35.90758441558442
|
|
449
|
-
# ?Y = -15.97194805194805
|
|
450
|
-
# ?Z = 2.248165615039355
|
|
449
|
+
# ?X = "-35.90758441558442"^^xsd:decimal
|
|
450
|
+
# ?Y = "-15.97194805194805"^^xsd:decimal
|
|
451
|
+
# ?Z = "2.248165615039355"^^xsd:decimal
|
|
451
452
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
452
453
|
# ----------------------------------------------------------------------
|
|
453
454
|
|
|
454
|
-
:meas47 :p5xCm 2.248165615039355 .
|
|
455
|
+
:meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
455
456
|
|
|
456
457
|
# ----------------------------------------------------------------------
|
|
457
458
|
# Proof for derived triple:
|
|
458
|
-
# :meas47 :p6xCm 53.22845573407923 .
|
|
459
|
+
# :meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
459
460
|
# It holds because the following instance of the rule body is provable:
|
|
460
461
|
# :meas47 a :Measurement .
|
|
461
|
-
# :meas47 :ddy24Cm -850.1621298701299 .
|
|
462
|
-
# :meas47 :ddL13 -15.97194805194805 .
|
|
463
|
-
# (-850.1621298701299 -15.97194805194805) math:quotient 53.22845573407923 .
|
|
462
|
+
# :meas47 :ddy24Cm "-850.1621298701299"^^xsd:decimal .
|
|
463
|
+
# :meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
464
|
+
# ("-850.1621298701299"^^xsd:decimal "-15.97194805194805"^^xsd:decimal) math:quotient "53.22845573407923"^^xsd:decimal .
|
|
464
465
|
# via the schematic forward rule:
|
|
465
466
|
# {
|
|
466
467
|
# ?M a :Measurement .
|
|
@@ -472,22 +473,22 @@
|
|
|
472
473
|
# } .
|
|
473
474
|
# with substitution (on rule variables):
|
|
474
475
|
# ?M = :meas47
|
|
475
|
-
# ?X = -850.1621298701299
|
|
476
|
-
# ?Y = -15.97194805194805
|
|
477
|
-
# ?Z = 53.22845573407923
|
|
476
|
+
# ?X = "-850.1621298701299"^^xsd:decimal
|
|
477
|
+
# ?Y = "-15.97194805194805"^^xsd:decimal
|
|
478
|
+
# ?Z = "53.22845573407923"^^xsd:decimal
|
|
478
479
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
479
480
|
# ----------------------------------------------------------------------
|
|
480
481
|
|
|
481
|
-
:meas47 :p6xCm 53.22845573407923 .
|
|
482
|
+
:meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
482
483
|
|
|
483
484
|
# ----------------------------------------------------------------------
|
|
484
485
|
# Proof for derived triple:
|
|
485
|
-
# :meas47 :dx51Cm -7.851834384960645 .
|
|
486
|
+
# :meas47 :dx51Cm "-7.851834384960645"^^xsd:decimal .
|
|
486
487
|
# It holds because the following instance of the rule body is provable:
|
|
487
488
|
# :meas47 a :Measurement .
|
|
488
|
-
# :meas47 :p5xCm 2.248165615039355 .
|
|
489
|
+
# :meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
489
490
|
# :meas47 :p1xCm 10.1 .
|
|
490
|
-
# (2.248165615039355 10.1) math:difference -7.851834384960645 .
|
|
491
|
+
# ("2.248165615039355"^^xsd:decimal 10.1) math:difference "-7.851834384960645"^^xsd:decimal .
|
|
491
492
|
# via the schematic forward rule:
|
|
492
493
|
# {
|
|
493
494
|
# ?M a :Measurement .
|
|
@@ -499,22 +500,22 @@
|
|
|
499
500
|
# } .
|
|
500
501
|
# with substitution (on rule variables):
|
|
501
502
|
# ?M = :meas47
|
|
502
|
-
# ?X = 2.248165615039355
|
|
503
|
+
# ?X = "2.248165615039355"^^xsd:decimal
|
|
503
504
|
# ?Y = 10.1
|
|
504
|
-
# ?Z = -7.851834384960645
|
|
505
|
+
# ?Z = "-7.851834384960645"^^xsd:decimal
|
|
505
506
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
506
507
|
# ----------------------------------------------------------------------
|
|
507
508
|
|
|
508
|
-
:meas47 :dx51Cm -7.851834384960645 .
|
|
509
|
+
:meas47 :dx51Cm "-7.851834384960645"^^xsd:decimal .
