eyeling 1.6.4 → 1.6.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/cobalt-kepler-kitchen.n3 +3544 -3543
- package/examples/output/complex.n3 +25 -24
- package/examples/output/control-system.n3 +21 -20
- package/examples/output/cranberry-calculus.n3 +509 -508
- package/examples/output/drone-corridor-planner.n3 +154 -153
- package/examples/output/ev-roundtrip-planner.n3 +81 -80
- package/examples/output/gps.n3 +15 -14
- package/examples/output/jade-eigen-loom.n3 +2033 -2032
- package/examples/output/light-eaters.n3 +51 -50
- package/examples/output/lldm.n3 +244 -243
- package/examples/output/math-builtins-tests.n3 +40 -40
- package/examples/output/oslo-steps-library-scholarly.n3 +197 -196
- package/examples/output/oslo-steps-workflow-composition.n3 +29 -28
- package/examples/output/pi.n3 +5 -4
- package/examples/output/ruby-runge-workshop.n3 +106 -105
- package/examples/output/saffron-slopeworks.n3 +455 -454
- package/examples/output/spectral-week.n3 +81 -80
- package/examples/output/topaz-markov-mill.n3 +1618 -1617
- package/examples/output/ultramarine-simpson-forge.n3 +1213 -1212
- package/eyeling.js +315 -134
- package/package.json +1 -1
|
@@ -1,22 +1,23 @@
|
|
|
1
1
|
@prefix : <http://example.org/ultramarine-simpson#> .
|
|
2
|
+
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
2
3
|
|
|
3
4
|
# ----------------------------------------------------------------------
|
|
4
5
|
# Proof for derived triple:
|
|
5
|
-
# _:b5 :y 4.909297426825682 .
|
|
6
|
+
# _:b5 :y "4.909297426825682"^^xsd:decimal .
|
|
6
7
|
# It holds because the following instance of the rule body is provable:
|
|
7
8
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
8
9
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
9
10
|
# _:b5 :x 2.0 .
|
|
10
11
|
# _:b5 :coef 1.0 .
|
|
11
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
12
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
13
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
14
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
15
|
-
# (2.0 2.0) math:product 4 .
|
|
16
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
17
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
18
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
19
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
12
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
13
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
14
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
15
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
16
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
17
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
18
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
19
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
20
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
20
21
|
# via the schematic forward rule:
|
|
21
22
|
# {
|
|
22
23
|
# :Simpson1 :samples ?ss .
|
|
@@ -46,40 +47,40 @@
|
|
|
46
47
|
# } .
|
|
47
48
|
# with substitution (on rule variables):
|
|
48
49
|
# ?c = 1.0
|
|
49
|
-
# ?cosx = -0.4161468365471424
|
|
50
|
-
# ?ds = 3.720753081997118
|
|
51
|
-
# ?dy = 3.5838531634528574
|
|
52
|
-
# ?dy2 = 12.844003497191053
|
|
53
|
-
# ?onePlus = 13.844003497191053
|
|
50
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
51
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
52
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
53
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
54
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
54
55
|
# ?s = _:b5
|
|
55
|
-
# ?sinx = 0.9092974268256817
|
|
56
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
56
57
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
57
|
-
# ?twox = 4
|
|
58
|
+
# ?twox = "4"^^xsd:decimal
|
|
58
59
|
# ?x = 2.0
|
|
59
|
-
# ?x2 = 4
|
|
60
|
-
# ?y = 4.909297426825682
|
|
60
|
+
# ?x2 = "4"^^xsd:decimal
|
|
61
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
61
62
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
62
63
|
# ----------------------------------------------------------------------
|
|
63
64
|
|
|
64
|
-
_:b5 :y 4.909297426825682 .
|
|
65
|
+
_:b5 :y "4.909297426825682"^^xsd:decimal .
|
|
65
66
|
|
|
66
67
|
# ----------------------------------------------------------------------
|
|
67
68
|
# Proof for derived triple:
|
|
68
|
-
# _:b5 :dy 3.5838531634528574 .
|
|
69
|
+
# _:b5 :dy "3.5838531634528574"^^xsd:decimal .
|
|
69
70
|
# It holds because the following instance of the rule body is provable:
|
|
70
71
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
71
72
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
72
73
|
# _:b5 :x 2.0 .
|
|
73
74
|
# _:b5 :coef 1.0 .
|
|
74
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
75
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
76
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
77
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
78
|
-
# (2.0 2.0) math:product 4 .
|
|
79
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
80
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
81
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
82
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
75
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
76
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
77
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
78
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
79
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
80
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
81
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
82
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
83
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
83
84
|
# via the schematic forward rule:
|
|
84
85
|
# {
|
|
85
86
|
# :Simpson1 :samples ?ss .
|
|
@@ -109,40 +110,40 @@ _:b5 :y 4.909297426825682 .
|
|
|
109
110
|
# } .
|
|
110
111
|
# with substitution (on rule variables):
|
|
111
112
|
# ?c = 1.0
|
|
112
|
-
# ?cosx = -0.4161468365471424
|
|
113
|
-
# ?ds = 3.720753081997118
|
|
114
|
-
# ?dy = 3.5838531634528574
|
|
115
|
-
# ?dy2 = 12.844003497191053
|
|
116
|
-
# ?onePlus = 13.844003497191053
|
|
113
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
114
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
115
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
116
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
117
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
117
118
|
# ?s = _:b5
|
|
118
|
-
# ?sinx = 0.9092974268256817
|
|
119
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
119
120
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
120
|
-
# ?twox = 4
|
|
121
|
+
# ?twox = "4"^^xsd:decimal
|
|
121
122
|
# ?x = 2.0
|
|
122
|
-
# ?x2 = 4
|
|
123
|
-
# ?y = 4.909297426825682
|
|
123
|
+
# ?x2 = "4"^^xsd:decimal
|
|
124
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
124
125
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
125
126
|
# ----------------------------------------------------------------------
|
|
126
127
|
|
|
127
|
-
_:b5 :dy 3.5838531634528574 .
|
|
128
|
+
_:b5 :dy "3.5838531634528574"^^xsd:decimal .
|
|
128
129
|
|
|
129
130
|
# ----------------------------------------------------------------------
|
|
130
131
|
# Proof for derived triple:
|
|
131
|
-
# _:b5 :ds 3.720753081997118 .
|
|
132
|
+
# _:b5 :ds "3.720753081997118"^^xsd:decimal .
|
|
132
133
|
# It holds because the following instance of the rule body is provable:
|
|
133
134
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
134
135
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
135
136
|
# _:b5 :x 2.0 .
|
|
136
137
|
# _:b5 :coef 1.0 .
|
|
137
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
138
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
139
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
140
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
141
|
-
# (2.0 2.0) math:product 4 .
|
|
142
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
143
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
144
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
145
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
138
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
139
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
140
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
141
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
142
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
143
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
144
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
145
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
146
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
146
147
|
# via the schematic forward rule:
|
|
147
148
|
# {
|
|
148
149
|
# :Simpson1 :samples ?ss .
|
|
@@ -172,22 +173,22 @@ _:b5 :dy 3.5838531634528574 .
|
|
|
172
173
|
# } .
|
|
173
174
|
# with substitution (on rule variables):
|
|
174
175
|
# ?c = 1.0
|
|
175
|
-
# ?cosx = -0.4161468365471424
|
|
176
|
-
# ?ds = 3.720753081997118
|
|
177
|
-
# ?dy = 3.5838531634528574
|
|
178
|
-
# ?dy2 = 12.844003497191053
|
|
179
|
-
# ?onePlus = 13.844003497191053
|
|
176
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
177
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
178
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
179
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
180
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
180
181
|
# ?s = _:b5
|
|
181
|
-
# ?sinx = 0.9092974268256817
|
|
182
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
182
183
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
183
|
-
# ?twox = 4
|
|
184
|
+
# ?twox = "4"^^xsd:decimal
|
|
184
185
|
# ?x = 2.0
|
|
185
|
-
# ?x2 = 4
|
|
186
|
-
# ?y = 4.909297426825682
|
|
186
|
+
# ?x2 = "4"^^xsd:decimal
|
|
187
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
187
188
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
188
189
|
# ----------------------------------------------------------------------
|
|
189
190
|
|
|
190
|
-
_:b5 :ds 3.720753081997118 .
|
|
191
|
+
_:b5 :ds "3.720753081997118"^^xsd:decimal .
|
|
191
192
|
|
|
192
193
|
# ----------------------------------------------------------------------
|
|
193
194
|
# Proof for derived triple:
|
|
@@ -197,15 +198,15 @@ _:b5 :ds 3.720753081997118 .
|
|
|
197
198
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
198
199
|
# _:b5 :x 2.0 .
|
|
199
200
|
# _:b5 :coef 1.0 .
|
|
200
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
201
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
202
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
203
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
204
|
-
# (2.0 2.0) math:product 4 .
|
|
205
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
206
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
207
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
208
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
201
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
202
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
203
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
204
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
205
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
206
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
207
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
208
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
209
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
209
210
|
# via the schematic forward rule:
|
|
210
211
|
# {
|
|
211
212
|
# :Simpson1 :samples ?ss .
|
|
@@ -235,18 +236,18 @@ _:b5 :ds 3.720753081997118 .
|
|
|
235
236
|
# } .
|
|
236
237
|
# with substitution (on rule variables):
|
|
237
238
|
# ?c = 1.0
|
|
238
|
-
# ?cosx = -0.4161468365471424
|
|
239
|
-
# ?ds = 3.720753081997118
|
|
240
|
-
# ?dy = 3.5838531634528574
|
|
241
|
-
# ?dy2 = 12.844003497191053
|
|
242
|
-
# ?onePlus = 13.844003497191053
|
|
239
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
240
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
241
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
242
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
243
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
243
244
|
# ?s = _:b5
|
|
244
|
-
# ?sinx = 0.9092974268256817
|
|
245
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
245
246
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
246
|
-
# ?twox = 4
|
|
247
|
+
# ?twox = "4"^^xsd:decimal
|
|
247
248
|
# ?x = 2.0
|
|
248
|
-
# ?x2 = 4
|
|
249
|
-
# ?y = 4.909297426825682
|
|
249
|
+
# ?x2 = "4"^^xsd:decimal
|
|
250
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
250
251
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
251
252
|
# ----------------------------------------------------------------------
|
|
252
253
|
|
|
@@ -260,15 +261,15 @@ _:sk_0 :sample _:b5 .
|
|
|
260
261
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
261
262
|
# _:b5 :x 2.0 .
|
|
262
263
|
# _:b5 :coef 1.0 .
|
|
263
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
264
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
265
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
266
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
267
|
-
# (2.0 2.0) math:product 4 .
|
|
268
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
269
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
270
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
271
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
264
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
265
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
266
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
267
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
268
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
269
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
270
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
271
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
272
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
272
273
|
# via the schematic forward rule:
|
|
273
274
|
# {
|
|
274
275
|
# :Simpson1 :samples ?ss .
|
|
@@ -298,18 +299,18 @@ _:sk_0 :sample _:b5 .
|
|
|
298
299
|
# } .
|
|
299
300
|
# with substitution (on rule variables):
|
|
300
301
|
# ?c = 1.0
|
|
301
|
-
# ?cosx = -0.4161468365471424
|
|
302
|
-
# ?ds = 3.720753081997118
|
|
303
|
-
# ?dy = 3.5838531634528574
|
|
304
|
-
# ?dy2 = 12.844003497191053
|
|
305
|
-
# ?onePlus = 13.844003497191053
|
|
302
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
303
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
304
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
305
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
306
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
306
307
|
# ?s = _:b5
|
|
307
|
-
# ?sinx = 0.9092974268256817
|
|
308
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
308
309
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
309
|
-
# ?twox = 4
|
|
310
|
+
# ?twox = "4"^^xsd:decimal
|
|
310
311
|
# ?x = 2.0
|
|
311
|
-
# ?x2 = 4
|
|
312
|
-
# ?y = 4.909297426825682
|
|
312
|
+
# ?x2 = "4"^^xsd:decimal
|
|
313
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
313
314
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
314
315
|
# ----------------------------------------------------------------------
|
|
315
316
|
|
|
@@ -323,15 +324,15 @@ _:sk_0 :x 2.0 .
|
|
|
323
324
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
324
325
|
# _:b5 :x 2.0 .
|
|
325
326
|
# _:b5 :coef 1.0 .
|
|
326
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
327
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
328
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
329
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
330
|
-
# (2.0 2.0) math:product 4 .
|
|
331
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
332
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
333
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
334
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
327
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
328
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
329
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
330
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
331
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
332
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
333
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
334
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
335
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
335
336
|
# via the schematic forward rule:
|
|
336
337
|
# {
|
|
337
338
|
# :Simpson1 :samples ?ss .
|
|
@@ -361,18 +362,18 @@ _:sk_0 :x 2.0 .
|
|
|
361
362
|
# } .
|
|
362
363
|
# with substitution (on rule variables):
|
|
363
364
|
# ?c = 1.0
|
|
364
|
-
# ?cosx = -0.4161468365471424
|
|
365
|
-
# ?ds = 3.720753081997118
|
|
366
|
-
# ?dy = 3.5838531634528574
|
|
367
|
-
# ?dy2 = 12.844003497191053
|
|
368
|
-
# ?onePlus = 13.844003497191053
|
|
365
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
366
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
367
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
368
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
369
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
369
370
|
# ?s = _:b5
|
|
370
|
-
# ?sinx = 0.9092974268256817
|
|
371
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
371
372
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
372
|
-
# ?twox = 4
|
|
373
|
+
# ?twox = "4"^^xsd:decimal
|
|
373
374
|
# ?x = 2.0
|
|
374
|
-
# ?x2 = 4
|
|
375
|
-
# ?y = 4.909297426825682
|
|
375
|
+
# ?x2 = "4"^^xsd:decimal
|
|
376
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
376
377
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
377
378
|
# ----------------------------------------------------------------------
|
|
378
379
|
|
|
@@ -380,21 +381,21 @@ _:sk_0 :coef 1.0 .
|
|
|
380
381
|
|
|
381
382
|
# ----------------------------------------------------------------------
|
|
382
383
|
# Proof for derived triple:
|
|
383
|
-
# _:sk_0 :y 4.909297426825682 .
|
|
384
|
+
# _:sk_0 :y "4.909297426825682"^^xsd:decimal .
|
|
384
385
|
# It holds because the following instance of the rule body is provable:
|
|
385
386
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
386
387
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
387
388
|
# _:b5 :x 2.0 .
|
|
388
389
|
# _:b5 :coef 1.0 .
|
|
389
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
390
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
391
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
392
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
393
|
-
# (2.0 2.0) math:product 4 .
|
|
394
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
395
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
396
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
397
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
390
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
391
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
392
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
393
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
394
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
395
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
396
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
397
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
398
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
398
399
|
# via the schematic forward rule:
|
|
399
400
|
# {
|
|
400
401
|
# :Simpson1 :samples ?ss .
|
|
@@ -424,40 +425,40 @@ _:sk_0 :coef 1.0 .
|
|
|
424
425
|
# } .
|
|
425
426
|
# with substitution (on rule variables):
|
|
426
427
|
# ?c = 1.0
|
|
427
|
-
# ?cosx = -0.4161468365471424
|
|
428
|
-
# ?ds = 3.720753081997118
|
|
429
|
-
# ?dy = 3.5838531634528574
|
|
430
|
-
# ?dy2 = 12.844003497191053
|
|
431
|
-
# ?onePlus = 13.844003497191053
|
|
428
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
429
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
430
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
431
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
432
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
432
433
|
# ?s = _:b5
|
|
433
|
-
# ?sinx = 0.9092974268256817
|
|
434
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
434
435
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
435
|
-
# ?twox = 4
|
|
436
|
+
# ?twox = "4"^^xsd:decimal
|
|
436
437
|
# ?x = 2.0
|
|
437
|
-
# ?x2 = 4
|
|
438
|
-
# ?y = 4.909297426825682
|
|
438
|
+
# ?x2 = "4"^^xsd:decimal
|
|
439
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
439
440
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
440
441
|
# ----------------------------------------------------------------------
|
|
441
442
|
|
|
442
|
-
_:sk_0 :y 4.909297426825682 .
|
|
443
|
+
_:sk_0 :y "4.909297426825682"^^xsd:decimal .
|
|
443
444
|
|
|
444
445
|
# ----------------------------------------------------------------------
|
|
445
446
|
# Proof for derived triple:
|
|
446
|
-
# _:sk_0 :dy 3.5838531634528574 .
|
|
447
|
+
# _:sk_0 :dy "3.5838531634528574"^^xsd:decimal .
|
|
447
448
|
# It holds because the following instance of the rule body is provable:
|
|
448
449
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
449
450
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
450
451
|
# _:b5 :x 2.0 .
|
|
451
452
|
# _:b5 :coef 1.0 .
|
|
452
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
453
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
454
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
455
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
456
|
-
# (2.0 2.0) math:product 4 .
|
|
457
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
458
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
459
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
460
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
453
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
454
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
455
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
456
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
457
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
458
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
459
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
460
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
461
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
461
462
|
# via the schematic forward rule:
|
|
462
463
|
# {
|
|
463
464
|
# :Simpson1 :samples ?ss .
|
|
@@ -487,40 +488,40 @@ _:sk_0 :y 4.909297426825682 .
|
|
|
487
488
|
# } .
|
|
488
489
|
# with substitution (on rule variables):
|
|
489
490
|
# ?c = 1.0
|
|
490
|
-
# ?cosx = -0.4161468365471424
|
|
491
|
-
# ?ds = 3.720753081997118
|
|
492
|
-
# ?dy = 3.5838531634528574
|
|
493
|
-
# ?dy2 = 12.844003497191053
|
|
494
|
-
# ?onePlus = 13.844003497191053
|
|
491
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
492
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
493
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
494
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
495
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
495
496
|
# ?s = _:b5
|
|
496
|
-
# ?sinx = 0.9092974268256817
|
|
497
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
497
498
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
498
|
-
# ?twox = 4
|
|
499
|
+
# ?twox = "4"^^xsd:decimal
|
|
499
500
|
# ?x = 2.0
|
|
500
|
-
# ?x2 = 4
|
|
501
|
-
# ?y = 4.909297426825682
|
|
501
|
+
# ?x2 = "4"^^xsd:decimal
|
|
502
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
502
503
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
503
504
|
# ----------------------------------------------------------------------
|
|
504
505
|
|
|
505
|
-
_:sk_0 :dy 3.5838531634528574 .