|
|
509
510
|
|
|
510
511
|
# ----------------------------------------------------------------------
|
|
511
512
|
# Proof for derived triple:
|
|
512
|
-
# :meas47 :dx53Cm -1.351834384960645 .
|
|
513
|
+
# :meas47 :dx53Cm "-1.351834384960645"^^xsd:decimal .
|
|
513
514
|
# It holds because the following instance of the rule body is provable:
|
|
514
515
|
# :meas47 a :Measurement .
|
|
515
|
-
# :meas47 :p5xCm 2.248165615039355 .
|
|
516
|
+
# :meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
516
517
|
# :meas47 :p3xCm 3.6 .
|
|
517
|
-
# (2.248165615039355 3.6) math:difference -1.351834384960645 .
|
|
518
|
+
# ("2.248165615039355"^^xsd:decimal 3.6) math:difference "-1.351834384960645"^^xsd:decimal .
|
|
518
519
|
# via the schematic forward rule:
|
|
519
520
|
# {
|
|
520
521
|
# ?M a :Measurement .
|
|
@@ -526,22 +527,22 @@
|
|
|
526
527
|
# } .
|
|
527
528
|
# with substitution (on rule variables):
|
|
528
529
|
# ?M = :meas47
|
|
529
|
-
# ?X = 2.248165615039355
|
|
530
|
+
# ?X = "2.248165615039355"^^xsd:decimal
|
|
530
531
|
# ?Y = 3.6
|
|
531
|
-
# ?Z = -1.351834384960645
|
|
532
|
+
# ?Z = "-1.351834384960645"^^xsd:decimal
|
|
532
533
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
533
534
|
# ----------------------------------------------------------------------
|
|
534
535
|
|
|
535
|
-
:meas47 :dx53Cm -1.351834384960645 .
|
|
536
|
+
:meas47 :dx53Cm "-1.351834384960645"^^xsd:decimal .
|
|
536
537
|
|
|
537
538
|
# ----------------------------------------------------------------------
|
|
538
539
|
# Proof for derived triple:
|
|
539
|
-
# :meas47 :dx62Cm 8.128455734079232 .
|
|
540
|
+
# :meas47 :dx62Cm "8.128455734079232"^^xsd:decimal .
|
|
540
541
|
# It holds because the following instance of the rule body is provable:
|
|
541
542
|
# :meas47 a :Measurement .
|
|
542
|
-
# :meas47 :p6xCm 53.22845573407923 .
|
|
543
|
+
# :meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
543
544
|
# :meas47 :p2xCm 45.1 .
|
|
544
|
-
# (53.22845573407923 45.1) math:difference 8.128455734079232 .
|
|
545
|
+
# ("53.22845573407923"^^xsd:decimal 45.1) math:difference "8.128455734079232"^^xsd:decimal .
|
|
545
546
|
# via the schematic forward rule:
|
|
546
547
|
# {
|
|
547
548
|
# ?M a :Measurement .
|
|
@@ -553,22 +554,22 @@
|
|
|
553
554
|
# } .
|
|
554
555
|
# with substitution (on rule variables):
|
|
555
556
|
# ?M = :meas47
|
|
556
|
-
# ?X = 53.22845573407923
|
|
557
|
+
# ?X = "53.22845573407923"^^xsd:decimal
|
|
557
558
|
# ?Y = 45.1
|
|
558
|
-
# ?Z = 8.128455734079232
|
|
559
|
+
# ?Z = "8.128455734079232"^^xsd:decimal
|
|
559
560
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
560
561
|
# ----------------------------------------------------------------------
|
|
561
562
|
|
|
562
|
-
:meas47 :dx62Cm 8.128455734079232 .
|
|
563
|
+
:meas47 :dx62Cm "8.128455734079232"^^xsd:decimal .
|
|
563
564
|
|
|
564
565
|
# ----------------------------------------------------------------------
|
|
565
566
|
# Proof for derived triple:
|
|
566
|
-
# :meas47 :dx64Cm -1.4715442659207696 .
|
|
567
|
+
# :meas47 :dx64Cm "-1.4715442659207696"^^xsd:decimal .
|
|
567
568
|
# It holds because the following instance of the rule body is provable:
|
|
568
569
|
# :meas47 a :Measurement .
|
|
569
|
-
# :meas47 :p6xCm 53.22845573407923 .
|
|
570
|
+
# :meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
570
571
|
# :meas47 :p4xCm 54.7 .
|
|
571
|
-
# (53.22845573407923 54.7) math:difference -1.4715442659207696 .
|
|
572
|
+
# ("53.22845573407923"^^xsd:decimal 54.7) math:difference "-1.4715442659207696"^^xsd:decimal .
|
|
572
573
|
# via the schematic forward rule:
|
|
573
574
|
# {
|
|
574
575
|
# ?M a :Measurement .
|
|
@@ -580,22 +581,22 @@
|
|
|
580
581
|
# } .
|
|
581
582
|
# with substitution (on rule variables):
|
|
582
583
|
# ?M = :meas47
|
|
583
|
-
# ?X = 53.22845573407923
|
|
584
|
+
# ?X = "53.22845573407923"^^xsd:decimal
|
|
584
585
|
# ?Y = 54.7
|
|
585
|
-
# ?Z = -1.4715442659207696
|
|
586
|
+
# ?Z = "-1.4715442659207696"^^xsd:decimal
|
|
586
587
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
587
588
|
# ----------------------------------------------------------------------
|
|
588
589
|
|
|
589
|
-
:meas47 :dx64Cm -1.4715442659207696 .
|
|
590
|
+
:meas47 :dx64Cm "-1.4715442659207696"^^xsd:decimal .
|
|
590
591
|
|
|
591
592
|
# ----------------------------------------------------------------------
|
|
592
593
|
# Proof for derived triple:
|
|
593
|
-
# :meas47 :pL1dx51Cm 0.4935438756260977 .
|
|
594
|
+
# :meas47 :pL1dx51Cm "0.4935438756260977"^^xsd:decimal .
|
|
594
595
|
# It holds because the following instance of the rule body is provable:
|
|
595
596
|
# :meas47 a :Measurement .
|
|
596
|
-
# :meas47 :cL1 -0.06285714285714286 .
|
|
597
|
-
# :meas47 :dx51Cm -7.851834384960645 .
|
|
598
|
-
# (-0.06285714285714286 -7.851834384960645) math:product 0.4935438756260977 .
|
|
597
|
+
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
598
|
+
# :meas47 :dx51Cm "-7.851834384960645"^^xsd:decimal .
|
|
599
|
+
# ("-0.06285714285714286"^^xsd:decimal "-7.851834384960645"^^xsd:decimal) math:product "0.4935438756260977"^^xsd:decimal .
|
|
599
600
|
# via the schematic forward rule:
|
|
600
601
|
# {
|
|
601
602
|
# ?M a :Measurement .
|
|
@@ -607,22 +608,22 @@
|
|
|
607
608
|
# } .
|
|
608
609
|
# with substitution (on rule variables):
|
|
609
610
|
# ?M = :meas47
|
|
610
|
-
# ?X = -0.06285714285714286
|
|
611
|
-
# ?Y = -7.851834384960645
|
|
612
|
-
# ?Z = 0.4935438756260977
|
|
611
|
+
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
612
|
+
# ?Y = "-7.851834384960645"^^xsd:decimal
|
|
613
|
+
# ?Z = "0.4935438756260977"^^xsd:decimal
|
|
613
614
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
614
615
|
# ----------------------------------------------------------------------
|
|
615
616
|
|
|
616
|
-
:meas47 :pL1dx51Cm 0.4935438756260977 .
|
|
617
|
+
:meas47 :pL1dx51Cm "0.4935438756260977"^^xsd:decimal .
|
|
617
618
|
|
|
618
619
|
# ----------------------------------------------------------------------
|
|
619
620
|
# Proof for derived triple:
|
|
620
|
-
# :meas47 :pL1dx62Cm -0.5109315032849803 .
|
|
621
|
+
# :meas47 :pL1dx62Cm "-0.5109315032849803"^^xsd:decimal .
|
|
621
622
|
# It holds because the following instance of the rule body is provable:
|
|
622
623
|
# :meas47 a :Measurement .
|
|
623
|
-
# :meas47 :cL1 -0.06285714285714286 .
|
|
624
|
-
# :meas47 :dx62Cm 8.128455734079232 .
|
|
625
|
-
# (-0.06285714285714286 8.128455734079232) math:product -0.5109315032849803 .
|
|
624
|
+
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
625
|
+
# :meas47 :dx62Cm "8.128455734079232"^^xsd:decimal .
|
|
626
|
+
# ("-0.06285714285714286"^^xsd:decimal "8.128455734079232"^^xsd:decimal) math:product "-0.5109315032849803"^^xsd:decimal .
|
|
626
627
|
# via the schematic forward rule:
|
|
627
628
|
# {
|
|
628
629
|
# ?M a :Measurement .
|
|
@@ -634,22 +635,22 @@
|
|
|
634
635
|
# } .
|
|
635
636
|
# with substitution (on rule variables):
|
|
636
637
|
# ?M = :meas47
|
|
637
|
-
# ?X = -0.06285714285714286
|
|
638
|
-
# ?Y = 8.128455734079232
|
|
639
|
-
# ?Z = -0.5109315032849803
|
|
638
|
+
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
639
|
+
# ?Y = "8.128455734079232"^^xsd:decimal
|
|
640
|
+
# ?Z = "-0.5109315032849803"^^xsd:decimal
|
|
640
641
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
641
642
|
# ----------------------------------------------------------------------
|
|
642
643
|
|
|
643
|
-
:meas47 :pL1dx62Cm -0.5109315032849803 .
|
|
644
|
+
:meas47 :pL1dx62Cm "-0.5109315032849803"^^xsd:decimal .
|
|
644
645
|
|
|
645
646
|
# ----------------------------------------------------------------------
|
|
646
647
|
# Proof for derived triple:
|
|
647
|
-
# :meas47 :p5yCm 8.293543875626098 .
|
|
648
|
+
# :meas47 :p5yCm "8.293543875626098"^^xsd:decimal .
|
|
648
649
|
# It holds because the following instance of the rule body is provable:
|
|
649
650
|
# :meas47 a :Measurement .
|
|
650
|
-
# :meas47 :pL1dx51Cm 0.4935438756260977 .
|
|
651
|
+
# :meas47 :pL1dx51Cm "0.4935438756260977"^^xsd:decimal .
|
|
651
652
|
# :meas47 :p1yCm 7.8 .
|
|
652
|
-
# (0.4935438756260977 7.8) math:sum 8.293543875626098 .
|
|
653
|
+
# ("0.4935438756260977"^^xsd:decimal 7.8) math:sum "8.293543875626098"^^xsd:decimal .
|
|
653
654
|
# via the schematic forward rule:
|
|
654
655
|
# {
|
|
655
656
|
# ?M a :Measurement .
|
|
@@ -661,22 +662,22 @@
|
|
|
661
662
|
# } .
|
|
662
663
|
# with substitution (on rule variables):
|
|
663
664
|
# ?M = :meas47
|
|
664
|
-
# ?X = 0.4935438756260977
|
|
665
|
+
# ?X = "0.4935438756260977"^^xsd:decimal
|
|
665
666
|
# ?Y = 7.8
|
|
666
|
-
# ?Z = 8.293543875626098
|
|
667
|
+
# ?Z = "8.293543875626098"^^xsd:decimal
|
|
667
668
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
668
669
|
# ----------------------------------------------------------------------
|
|
669
670
|
|
|
670
|
-
:meas47 :p5yCm 8.293543875626098 .