|
|
506
|
+
_:sk_0 :dy "3.5838531634528574"^^xsd:decimal .
|
|
506
507
|
|
|
507
508
|
# ----------------------------------------------------------------------
|
|
508
509
|
# Proof for derived triple:
|
|
509
|
-
# _:sk_0 :ds 3.720753081997118 .
|
|
510
|
+
# _:sk_0 :ds "3.720753081997118"^^xsd:decimal .
|
|
510
511
|
# It holds because the following instance of the rule body is provable:
|
|
511
512
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
512
513
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
513
514
|
# _:b5 :x 2.0 .
|
|
514
515
|
# _:b5 :coef 1.0 .
|
|
515
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
516
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
517
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
518
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
519
|
-
# (2.0 2.0) math:product 4 .
|
|
520
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
521
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
522
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
523
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
516
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
517
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
518
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
519
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
520
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
521
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
522
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
523
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
524
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
524
525
|
# via the schematic forward rule:
|
|
525
526
|
# {
|
|
526
527
|
# :Simpson1 :samples ?ss .
|
|
@@ -550,22 +551,22 @@ _:sk_0 :dy 3.5838531634528574 .
|
|
|
550
551
|
# } .
|
|
551
552
|
# with substitution (on rule variables):
|
|
552
553
|
# ?c = 1.0
|
|
553
|
-
# ?cosx = -0.4161468365471424
|
|
554
|
-
# ?ds = 3.720753081997118
|
|
555
|
-
# ?dy = 3.5838531634528574
|
|
556
|
-
# ?dy2 = 12.844003497191053
|
|
557
|
-
# ?onePlus = 13.844003497191053
|
|
554
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
555
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
556
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
557
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
558
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
558
559
|
# ?s = _:b5
|
|
559
|
-
# ?sinx = 0.9092974268256817
|
|
560
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
560
561
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
561
|
-
# ?twox = 4
|
|
562
|
+
# ?twox = "4"^^xsd:decimal
|
|
562
563
|
# ?x = 2.0
|
|
563
|
-
# ?x2 = 4
|
|
564
|
-
# ?y = 4.909297426825682
|
|
564
|
+
# ?x2 = "4"^^xsd:decimal
|
|
565
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
565
566
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
566
567
|
# ----------------------------------------------------------------------
|
|
567
568
|
|
|
568
|
-
_:sk_0 :ds 3.720753081997118 .
|
|
569
|
+
_:sk_0 :ds "3.720753081997118"^^xsd:decimal .
|
|
569
570
|
|
|
570
571
|
# ----------------------------------------------------------------------
|
|
571
572
|
# Proof for derived triple:
|
|
@@ -575,15 +576,15 @@ _:sk_0 :ds 3.720753081997118 .
|
|
|
575
576
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
|
|
576
577
|
# _:b5 :x 2.0 .
|
|
577
578
|
# _:b5 :coef 1.0 .
|
|
578
|
-
# 2.0 math:sin 0.9092974268256817 .
|
|
579
|
-
# (2.0 2.0) math:exponentiation 4 .
|
|
580
|
-
# (0.9092974268256817 4) math:sum 4.909297426825682 .
|
|
581
|
-
# 2.0 math:cos -0.4161468365471424 .
|
|
582
|
-
# (2.0 2.0) math:product 4 .
|
|
583
|
-
# (-0.4161468365471424 4) math:sum 3.5838531634528574 .
|
|
584
|
-
# (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
|
|
585
|
-
# (1.0 12.844003497191053) math:sum 13.844003497191053 .
|
|
586
|
-
# (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
|
|
579
|
+
# 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
|
|
580
|
+
# (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
|
|
581
|
+
# ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
|
|
582
|
+
# 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
|
|
583
|
+
# (2.0 2.0) math:product "4"^^xsd:decimal .
|
|
584
|
+
# ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
|
|
585
|
+
# ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
|
|
586
|
+
# (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
|
|
587
|
+
# ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
|
|
587
588
|
# via the schematic forward rule:
|
|
588
589
|
# {
|
|
589
590
|
# :Simpson1 :samples ?ss .
|
|
@@ -613,18 +614,18 @@ _:sk_0 :ds 3.720753081997118 .
|
|
|
613
614
|
# } .
|
|
614
615
|
# with substitution (on rule variables):
|
|
615
616
|
# ?c = 1.0
|
|
616
|
-
# ?cosx = -0.4161468365471424
|
|
617
|
-
# ?ds = 3.720753081997118
|
|
618
|
-
# ?dy = 3.5838531634528574
|
|
619
|
-
# ?dy2 = 12.844003497191053
|
|
620
|
-
# ?onePlus = 13.844003497191053
|
|
617
|
+
# ?cosx = "-0.4161468365471424"^^xsd:decimal
|
|
618
|
+
# ?ds = "3.720753081997118"^^xsd:decimal
|
|
619
|
+
# ?dy = "3.5838531634528574"^^xsd:decimal
|
|
620
|
+
# ?dy2 = "12.844003497191053"^^xsd:decimal
|
|
621
|
+
# ?onePlus = "13.844003497191053"^^xsd:decimal
|
|
621
622
|
# ?s = _:b5
|
|
622
|
-
# ?sinx = 0.9092974268256817
|
|
623
|
+
# ?sinx = "0.9092974268256817"^^xsd:decimal
|
|
623
624
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
624
|
-
# ?twox = 4
|
|
625
|
+
# ?twox = "4"^^xsd:decimal
|
|
625
626
|
# ?x = 2.0
|
|
626
|
-
# ?x2 = 4
|
|
627
|
-
# ?y = 4.909297426825682
|
|
627
|
+
# ?x2 = "4"^^xsd:decimal
|
|
628
|
+
# ?y = "4.909297426825682"^^xsd:decimal
|
|
628
629
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
629
630
|
# ----------------------------------------------------------------------
|
|
630
631
|
|
|
@@ -632,21 +633,21 @@ _:sk_0 :ds 3.720753081997118 .
|
|
|
632
633
|
|
|
633
634
|
# ----------------------------------------------------------------------
|
|
634
635
|
# Proof for derived triple:
|
|
635
|
-
# _:b4 :y 3.2474949866040546 .
|
|
636
|
+
# _:b4 :y "3.2474949866040546"^^xsd:decimal .
|
|
636
637
|
# It holds because the following instance of the rule body is provable:
|
|
637
638
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
638
639
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
639
640
|
# _:b4 :x 1.5 .
|
|
640
641
|
# _:b4 :coef 4.0 .
|
|
641
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
642
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
643
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
644
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
645
|
-
# (2.0 1.5) math:product 3 .
|
|
646
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
647
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
648
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
649
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
642
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
643
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
644
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
645
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
646
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
647
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
648
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
649
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
650
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
650
651
|
# via the schematic forward rule:
|
|
651
652
|
# {
|
|
652
653
|
# :Simpson1 :samples ?ss .
|
|
@@ -676,40 +677,40 @@ _:sk_0 :ds 3.720753081997118 .
|
|
|
676
677
|
# } .
|
|
677
678
|
# with substitution (on rule variables):
|
|
678
679
|
# ?c = 4.0
|
|
679
|
-
# ?cosx = 0.0707372016677029
|
|
680
|
-
# ?ds = 3.229462333222977
|
|
681
|
-
# ?dy = 3.070737201667703
|
|
682
|
-
# ?dy2 = 9.429426961705994
|
|
683
|
-
# ?onePlus = 10.429426961705994
|
|
680
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
681
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
682
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
683
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
684
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
684
685
|
# ?s = _:b4
|
|
685
|
-
# ?sinx = 0.9974949866040544
|
|
686
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
686
687
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
687
|
-
# ?twox = 3
|
|
688
|
+
# ?twox = "3"^^xsd:decimal
|
|
688
689
|
# ?x = 1.5
|
|
689
|
-
# ?x2 = 2.25
|
|
690
|
-
# ?y = 3.2474949866040546
|
|
690
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
691
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
691
692
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
692
693
|
# ----------------------------------------------------------------------
|
|
693
694
|
|
|
694
|
-
_:b4 :y 3.2474949866040546 .
|
|
695
|
+
_:b4 :y "3.2474949866040546"^^xsd:decimal .
|
|
695
696
|
|
|
696
697
|
# ----------------------------------------------------------------------
|
|
697
698
|
# Proof for derived triple:
|
|
698
|
-
# _:b4 :dy 3.070737201667703 .
|
|
699
|
+
# _:b4 :dy "3.070737201667703"^^xsd:decimal .
|
|
699
700
|
# It holds because the following instance of the rule body is provable:
|
|
700
701
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
701
702
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
702
703
|
# _:b4 :x 1.5 .
|
|
703
704
|
# _:b4 :coef 4.0 .
|
|
704
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
705
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
706
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
707
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
708
|
-
# (2.0 1.5) math:product 3 .
|
|
709
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
710
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
711
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
712
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
705
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
706
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
707
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
708
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
709
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
710
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
711
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
712
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
713
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
713
714
|
# via the schematic forward rule:
|
|
714
715
|
# {
|
|
715
716
|
# :Simpson1 :samples ?ss .
|
|
@@ -739,40 +740,40 @@ _:b4 :y 3.2474949866040546 .
|
|
|
739
740
|
# } .
|
|
740
741
|
# with substitution (on rule variables):
|
|
741
742
|
# ?c = 4.0
|
|
742
|
-
# ?cosx = 0.0707372016677029
|
|
743
|
-
# ?ds = 3.229462333222977
|
|
744
|
-
# ?dy = 3.070737201667703
|
|
745
|
-
# ?dy2 = 9.429426961705994
|
|
746
|
-
# ?onePlus = 10.429426961705994
|
|
743
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
744
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
745
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
746
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
747
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
747
748
|
# ?s = _:b4
|
|
748
|
-
# ?sinx = 0.9974949866040544
|
|
749
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
749
750
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
750
|
-
# ?twox = 3
|
|
751
|
+
# ?twox = "3"^^xsd:decimal
|
|
751
752
|
# ?x = 1.5
|
|
752
|
-
# ?x2 = 2.25
|
|
753
|
-
# ?y = 3.2474949866040546
|
|
753
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
754
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
754
755
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
755
756
|
# ----------------------------------------------------------------------
|
|
756
757
|
|
|
757
|
-
_:b4 :dy 3.070737201667703 .
|
|
758
|
+
_:b4 :dy "3.070737201667703"^^xsd:decimal .
|
|
758
759
|
|
|
759
760
|
# ----------------------------------------------------------------------
|
|
760
761
|
# Proof for derived triple:
|
|
761
|
-
# _:b4 :ds 3.229462333222977 .
|
|
762
|
+
# _:b4 :ds "3.229462333222977"^^xsd:decimal .
|
|
762
763
|
# It holds because the following instance of the rule body is provable:
|
|
763
764
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
764
765
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
765
766
|
# _:b4 :x 1.5 .
|
|
766
767
|
# _:b4 :coef 4.0 .
|
|
767
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
768
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
769
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
770
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
771
|
-
# (2.0 1.5) math:product 3 .
|
|
772
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
773
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
774
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
775
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
768
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
769
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
770
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
771
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
772
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
773
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
774
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
775
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
776
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
776
777
|
# via the schematic forward rule:
|
|
777
778
|
# {
|
|
778
779
|
# :Simpson1 :samples ?ss .
|
|
@@ -802,22 +803,22 @@ _:b4 :dy 3.070737201667703 .
|
|
|
802
803
|
# } .
|
|
803
804
|
# with substitution (on rule variables):
|
|
804
805
|
# ?c = 4.0
|
|
805
|
-
# ?cosx = 0.0707372016677029
|
|
806
|
-
# ?ds = 3.229462333222977
|
|
807
|
-
# ?dy = 3.070737201667703
|
|
808
|
-
# ?dy2 = 9.429426961705994
|
|
809
|
-
# ?onePlus = 10.429426961705994
|
|
806
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
807
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
808
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
809
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
810
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
810
811
|
# ?s = _:b4
|
|
811
|
-
# ?sinx = 0.9974949866040544
|
|
812
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
812
813
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
813
|
-
# ?twox = 3
|
|
814
|
+
# ?twox = "3"^^xsd:decimal
|
|
814
815
|
# ?x = 1.5
|
|
815
|
-
# ?x2 = 2.25
|
|
816
|
-
# ?y = 3.2474949866040546
|
|
816
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
817
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
817
818
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
818
819
|
# ----------------------------------------------------------------------
|
|
819
820
|
|
|
820
|
-
_:b4 :ds 3.229462333222977 .
|
|
821
|
+
_:b4 :ds "3.229462333222977"^^xsd:decimal .
|
|
821
822
|
|
|
822
823
|
# ----------------------------------------------------------------------
|
|
823
824
|
# Proof for derived triple:
|
|
@@ -827,15 +828,15 @@ _:b4 :ds 3.229462333222977 .
|
|
|
827
828
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
828
829
|
# _:b4 :x 1.5 .
|
|
829
830
|
# _:b4 :coef 4.0 .
|
|
830
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
831
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
832
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
833
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
834
|
-
# (2.0 1.5) math:product 3 .
|
|
835
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
836
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
837
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
838
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
831
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
832
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
833
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
834
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
835
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
836
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
837
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
838
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
839
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
839
840
|
# via the schematic forward rule:
|
|
840
841
|
# {
|
|
841
842
|
# :Simpson1 :samples ?ss .
|
|
@@ -865,18 +866,18 @@ _:b4 :ds 3.229462333222977 .
|
|
|
865
866
|
# } .
|
|
866
867
|
# with substitution (on rule variables):
|
|
867
868
|
# ?c = 4.0
|
|
868
|
-
# ?cosx = 0.0707372016677029
|
|
869
|
-
# ?ds = 3.229462333222977
|
|
870
|
-
# ?dy = 3.070737201667703
|
|
871
|
-
# ?dy2 = 9.429426961705994
|
|
872
|
-
# ?onePlus = 10.429426961705994
|
|
869
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
870
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
871
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
872
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
873
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
873
874
|
# ?s = _:b4
|
|
874
|
-
# ?sinx = 0.9974949866040544
|
|
875
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
875
876
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
876
|
-
# ?twox = 3
|
|
877
|
+
# ?twox = "3"^^xsd:decimal
|
|
877
878
|
# ?x = 1.5
|
|
878
|
-
# ?x2 = 2.25
|
|
879
|
-
# ?y = 3.2474949866040546
|
|
879
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
880
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
880
881
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
881
882
|
# ----------------------------------------------------------------------
|
|
882
883
|
|
|
@@ -890,15 +891,15 @@ _:sk_1 :sample _:b4 .
|
|
|
890
891
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
891
892
|
# _:b4 :x 1.5 .
|
|
892
893
|
# _:b4 :coef 4.0 .
|
|
893
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
894
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
895
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
896
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
897
|
-
# (2.0 1.5) math:product 3 .
|
|
898
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
899
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
900
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
901
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
894
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
895
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
896
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
897
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
898
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
899
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
900
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
901
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
902
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
902
903
|
# via the schematic forward rule:
|
|
903
904
|
# {
|
|
904
905
|
# :Simpson1 :samples ?ss .
|
|
@@ -928,18 +929,18 @@ _:sk_1 :sample _:b4 .
|
|
|
928
929
|
# } .
|
|
929
930
|
# with substitution (on rule variables):
|
|
930
931
|
# ?c = 4.0
|
|
931
|
-
# ?cosx = 0.0707372016677029
|
|
932
|
-
# ?ds = 3.229462333222977
|
|
933
|
-
# ?dy = 3.070737201667703
|
|
934
|
-
# ?dy2 = 9.429426961705994
|
|
935
|
-
# ?onePlus = 10.429426961705994
|
|
932
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
933
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
934
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
935
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
936
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
936
937
|
# ?s = _:b4
|
|
937
|
-
# ?sinx = 0.9974949866040544
|
|
938
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
938
939
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
939
|
-
# ?twox = 3
|
|
940
|
+
# ?twox = "3"^^xsd:decimal
|
|
940
941
|
# ?x = 1.5
|
|
941
|
-
# ?x2 = 2.25
|
|
942
|
-
# ?y = 3.2474949866040546
|
|
942
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
943
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
943
944
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
944
945
|
# ----------------------------------------------------------------------
|
|
945
946
|
|
|
@@ -953,15 +954,15 @@ _:sk_1 :x 1.5 .
|
|
|
953
954
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
954
955
|
# _:b4 :x 1.5 .
|
|
955
956
|
# _:b4 :coef 4.0 .
|
|
956
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
957
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
958
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
959
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
960
|
-
# (2.0 1.5) math:product 3 .
|
|
961
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
962
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
963
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
964
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
957
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
958
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
959
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
960
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
961
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
962
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
963
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
964
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
965
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
965
966
|
# via the schematic forward rule:
|
|
966
967
|
# {
|
|
967
968
|
# :Simpson1 :samples ?ss .
|
|
@@ -991,18 +992,18 @@ _:sk_1 :x 1.5 .
|
|
|
991
992
|
# } .
|
|
992
993
|
# with substitution (on rule variables):
|
|
993
994
|
# ?c = 4.0
|
|
994
|
-
# ?cosx = 0.0707372016677029
|
|
995
|
-
# ?ds = 3.229462333222977
|
|
996
|
-
# ?dy = 3.070737201667703
|
|
997
|
-
# ?dy2 = 9.429426961705994
|
|
998
|
-
# ?onePlus = 10.429426961705994
|
|
995
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
996
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
997
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
998
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
999
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
999
1000
|
# ?s = _:b4
|
|
1000
|
-
# ?sinx = 0.9974949866040544
|
|
1001
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
1001
1002
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1002
|
-
# ?twox = 3
|
|
1003
|
+
# ?twox = "3"^^xsd:decimal
|
|
1003
1004
|
# ?x = 1.5
|
|
1004
|
-
# ?x2 = 2.25
|
|
1005
|
-
# ?y = 3.2474949866040546
|
|
1005
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
1006
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
1006
1007
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1007
1008
|
# ----------------------------------------------------------------------
|
|
1008
1009
|
|
|
@@ -1010,21 +1011,21 @@ _:sk_1 :coef 4.0 .