|
|
671
|
+
:meas47 :p5yCm "8.293543875626098"^^xsd:decimal .
|
|
671
672
|
|
|
672
673
|
# ----------------------------------------------------------------------
|
|
673
674
|
# Proof for derived triple:
|
|
674
|
-
# :meas47 :p6yCm 5.0890684967150195 .
|
|
675
|
+
# :meas47 :p6yCm "5.0890684967150195"^^xsd:decimal .
|
|
675
676
|
# It holds because the following instance of the rule body is provable:
|
|
676
677
|
# :meas47 a :Measurement .
|
|
677
|
-
# :meas47 :pL1dx62Cm -0.5109315032849803 .
|
|
678
|
+
# :meas47 :pL1dx62Cm "-0.5109315032849803"^^xsd:decimal .
|
|
678
679
|
# :meas47 :p2yCm 5.6 .
|
|
679
|
-
# (-0.5109315032849803 5.6) math:sum 5.0890684967150195 .
|
|
680
|
+
# ("-0.5109315032849803"^^xsd:decimal 5.6) math:sum "5.0890684967150195"^^xsd:decimal .
|
|
680
681
|
# via the schematic forward rule:
|
|
681
682
|
# {
|
|
682
683
|
# ?M a :Measurement .
|
|
@@ -688,21 +689,21 @@
|
|
|
688
689
|
# } .
|
|
689
690
|
# with substitution (on rule variables):
|
|
690
691
|
# ?M = :meas47
|
|
691
|
-
# ?X = -0.5109315032849803
|
|
692
|
+
# ?X = "-0.5109315032849803"^^xsd:decimal
|
|
692
693
|
# ?Y = 5.6
|
|
693
|
-
# ?Z = 5.0890684967150195
|
|
694
|
+
# ?Z = "5.0890684967150195"^^xsd:decimal
|
|
694
695
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
695
696
|
# ----------------------------------------------------------------------
|
|
696
697
|
|
|
697
|
-
:meas47 :p6yCm 5.0890684967150195 .
|
|
698
|
+
:meas47 :p6yCm "5.0890684967150195"^^xsd:decimal .
|
|
698
699
|
|
|
699
700
|
# ----------------------------------------------------------------------
|
|
700
701
|
# Proof for derived triple:
|
|
701
|
-
# :meas47 :sdx53Cm2 1.8274562043619251 .
|
|
702
|
+
# :meas47 :sdx53Cm2 "1.8274562043619251"^^xsd:decimal .
|
|
702
703
|
# It holds because the following instance of the rule body is provable:
|
|
703
704
|
# :meas47 a :Measurement .
|
|
704
|
-
# :meas47 :dx53Cm -1.351834384960645 .
|
|
705
|
-
# (-1.351834384960645 2) math:exponentiation 1.8274562043619251 .
|
|
705
|
+
# :meas47 :dx53Cm "-1.351834384960645"^^xsd:decimal .
|
|
706
|
+
# ("-1.351834384960645"^^xsd:decimal 2) math:exponentiation "1.8274562043619251"^^xsd:decimal .
|
|
706
707
|
# via the schematic forward rule:
|
|
707
708
|
# {
|
|
708
709
|
# ?M a :Measurement .
|
|
@@ -713,20 +714,20 @@
|
|
|
713
714
|
# } .
|
|
714
715
|
# with substitution (on rule variables):
|
|
715
716
|
# ?M = :meas47
|
|
716
|
-
# ?X = -1.351834384960645
|
|
717
|
-
# ?Z = 1.8274562043619251
|
|
717
|
+
# ?X = "-1.351834384960645"^^xsd:decimal
|
|
718
|
+
# ?Z = "1.8274562043619251"^^xsd:decimal
|
|
718
719
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
719
720
|
# ----------------------------------------------------------------------
|
|
720
721
|
|
|
721
|
-
:meas47 :sdx53Cm2 1.8274562043619251 .
|
|
722
|
+
:meas47 :sdx53Cm2 "1.8274562043619251"^^xsd:decimal .