|
|
|
1010
1011
|
|
|
1011
1012
|
# ----------------------------------------------------------------------
|
|
1012
1013
|
# Proof for derived triple:
|
|
1013
|
-
# _:sk_1 :y 3.2474949866040546 .
|
|
1014
|
+
# _:sk_1 :y "3.2474949866040546"^^xsd:decimal .
|
|
1014
1015
|
# It holds because the following instance of the rule body is provable:
|
|
1015
1016
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1016
1017
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
1017
1018
|
# _:b4 :x 1.5 .
|
|
1018
1019
|
# _:b4 :coef 4.0 .
|
|
1019
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
1020
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
1021
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
1022
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
1023
|
-
# (2.0 1.5) math:product 3 .
|
|
1024
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
1025
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
1026
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
1027
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
1020
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
1021
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
1022
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
1023
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
1024
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
1025
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
1026
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
1027
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
1028
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
1028
1029
|
# via the schematic forward rule:
|
|
1029
1030
|
# {
|
|
1030
1031
|
# :Simpson1 :samples ?ss .
|
|
@@ -1054,40 +1055,40 @@ _:sk_1 :coef 4.0 .
|
|
|
1054
1055
|
# } .
|
|
1055
1056
|
# with substitution (on rule variables):
|
|
1056
1057
|
# ?c = 4.0
|
|
1057
|
-
# ?cosx = 0.0707372016677029
|
|
1058
|
-
# ?ds = 3.229462333222977
|
|
1059
|
-
# ?dy = 3.070737201667703
|
|
1060
|
-
# ?dy2 = 9.429426961705994
|
|
1061
|
-
# ?onePlus = 10.429426961705994
|
|
1058
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
1059
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
1060
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
1061
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
1062
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
1062
1063
|
# ?s = _:b4
|
|
1063
|
-
# ?sinx = 0.9974949866040544
|
|
1064
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
1064
1065
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1065
|
-
# ?twox = 3
|
|
1066
|
+
# ?twox = "3"^^xsd:decimal
|
|
1066
1067
|
# ?x = 1.5
|
|
1067
|
-
# ?x2 = 2.25
|
|
1068
|
-
# ?y = 3.2474949866040546
|
|
1068
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
1069
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
1069
1070
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1070
1071
|
# ----------------------------------------------------------------------
|
|
1071
1072
|
|
|
1072
|
-
_:sk_1 :y 3.2474949866040546 .
|
|
1073
|
+
_:sk_1 :y "3.2474949866040546"^^xsd:decimal .
|
|
1073
1074
|
|
|
1074
1075
|
# ----------------------------------------------------------------------
|
|
1075
1076
|
# Proof for derived triple:
|
|
1076
|
-
# _:sk_1 :dy 3.070737201667703 .
|
|
1077
|
+
# _:sk_1 :dy "3.070737201667703"^^xsd:decimal .
|
|
1077
1078
|
# It holds because the following instance of the rule body is provable:
|
|
1078
1079
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1079
1080
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
1080
1081
|
# _:b4 :x 1.5 .
|
|
1081
1082
|
# _:b4 :coef 4.0 .
|
|
1082
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
1083
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
1084
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
1085
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
1086
|
-
# (2.0 1.5) math:product 3 .
|
|
1087
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
1088
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
1089
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
1090
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
1083
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
1084
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
1085
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
1086
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
1087
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
1088
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
1089
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
1090
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
1091
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
1091
1092
|
# via the schematic forward rule:
|
|
1092
1093
|
# {
|
|
1093
1094
|
# :Simpson1 :samples ?ss .
|
|
@@ -1117,40 +1118,40 @@ _:sk_1 :y 3.2474949866040546 .
|
|
|
1117
1118
|
# } .
|
|
1118
1119
|
# with substitution (on rule variables):
|
|
1119
1120
|
# ?c = 4.0
|
|
1120
|
-
# ?cosx = 0.0707372016677029
|
|
1121
|
-
# ?ds = 3.229462333222977
|
|
1122
|
-
# ?dy = 3.070737201667703
|
|
1123
|
-
# ?dy2 = 9.429426961705994
|
|
1124
|
-
# ?onePlus = 10.429426961705994
|
|
1121
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
1122
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
1123
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
1124
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
1125
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
1125
1126
|
# ?s = _:b4
|
|
1126
|
-
# ?sinx = 0.9974949866040544
|
|
1127
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
1127
1128
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1128
|
-
# ?twox = 3
|
|
1129
|
+
# ?twox = "3"^^xsd:decimal
|
|
1129
1130
|
# ?x = 1.5
|
|
1130
|
-
# ?x2 = 2.25
|
|
1131
|
-
# ?y = 3.2474949866040546
|
|
1131
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
1132
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
1132
1133
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1133
1134
|
# ----------------------------------------------------------------------
|
|
1134
1135
|
|
|
1135
|
-
_:sk_1 :dy 3.070737201667703 .
|
|
1136
|
+
_:sk_1 :dy "3.070737201667703"^^xsd:decimal .
|
|
1136
1137
|
|
|
1137
1138
|
# ----------------------------------------------------------------------
|
|
1138
1139
|
# Proof for derived triple:
|
|
1139
|
-
# _:sk_1 :ds 3.229462333222977 .
|
|
1140
|
+
# _:sk_1 :ds "3.229462333222977"^^xsd:decimal .
|
|
1140
1141
|
# It holds because the following instance of the rule body is provable:
|
|
1141
1142
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1142
1143
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
1143
1144
|
# _:b4 :x 1.5 .
|
|
1144
1145
|
# _:b4 :coef 4.0 .
|
|
1145
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
1146
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
1147
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
1148
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
1149
|
-
# (2.0 1.5) math:product 3 .
|
|
1150
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
1151
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
1152
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
1153
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
1146
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
1147
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
1148
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
1149
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
1150
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
1151
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
1152
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
1153
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
1154
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
1154
1155
|
# via the schematic forward rule:
|
|
1155
1156
|
# {
|
|
1156
1157
|
# :Simpson1 :samples ?ss .
|
|
@@ -1180,22 +1181,22 @@ _:sk_1 :dy 3.070737201667703 .
|
|
|
1180
1181
|
# } .
|
|
1181
1182
|
# with substitution (on rule variables):
|
|
1182
1183
|
# ?c = 4.0
|
|
1183
|
-
# ?cosx = 0.0707372016677029
|
|
1184
|
-
# ?ds = 3.229462333222977
|
|
1185
|
-
# ?dy = 3.070737201667703
|
|
1186
|
-
# ?dy2 = 9.429426961705994
|
|
1187
|
-
# ?onePlus = 10.429426961705994
|
|
1184
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
1185
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
1186
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
1187
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
1188
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
1188
1189
|
# ?s = _:b4
|
|
1189
|
-
# ?sinx = 0.9974949866040544
|
|
1190
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
1190
1191
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1191
|
-
# ?twox = 3
|
|
1192
|
+
# ?twox = "3"^^xsd:decimal
|
|
1192
1193
|
# ?x = 1.5
|
|
1193
|
-
# ?x2 = 2.25
|
|
1194
|
-
# ?y = 3.2474949866040546
|
|
1194
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
1195
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
1195
1196
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1196
1197
|
# ----------------------------------------------------------------------
|
|
1197
1198
|
|
|
1198
|
-
_:sk_1 :ds 3.229462333222977 .
|
|
1199
|
+
_:sk_1 :ds "3.229462333222977"^^xsd:decimal .
|
|
1199
1200
|
|
|
1200
1201
|
# ----------------------------------------------------------------------
|
|
1201
1202
|
# Proof for derived triple:
|
|
@@ -1205,15 +1206,15 @@ _:sk_1 :ds 3.229462333222977 .
|
|
|
1205
1206
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
|
|
1206
1207
|
# _:b4 :x 1.5 .
|
|
1207
1208
|
# _:b4 :coef 4.0 .
|
|
1208
|
-
# 1.5 math:sin 0.9974949866040544 .
|
|
1209
|
-
# (1.5 2.0) math:exponentiation 2.25 .
|
|
1210
|
-
# (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
|
|
1211
|
-
# 1.5 math:cos 0.0707372016677029 .
|
|
1212
|
-
# (2.0 1.5) math:product 3 .
|
|
1213
|
-
# (0.0707372016677029 3) math:sum 3.070737201667703 .
|
|
1214
|
-
# (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
|
|
1215
|
-
# (1.0 9.429426961705994) math:sum 10.429426961705994 .
|
|
1216
|
-
# (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
|
|
1209
|
+
# 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
|
|
1210
|
+
# (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
|
|
1211
|
+
# ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
|
|
1212
|
+
# 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
|
|
1213
|
+
# (2.0 1.5) math:product "3"^^xsd:decimal .
|
|
1214
|
+
# ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
|
|
1215
|
+
# ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
|
|
1216
|
+
# (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
|
|
1217
|
+
# ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
|
|
1217
1218
|
# via the schematic forward rule:
|
|
1218
1219
|
# {
|
|
1219
1220
|
# :Simpson1 :samples ?ss .
|
|
@@ -1243,18 +1244,18 @@ _:sk_1 :ds 3.229462333222977 .
|
|
|
1243
1244
|
# } .
|
|
1244
1245
|
# with substitution (on rule variables):
|
|
1245
1246
|
# ?c = 4.0
|
|
1246
|
-
# ?cosx = 0.0707372016677029
|
|
1247
|
-
# ?ds = 3.229462333222977
|
|
1248
|
-
# ?dy = 3.070737201667703
|
|
1249
|
-
# ?dy2 = 9.429426961705994
|
|
1250
|
-
# ?onePlus = 10.429426961705994
|
|
1247
|
+
# ?cosx = "0.0707372016677029"^^xsd:decimal
|
|
1248
|
+
# ?ds = "3.229462333222977"^^xsd:decimal
|
|
1249
|
+
# ?dy = "3.070737201667703"^^xsd:decimal
|
|
1250
|
+
# ?dy2 = "9.429426961705994"^^xsd:decimal
|
|
1251
|
+
# ?onePlus = "10.429426961705994"^^xsd:decimal
|
|
1251
1252
|
# ?s = _:b4
|
|
1252
|
-
# ?sinx = 0.9974949866040544
|
|
1253
|
+
# ?sinx = "0.9974949866040544"^^xsd:decimal
|
|
1253
1254
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1254
|
-
# ?twox = 3
|
|
1255
|
+
# ?twox = "3"^^xsd:decimal
|
|
1255
1256
|
# ?x = 1.5
|
|
1256
|
-
# ?x2 = 2.25
|
|
1257
|
-
# ?y = 3.2474949866040546
|
|
1257
|
+
# ?x2 = "2.25"^^xsd:decimal
|
|
1258
|
+
# ?y = "3.2474949866040546"^^xsd:decimal
|
|
1258
1259
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1259
1260
|
# ----------------------------------------------------------------------
|
|
1260
1261
|
|
|
@@ -1262,21 +1263,21 @@ _:sk_1 :ds 3.229462333222977 .
|
|
|
1262
1263
|
|
|
1263
1264
|
# ----------------------------------------------------------------------
|
|
1264
1265
|
# Proof for derived triple:
|
|
1265
|
-
# _:b3 :y 1.8414709848078965 .
|
|
1266
|
+
# _:b3 :y "1.8414709848078965"^^xsd:decimal .
|
|
1266
1267
|
# It holds because the following instance of the rule body is provable:
|
|
1267
1268
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1268
1269
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1269
1270
|
# _:b3 :x 1.0 .
|
|
1270
1271
|
# _:b3 :coef 2.0 .
|
|
1271
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1272
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1273
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1274
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1275
|
-
# (2.0 1.0) math:product 2 .
|
|
1276
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1277
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1278
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1279
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1272
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1273
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1274
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1275
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1276
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1277
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1278
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1279
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1280
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1280
1281
|
# via the schematic forward rule:
|
|
1281
1282
|
# {
|
|
1282
1283
|
# :Simpson1 :samples ?ss .
|
|
@@ -1306,40 +1307,40 @@ _:sk_1 :ds 3.229462333222977 .
|
|
|
1306
1307
|
# } .
|
|
1307
1308
|
# with substitution (on rule variables):
|
|
1308
1309
|
# ?c = 2.0
|
|
1309
|
-
# ?cosx = 0.5403023058681398
|
|
1310
|
-
# ?ds = 2.7300431874237794
|
|
1311
|
-
# ?dy = 2.5403023058681398
|
|
1312
|
-
# ?dy2 = 6.453135805198988
|
|
1313
|
-
# ?onePlus = 7.453135805198988
|
|
1310
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1311
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1312
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1313
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1314
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1314
1315
|
# ?s = _:b3
|
|
1315
|
-
# ?sinx = 0.8414709848078965
|
|
1316
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1316
1317
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1317
|
-
# ?twox = 2
|
|
1318
|
+
# ?twox = "2"^^xsd:decimal
|
|
1318
1319
|
# ?x = 1.0
|
|
1319
|
-
# ?x2 = 1
|
|
1320
|
-
# ?y = 1.8414709848078965
|
|
1320
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1321
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1321
1322
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1322
1323
|
# ----------------------------------------------------------------------
|
|
1323
1324
|
|
|
1324
|
-
_:b3 :y 1.8414709848078965 .
|
|
1325
|
+
_:b3 :y "1.8414709848078965"^^xsd:decimal .
|
|
1325
1326
|
|
|
1326
1327
|
# ----------------------------------------------------------------------
|
|
1327
1328
|
# Proof for derived triple:
|
|
1328
|
-
# _:b3 :dy 2.5403023058681398 .
|
|
1329
|
+
# _:b3 :dy "2.5403023058681398"^^xsd:decimal .
|
|
1329
1330
|
# It holds because the following instance of the rule body is provable:
|
|
1330
1331
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1331
1332
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1332
1333
|
# _:b3 :x 1.0 .
|
|
1333
1334
|
# _:b3 :coef 2.0 .
|
|
1334
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1335
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1336
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1337
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1338
|
-
# (2.0 1.0) math:product 2 .
|
|
1339
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1340
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1341
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1342
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1335
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1336
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1337
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1338
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1339
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1340
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1341
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1342
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1343
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1343
1344
|
# via the schematic forward rule:
|
|
1344
1345
|
# {
|
|
1345
1346
|
# :Simpson1 :samples ?ss .
|
|
@@ -1369,40 +1370,40 @@ _:b3 :y 1.8414709848078965 .
|
|
|
1369
1370
|
# } .
|
|
1370
1371
|
# with substitution (on rule variables):
|
|
1371
1372
|
# ?c = 2.0
|
|
1372
|
-
# ?cosx = 0.5403023058681398
|
|
1373
|
-
# ?ds = 2.7300431874237794
|
|
1374
|
-
# ?dy = 2.5403023058681398
|
|
1375
|
-
# ?dy2 = 6.453135805198988
|
|
1376
|
-
# ?onePlus = 7.453135805198988
|
|
1373
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1374
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1375
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1376
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1377
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1377
1378
|
# ?s = _:b3
|
|
1378
|
-
# ?sinx = 0.8414709848078965
|
|
1379
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1379
1380
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1380
|
-
# ?twox = 2
|
|
1381
|
+
# ?twox = "2"^^xsd:decimal
|
|
1381
1382
|
# ?x = 1.0
|
|
1382
|
-
# ?x2 = 1
|
|
1383
|
-
# ?y = 1.8414709848078965
|
|
1383
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1384
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1384
1385
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1385
1386
|
# ----------------------------------------------------------------------
|
|
1386
1387
|
|
|
1387
|
-
_:b3 :dy 2.5403023058681398 .
|
|
1388
|
+
_:b3 :dy "2.5403023058681398"^^xsd:decimal .
|
|
1388
1389
|
|
|
1389
1390
|
# ----------------------------------------------------------------------
|
|
1390
1391
|
# Proof for derived triple:
|
|
1391
|
-
# _:b3 :ds 2.7300431874237794 .
|
|
1392
|
+
# _:b3 :ds "2.7300431874237794"^^xsd:decimal .
|
|
1392
1393
|
# It holds because the following instance of the rule body is provable:
|
|
1393
1394
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1394
1395
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1395
1396
|
# _:b3 :x 1.0 .
|
|
1396
1397
|
# _:b3 :coef 2.0 .
|
|
1397
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1398
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1399
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1400
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1401
|
-
# (2.0 1.0) math:product 2 .
|
|
1402
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1403
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1404
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1405
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1398
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1399
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1400
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1401
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1402
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1403
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1404
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1405
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1406
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1406
1407
|
# via the schematic forward rule:
|
|
1407
1408
|
# {
|
|
1408
1409
|
# :Simpson1 :samples ?ss .
|
|
@@ -1432,22 +1433,22 @@ _:b3 :dy 2.5403023058681398 .
|
|
|
1432
1433
|
# } .
|
|
1433
1434
|
# with substitution (on rule variables):
|
|
1434
1435
|
# ?c = 2.0
|
|
1435
|
-
# ?cosx = 0.5403023058681398
|
|
1436
|
-
# ?ds = 2.7300431874237794
|
|
1437
|
-
# ?dy = 2.5403023058681398
|
|
1438
|
-
# ?dy2 = 6.453135805198988
|
|
1439
|
-
# ?onePlus = 7.453135805198988
|
|
1436
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1437
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1438
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1439
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1440
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1440
1441
|
# ?s = _:b3
|
|
1441
|
-
# ?sinx = 0.8414709848078965
|
|
1442
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1442
1443
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1443
|
-
# ?twox = 2
|
|
1444
|
+
# ?twox = "2"^^xsd:decimal
|
|
1444
1445
|
# ?x = 1.0
|
|
1445
|
-
# ?x2 = 1
|
|
1446
|
-
# ?y = 1.8414709848078965
|
|
1446
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1447
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1447
1448
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1448
1449
|
# ----------------------------------------------------------------------
|
|
1449
1450
|
|
|
1450
|
-
_:b3 :ds 2.7300431874237794 .
|
|
1451
|
+
_:b3 :ds "2.7300431874237794"^^xsd:decimal .
|
|
1451
1452
|
|
|
1452
1453
|
# ----------------------------------------------------------------------
|
|
1453
1454
|
# Proof for derived triple:
|
|
@@ -1457,15 +1458,15 @@ _:b3 :ds 2.7300431874237794 .
|
|
|
1457
1458
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1458
1459
|
# _:b3 :x 1.0 .
|
|
1459
1460
|
# _:b3 :coef 2.0 .
|
|
1460
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1461
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1462
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1463
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1464
|
-
# (2.0 1.0) math:product 2 .
|
|
1465
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1466
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1467
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1468
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1461
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1462
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1463
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1464
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1465
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1466
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1467
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1468
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1469
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1469
1470
|
# via the schematic forward rule:
|
|
1470
1471
|
# {
|
|
1471
1472
|
# :Simpson1 :samples ?ss .
|
|
@@ -1495,18 +1496,18 @@ _:b3 :ds 2.7300431874237794 .
|
|
|
1495
1496
|
# } .
|
|
1496
1497
|
# with substitution (on rule variables):
|
|
1497
1498
|
# ?c = 2.0
|
|
1498
|
-
# ?cosx = 0.5403023058681398
|
|
1499
|
-
# ?ds = 2.7300431874237794
|
|
1500
|
-
# ?dy = 2.5403023058681398
|
|
1501
|
-
# ?dy2 = 6.453135805198988
|
|
1502
|
-
# ?onePlus = 7.453135805198988
|
|
1499
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1500
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1501
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1502
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1503
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1503
1504
|
# ?s = _:b3
|
|
1504
|
-
# ?sinx = 0.8414709848078965
|
|
1505
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1505
1506
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1506
|
-
# ?twox = 2
|
|
1507
|
+
# ?twox = "2"^^xsd:decimal
|
|
1507
1508
|
# ?x = 1.0
|
|
1508
|
-
# ?x2 = 1
|
|
1509
|
-
# ?y = 1.8414709848078965
|
|
1509
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1510
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1510
1511
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1511
1512
|
# ----------------------------------------------------------------------
|
|
1512
1513
|
|
|
@@ -1520,15 +1521,15 @@ _:sk_2 :sample _:b3 .
|
|
|
1520
1521
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1521
1522
|
# _:b3 :x 1.0 .
|
|
1522
1523
|
# _:b3 :coef 2.0 .
|
|
1523
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1524
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1525
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1526
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1527
|
-
# (2.0 1.0) math:product 2 .
|
|
1528
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1529
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1530
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1531
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1524
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1525
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1526
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1527
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1528
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1529
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1530
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1531
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1532
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1532
1533
|
# via the schematic forward rule:
|
|
1533
1534
|
# {
|
|
1534
1535
|
# :Simpson1 :samples ?ss .
|
|
@@ -1558,18 +1559,18 @@ _:sk_2 :sample _:b3 .
|
|
|
1558
1559
|
# } .
|
|
1559
1560
|
# with substitution (on rule variables):
|
|
1560
1561
|
# ?c = 2.0
|
|
1561
|
-
# ?cosx = 0.5403023058681398
|
|
1562
|
-
# ?ds = 2.7300431874237794
|
|
1563
|
-
# ?dy = 2.5403023058681398
|
|
1564
|
-
# ?dy2 = 6.453135805198988
|
|
1565
|
-
# ?onePlus = 7.453135805198988
|
|
1562
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1563
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1564
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1565
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1566
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1566
1567
|
# ?s = _:b3
|
|
1567
|
-
# ?sinx = 0.8414709848078965
|
|
1568
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1568
1569
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1569
|
-
# ?twox = 2
|
|
1570
|
+
# ?twox = "2"^^xsd:decimal
|
|
1570
1571
|
# ?x = 1.0
|
|
1571
|
-
# ?x2 = 1
|
|
1572
|
-
# ?y = 1.8414709848078965
|
|
1572
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1573
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1573
1574
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1574
1575
|
# ----------------------------------------------------------------------
|
|
1575
1576
|
|
|
@@ -1583,15 +1584,15 @@ _:sk_2 :x 1.0 .
|
|
|
1583
1584
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1584
1585
|
# _:b3 :x 1.0 .
|
|
1585
1586
|
# _:b3 :coef 2.0 .
|
|
1586
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1587
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1588
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1589
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1590
|
-
# (2.0 1.0) math:product 2 .
|
|
1591
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1592
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1593
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1594
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1587
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1588
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1589
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1590
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1591
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1592
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1593
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1594
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1595
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1595
1596
|
# via the schematic forward rule:
|
|
1596
1597
|
# {
|
|
1597
1598
|
# :Simpson1 :samples ?ss .
|
|
@@ -1621,18 +1622,18 @@ _:sk_2 :x 1.0 .
|
|
|
1621
1622
|
# } .
|
|
1622
1623
|
# with substitution (on rule variables):
|
|
1623
1624
|
# ?c = 2.0
|
|
1624
|
-
# ?cosx = 0.5403023058681398
|
|
1625
|
-
# ?ds = 2.7300431874237794
|
|
1626
|
-
# ?dy = 2.5403023058681398
|
|
1627
|
-
# ?dy2 = 6.453135805198988
|
|
1628
|
-
# ?onePlus = 7.453135805198988
|
|
1625
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1626
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1627
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1628
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1629
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1629
1630
|
# ?s = _:b3
|
|
1630
|
-
# ?sinx = 0.8414709848078965
|
|
1631
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1631
1632
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1632
|
-
# ?twox = 2
|
|
1633
|
+
# ?twox = "2"^^xsd:decimal
|
|
1633
1634
|
# ?x = 1.0
|
|
1634
|
-
# ?x2 = 1
|
|
1635
|
-
# ?y = 1.8414709848078965
|
|
1635
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1636
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1636
1637
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1637
1638
|
# ----------------------------------------------------------------------
|
|
1638
1639
|
|
|
@@ -1640,21 +1641,21 @@ _:sk_2 :coef 2.0 .
|
|
|
1640
1641
|
|
|
1641
1642
|
# ----------------------------------------------------------------------
|
|
1642
1643
|
# Proof for derived triple:
|
|
1643
|
-
# _:sk_2 :y 1.8414709848078965 .
|
|
1644
|
+
# _:sk_2 :y "1.8414709848078965"^^xsd:decimal .
|
|
1644
1645
|
# It holds because the following instance of the rule body is provable:
|
|
1645
1646
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1646
1647
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1647
1648
|
# _:b3 :x 1.0 .
|
|
1648
1649
|
# _:b3 :coef 2.0 .
|
|
1649
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1650
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1651
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1652
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1653
|
-
# (2.0 1.0) math:product 2 .
|
|
1654
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1655
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1656
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1657
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1650
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1651
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1652
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1653
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1654
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1655
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1656
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1657
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1658
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1658
1659
|
# via the schematic forward rule:
|
|
1659
1660
|
# {
|
|
1660
1661
|
# :Simpson1 :samples ?ss .
|
|
@@ -1684,40 +1685,40 @@ _:sk_2 :coef 2.0 .
|
|
|
1684
1685
|
# } .
|
|
1685
1686
|
# with substitution (on rule variables):
|
|
1686
1687
|
# ?c = 2.0
|
|
1687
|
-
# ?cosx = 0.5403023058681398
|
|
1688
|
-
# ?ds = 2.7300431874237794
|
|
1689
|
-
# ?dy = 2.5403023058681398
|
|
1690
|
-
# ?dy2 = 6.453135805198988
|
|
1691
|
-
# ?onePlus = 7.453135805198988
|
|
1688
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1689
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1690
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1691
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1692
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1692
1693
|
# ?s = _:b3
|
|
1693
|
-
# ?sinx = 0.8414709848078965
|
|
1694
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1694
1695
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1695
|
-
# ?twox = 2
|
|
1696
|
+
# ?twox = "2"^^xsd:decimal
|
|
1696
1697
|
# ?x = 1.0
|
|
1697
|
-
# ?x2 = 1
|
|
1698
|
-
# ?y = 1.8414709848078965
|
|
1698
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1699
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1699
1700
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1700
1701
|
# ----------------------------------------------------------------------
|
|
1701
1702
|
|
|
1702
|
-
_:sk_2 :y 1.8414709848078965 .
|
|
1703
|
+
_:sk_2 :y "1.8414709848078965"^^xsd:decimal .
|
|
1703
1704
|
|
|
1704
1705
|
# ----------------------------------------------------------------------
|
|
1705
1706
|
# Proof for derived triple:
|
|
1706
|
-
# _:sk_2 :dy 2.5403023058681398 .
|
|
1707
|
+
# _:sk_2 :dy "2.5403023058681398"^^xsd:decimal .
|
|
1707
1708
|
# It holds because the following instance of the rule body is provable:
|
|
1708
1709
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1709
1710
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1710
1711
|
# _:b3 :x 1.0 .
|
|
1711
1712
|
# _:b3 :coef 2.0 .
|
|
1712
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1713
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1714
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1715
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1716
|
-
# (2.0 1.0) math:product 2 .
|
|
1717
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1718
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1719
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1720
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1713
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1714
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1715
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1716
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1717
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1718
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1719
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1720
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1721
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1721
1722
|
# via the schematic forward rule:
|
|
1722
1723
|
# {
|
|
1723
1724
|
# :Simpson1 :samples ?ss .
|
|
@@ -1747,40 +1748,40 @@ _:sk_2 :y 1.8414709848078965 .
|
|
|
1747
1748
|
# } .
|
|
1748
1749
|
# with substitution (on rule variables):
|
|
1749
1750
|
# ?c = 2.0
|
|
1750
|
-
# ?cosx = 0.5403023058681398
|
|
1751
|
-
# ?ds = 2.7300431874237794
|
|
1752
|
-
# ?dy = 2.5403023058681398
|
|
1753
|
-
# ?dy2 = 6.453135805198988
|
|
1754
|
-
# ?onePlus = 7.453135805198988
|
|
1751
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1752
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1753
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1754
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1755
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1755
1756
|
# ?s = _:b3
|
|
1756
|
-
# ?sinx = 0.8414709848078965
|
|
1757
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1757
1758
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1758
|
-
# ?twox = 2
|
|
1759
|
+
# ?twox = "2"^^xsd:decimal
|
|
1759
1760
|
# ?x = 1.0
|
|
1760
|
-
# ?x2 = 1
|
|
1761
|
-
# ?y = 1.8414709848078965
|
|
1761
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1762
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1762
1763
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1763
1764
|
# ----------------------------------------------------------------------
|
|
1764
1765
|
|
|
1765
|
-
_:sk_2 :dy 2.5403023058681398 .
|
|
1766
|
+
_:sk_2 :dy "2.5403023058681398"^^xsd:decimal .
|
|
1766
1767
|
|
|
1767
1768
|
# ----------------------------------------------------------------------
|
|
1768
1769
|
# Proof for derived triple:
|
|
1769
|
-
# _:sk_2 :ds 2.7300431874237794 .
|
|
1770
|
+
# _:sk_2 :ds "2.7300431874237794"^^xsd:decimal .
|
|
1770
1771
|
# It holds because the following instance of the rule body is provable:
|
|
1771
1772
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1772
1773
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1773
1774
|
# _:b3 :x 1.0 .
|
|
1774
1775
|
# _:b3 :coef 2.0 .
|
|
1775
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1776
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1777
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1778
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1779
|
-
# (2.0 1.0) math:product 2 .
|
|
1780
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1781
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1782
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1783
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1776
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1777
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1778
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1779
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1780
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1781
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1782
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1783
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1784
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1784
1785
|
# via the schematic forward rule:
|
|
1785
1786
|
# {
|
|
1786
1787
|
# :Simpson1 :samples ?ss .
|
|
@@ -1810,22 +1811,22 @@ _:sk_2 :dy 2.5403023058681398 .
|
|
|
1810
1811
|
# } .
|
|
1811
1812
|
# with substitution (on rule variables):
|
|
1812
1813
|
# ?c = 2.0
|
|
1813
|
-
# ?cosx = 0.5403023058681398
|
|
1814
|
-
# ?ds = 2.7300431874237794
|
|
1815
|
-
# ?dy = 2.5403023058681398
|
|
1816
|
-
# ?dy2 = 6.453135805198988
|
|
1817
|
-
# ?onePlus = 7.453135805198988
|
|
1814
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1815
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1816
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1817
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1818
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1818
1819
|
# ?s = _:b3
|
|
1819
|
-
# ?sinx = 0.8414709848078965
|
|
1820
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1820
1821
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1821
|
-
# ?twox = 2
|
|
1822
|
+
# ?twox = "2"^^xsd:decimal
|
|
1822
1823
|
# ?x = 1.0
|
|
1823
|
-
# ?x2 = 1
|
|
1824
|
-
# ?y = 1.8414709848078965
|
|
1824
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1825
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1825
1826
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1826
1827
|
# ----------------------------------------------------------------------
|
|
1827
1828
|
|
|
1828
|
-
_:sk_2 :ds 2.7300431874237794 .
|
|
1829
|
+
_:sk_2 :ds "2.7300431874237794"^^xsd:decimal .
|
|
1829
1830
|
|
|
1830
1831
|
# ----------------------------------------------------------------------
|
|
1831
1832
|
# Proof for derived triple:
|
|
@@ -1835,15 +1836,15 @@ _:sk_2 :ds 2.7300431874237794 .
|
|
|
1835
1836
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
|
|
1836
1837
|
# _:b3 :x 1.0 .
|
|
1837
1838
|
# _:b3 :coef 2.0 .
|
|
1838
|
-
# 1.0 math:sin 0.8414709848078965 .
|
|
1839
|
-
# (1.0 2.0) math:exponentiation 1 .
|
|
1840
|
-
# (0.8414709848078965 1) math:sum 1.8414709848078965 .
|
|
1841
|
-
# 1.0 math:cos 0.5403023058681398 .
|
|
1842
|
-
# (2.0 1.0) math:product 2 .
|
|
1843
|
-
# (0.5403023058681398 2) math:sum 2.5403023058681398 .
|
|
1844
|
-
# (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
|
|
1845
|
-
# (1.0 6.453135805198988) math:sum 7.453135805198988 .
|
|
1846
|
-
# (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
|
|
1839
|
+
# 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
|
|
1840
|
+
# (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
1841
|
+
# ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
|
|
1842
|
+
# 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
|
|
1843
|
+
# (2.0 1.0) math:product "2"^^xsd:decimal .
|
|
1844
|
+
# ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
|
|
1845
|
+
# ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
|
|
1846
|
+
# (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
|
|
1847
|
+
# ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
|
|
1847
1848
|
# via the schematic forward rule:
|
|
1848
1849
|
# {
|
|
1849
1850
|
# :Simpson1 :samples ?ss .
|
|
@@ -1873,18 +1874,18 @@ _:sk_2 :ds 2.7300431874237794 .
|
|
|
1873
1874
|
# } .
|
|
1874
1875
|
# with substitution (on rule variables):
|
|
1875
1876
|
# ?c = 2.0
|
|
1876
|
-
# ?cosx = 0.5403023058681398
|
|
1877
|
-
# ?ds = 2.7300431874237794
|
|
1878
|
-
# ?dy = 2.5403023058681398
|
|
1879
|
-
# ?dy2 = 6.453135805198988
|
|
1880
|
-
# ?onePlus = 7.453135805198988
|
|
1877
|
+
# ?cosx = "0.5403023058681398"^^xsd:decimal
|
|
1878
|
+
# ?ds = "2.7300431874237794"^^xsd:decimal
|
|
1879
|
+
# ?dy = "2.5403023058681398"^^xsd:decimal
|
|
1880
|
+
# ?dy2 = "6.453135805198988"^^xsd:decimal
|
|
1881
|
+
# ?onePlus = "7.453135805198988"^^xsd:decimal
|
|
1881
1882
|
# ?s = _:b3
|
|
1882
|
-
# ?sinx = 0.8414709848078965
|
|
1883
|
+
# ?sinx = "0.8414709848078965"^^xsd:decimal
|
|
1883
1884
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1884
|
-
# ?twox = 2
|
|
1885
|
+
# ?twox = "2"^^xsd:decimal
|
|
1885
1886
|
# ?x = 1.0
|
|
1886
|
-
# ?x2 = 1
|
|
1887
|
-
# ?y = 1.8414709848078965
|
|
1887
|
+
# ?x2 = "1"^^xsd:decimal
|
|
1888
|
+
# ?y = "1.8414709848078965"^^xsd:decimal
|
|
1888
1889
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1889
1890
|
# ----------------------------------------------------------------------
|
|
1890
1891
|
|
|
@@ -1892,21 +1893,21 @@ _:sk_2 :ds 2.7300431874237794 .
|
|
|
1892
1893
|
|
|
1893
1894
|
# ----------------------------------------------------------------------
|
|
1894
1895
|
# Proof for derived triple:
|
|
1895
|
-
# _:b2 :y 0.729425538604203 .
|
|
1896
|
+
# _:b2 :y "0.729425538604203"^^xsd:decimal .
|
|
1896
1897
|
# It holds because the following instance of the rule body is provable:
|
|
1897
1898
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1898
1899
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
1899
1900
|
# _:b2 :x 0.5 .
|
|
1900
1901
|
# _:b2 :coef 4.0 .
|
|
1901
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
1902
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
1903
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
1904
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
1905
|
-
# (2.0 0.5) math:product 1 .
|
|
1906
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
1907
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
1908
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
1909
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
1902
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
1903
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
1904
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
1905
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
1906
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
1907
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
1908
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
1909
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
1910
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
1910
1911
|
# via the schematic forward rule:
|
|
1911
1912
|
# {
|
|
1912
1913
|
# :Simpson1 :samples ?ss .
|
|
@@ -1936,40 +1937,40 @@ _:sk_2 :ds 2.7300431874237794 .