|
|
722
723
|
|
|
723
724
|
# ----------------------------------------------------------------------
|
|
724
725
|
# Proof for derived triple:
|
|
725
|
-
# :meas47 :sdx64Cm2 2.1654425265642967 .
|
|
726
|
+
# :meas47 :sdx64Cm2 "2.1654425265642967"^^xsd:decimal .
|
|
726
727
|
# It holds because the following instance of the rule body is provable:
|
|
727
728
|
# :meas47 a :Measurement .
|
|
728
|
-
# :meas47 :dx64Cm -1.4715442659207696 .
|
|
729
|
-
# (-1.4715442659207696 2) math:exponentiation 2.1654425265642967 .
|
|
729
|
+
# :meas47 :dx64Cm "-1.4715442659207696"^^xsd:decimal .
|
|
730
|
+
# ("-1.4715442659207696"^^xsd:decimal 2) math:exponentiation "2.1654425265642967"^^xsd:decimal .
|
|
730
731
|
# via the schematic forward rule:
|
|
731
732
|
# {
|
|
732
733
|
# ?M a :Measurement .
|
|
@@ -737,21 +738,21 @@
|
|
|
737
738
|
# } .
|
|
738
739
|
# with substitution (on rule variables):
|
|
739
740
|
# ?M = :meas47
|
|
740
|
-
# ?X = -1.4715442659207696
|
|
741
|
-
# ?Z = 2.1654425265642967
|
|
741
|
+
# ?X = "-1.4715442659207696"^^xsd:decimal
|
|
742
|
+
# ?Z = "2.1654425265642967"^^xsd:decimal
|
|
742
743
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
743
744
|
# ----------------------------------------------------------------------
|
|
744
745
|
|
|
745
|
-
:meas47 :sdx64Cm2 2.1654425265642967 .
|
|
746
|
+
:meas47 :sdx64Cm2 "2.1654425265642967"^^xsd:decimal .
|
|
746
747
|
|
|
747
748
|
# ----------------------------------------------------------------------
|
|
748
749
|
# Proof for derived triple:
|
|
749
|
-
# :meas47 :dy53Cm -21.506456124373905 .
|
|
750
|
+
# :meas47 :dy53Cm "-21.506456124373905"^^xsd:decimal .
|
|
750
751
|
# It holds because the following instance of the rule body is provable:
|
|
751
752
|
# :meas47 a :Measurement .
|
|
752
|
-
# :meas47 :p5yCm 8.293543875626098 .
|
|
753
|
+
# :meas47 :p5yCm "8.293543875626098"^^xsd:decimal .
|
|
753
754
|
# :meas47 :p3yCm 29.8 .
|
|
754
|
-
# (8.293543875626098 29.8) math:difference -21.506456124373905 .
|
|
755
|
+
# ("8.293543875626098"^^xsd:decimal 29.8) math:difference "-21.506456124373905"^^xsd:decimal .
|
|
755
756
|
# via the schematic forward rule:
|
|
756
757
|
# {
|
|
757
758
|
# ?M a :Measurement .
|
|
@@ -763,22 +764,22 @@
|
|
|
763
764
|
# } .
|
|
764
765
|
# with substitution (on rule variables):
|
|
765
766
|
# ?M = :meas47
|
|
766
|
-
# ?X = 8.293543875626098
|
|
767
|
+
# ?X = "8.293543875626098"^^xsd:decimal
|
|
767
768
|
# ?Y = 29.8
|
|
768
|
-
# ?Z = -21.506456124373905
|
|
769
|
+
# ?Z = "-21.506456124373905"^^xsd:decimal
|
|
769
770
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
770
771
|
# ----------------------------------------------------------------------
|
|
771
772
|
|
|
772
|
-
:meas47 :dy53Cm -21.506456124373905 .
|
|
773
|
+
:meas47 :dy53Cm "-21.506456124373905"^^xsd:decimal .
|
|
773
774
|
|
|
774
775
|
# ----------------------------------------------------------------------
|
|
775
776
|
# Proof for derived triple:
|
|
776
|
-
# :meas47 :dy64Cm -23.41093150328498 .
|
|
777
|
+
# :meas47 :dy64Cm "-23.41093150328498"^^xsd:decimal .
|
|
777
778
|
# It holds because the following instance of the rule body is provable:
|
|
778
779
|
# :meas47 a :Measurement .
|
|
779
|
-
# :meas47 :p6yCm 5.0890684967150195 .
|
|
780
|
+
# :meas47 :p6yCm "5.0890684967150195"^^xsd:decimal .
|
|
780
781
|
# :meas47 :p4yCm 28.5 .
|
|
781
|
-
# (5.0890684967150195 28.5) math:difference -23.41093150328498 .
|
|
782
|
+
# ("5.0890684967150195"^^xsd:decimal 28.5) math:difference "-23.41093150328498"^^xsd:decimal .
|
|
782
783
|
# via the schematic forward rule:
|
|
783
784
|
# {
|
|
784
785
|
# ?M a :Measurement .
|
|
@@ -790,21 +791,21 @@
|
|
|
790
791
|
# } .
|
|
791
792
|
# with substitution (on rule variables):
|
|
792
793
|
# ?M = :meas47
|
|
793
|
-
# ?X = 5.0890684967150195
|
|
794
|
+
# ?X = "5.0890684967150195"^^xsd:decimal
|
|
794
795
|
# ?Y = 28.5
|
|
795
|
-
# ?Z = -23.41093150328498
|
|
796
|
+
# ?Z = "-23.41093150328498"^^xsd:decimal
|
|
796
797
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
797
798
|
# ----------------------------------------------------------------------
|
|
798
799
|
|
|
799
|
-
:meas47 :dy64Cm -23.41093150328498 .