|
|
|
1936
1937
|
# } .
|
|
1937
1938
|
# with substitution (on rule variables):
|
|
1938
1939
|
# ?c = 4.0
|
|
1939
|
-
# ?cosx = 0.8775825618903728
|
|
1940
|
-
# ?ds = 2.12727907823934
|
|
1941
|
-
# ?dy = 1.8775825618903728
|
|
1942
|
-
# ?dy2 = 3.5253162767148156
|
|
1943
|
-
# ?onePlus = 4.525316276714816
|
|
1940
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
1941
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
1942
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
1943
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
1944
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
1944
1945
|
# ?s = _:b2
|
|
1945
|
-
# ?sinx = 0.479425538604203
|
|
1946
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
1946
1947
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
1947
|
-
# ?twox = 1
|
|
1948
|
+
# ?twox = "1"^^xsd:decimal
|
|
1948
1949
|
# ?x = 0.5
|
|
1949
|
-
# ?x2 = 0.25
|
|
1950
|
-
# ?y = 0.729425538604203
|
|
1950
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
1951
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
1951
1952
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1952
1953
|
# ----------------------------------------------------------------------
|
|
1953
1954
|
|
|
1954
|
-
_:b2 :y 0.729425538604203 .
|
|
1955
|
+
_:b2 :y "0.729425538604203"^^xsd:decimal .
|
|
1955
1956
|
|
|
1956
1957
|
# ----------------------------------------------------------------------
|
|
1957
1958
|
# Proof for derived triple:
|
|
1958
|
-
# _:b2 :dy 1.8775825618903728 .
|
|
1959
|
+
# _:b2 :dy "1.8775825618903728"^^xsd:decimal .
|
|
1959
1960
|
# It holds because the following instance of the rule body is provable:
|
|
1960
1961
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
1961
1962
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
1962
1963
|
# _:b2 :x 0.5 .
|
|
1963
1964
|
# _:b2 :coef 4.0 .
|
|
1964
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
1965
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
1966
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
1967
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
1968
|
-
# (2.0 0.5) math:product 1 .
|
|
1969
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
1970
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
1971
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
1972
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
1965
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
1966
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
1967
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
1968
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
1969
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
1970
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
1971
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
1972
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
1973
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
1973
1974
|
# via the schematic forward rule:
|
|
1974
1975
|
# {
|
|
1975
1976
|
# :Simpson1 :samples ?ss .
|
|
@@ -1999,40 +2000,40 @@ _:b2 :y 0.729425538604203 .
|
|
|
1999
2000
|
# } .
|
|
2000
2001
|
# with substitution (on rule variables):
|
|
2001
2002
|
# ?c = 4.0
|
|
2002
|
-
# ?cosx = 0.8775825618903728
|
|
2003
|
-
# ?ds = 2.12727907823934
|
|
2004
|
-
# ?dy = 1.8775825618903728
|
|
2005
|
-
# ?dy2 = 3.5253162767148156
|
|
2006
|
-
# ?onePlus = 4.525316276714816
|
|
2003
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2004
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2005
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2006
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2007
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2007
2008
|
# ?s = _:b2
|
|
2008
|
-
# ?sinx = 0.479425538604203
|
|
2009
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2009
2010
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2010
|
-
# ?twox = 1
|
|
2011
|
+
# ?twox = "1"^^xsd:decimal
|
|
2011
2012
|
# ?x = 0.5
|
|
2012
|
-
# ?x2 = 0.25
|
|
2013
|
-
# ?y = 0.729425538604203
|
|
2013
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2014
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2014
2015
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2015
2016
|
# ----------------------------------------------------------------------
|
|
2016
2017
|
|
|
2017
|
-
_:b2 :dy 1.8775825618903728 .
|
|
2018
|
+
_:b2 :dy "1.8775825618903728"^^xsd:decimal .
|
|
2018
2019
|
|
|
2019
2020
|
# ----------------------------------------------------------------------
|
|
2020
2021
|
# Proof for derived triple:
|
|
2021
|
-
# _:b2 :ds 2.12727907823934 .
|
|
2022
|
+
# _:b2 :ds "2.12727907823934"^^xsd:decimal .
|
|
2022
2023
|
# It holds because the following instance of the rule body is provable:
|
|
2023
2024
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2024
2025
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2025
2026
|
# _:b2 :x 0.5 .
|
|
2026
2027
|
# _:b2 :coef 4.0 .
|
|
2027
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2028
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2029
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2030
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2031
|
-
# (2.0 0.5) math:product 1 .
|
|
2032
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2033
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2034
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2035
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2028
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2029
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2030
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2031
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2032
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2033
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2034
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2035
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2036
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2036
2037
|
# via the schematic forward rule:
|
|
2037
2038
|
# {
|
|
2038
2039
|
# :Simpson1 :samples ?ss .
|
|
@@ -2062,22 +2063,22 @@ _:b2 :dy 1.8775825618903728 .
|
|
|
2062
2063
|
# } .
|
|
2063
2064
|
# with substitution (on rule variables):
|
|
2064
2065
|
# ?c = 4.0
|
|
2065
|
-
# ?cosx = 0.8775825618903728
|
|
2066
|
-
# ?ds = 2.12727907823934
|
|
2067
|
-
# ?dy = 1.8775825618903728
|
|
2068
|
-
# ?dy2 = 3.5253162767148156
|
|
2069
|
-
# ?onePlus = 4.525316276714816
|
|
2066
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2067
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2068
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2069
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2070
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2070
2071
|
# ?s = _:b2
|
|
2071
|
-
# ?sinx = 0.479425538604203
|
|
2072
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2072
2073
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2073
|
-
# ?twox = 1
|
|
2074
|
+
# ?twox = "1"^^xsd:decimal
|
|
2074
2075
|
# ?x = 0.5
|
|
2075
|
-
# ?x2 = 0.25
|
|
2076
|
-
# ?y = 0.729425538604203
|
|
2076
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2077
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2077
2078
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2078
2079
|
# ----------------------------------------------------------------------
|
|
2079
2080
|
|
|
2080
|
-
_:b2 :ds 2.12727907823934 .
|
|
2081
|
+
_:b2 :ds "2.12727907823934"^^xsd:decimal .
|
|
2081
2082
|
|
|
2082
2083
|
# ----------------------------------------------------------------------
|
|
2083
2084
|
# Proof for derived triple:
|
|
@@ -2087,15 +2088,15 @@ _:b2 :ds 2.12727907823934 .
|
|
|
2087
2088
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2088
2089
|
# _:b2 :x 0.5 .
|
|
2089
2090
|
# _:b2 :coef 4.0 .
|
|
2090
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2091
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2092
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2093
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2094
|
-
# (2.0 0.5) math:product 1 .
|
|
2095
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2096
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2097
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2098
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2091
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2092
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2093
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2094
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2095
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2096
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2097
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2098
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2099
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2099
2100
|
# via the schematic forward rule:
|
|
2100
2101
|
# {
|
|
2101
2102
|
# :Simpson1 :samples ?ss .
|
|
@@ -2125,18 +2126,18 @@ _:b2 :ds 2.12727907823934 .
|
|
|
2125
2126
|
# } .
|
|
2126
2127
|
# with substitution (on rule variables):
|
|
2127
2128
|
# ?c = 4.0
|
|
2128
|
-
# ?cosx = 0.8775825618903728
|
|
2129
|
-
# ?ds = 2.12727907823934
|
|
2130
|
-
# ?dy = 1.8775825618903728
|
|
2131
|
-
# ?dy2 = 3.5253162767148156
|
|
2132
|
-
# ?onePlus = 4.525316276714816
|
|
2129
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2130
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2131
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2132
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2133
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2133
2134
|
# ?s = _:b2
|
|
2134
|
-
# ?sinx = 0.479425538604203
|
|
2135
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2135
2136
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2136
|
-
# ?twox = 1
|
|
2137
|
+
# ?twox = "1"^^xsd:decimal
|
|
2137
2138
|
# ?x = 0.5
|
|
2138
|
-
# ?x2 = 0.25
|
|
2139
|
-
# ?y = 0.729425538604203
|
|
2139
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2140
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2140
2141
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2141
2142
|
# ----------------------------------------------------------------------
|
|
2142
2143
|
|
|
@@ -2150,15 +2151,15 @@ _:sk_3 :sample _:b2 .
|
|
|
2150
2151
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2151
2152
|
# _:b2 :x 0.5 .
|
|
2152
2153
|
# _:b2 :coef 4.0 .
|
|
2153
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2154
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2155
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2156
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2157
|
-
# (2.0 0.5) math:product 1 .
|
|
2158
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2159
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2160
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2161
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2154
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2155
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2156
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2157
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2158
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2159
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2160
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2161
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2162
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2162
2163
|
# via the schematic forward rule:
|
|
2163
2164
|
# {
|
|
2164
2165
|
# :Simpson1 :samples ?ss .
|
|
@@ -2188,18 +2189,18 @@ _:sk_3 :sample _:b2 .
|
|
|
2188
2189
|
# } .
|
|
2189
2190
|
# with substitution (on rule variables):
|
|
2190
2191
|
# ?c = 4.0
|
|
2191
|
-
# ?cosx = 0.8775825618903728
|
|
2192
|
-
# ?ds = 2.12727907823934
|
|
2193
|
-
# ?dy = 1.8775825618903728
|
|
2194
|
-
# ?dy2 = 3.5253162767148156
|
|
2195
|
-
# ?onePlus = 4.525316276714816
|
|
2192
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2193
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2194
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2195
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2196
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2196
2197
|
# ?s = _:b2
|
|
2197
|
-
# ?sinx = 0.479425538604203
|
|
2198
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2198
2199
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2199
|
-
# ?twox = 1
|
|
2200
|
+
# ?twox = "1"^^xsd:decimal
|
|
2200
2201
|
# ?x = 0.5
|
|
2201
|
-
# ?x2 = 0.25
|
|
2202
|
-
# ?y = 0.729425538604203
|
|
2202
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2203
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2203
2204
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2204
2205
|
# ----------------------------------------------------------------------
|
|
2205
2206
|
|
|
@@ -2213,15 +2214,15 @@ _:sk_3 :x 0.5 .
|
|
|
2213
2214
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2214
2215
|
# _:b2 :x 0.5 .
|
|
2215
2216
|
# _:b2 :coef 4.0 .
|
|
2216
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2217
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2218
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2219
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2220
|
-
# (2.0 0.5) math:product 1 .
|
|
2221
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2222
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2223
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2224
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2217
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2218
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2219
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2220
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2221
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2222
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2223
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2224
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2225
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2225
2226
|
# via the schematic forward rule:
|
|
2226
2227
|
# {
|
|
2227
2228
|
# :Simpson1 :samples ?ss .
|
|
@@ -2251,18 +2252,18 @@ _:sk_3 :x 0.5 .
|
|
|
2251
2252
|
# } .
|
|
2252
2253
|
# with substitution (on rule variables):
|
|
2253
2254
|
# ?c = 4.0
|
|
2254
|
-
# ?cosx = 0.8775825618903728
|
|
2255
|
-
# ?ds = 2.12727907823934
|
|
2256
|
-
# ?dy = 1.8775825618903728
|
|
2257
|
-
# ?dy2 = 3.5253162767148156
|
|
2258
|
-
# ?onePlus = 4.525316276714816
|
|
2255
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2256
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2257
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2258
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2259
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2259
2260
|
# ?s = _:b2
|
|
2260
|
-
# ?sinx = 0.479425538604203
|
|
2261
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2261
2262
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2262
|
-
# ?twox = 1
|
|
2263
|
+
# ?twox = "1"^^xsd:decimal
|
|
2263
2264
|
# ?x = 0.5
|
|
2264
|
-
# ?x2 = 0.25
|
|
2265
|
-
# ?y = 0.729425538604203
|
|
2265
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2266
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2266
2267
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2267
2268
|
# ----------------------------------------------------------------------
|
|
2268
2269
|
|
|
@@ -2270,21 +2271,21 @@ _:sk_3 :coef 4.0 .
|
|
|
2270
2271
|
|
|
2271
2272
|
# ----------------------------------------------------------------------
|
|
2272
2273
|
# Proof for derived triple:
|
|
2273
|
-
# _:sk_3 :y 0.729425538604203 .
|
|
2274
|
+
# _:sk_3 :y "0.729425538604203"^^xsd:decimal .
|
|
2274
2275
|
# It holds because the following instance of the rule body is provable:
|
|
2275
2276
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2276
2277
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2277
2278
|
# _:b2 :x 0.5 .
|
|
2278
2279
|
# _:b2 :coef 4.0 .
|
|
2279
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2280
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2281
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2282
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2283
|
-
# (2.0 0.5) math:product 1 .
|
|
2284
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2285
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2286
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2287
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2280
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2281
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2282
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2283
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2284
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2285
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2286
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2287
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2288
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2288
2289
|
# via the schematic forward rule:
|
|
2289
2290
|
# {
|
|
2290
2291
|
# :Simpson1 :samples ?ss .
|
|
@@ -2314,40 +2315,40 @@ _:sk_3 :coef 4.0 .
|
|
|
2314
2315
|
# } .
|
|
2315
2316
|
# with substitution (on rule variables):
|
|
2316
2317
|
# ?c = 4.0
|
|
2317
|
-
# ?cosx = 0.8775825618903728
|
|
2318
|
-
# ?ds = 2.12727907823934
|
|
2319
|
-
# ?dy = 1.8775825618903728
|
|
2320
|
-
# ?dy2 = 3.5253162767148156
|
|
2321
|
-
# ?onePlus = 4.525316276714816
|
|
2318
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2319
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2320
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2321
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2322
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2322
2323
|
# ?s = _:b2
|
|
2323
|
-
# ?sinx = 0.479425538604203
|
|
2324
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2324
2325
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2325
|
-
# ?twox = 1
|
|
2326
|
+
# ?twox = "1"^^xsd:decimal
|
|
2326
2327
|
# ?x = 0.5
|
|
2327
|
-
# ?x2 = 0.25
|
|
2328
|
-
# ?y = 0.729425538604203
|
|
2328
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2329
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2329
2330
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2330
2331
|
# ----------------------------------------------------------------------
|
|
2331
2332
|
|
|
2332
|
-
_:sk_3 :y 0.729425538604203 .
|
|
2333
|
+
_:sk_3 :y "0.729425538604203"^^xsd:decimal .
|
|
2333
2334
|
|
|
2334
2335
|
# ----------------------------------------------------------------------
|
|
2335
2336
|
# Proof for derived triple:
|
|
2336
|
-
# _:sk_3 :dy 1.8775825618903728 .
|
|
2337
|
+
# _:sk_3 :dy "1.8775825618903728"^^xsd:decimal .
|
|
2337
2338
|
# It holds because the following instance of the rule body is provable:
|
|
2338
2339
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2339
2340
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2340
2341
|
# _:b2 :x 0.5 .
|
|
2341
2342
|
# _:b2 :coef 4.0 .
|
|
2342
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2343
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2344
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2345
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2346
|
-
# (2.0 0.5) math:product 1 .
|
|
2347
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2348
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2349
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2350
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2343
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2344
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2345
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2346
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2347
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2348
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2349
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2350
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2351
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2351
2352
|
# via the schematic forward rule:
|
|
2352
2353
|
# {
|
|
2353
2354
|
# :Simpson1 :samples ?ss .
|
|
@@ -2377,40 +2378,40 @@ _:sk_3 :y 0.729425538604203 .
|
|
|
2377
2378
|
# } .
|
|
2378
2379
|
# with substitution (on rule variables):
|
|
2379
2380
|
# ?c = 4.0
|
|
2380
|
-
# ?cosx = 0.8775825618903728
|
|
2381
|
-
# ?ds = 2.12727907823934
|
|
2382
|
-
# ?dy = 1.8775825618903728
|
|
2383
|
-
# ?dy2 = 3.5253162767148156
|
|
2384
|
-
# ?onePlus = 4.525316276714816
|
|
2381
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2382
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2383
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2384
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2385
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2385
2386
|
# ?s = _:b2
|
|
2386
|
-
# ?sinx = 0.479425538604203
|
|
2387
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2387
2388
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2388
|
-
# ?twox = 1
|
|
2389
|
+
# ?twox = "1"^^xsd:decimal
|
|
2389
2390
|
# ?x = 0.5
|
|
2390
|
-
# ?x2 = 0.25
|
|
2391
|
-
# ?y = 0.729425538604203
|
|
2391
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2392
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2392
2393
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2393
2394
|
# ----------------------------------------------------------------------
|
|
2394
2395
|
|
|
2395
|
-
_:sk_3 :dy 1.8775825618903728 .
|
|
2396
|
+
_:sk_3 :dy "1.8775825618903728"^^xsd:decimal .
|
|
2396
2397
|
|
|
2397
2398
|
# ----------------------------------------------------------------------
|
|
2398
2399
|
# Proof for derived triple:
|
|
2399
|
-
# _:sk_3 :ds 2.12727907823934 .
|
|
2400
|
+
# _:sk_3 :ds "2.12727907823934"^^xsd:decimal .
|
|
2400
2401
|
# It holds because the following instance of the rule body is provable:
|
|
2401
2402
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2402
2403
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2403
2404
|
# _:b2 :x 0.5 .
|
|
2404
2405
|
# _:b2 :coef 4.0 .
|
|
2405
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2406
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2407
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2408
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2409
|
-
# (2.0 0.5) math:product 1 .
|
|
2410
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2411
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2412
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2413
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2406
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2407
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2408
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2409
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2410
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2411
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2412
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2413
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2414
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2414
2415
|
# via the schematic forward rule:
|
|
2415
2416
|
# {
|
|
2416
2417
|
# :Simpson1 :samples ?ss .
|
|
@@ -2440,22 +2441,22 @@ _:sk_3 :dy 1.8775825618903728 .
|
|
|
2440
2441
|
# } .
|
|
2441
2442
|
# with substitution (on rule variables):
|
|
2442
2443
|
# ?c = 4.0
|
|
2443
|
-
# ?cosx = 0.8775825618903728
|
|
2444
|
-
# ?ds = 2.12727907823934
|
|
2445
|
-
# ?dy = 1.8775825618903728
|
|
2446
|
-
# ?dy2 = 3.5253162767148156
|
|
2447
|
-
# ?onePlus = 4.525316276714816
|
|
2444
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2445
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2446
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2447
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2448
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2448
2449
|
# ?s = _:b2
|
|
2449
|
-
# ?sinx = 0.479425538604203
|
|
2450
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2450
2451
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2451
|
-
# ?twox = 1
|
|
2452
|
+
# ?twox = "1"^^xsd:decimal
|
|
2452
2453
|
# ?x = 0.5
|
|
2453
|
-
# ?x2 = 0.25
|
|
2454
|
-
# ?y = 0.729425538604203
|
|
2454
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2455
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2455
2456
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2456
2457
|
# ----------------------------------------------------------------------
|
|
2457
2458
|
|
|
2458
|
-
_:sk_3 :ds 2.12727907823934 .
|
|
2459
|
+
_:sk_3 :ds "2.12727907823934"^^xsd:decimal .
|
|
2459
2460
|
|
|
2460
2461
|
# ----------------------------------------------------------------------
|
|
2461
2462
|
# Proof for derived triple:
|
|
@@ -2465,15 +2466,15 @@ _:sk_3 :ds 2.12727907823934 .
|
|
|
2465
2466
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
|
|
2466
2467
|
# _:b2 :x 0.5 .
|
|
2467
2468
|
# _:b2 :coef 4.0 .
|
|
2468
|
-
# 0.5 math:sin 0.479425538604203 .
|
|
2469
|
-
# (0.5 2.0) math:exponentiation 0.25 .
|
|
2470
|
-
# (0.479425538604203 0.25) math:sum 0.729425538604203 .
|
|
2471
|
-
# 0.5 math:cos 0.8775825618903728 .
|
|
2472
|
-
# (2.0 0.5) math:product 1 .
|
|
2473
|
-
# (0.8775825618903728 1) math:sum 1.8775825618903728 .
|
|
2474
|
-
# (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
|
|
2475
|
-
# (1.0 3.5253162767148156) math:sum 4.525316276714816 .
|
|
2476
|
-
# (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
|
|
2469
|
+
# 0.5 math:sin "0.479425538604203"^^xsd:decimal .
|
|
2470
|
+
# (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
|
|
2471
|
+
# ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
|
|
2472
|
+
# 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
|
|
2473
|
+
# (2.0 0.5) math:product "1"^^xsd:decimal .
|
|
2474
|
+
# ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
|
|
2475
|
+
# ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
|
|
2476
|
+
# (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
|
|
2477
|
+
# ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
|
|
2477
2478
|
# via the schematic forward rule:
|
|
2478
2479
|
# {
|
|
2479
2480
|
# :Simpson1 :samples ?ss .
|
|
@@ -2503,18 +2504,18 @@ _:sk_3 :ds 2.12727907823934 .
|
|
|
2503
2504
|
# } .
|
|
2504
2505
|
# with substitution (on rule variables):
|
|
2505
2506
|
# ?c = 4.0
|
|
2506
|
-
# ?cosx = 0.8775825618903728
|
|
2507
|
-
# ?ds = 2.12727907823934
|
|
2508
|
-
# ?dy = 1.8775825618903728
|
|
2509
|
-
# ?dy2 = 3.5253162767148156
|
|
2510
|
-
# ?onePlus = 4.525316276714816
|
|
2507
|
+
# ?cosx = "0.8775825618903728"^^xsd:decimal
|
|
2508
|
+
# ?ds = "2.12727907823934"^^xsd:decimal
|
|
2509
|
+
# ?dy = "1.8775825618903728"^^xsd:decimal
|
|
2510
|
+
# ?dy2 = "3.5253162767148156"^^xsd:decimal
|
|
2511
|
+
# ?onePlus = "4.525316276714816"^^xsd:decimal
|
|
2511
2512
|
# ?s = _:b2
|
|
2512
|
-
# ?sinx = 0.479425538604203
|
|
2513
|
+
# ?sinx = "0.479425538604203"^^xsd:decimal
|
|
2513
2514
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2514
|
-
# ?twox = 1
|
|
2515
|
+
# ?twox = "1"^^xsd:decimal
|
|
2515
2516
|
# ?x = 0.5
|
|
2516
|
-
# ?x2 = 0.25
|
|
2517
|
-
# ?y = 0.729425538604203
|
|
2517
|
+
# ?x2 = "0.25"^^xsd:decimal
|
|
2518
|
+
# ?y = "0.729425538604203"^^xsd:decimal
|
|
2518
2519
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2519
2520
|
# ----------------------------------------------------------------------
|
|
2520
2521
|
|
|
@@ -2522,21 +2523,21 @@ _:sk_3 :ds 2.12727907823934 .
|
|
|
2522
2523
|
|
|
2523
2524
|
# ----------------------------------------------------------------------
|
|
2524
2525
|
# Proof for derived triple:
|
|
2525
|
-
# _:b1 :y 0 .
|
|
2526
|
+
# _:b1 :y "0"^^xsd:decimal .
|
|
2526
2527
|
# It holds because the following instance of the rule body is provable:
|
|
2527
2528
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2528
2529
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2529
2530
|
# _:b1 :x 0.0 .
|
|
2530
2531
|
# _:b1 :coef 1.0 .
|
|
2531
|
-
# 0.0 math:sin 0 .
|
|
2532
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2533
|
-
# (0 0) math:sum 0 .
|
|
2534
|
-
# 0.0 math:cos 1 .
|
|
2535
|
-
# (2.0 0.0) math:product 0 .
|
|
2536
|
-
# (1 0) math:sum 1 .
|
|
2537
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2538
|
-
# (1.0 1) math:sum 2 .
|
|
2539
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2532
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2533
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2534
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2535
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2536
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2537
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2538
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2539
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2540
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2540
2541
|
# via the schematic forward rule:
|
|
2541
2542
|
# {
|
|
2542
2543
|
# :Simpson1 :samples ?ss .
|
|
@@ -2566,40 +2567,40 @@ _:sk_3 :ds 2.12727907823934 .
|
|
|
2566
2567
|
# } .
|
|
2567
2568
|
# with substitution (on rule variables):
|
|
2568
2569
|
# ?c = 1.0
|
|
2569
|
-
# ?cosx = 1
|
|
2570
|
-
# ?ds = 1.4142135623730951
|
|
2571
|
-
# ?dy = 1
|
|
2572
|
-
# ?dy2 = 1
|
|
2573
|
-
# ?onePlus = 2
|
|
2570
|
+
# ?cosx = "1"^^xsd:decimal
|
|
2571
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
2572
|
+
# ?dy = "1"^^xsd:decimal
|
|
2573
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
2574
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
2574
2575
|
# ?s = _:b1
|
|
2575
|
-
# ?sinx = 0
|
|
2576
|
+
# ?sinx = "0"^^xsd:decimal
|
|
2576
2577
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2577
|
-
# ?twox = 0
|
|
2578
|
+
# ?twox = "0"^^xsd:decimal
|
|
2578
2579
|
# ?x = 0.0
|
|
2579
|
-
# ?x2 = 0
|
|
2580
|
-
# ?y = 0
|
|
2580
|
+
# ?x2 = "0"^^xsd:decimal
|
|
2581
|
+
# ?y = "0"^^xsd:decimal
|
|
2581
2582
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2582
2583
|
# ----------------------------------------------------------------------
|
|
2583
2584
|
|
|
2584
|
-
_:b1 :y 0 .
|
|
2585
|
+
_:b1 :y "0"^^xsd:decimal .
|
|
2585
2586
|
|
|
2586
2587
|
# ----------------------------------------------------------------------
|
|
2587
2588
|
# Proof for derived triple:
|
|
2588
|
-
# _:b1 :dy 1 .
|
|
2589
|
+
# _:b1 :dy "1"^^xsd:decimal .
|
|
2589
2590
|
# It holds because the following instance of the rule body is provable:
|
|
2590
2591
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2591
2592
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2592
2593
|
# _:b1 :x 0.0 .
|
|
2593
2594
|
# _:b1 :coef 1.0 .
|
|
2594
|
-
# 0.0 math:sin 0 .
|
|
2595
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2596
|
-
# (0 0) math:sum 0 .
|
|
2597
|
-
# 0.0 math:cos 1 .
|
|
2598
|
-
# (2.0 0.0) math:product 0 .
|
|
2599
|
-
# (1 0) math:sum 1 .
|
|
2600
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2601
|
-
# (1.0 1) math:sum 2 .
|
|
2602
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2595
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2596
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2597
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2598
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2599
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2600
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2601
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2602
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2603
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2603
2604
|
# via the schematic forward rule:
|
|
2604
2605
|
# {
|
|
2605
2606
|
# :Simpson1 :samples ?ss .
|
|
@@ -2629,40 +2630,40 @@ _:b1 :y 0 .
|
|
|
2629
2630
|
# } .
|
|
2630
2631
|
# with substitution (on rule variables):
|
|
2631
2632
|
# ?c = 1.0
|
|
2632
|
-
# ?cosx = 1
|
|
2633
|
-
# ?ds = 1.4142135623730951
|
|
2634
|
-
# ?dy = 1
|
|
2635
|
-
# ?dy2 = 1
|
|
2636
|
-
# ?onePlus = 2
|
|
2633
|
+
# ?cosx = "1"^^xsd:decimal
|
|
2634
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
2635
|
+
# ?dy = "1"^^xsd:decimal
|
|
2636
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
2637
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
2637
2638
|
# ?s = _:b1
|
|
2638
|
-
# ?sinx = 0
|
|
2639
|
+
# ?sinx = "0"^^xsd:decimal
|
|
2639
2640
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2640
|
-
# ?twox = 0
|
|
2641
|
+
# ?twox = "0"^^xsd:decimal
|
|
2641
2642
|
# ?x = 0.0
|
|
2642
|
-
# ?x2 = 0
|
|
2643
|
-
# ?y = 0
|
|
2643
|
+
# ?x2 = "0"^^xsd:decimal
|
|
2644
|
+
# ?y = "0"^^xsd:decimal
|
|
2644
2645
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2645
2646
|
# ----------------------------------------------------------------------
|
|
2646
2647
|
|
|
2647
|
-
_:b1 :dy 1 .
|
|
2648
|
+
_:b1 :dy "1"^^xsd:decimal .
|
|
2648
2649
|
|
|
2649
2650
|
# ----------------------------------------------------------------------
|
|
2650
2651
|
# Proof for derived triple:
|
|
2651
|
-
# _:b1 :ds 1.4142135623730951 .
|
|
2652
|
+
# _:b1 :ds "1.4142135623730951"^^xsd:decimal .
|
|
2652
2653
|
# It holds because the following instance of the rule body is provable:
|
|
2653
2654
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2654
2655
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2655
2656
|
# _:b1 :x 0.0 .
|
|
2656
2657
|
# _:b1 :coef 1.0 .
|
|
2657
|
-
# 0.0 math:sin 0 .
|
|
2658
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2659
|
-
# (0 0) math:sum 0 .
|
|
2660
|
-
# 0.0 math:cos 1 .
|
|
2661
|
-
# (2.0 0.0) math:product 0 .
|
|
2662
|
-
# (1 0) math:sum 1 .
|
|
2663
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2664
|
-
# (1.0 1) math:sum 2 .
|
|
2665
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2658
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2659
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2660
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2661
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2662
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2663
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2664
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2665
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2666
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2666
2667
|
# via the schematic forward rule:
|
|
2667
2668
|
# {
|
|
2668
2669
|
# :Simpson1 :samples ?ss .
|
|
@@ -2692,22 +2693,22 @@ _:b1 :dy 1 .
|
|
|
2692
2693
|
# } .
|
|
2693
2694
|
# with substitution (on rule variables):
|
|
2694
2695
|
# ?c = 1.0
|
|
2695
|
-
# ?cosx = 1
|
|
2696
|
-
# ?ds = 1.4142135623730951
|
|
2697
|
-
# ?dy = 1
|
|
2698
|
-
# ?dy2 = 1
|
|
2699
|
-
# ?onePlus = 2
|
|
2696
|
+
# ?cosx = "1"^^xsd:decimal
|
|
2697
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
2698
|
+
# ?dy = "1"^^xsd:decimal
|
|
2699
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
2700
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
2700
2701
|
# ?s = _:b1
|
|
2701
|
-
# ?sinx = 0
|
|
2702
|
+
# ?sinx = "0"^^xsd:decimal
|
|
2702
2703
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2703
|
-
# ?twox = 0
|
|
2704
|
+
# ?twox = "0"^^xsd:decimal
|
|
2704
2705
|
# ?x = 0.0
|
|
2705
|
-
# ?x2 = 0
|
|
2706
|
-
# ?y = 0
|
|
2706
|
+
# ?x2 = "0"^^xsd:decimal
|
|
2707
|
+
# ?y = "0"^^xsd:decimal
|
|
2707
2708
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2708
2709
|
# ----------------------------------------------------------------------
|
|
2709
2710
|
|
|
2710
|
-
_:b1 :ds 1.4142135623730951 .
|
|
2711
|
+
_:b1 :ds "1.4142135623730951"^^xsd:decimal .
|
|
2711
2712
|
|
|
2712
2713
|
# ----------------------------------------------------------------------
|
|
2713
2714
|
# Proof for derived triple:
|
|
@@ -2717,15 +2718,15 @@ _:b1 :ds 1.4142135623730951 .
|
|
|
2717
2718
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2718
2719
|
# _:b1 :x 0.0 .
|
|
2719
2720
|
# _:b1 :coef 1.0 .
|
|
2720
|
-
# 0.0 math:sin 0 .
|
|
2721
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2722
|
-
# (0 0) math:sum 0 .
|
|
2723
|
-
# 0.0 math:cos 1 .
|
|
2724
|
-
# (2.0 0.0) math:product 0 .
|
|
2725
|
-
# (1 0) math:sum 1 .
|
|
2726
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2727
|
-
# (1.0 1) math:sum 2 .
|
|
2728
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2721
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2722
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2723
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2724
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2725
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2726
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2727
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2728
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2729
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2729
2730
|
# via the schematic forward rule:
|
|
2730
2731
|
# {
|
|
2731
2732
|
# :Simpson1 :samples ?ss .
|
|
@@ -2755,18 +2756,18 @@ _:b1 :ds 1.4142135623730951 .
|
|
|
2755
2756
|
# } .
|
|
2756
2757
|
# with substitution (on rule variables):
|
|
2757
2758
|
# ?c = 1.0
|
|
2758
|
-
# ?cosx = 1
|
|
2759
|
-
# ?ds = 1.4142135623730951
|
|
2760
|
-
# ?dy = 1
|
|
2761
|
-
# ?dy2 = 1
|
|
2762
|
-
# ?onePlus = 2
|
|
2759
|
+
# ?cosx = "1"^^xsd:decimal
|
|
2760
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
2761
|
+
# ?dy = "1"^^xsd:decimal
|
|
2762
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
2763
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
2763
2764
|
# ?s = _:b1
|
|
2764
|
-
# ?sinx = 0
|
|
2765
|
+
# ?sinx = "0"^^xsd:decimal
|
|
2765
2766
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2766
|
-
# ?twox = 0
|
|
2767
|
+
# ?twox = "0"^^xsd:decimal
|
|
2767
2768
|
# ?x = 0.0
|
|
2768
|
-
# ?x2 = 0
|
|
2769
|
-
# ?y = 0
|
|
2769
|
+
# ?x2 = "0"^^xsd:decimal
|
|
2770
|
+
# ?y = "0"^^xsd:decimal
|
|
2770
2771
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2771
2772
|
# ----------------------------------------------------------------------
|
|
2772
2773
|
|
|
@@ -2780,15 +2781,15 @@ _:sk_4 :sample _:b1 .
|
|
|
2780
2781
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2781
2782
|
# _:b1 :x 0.0 .
|
|
2782
2783
|
# _:b1 :coef 1.0 .
|
|
2783
|
-
# 0.0 math:sin 0 .
|
|
2784
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2785
|
-
# (0 0) math:sum 0 .
|
|
2786
|
-
# 0.0 math:cos 1 .
|
|
2787
|
-
# (2.0 0.0) math:product 0 .
|
|
2788
|
-
# (1 0) math:sum 1 .
|
|
2789
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2790
|
-
# (1.0 1) math:sum 2 .
|
|
2791
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2784
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2785
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2786
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2787
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2788
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2789
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2790
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2791
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2792
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2792
2793
|
# via the schematic forward rule:
|
|
2793
2794
|
# {
|
|
2794
2795
|
# :Simpson1 :samples ?ss .
|
|
@@ -2818,18 +2819,18 @@ _:sk_4 :sample _:b1 .
|
|
|
2818
2819
|
# } .
|
|
2819
2820
|
# with substitution (on rule variables):
|
|
2820
2821
|
# ?c = 1.0
|
|
2821
|
-
# ?cosx = 1
|
|
2822
|
-
# ?ds = 1.4142135623730951
|
|
2823
|
-
# ?dy = 1
|
|
2824
|
-
# ?dy2 = 1
|
|
2825
|
-
# ?onePlus = 2
|
|
2822
|
+
# ?cosx = "1"^^xsd:decimal
|
|
2823
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
2824
|
+
# ?dy = "1"^^xsd:decimal
|
|
2825
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
2826
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
2826
2827
|
# ?s = _:b1
|
|
2827
|
-
# ?sinx = 0
|
|
2828
|
+
# ?sinx = "0"^^xsd:decimal
|
|
2828
2829
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2829
|
-
# ?twox = 0
|
|
2830
|
+
# ?twox = "0"^^xsd:decimal
|
|
2830
2831
|
# ?x = 0.0
|
|
2831
|
-
# ?x2 = 0
|
|
2832
|
-
# ?y = 0
|
|
2832
|
+
# ?x2 = "0"^^xsd:decimal
|
|
2833
|
+
# ?y = "0"^^xsd:decimal
|
|
2833
2834
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2834
2835
|
# ----------------------------------------------------------------------
|
|
2835
2836
|
|
|
@@ -2843,15 +2844,15 @@ _:sk_4 :x 0.0 .