|
|
800
|
+
:meas47 :dy64Cm "-23.41093150328498"^^xsd:decimal .
|
|
800
801
|
|
|
801
802
|
# ----------------------------------------------------------------------
|
|
802
803
|
# Proof for derived triple:
|
|
803
|
-
# :meas47 :sdy53Cm2 462.52765502961984 .
|
|
804
|
+
# :meas47 :sdy53Cm2 "462.52765502961984"^^xsd:decimal .
|
|
804
805
|
# It holds because the following instance of the rule body is provable:
|
|
805
806
|
# :meas47 a :Measurement .
|
|
806
|
-
# :meas47 :dy53Cm -21.506456124373905 .
|
|
807
|
-
# (-21.506456124373905 2) math:exponentiation 462.52765502961984 .
|
|
807
|
+
# :meas47 :dy53Cm "-21.506456124373905"^^xsd:decimal .
|
|
808
|
+
# ("-21.506456124373905"^^xsd:decimal 2) math:exponentiation "462.52765502961984"^^xsd:decimal .
|
|
808
809
|
# via the schematic forward rule:
|
|
809
810
|
# {
|
|
810
811
|
# ?M a :Measurement .
|
|
@@ -815,20 +816,20 @@
|
|
|
815
816
|
# } .
|
|
816
817
|
# with substitution (on rule variables):
|
|
817
818
|
# ?M = :meas47
|
|
818
|
-
# ?X = -21.506456124373905
|
|
819
|
-
# ?Z = 462.52765502961984
|
|
819
|
+
# ?X = "-21.506456124373905"^^xsd:decimal
|
|
820
|
+
# ?Z = "462.52765502961984"^^xsd:decimal
|
|
820
821
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
821
822
|
# ----------------------------------------------------------------------
|
|
822
823
|
|
|
823
|
-
:meas47 :sdy53Cm2 462.52765502961984 .
|
|
824
|
+
:meas47 :sdy53Cm2 "462.52765502961984"^^xsd:decimal .
|
|
824
825
|
|
|
825
826
|
# ----------------------------------------------------------------------
|
|
826
827
|
# Proof for derived triple:
|
|
827
|
-
# :meas47 :sdy64Cm2 548.0717138515012 .
|
|
828
|
+
# :meas47 :sdy64Cm2 "548.0717138515012"^^xsd:decimal .
|
|
828
829
|
# It holds because the following instance of the rule body is provable:
|
|
829
830
|
# :meas47 a :Measurement .
|
|
830
|
-
# :meas47 :dy64Cm -23.41093150328498 .
|
|
831
|
-
# (-23.41093150328498 2) math:exponentiation 548.0717138515012 .
|
|
831
|
+
# :meas47 :dy64Cm "-23.41093150328498"^^xsd:decimal .
|
|
832
|
+
# ("-23.41093150328498"^^xsd:decimal 2) math:exponentiation "548.0717138515012"^^xsd:decimal .
|
|
832
833
|
# via the schematic forward rule:
|
|
833
834
|
# {
|
|
834
835
|
# ?M a :Measurement .
|
|
@@ -839,21 +840,21 @@
|
|
|
839
840
|
# } .
|
|
840
841
|
# with substitution (on rule variables):
|
|
841
842
|
# ?M = :meas47
|
|
842
|
-
# ?X = -23.41093150328498
|
|
843
|
-
# ?Z = 548.0717138515012
|
|
843
|
+
# ?X = "-23.41093150328498"^^xsd:decimal
|
|
844
|
+
# ?Z = "548.0717138515012"^^xsd:decimal
|
|
844
845
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
845
846
|
# ----------------------------------------------------------------------
|
|
846
847
|
|
|
847
|
-
:meas47 :sdy64Cm2 548.0717138515012 .
|
|
848
|
+
:meas47 :sdy64Cm2 "548.0717138515012"^^xsd:decimal .
|
|
848
849
|
|
|
849
850
|
# ----------------------------------------------------------------------
|
|
850
851
|
# Proof for derived triple:
|
|
851
|
-
# :meas47 :ssd53Cm2 464.35511123398175 .
|
|
852
|
+
# :meas47 :ssd53Cm2 "464.35511123398175"^^xsd:decimal .
|
|
852
853
|
# It holds because the following instance of the rule body is provable:
|
|
853
854
|
# :meas47 a :Measurement .
|
|
854
|
-
# :meas47 :sdx53Cm2 1.8274562043619251 .
|
|
855
|
-
# :meas47 :sdy53Cm2 462.52765502961984 .
|
|
856
|
-
# (1.8274562043619251 462.52765502961984) math:sum 464.35511123398175 .
|
|
855
|
+
# :meas47 :sdx53Cm2 "1.8274562043619251"^^xsd:decimal .
|
|
856
|
+
# :meas47 :sdy53Cm2 "462.52765502961984"^^xsd:decimal .
|
|
857
|
+
# ("1.8274562043619251"^^xsd:decimal "462.52765502961984"^^xsd:decimal) math:sum "464.35511123398175"^^xsd:decimal .
|
|
857
858
|
# via the schematic forward rule:
|
|
858
859
|
# {
|
|
859
860
|
# ?M a :Measurement .
|
|
@@ -865,22 +866,22 @@
|
|
|
865
866
|
# } .
|
|
866
867
|
# with substitution (on rule variables):
|
|
867
868
|
# ?M = :meas47
|
|
868
|
-
# ?X = 1.8274562043619251
|
|
869
|
-
# ?Y = 462.52765502961984
|
|
870
|
-
# ?Z = 464.35511123398175
|
|
869
|
+
# ?X = "1.8274562043619251"^^xsd:decimal
|
|
870
|
+
# ?Y = "462.52765502961984"^^xsd:decimal
|
|
871
|
+
# ?Z = "464.35511123398175"^^xsd:decimal
|
|
871
872
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
872
873
|
# ----------------------------------------------------------------------
|
|
873
874
|
|
|
874
|
-
:meas47 :ssd53Cm2 464.35511123398175 .
|
|
875
|
+
:meas47 :ssd53Cm2 "464.35511123398175"^^xsd:decimal .
|
|
875
876
|
|
|
876
877
|
# ----------------------------------------------------------------------
|
|
877
878
|
# Proof for derived triple:
|
|
878
|
-
# :meas47 :ssd64Cm2 550.2371563780655 .
|
|
879
|
+
# :meas47 :ssd64Cm2 "550.2371563780655"^^xsd:decimal .
|
|
879
880
|
# It holds because the following instance of the rule body is provable:
|
|
880
881
|
# :meas47 a :Measurement .
|
|
881
|
-
# :meas47 :sdx64Cm2 2.1654425265642967 .
|
|
882
|
-
# :meas47 :sdy64Cm2 548.0717138515012 .
|
|
883
|
-
# (2.1654425265642967 548.0717138515012) math:sum 550.2371563780655 .
|
|
882
|
+
# :meas47 :sdx64Cm2 "2.1654425265642967"^^xsd:decimal .
|
|
883
|
+
# :meas47 :sdy64Cm2 "548.0717138515012"^^xsd:decimal .
|
|
884
|
+
# ("2.1654425265642967"^^xsd:decimal "548.0717138515012"^^xsd:decimal) math:sum "550.2371563780655"^^xsd:decimal .
|
|
884
885
|
# via the schematic forward rule:
|
|
885
886
|
# {
|
|
886
887
|
# ?M a :Measurement .
|
|
@@ -892,21 +893,21 @@
|
|
|
892
893
|
# } .
|
|
893
894
|
# with substitution (on rule variables):
|
|
894
895
|
# ?M = :meas47
|
|
895
|
-
# ?X = 2.1654425265642967
|
|
896
|
-
# ?Y = 548.0717138515012
|
|
897
|
-
# ?Z = 550.2371563780655
|
|
896
|
+
# ?X = "2.1654425265642967"^^xsd:decimal
|
|
897
|
+
# ?Y = "548.0717138515012"^^xsd:decimal
|
|
898
|
+
# ?Z = "550.2371563780655"^^xsd:decimal
|
|
898
899
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
899
900
|
# ----------------------------------------------------------------------
|
|
900
901
|
|
|
901
|
-
:meas47 :ssd64Cm2 550.2371563780655 .
|
|
902
|
+
:meas47 :ssd64Cm2 "550.2371563780655"^^xsd:decimal .
|
|
902
903
|
|
|
903
904
|
# ----------------------------------------------------------------------
|
|
904
905
|
# Proof for derived triple:
|
|
905
|
-
# :meas47 :d53Cm 21.548900464617255 .
|
|
906
|
+
# :meas47 :d53Cm "21.548900464617255"^^xsd:decimal .
|
|
906
907
|
# It holds because the following instance of the rule body is provable:
|
|
907
908
|
# :meas47 a :Measurement .
|
|
908
|
-
# :meas47 :ssd53Cm2 464.35511123398175 .
|
|
909
|
-
# (464.35511123398175 0.5) math:exponentiation 21.548900464617255 .
|
|
909
|
+
# :meas47 :ssd53Cm2 "464.35511123398175"^^xsd:decimal .
|
|
910
|
+
# ("464.35511123398175"^^xsd:decimal 0.5) math:exponentiation "21.548900464617255"^^xsd:decimal .
|
|
910
911
|
# via the schematic forward rule:
|
|
911
912
|
# {
|
|
912
913
|
# ?M a :Measurement .
|
|
@@ -917,20 +918,20 @@
|
|
|
917
918
|
# } .
|
|
918
919
|
# with substitution (on rule variables):
|
|
919
920
|
# ?M = :meas47
|
|
920
|
-
# ?X = 464.35511123398175
|
|
921
|
-
# ?Z = 21.548900464617255
|
|
921
|
+
# ?X = "464.35511123398175"^^xsd:decimal
|
|
922
|
+
# ?Z = "21.548900464617255"^^xsd:decimal
|
|
922
923
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
923
924
|
# ----------------------------------------------------------------------
|
|
924
925
|
|
|
925
|
-
:meas47 :d53Cm 21.548900464617255 .
|
|
926
|
+
:meas47 :d53Cm "21.548900464617255"^^xsd:decimal .