|
|
|
2843
2844
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2844
2845
|
# _:b1 :x 0.0 .
|
|
2845
2846
|
# _:b1 :coef 1.0 .
|
|
2846
|
-
# 0.0 math:sin 0 .
|
|
2847
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2848
|
-
# (0 0) math:sum 0 .
|
|
2849
|
-
# 0.0 math:cos 1 .
|
|
2850
|
-
# (2.0 0.0) math:product 0 .
|
|
2851
|
-
# (1 0) math:sum 1 .
|
|
2852
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2853
|
-
# (1.0 1) math:sum 2 .
|
|
2854
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2847
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2848
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2849
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2850
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2851
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2852
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2853
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2854
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2855
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2855
2856
|
# via the schematic forward rule:
|
|
2856
2857
|
# {
|
|
2857
2858
|
# :Simpson1 :samples ?ss .
|
|
@@ -2881,18 +2882,18 @@ _:sk_4 :x 0.0 .
|
|
|
2881
2882
|
# } .
|
|
2882
2883
|
# with substitution (on rule variables):
|
|
2883
2884
|
# ?c = 1.0
|
|
2884
|
-
# ?cosx = 1
|
|
2885
|
-
# ?ds = 1.4142135623730951
|
|
2886
|
-
# ?dy = 1
|
|
2887
|
-
# ?dy2 = 1
|
|
2888
|
-
# ?onePlus = 2
|
|
2885
|
+
# ?cosx = "1"^^xsd:decimal
|
|
2886
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
2887
|
+
# ?dy = "1"^^xsd:decimal
|
|
2888
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
2889
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
2889
2890
|
# ?s = _:b1
|
|
2890
|
-
# ?sinx = 0
|
|
2891
|
+
# ?sinx = "0"^^xsd:decimal
|
|
2891
2892
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2892
|
-
# ?twox = 0
|
|
2893
|
+
# ?twox = "0"^^xsd:decimal
|
|
2893
2894
|
# ?x = 0.0
|
|
2894
|
-
# ?x2 = 0
|
|
2895
|
-
# ?y = 0
|
|
2895
|
+
# ?x2 = "0"^^xsd:decimal
|
|
2896
|
+
# ?y = "0"^^xsd:decimal
|
|
2896
2897
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2897
2898
|
# ----------------------------------------------------------------------
|
|
2898
2899
|
|
|
@@ -2900,21 +2901,21 @@ _:sk_4 :coef 1.0 .
|
|
|
2900
2901
|
|
|
2901
2902
|
# ----------------------------------------------------------------------
|
|
2902
2903
|
# Proof for derived triple:
|
|
2903
|
-
# _:sk_4 :y 0 .
|
|
2904
|
+
# _:sk_4 :y "0"^^xsd:decimal .
|
|
2904
2905
|
# It holds because the following instance of the rule body is provable:
|
|
2905
2906
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2906
2907
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2907
2908
|
# _:b1 :x 0.0 .
|
|
2908
2909
|
# _:b1 :coef 1.0 .
|
|
2909
|
-
# 0.0 math:sin 0 .
|
|
2910
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2911
|
-
# (0 0) math:sum 0 .
|
|
2912
|
-
# 0.0 math:cos 1 .
|
|
2913
|
-
# (2.0 0.0) math:product 0 .
|
|
2914
|
-
# (1 0) math:sum 1 .
|
|
2915
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2916
|
-
# (1.0 1) math:sum 2 .
|
|
2917
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2910
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2911
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2912
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2913
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2914
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2915
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2916
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2917
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2918
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2918
2919
|
# via the schematic forward rule:
|
|
2919
2920
|
# {
|
|
2920
2921
|
# :Simpson1 :samples ?ss .
|
|
@@ -2944,40 +2945,40 @@ _:sk_4 :coef 1.0 .
|
|
|
2944
2945
|
# } .
|
|
2945
2946
|
# with substitution (on rule variables):
|
|
2946
2947
|
# ?c = 1.0
|
|
2947
|
-
# ?cosx = 1
|
|
2948
|
-
# ?ds = 1.4142135623730951
|
|
2949
|
-
# ?dy = 1
|
|
2950
|
-
# ?dy2 = 1
|
|
2951
|
-
# ?onePlus = 2
|
|
2948
|
+
# ?cosx = "1"^^xsd:decimal
|
|
2949
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
2950
|
+
# ?dy = "1"^^xsd:decimal
|
|
2951
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
2952
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
2952
2953
|
# ?s = _:b1
|
|
2953
|
-
# ?sinx = 0
|
|
2954
|
+
# ?sinx = "0"^^xsd:decimal
|
|
2954
2955
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
2955
|
-
# ?twox = 0
|
|
2956
|
+
# ?twox = "0"^^xsd:decimal
|
|
2956
2957
|
# ?x = 0.0
|
|
2957
|
-
# ?x2 = 0
|
|
2958
|
-
# ?y = 0
|
|
2958
|
+
# ?x2 = "0"^^xsd:decimal
|
|
2959
|
+
# ?y = "0"^^xsd:decimal
|
|
2959
2960
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2960
2961
|
# ----------------------------------------------------------------------
|
|
2961
2962
|
|
|
2962
|
-
_:sk_4 :y 0 .
|
|
2963
|
+
_:sk_4 :y "0"^^xsd:decimal .
|
|
2963
2964
|
|
|
2964
2965
|
# ----------------------------------------------------------------------
|
|
2965
2966
|
# Proof for derived triple:
|
|
2966
|
-
# _:sk_4 :dy 1 .
|
|
2967
|
+
# _:sk_4 :dy "1"^^xsd:decimal .
|
|
2967
2968
|
# It holds because the following instance of the rule body is provable:
|
|
2968
2969
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
2969
2970
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
2970
2971
|
# _:b1 :x 0.0 .
|
|
2971
2972
|
# _:b1 :coef 1.0 .
|
|
2972
|
-
# 0.0 math:sin 0 .
|
|
2973
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
2974
|
-
# (0 0) math:sum 0 .
|
|
2975
|
-
# 0.0 math:cos 1 .
|
|
2976
|
-
# (2.0 0.0) math:product 0 .
|
|
2977
|
-
# (1 0) math:sum 1 .
|
|
2978
|
-
# (1 2.0) math:exponentiation 1 .
|
|
2979
|
-
# (1.0 1) math:sum 2 .
|
|
2980
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
2973
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
2974
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
2975
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
2976
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
2977
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
2978
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
2979
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
2980
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
2981
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
2981
2982
|
# via the schematic forward rule:
|
|
2982
2983
|
# {
|
|
2983
2984
|
# :Simpson1 :samples ?ss .
|
|
@@ -3007,40 +3008,40 @@ _:sk_4 :y 0 .
|
|
|
3007
3008
|
# } .
|
|
3008
3009
|
# with substitution (on rule variables):
|
|
3009
3010
|
# ?c = 1.0
|
|
3010
|
-
# ?cosx = 1
|
|
3011
|
-
# ?ds = 1.4142135623730951
|
|
3012
|
-
# ?dy = 1
|
|
3013
|
-
# ?dy2 = 1
|
|
3014
|
-
# ?onePlus = 2
|
|
3011
|
+
# ?cosx = "1"^^xsd:decimal
|
|
3012
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
3013
|
+
# ?dy = "1"^^xsd:decimal
|
|
3014
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
3015
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
3015
3016
|
# ?s = _:b1
|
|
3016
|
-
# ?sinx = 0
|
|
3017
|
+
# ?sinx = "0"^^xsd:decimal
|
|
3017
3018
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
3018
|
-
# ?twox = 0
|
|
3019
|
+
# ?twox = "0"^^xsd:decimal
|
|
3019
3020
|
# ?x = 0.0
|
|
3020
|
-
# ?x2 = 0
|
|
3021
|
-
# ?y = 0
|
|
3021
|
+
# ?x2 = "0"^^xsd:decimal
|
|
3022
|
+
# ?y = "0"^^xsd:decimal
|
|
3022
3023
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3023
3024
|
# ----------------------------------------------------------------------
|
|
3024
3025
|
|
|
3025
|
-
_:sk_4 :dy 1 .
|
|
3026
|
+
_:sk_4 :dy "1"^^xsd:decimal .
|
|
3026
3027
|
|
|
3027
3028
|
# ----------------------------------------------------------------------
|
|
3028
3029
|
# Proof for derived triple:
|
|
3029
|
-
# _:sk_4 :ds 1.4142135623730951 .
|
|
3030
|
+
# _:sk_4 :ds "1.4142135623730951"^^xsd:decimal .
|
|
3030
3031
|
# It holds because the following instance of the rule body is provable:
|
|
3031
3032
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
3032
3033
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
3033
3034
|
# _:b1 :x 0.0 .
|
|
3034
3035
|
# _:b1 :coef 1.0 .
|
|
3035
|
-
# 0.0 math:sin 0 .
|
|
3036
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
3037
|
-
# (0 0) math:sum 0 .
|
|
3038
|
-
# 0.0 math:cos 1 .
|
|
3039
|
-
# (2.0 0.0) math:product 0 .
|
|
3040
|
-
# (1 0) math:sum 1 .
|
|
3041
|
-
# (1 2.0) math:exponentiation 1 .
|
|
3042
|
-
# (1.0 1) math:sum 2 .
|
|
3043
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
3036
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
3037
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
3038
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
3039
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
3040
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
3041
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
3042
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
3043
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
3044
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
3044
3045
|
# via the schematic forward rule:
|
|
3045
3046
|
# {
|
|
3046
3047
|
# :Simpson1 :samples ?ss .
|
|
@@ -3070,22 +3071,22 @@ _:sk_4 :dy 1 .
|
|
|
3070
3071
|
# } .
|
|
3071
3072
|
# with substitution (on rule variables):
|
|
3072
3073
|
# ?c = 1.0
|
|
3073
|
-
# ?cosx = 1
|
|
3074
|
-
# ?ds = 1.4142135623730951
|
|
3075
|
-
# ?dy = 1
|
|
3076
|
-
# ?dy2 = 1
|
|
3077
|
-
# ?onePlus = 2
|
|
3074
|
+
# ?cosx = "1"^^xsd:decimal
|
|
3075
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
3076
|
+
# ?dy = "1"^^xsd:decimal
|
|
3077
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
3078
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
3078
3079
|
# ?s = _:b1
|
|
3079
|
-
# ?sinx = 0
|
|
3080
|
+
# ?sinx = "0"^^xsd:decimal
|
|
3080
3081
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
3081
|
-
# ?twox = 0
|
|
3082
|
+
# ?twox = "0"^^xsd:decimal
|
|
3082
3083
|
# ?x = 0.0
|
|
3083
|
-
# ?x2 = 0
|
|
3084
|
-
# ?y = 0
|
|
3084
|
+
# ?x2 = "0"^^xsd:decimal
|
|
3085
|
+
# ?y = "0"^^xsd:decimal
|
|
3085
3086
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3086
3087
|
# ----------------------------------------------------------------------
|
|
3087
3088
|
|
|
3088
|
-
_:sk_4 :ds 1.4142135623730951 .
|
|
3089
|
+
_:sk_4 :ds "1.4142135623730951"^^xsd:decimal .
|
|
3089
3090
|
|
|
3090
3091
|
# ----------------------------------------------------------------------
|
|
3091
3092
|
# Proof for derived triple:
|
|
@@ -3095,15 +3096,15 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3095
3096
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
|
|
3096
3097
|
# _:b1 :x 0.0 .
|
|
3097
3098
|
# _:b1 :coef 1.0 .
|
|
3098
|
-
# 0.0 math:sin 0 .
|
|
3099
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
3100
|
-
# (0 0) math:sum 0 .
|
|
3101
|
-
# 0.0 math:cos 1 .
|
|
3102
|
-
# (2.0 0.0) math:product 0 .
|
|
3103
|
-
# (1 0) math:sum 1 .
|
|
3104
|
-
# (1 2.0) math:exponentiation 1 .
|
|
3105
|
-
# (1.0 1) math:sum 2 .
|
|
3106
|
-
# (2 0.5) math:exponentiation 1.4142135623730951 .
|
|
3099
|
+
# 0.0 math:sin "0"^^xsd:decimal .
|
|
3100
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
3101
|
+
# ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
|
|
3102
|
+
# 0.0 math:cos "1"^^xsd:decimal .
|
|
3103
|
+
# (2.0 0.0) math:product "0"^^xsd:decimal .
|
|
3104
|
+
# ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
3105
|
+
# ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
|
|
3106
|
+
# (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
|
|
3107
|
+
# ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
|
|
3107
3108
|
# via the schematic forward rule:
|
|
3108
3109
|
# {
|
|
3109
3110
|
# :Simpson1 :samples ?ss .
|
|
@@ -3133,18 +3134,18 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3133
3134
|
# } .
|
|
3134
3135
|
# with substitution (on rule variables):
|
|
3135
3136
|
# ?c = 1.0
|
|
3136
|
-
# ?cosx = 1
|
|
3137
|
-
# ?ds = 1.4142135623730951
|
|
3138
|
-
# ?dy = 1
|
|
3139
|
-
# ?dy2 = 1
|
|
3140
|
-
# ?onePlus = 2
|
|
3137
|
+
# ?cosx = "1"^^xsd:decimal
|
|
3138
|
+
# ?ds = "1.4142135623730951"^^xsd:decimal
|
|
3139
|
+
# ?dy = "1"^^xsd:decimal
|
|
3140
|
+
# ?dy2 = "1"^^xsd:decimal
|
|
3141
|
+
# ?onePlus = "2"^^xsd:decimal
|
|
3141
3142
|
# ?s = _:b1
|
|
3142
|
-
# ?sinx = 0
|
|
3143
|
+
# ?sinx = "0"^^xsd:decimal
|
|
3143
3144
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
3144
|
-
# ?twox = 0
|
|
3145
|
+
# ?twox = "0"^^xsd:decimal
|
|
3145
3146
|
# ?x = 0.0
|
|
3146
|
-
# ?x2 = 0
|
|
3147
|
-
# ?y = 0
|
|
3147
|
+
# ?x2 = "0"^^xsd:decimal
|
|
3148
|
+
# ?y = "0"^^xsd:decimal
|
|
3148
3149
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3149
3150
|
# ----------------------------------------------------------------------
|
|
3150
3151
|
|
|
@@ -3152,7 +3153,7 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3152
3153
|
|
|
3153
3154
|
# ----------------------------------------------------------------------
|
|
3154
3155
|
# Proof for derived triple:
|
|
3155
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3156
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3156
3157
|
# It holds because the following instance of the rule body is provable:
|
|
3157
3158
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
3158
3159
|
# (?wy {
|
|
@@ -3160,8 +3161,8 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3160
3161
|
# ?s :coef ?c .
|
|
3161
3162
|
# ?s :y ?y .
|
|
3162
3163
|
# (?c ?y) math:product ?wy .
|
|
3163
|
-
# } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
|
|
3164
|
-
# (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
|
|
3164
|
+
# } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
|
|
3165
|
+
# ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
|
|
3165
3166
|
# (?wxy {
|
|
3166
3167
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3167
3168
|
# ?s :coef ?c .
|
|
@@ -3169,23 +3170,23 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3169
3170
|
# ?s :y ?y .
|
|
3170
3171
|
# (?x ?y) math:product ?xy .
|
|
3171
3172
|
# (?c ?xy) math:product ?wxy .
|
|
3172
|
-
# } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
|
|
3173
|
-
# (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
|
|
3173
|
+
# } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
3174
|
+
# ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
|
|
3174
3175
|
# (?wy2 {
|
|
3175
3176
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3176
3177
|
# ?s :coef ?c .
|
|
3177
3178
|
# ?s :y ?y .
|
|
3178
3179
|
# (?y 2.0) math:exponentiation ?y2 .
|
|
3179
3180
|
# (?c ?y2) math:product ?wy2 .
|
|
3180
|
-
# } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
|
|
3181
|
-
# (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
|
|
3181
|
+
# } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
|
|
3182
|
+
# ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
|
|
3182
3183
|
# (?wds {
|
|
3183
3184
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3184
3185
|
# ?s :coef ?c .
|
|
3185
3186
|
# ?s :ds ?ds .
|
|
3186
3187
|
# (?c ?ds) math:product ?wds .
|
|
3187
|
-
# } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
|
|
3188
|
-
# (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
|
|
3188
|
+
# } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
|
|
3189
|
+
# ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
|
|
3189
3190
|
# via the schematic forward rule:
|
|
3190
3191
|
# {
|
|
3191
3192
|
# :Simpson1 :samples ?ss .
|
|
@@ -3228,22 +3229,22 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3228
3229
|
# } .
|
|
3229
3230
|
# with substitution (on rule variables):
|
|
3230
3231
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
3231
|
-
# ?sumWDS = 32.02201866506704
|
|
3232
|
-
# ?sumWXY = 34.445357820099886
|
|
3233
|
-
# ?sumWY = 24.499921497274507
|
|
3234
|
-
# ?sumWY2 = 75.19637321836198
|
|
3235
|
-
# ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
|
|
3236
|
-
# ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
|
|
3237
|
-
# ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
|
|
3238
|
-
# ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
|
|
3232
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3233
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3234
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3235
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3236
|
+
# ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
|
|
3237
|
+
# ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
|
|
3238
|
+
# ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
|
|
3239
|
+
# ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
|
|
3239
3240
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3240
3241
|
# ----------------------------------------------------------------------
|
|
3241
3242
|
|
|
3242
|
-
:Simpson1 :sumWY 24.499921497274507 .