|
|
926
927
|
|
|
927
928
|
# ----------------------------------------------------------------------
|
|
928
929
|
# Proof for derived triple:
|
|
929
|
-
# :meas47 :d64Cm 23.45713444515475 .
|
|
930
|
+
# :meas47 :d64Cm "23.45713444515475"^^xsd:decimal .
|
|
930
931
|
# It holds because the following instance of the rule body is provable:
|
|
931
932
|
# :meas47 a :Measurement .
|
|
932
|
-
# :meas47 :ssd64Cm2 550.2371563780655 .
|
|
933
|
-
# (550.2371563780655 0.5) math:exponentiation 23.45713444515475 .
|
|
933
|
+
# :meas47 :ssd64Cm2 "550.2371563780655"^^xsd:decimal .
|
|
934
|
+
# ("550.2371563780655"^^xsd:decimal 0.5) math:exponentiation "23.45713444515475"^^xsd:decimal .
|
|
934
935
|
# via the schematic forward rule:
|
|
935
936
|
# {
|
|
936
937
|
# ?M a :Measurement .
|
|
@@ -941,21 +942,21 @@
|
|
|
941
942
|
# } .
|
|
942
943
|
# with substitution (on rule variables):
|
|
943
944
|
# ?M = :meas47
|
|
944
|
-
# ?X = 550.2371563780655
|
|
945
|
-
# ?Z = 23.45713444515475
|
|
945
|
+
# ?X = "550.2371563780655"^^xsd:decimal
|
|
946
|
+
# ?Z = "23.45713444515475"^^xsd:decimal
|
|
946
947
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
947
948
|
# ----------------------------------------------------------------------
|
|
948
949
|
|
|
949
|
-
:meas47 :d64Cm 23.45713444515475 .
|
|
950
|
+
:meas47 :d64Cm "23.45713444515475"^^xsd:decimal .
|
|
950
951
|
|
|
951
952
|
# ----------------------------------------------------------------------
|
|
952
953
|
# Proof for derived triple:
|
|
953
|
-
# :meas47 :dCm -1.9082339805374957 .
|
|
954
|
+
# :meas47 :dCm "-1.9082339805374957"^^xsd:decimal .
|
|
954
955
|
# It holds because the following instance of the rule body is provable:
|
|
955
956
|
# :meas47 a :Measurement .
|
|
956
|
-
# :meas47 :d53Cm 21.548900464617255 .
|
|
957
|
-
# :meas47 :d64Cm 23.45713444515475 .
|
|
958
|
-
# (21.548900464617255 23.45713444515475) math:difference -1.9082339805374957 .
|
|
957
|
+
# :meas47 :d53Cm "21.548900464617255"^^xsd:decimal .
|
|
958
|
+
# :meas47 :d64Cm "23.45713444515475"^^xsd:decimal .
|
|
959
|
+
# ("21.548900464617255"^^xsd:decimal "23.45713444515475"^^xsd:decimal) math:difference "-1.9082339805374957"^^xsd:decimal .
|
|
959
960
|
# via the schematic forward rule:
|
|
960
961
|
# {
|
|
961
962
|
# ?M a :Measurement .
|
|
@@ -967,21 +968,21 @@
|
|
|
967
968
|
# } .
|
|
968
969
|
# with substitution (on rule variables):
|
|
969
970
|
# ?M = :meas47
|
|
970
|
-
# ?X = 21.548900464617255
|
|
971
|
-
# ?Y = 23.45713444515475
|
|
972
|
-
# ?Z = -1.9082339805374957
|
|
971
|
+
# ?X = "21.548900464617255"^^xsd:decimal
|
|
972
|
+
# ?Y = "23.45713444515475"^^xsd:decimal
|
|
973
|
+
# ?Z = "-1.9082339805374957"^^xsd:decimal
|
|
973
974
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
974
975
|
# ----------------------------------------------------------------------
|
|
975
976
|
|
|
976
|
-
:meas47 :dCm -1.9082339805374957 .
|
|
977
|
+
:meas47 :dCm "-1.9082339805374957"^^xsd:decimal .
|
|
977
978
|
|
|
978
979
|
# ----------------------------------------------------------------------
|
|
979
980
|
# Proof for derived triple:
|
|
980
981
|
# :meas47 a :LLDAlarm .
|
|
981
982
|
# It holds because the following instance of the rule body is provable:
|
|
982
983
|
# :meas47 a :Measurement .
|
|
983
|
-
# :meas47 :dCm -1.9082339805374957 .
|
|
984
|
-
# -1.9082339805374957 math:lessThan -1.25 .
|
|
984
|
+
# :meas47 :dCm "-1.9082339805374957"^^xsd:decimal .
|
|
985
|
+
# "-1.9082339805374957"^^xsd:decimal math:lessThan -1.25 .
|
|
985
986
|
# via the schematic forward rule:
|
|
986
987
|
# {
|
|
987
988
|
# ?M a :Measurement .
|
|
@@ -992,7 +993,7 @@
|
|
|
992
993
|
# } .
|
|
993
994
|
# with substitution (on rule variables):
|
|
994
995
|
# ?M = :meas47
|
|
995
|
-
# ?X = -1.9082339805374957
|
|
996
|
+
# ?X = "-1.9082339805374957"^^xsd:decimal
|
|
996
997
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
997
998
|
# ----------------------------------------------------------------------
|
|
998
999
|
|