|
|
3243
|
+
:Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3243
3244
|
|
|
3244
3245
|
# ----------------------------------------------------------------------
|
|
3245
3246
|
# Proof for derived triple:
|
|
3246
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3247
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3247
3248
|
# It holds because the following instance of the rule body is provable:
|
|
3248
3249
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
3249
3250
|
# (?wy {
|
|
@@ -3251,8 +3252,8 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3251
3252
|
# ?s :coef ?c .
|
|
3252
3253
|
# ?s :y ?y .
|
|
3253
3254
|
# (?c ?y) math:product ?wy .
|
|
3254
|
-
# } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
|
|
3255
|
-
# (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
|
|
3255
|
+
# } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
|
|
3256
|
+
# ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
|
|
3256
3257
|
# (?wxy {
|
|
3257
3258
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3258
3259
|
# ?s :coef ?c .
|
|
@@ -3260,23 +3261,23 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3260
3261
|
# ?s :y ?y .
|
|
3261
3262
|
# (?x ?y) math:product ?xy .
|
|
3262
3263
|
# (?c ?xy) math:product ?wxy .
|
|
3263
|
-
# } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
|
|
3264
|
-
# (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
|
|
3264
|
+
# } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
3265
|
+
# ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
|
|
3265
3266
|
# (?wy2 {
|
|
3266
3267
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3267
3268
|
# ?s :coef ?c .
|
|
3268
3269
|
# ?s :y ?y .
|
|
3269
3270
|
# (?y 2.0) math:exponentiation ?y2 .
|
|
3270
3271
|
# (?c ?y2) math:product ?wy2 .
|
|
3271
|
-
# } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
|
|
3272
|
-
# (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
|
|
3272
|
+
# } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
|
|
3273
|
+
# ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
|
|
3273
3274
|
# (?wds {
|
|
3274
3275
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3275
3276
|
# ?s :coef ?c .
|
|
3276
3277
|
# ?s :ds ?ds .
|
|
3277
3278
|
# (?c ?ds) math:product ?wds .
|
|
3278
|
-
# } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
|
|
3279
|
-
# (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
|
|
3279
|
+
# } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
|
|
3280
|
+
# ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
|
|
3280
3281
|
# via the schematic forward rule:
|
|
3281
3282
|
# {
|
|
3282
3283
|
# :Simpson1 :samples ?ss .
|
|
@@ -3319,22 +3320,22 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3319
3320
|
# } .
|
|
3320
3321
|
# with substitution (on rule variables):
|
|
3321
3322
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
3322
|
-
# ?sumWDS = 32.02201866506704
|
|
3323
|
-
# ?sumWXY = 34.445357820099886
|
|
3324
|
-
# ?sumWY = 24.499921497274507
|
|
3325
|
-
# ?sumWY2 = 75.19637321836198
|
|
3326
|
-
# ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
|
|
3327
|
-
# ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
|
|
3328
|
-
# ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
|
|
3329
|
-
# ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
|
|
3323
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3324
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3325
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3326
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3327
|
+
# ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
|
|
3328
|
+
# ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
|
|
3329
|
+
# ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
|
|
3330
|
+
# ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
|
|
3330
3331
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3331
3332
|
# ----------------------------------------------------------------------
|
|
3332
3333
|
|
|
3333
|
-
:Simpson1 :sumWXY 34.445357820099886 .
|
|
3334
|
+
:Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3334
3335
|
|
|
3335
3336
|
# ----------------------------------------------------------------------
|
|
3336
3337
|
# Proof for derived triple:
|
|
3337
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3338
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3338
3339
|
# It holds because the following instance of the rule body is provable:
|
|
3339
3340
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
3340
3341
|
# (?wy {
|
|
@@ -3342,8 +3343,8 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3342
3343
|
# ?s :coef ?c .
|
|
3343
3344
|
# ?s :y ?y .
|
|
3344
3345
|
# (?c ?y) math:product ?wy .
|
|
3345
|
-
# } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
|
|
3346
|
-
# (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
|
|
3346
|
+
# } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
|
|
3347
|
+
# ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
|
|
3347
3348
|
# (?wxy {
|
|
3348
3349
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3349
3350
|
# ?s :coef ?c .
|
|
@@ -3351,23 +3352,23 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3351
3352
|
# ?s :y ?y .
|
|
3352
3353
|
# (?x ?y) math:product ?xy .
|
|
3353
3354
|
# (?c ?xy) math:product ?wxy .
|
|
3354
|
-
# } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
|
|
3355
|
-
# (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
|
|
3355
|
+
# } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
3356
|
+
# ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
|
|
3356
3357
|
# (?wy2 {
|
|
3357
3358
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3358
3359
|
# ?s :coef ?c .
|
|
3359
3360
|
# ?s :y ?y .
|
|
3360
3361
|
# (?y 2.0) math:exponentiation ?y2 .
|
|
3361
3362
|
# (?c ?y2) math:product ?wy2 .
|
|
3362
|
-
# } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
|
|
3363
|
-
# (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
|
|
3363
|
+
# } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
|
|
3364
|
+
# ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
|
|
3364
3365
|
# (?wds {
|
|
3365
3366
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3366
3367
|
# ?s :coef ?c .
|
|
3367
3368
|
# ?s :ds ?ds .
|
|
3368
3369
|
# (?c ?ds) math:product ?wds .
|
|
3369
|
-
# } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
|
|
3370
|
-
# (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
|
|
3370
|
+
# } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
|
|
3371
|
+
# ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
|
|
3371
3372
|
# via the schematic forward rule:
|
|
3372
3373
|
# {
|
|
3373
3374
|
# :Simpson1 :samples ?ss .
|
|
@@ -3410,22 +3411,22 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3410
3411
|
# } .
|
|
3411
3412
|
# with substitution (on rule variables):
|
|
3412
3413
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
3413
|
-
# ?sumWDS = 32.02201866506704
|
|
3414
|
-
# ?sumWXY = 34.445357820099886
|
|
3415
|
-
# ?sumWY = 24.499921497274507
|
|
3416
|
-
# ?sumWY2 = 75.19637321836198
|
|
3417
|
-
# ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
|
|
3418
|
-
# ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
|
|
3419
|
-
# ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
|
|
3420
|
-
# ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
|
|
3414
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3415
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3416
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3417
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3418
|
+
# ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
|
|
3419
|
+
# ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
|
|
3420
|
+
# ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
|
|
3421
|
+
# ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
|
|
3421
3422
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3422
3423
|
# ----------------------------------------------------------------------
|
|
3423
3424
|
|
|
3424
|
-
:Simpson1 :sumWY2 75.19637321836198 .
|
|
3425
|
+
:Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3425
3426
|
|
|
3426
3427
|
# ----------------------------------------------------------------------
|
|
3427
3428
|
# Proof for derived triple:
|
|
3428
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3429
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3429
3430
|
# It holds because the following instance of the rule body is provable:
|
|
3430
3431
|
# :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
3431
3432
|
# (?wy {
|
|
@@ -3433,8 +3434,8 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3433
3434
|
# ?s :coef ?c .
|
|
3434
3435
|
# ?s :y ?y .
|
|
3435
3436
|
# (?c ?y) math:product ?wy .
|
|
3436
|
-
# } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
|
|
3437
|
-
# (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
|
|
3437
|
+
# } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
|
|
3438
|
+
# ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
|
|
3438
3439
|
# (?wxy {
|
|
3439
3440
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3440
3441
|
# ?s :coef ?c .
|
|
@@ -3442,23 +3443,23 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3442
3443
|
# ?s :y ?y .
|
|
3443
3444
|
# (?x ?y) math:product ?xy .
|
|
3444
3445
|
# (?c ?xy) math:product ?wxy .
|
|
3445
|
-
# } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
|
|
3446
|
-
# (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
|
|
3446
|
+
# } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
3447
|
+
# ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
|
|
3447
3448
|
# (?wy2 {
|
|
3448
3449
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3449
3450
|
# ?s :coef ?c .
|
|
3450
3451
|
# ?s :y ?y .
|
|
3451
3452
|
# (?y 2.0) math:exponentiation ?y2 .
|
|
3452
3453
|
# (?c ?y2) math:product ?wy2 .
|
|
3453
|
-
# } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
|
|
3454
|
-
# (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
|
|
3454
|
+
# } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
|
|
3455
|
+
# ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
|
|
3455
3456
|
# (?wds {
|
|
3456
3457
|
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
|
|
3457
3458
|
# ?s :coef ?c .
|
|
3458
3459
|
# ?s :ds ?ds .
|
|
3459
3460
|
# (?c ?ds) math:product ?wds .
|
|
3460
|
-
# } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
|
|
3461
|
-
# (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
|
|
3461
|
+
# } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
|
|
3462
|
+
# ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
|
|
3462
3463
|
# via the schematic forward rule:
|
|
3463
3464
|
# {
|
|
3464
3465
|
# :Simpson1 :samples ?ss .
|
|
@@ -3501,36 +3502,36 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3501
3502
|
# } .
|
|
3502
3503
|
# with substitution (on rule variables):
|
|
3503
3504
|
# ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
3504
|
-
# ?sumWDS = 32.02201866506704
|
|
3505
|
-
# ?sumWXY = 34.445357820099886
|
|
3506
|
-
# ?sumWY = 24.499921497274507
|
|
3507
|
-
# ?sumWY2 = 75.19637321836198
|
|
3508
|
-
# ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
|
|
3509
|
-
# ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
|
|
3510
|
-
# ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
|
|
3511
|
-
# ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
|
|
3505
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3506
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3507
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3508
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3509
|
+
# ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
|
|
3510
|
+
# ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
|
|
3511
|
+
# ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
|
|
3512
|
+
# ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
|
|
3512
3513
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3513
3514
|
# ----------------------------------------------------------------------
|
|
3514
3515
|
|
|
3515
|
-
:Simpson1 :sumWDS 32.02201866506704 .
|
|
3516
|
+
:Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3516
3517
|
|
|
3517
3518
|
# ----------------------------------------------------------------------
|
|
3518
3519
|
# Proof for derived triple:
|
|
3519
|
-
# :Simpson1 :areaUnderCurve 4.083320249545751 .
|
|
3520
|
+
# :Simpson1 :areaUnderCurve "4.083320249545751"^^xsd:decimal .
|
|
3520
3521
|
# It holds because the following instance of the rule body is provable:
|
|
3521
3522
|
# :Simpson1 :h 0.5 .
|
|
3522
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3523
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3524
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3525
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3526
|
-
# (0.5 3.0) math:quotient 0.16666666666666666 .
|
|
3527
|
-
# (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
|
|
3528
|
-
# (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
|
|
3529
|
-
# (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
|
|
3530
|
-
# (0.5 12.532728869726997) math:product 6.266364434863498 .
|
|
3531
|
-
# (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
|
|
3532
|
-
# (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
|
|
3533
|
-
# (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
|
|
3523
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3524
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3525
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3526
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3527
|
+
# (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
|
|
3528
|
+
# ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
|
|
3529
|
+
# ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
|
|
3530
|
+
# ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
|
|
3531
|
+
# (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
|
|
3532
|
+
# ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
|
|
3533
|
+
# ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
|
|
3534
|
+
# ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
|
|
3534
3535
|
# via the schematic forward rule:
|
|
3535
3536
|
# {
|
|
3536
3537
|
# :Simpson1 :h ?h .
|
|
@@ -3556,41 +3557,41 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3556
3557
|
# :Simpson1 :centroid _:b7 .
|
|
3557
3558
|
# } .
|
|
3558
3559
|
# with substitution (on rule variables):
|
|
3559
|
-
# ?A = 4.083320249545751
|
|
3560
|
-
# ?Iy2 = 12.532728869726997
|
|
3561
|
-
# ?L = 5.337003110844506
|
|
3562
|
-
# ?Mx = 6.266364434863498
|
|
3563
|
-
# ?My = 5.740892970016647
|
|
3564
|
-
# ?fac = 0.16666666666666666
|
|
3560
|
+
# ?A = "4.083320249545751"^^xsd:decimal
|
|
3561
|
+
# ?Iy2 = "12.532728869726997"^^xsd:decimal
|
|
3562
|
+
# ?L = "5.337003110844506"^^xsd:decimal
|
|
3563
|
+
# ?Mx = "6.266364434863498"^^xsd:decimal
|
|
3564
|
+
# ?My = "5.740892970016647"^^xsd:decimal
|
|
3565
|
+
# ?fac = "0.16666666666666666"^^xsd:decimal
|
|
3565
3566
|
# ?h = 0.5
|
|
3566
|
-
# ?sumWDS = 32.02201866506704
|
|
3567
|
-
# ?sumWXY = 34.445357820099886
|
|
3568
|
-
# ?sumWY = 24.499921497274507
|
|
3569
|
-
# ?sumWY2 = 75.19637321836198
|
|
3570
|
-
# ?xbar = 1.405937477143825
|
|
3571
|
-
# ?ybar = 1.5346247788330099
|
|
3567
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3568
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3569
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3570
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3571
|
+
# ?xbar = "1.405937477143825"^^xsd:decimal
|
|
3572
|
+
# ?ybar = "1.5346247788330099"^^xsd:decimal
|
|
3572
3573
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3573
3574
|
# ----------------------------------------------------------------------
|
|
3574
3575
|
|
|
3575
|
-
:Simpson1 :areaUnderCurve 4.083320249545751 .
|
|
3576
|
+
:Simpson1 :areaUnderCurve "4.083320249545751"^^xsd:decimal .
|
|
3576
3577
|
|
|
3577
3578
|
# ----------------------------------------------------------------------
|
|
3578
3579
|
# Proof for derived triple:
|
|
3579
|
-
# :Simpson1 :arcLength 5.337003110844506 .
|
|
3580
|
+
# :Simpson1 :arcLength "5.337003110844506"^^xsd:decimal .
|
|
3580
3581
|
# It holds because the following instance of the rule body is provable:
|
|
3581
3582
|
# :Simpson1 :h 0.5 .
|
|
3582
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3583
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3584
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3585
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3586
|
-
# (0.5 3.0) math:quotient 0.16666666666666666 .
|
|
3587
|
-
# (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
|
|
3588
|
-
# (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
|
|
3589
|
-
# (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
|
|
3590
|
-
# (0.5 12.532728869726997) math:product 6.266364434863498 .
|
|
3591
|
-
# (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
|
|
3592
|
-
# (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
|
|
3593
|
-
# (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
|
|
3583
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3584
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3585
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3586
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3587
|
+
# (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
|
|
3588
|
+
# ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
|
|
3589
|
+
# ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
|
|
3590
|
+
# ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
|
|
3591
|
+
# (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
|
|
3592
|
+
# ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
|
|
3593
|
+
# ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
|
|
3594
|
+
# ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
|
|
3594
3595
|
# via the schematic forward rule:
|
|
3595
3596
|
# {
|
|
3596
3597
|
# :Simpson1 :h ?h .
|
|
@@ -3616,41 +3617,41 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3616
3617
|
# :Simpson1 :centroid _:b7 .
|
|
3617
3618
|
# } .
|
|
3618
3619
|
# with substitution (on rule variables):
|
|
3619
|
-
# ?A = 4.083320249545751
|
|
3620
|
-
# ?Iy2 = 12.532728869726997
|
|
3621
|
-
# ?L = 5.337003110844506
|
|
3622
|
-
# ?Mx = 6.266364434863498
|
|
3623
|
-
# ?My = 5.740892970016647
|
|
3624
|
-
# ?fac = 0.16666666666666666
|
|
3620
|
+
# ?A = "4.083320249545751"^^xsd:decimal
|
|
3621
|
+
# ?Iy2 = "12.532728869726997"^^xsd:decimal
|
|
3622
|
+
# ?L = "5.337003110844506"^^xsd:decimal
|
|
3623
|
+
# ?Mx = "6.266364434863498"^^xsd:decimal
|
|
3624
|
+
# ?My = "5.740892970016647"^^xsd:decimal
|
|
3625
|
+
# ?fac = "0.16666666666666666"^^xsd:decimal
|
|
3625
3626
|
# ?h = 0.5
|
|
3626
|
-
# ?sumWDS = 32.02201866506704
|
|
3627
|
-
# ?sumWXY = 34.445357820099886
|
|
3628
|
-
# ?sumWY = 24.499921497274507
|
|
3629
|
-
# ?sumWY2 = 75.19637321836198
|
|
3630
|
-
# ?xbar = 1.405937477143825
|
|
3631
|
-
# ?ybar = 1.5346247788330099
|
|
3627
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3628
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3629
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3630
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3631
|
+
# ?xbar = "1.405937477143825"^^xsd:decimal
|
|
3632
|
+
# ?ybar = "1.5346247788330099"^^xsd:decimal
|
|
3632
3633
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3633
3634
|
# ----------------------------------------------------------------------
|
|
3634
3635
|
|
|
3635
|
-
:Simpson1 :arcLength 5.337003110844506 .
|
|
3636
|
+
:Simpson1 :arcLength "5.337003110844506"^^xsd:decimal .
|
|
3636
3637
|
|
|
3637
3638
|
# ----------------------------------------------------------------------
|
|
3638
3639
|
# Proof for derived triple:
|
|
3639
|
-
# :Simpson1 :momentAboutY 5.740892970016647 .
|
|
3640
|
+
# :Simpson1 :momentAboutY "5.740892970016647"^^xsd:decimal .
|
|
3640
3641
|
# It holds because the following instance of the rule body is provable:
|
|
3641
3642
|
# :Simpson1 :h 0.5 .
|
|
3642
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3643
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3644
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3645
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3646
|
-
# (0.5 3.0) math:quotient 0.16666666666666666 .
|
|
3647
|
-
# (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
|
|
3648
|
-
# (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
|
|
3649
|
-
# (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
|
|
3650
|
-
# (0.5 12.532728869726997) math:product 6.266364434863498 .
|
|
3651
|
-
# (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
|
|
3652
|
-
# (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
|
|
3653
|
-
# (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
|
|
3643
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3644
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3645
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3646
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3647
|
+
# (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
|
|
3648
|
+
# ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
|
|
3649
|
+
# ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
|
|
3650
|
+
# ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
|
|
3651
|
+
# (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
|
|
3652
|
+
# ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
|
|
3653
|
+
# ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
|
|
3654
|
+
# ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
|
|
3654
3655
|
# via the schematic forward rule:
|
|
3655
3656
|
# {
|
|
3656
3657
|
# :Simpson1 :h ?h .
|
|
@@ -3676,41 +3677,41 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3676
3677
|
# :Simpson1 :centroid _:b7 .
|
|
3677
3678
|
# } .
|
|
3678
3679
|
# with substitution (on rule variables):
|
|
3679
|
-
# ?A = 4.083320249545751
|
|
3680
|
-
# ?Iy2 = 12.532728869726997
|
|
3681
|
-
# ?L = 5.337003110844506
|
|
3682
|
-
# ?Mx = 6.266364434863498
|
|
3683
|
-
# ?My = 5.740892970016647
|
|
3684
|
-
# ?fac = 0.16666666666666666
|
|
3680
|
+
# ?A = "4.083320249545751"^^xsd:decimal
|
|
3681
|
+
# ?Iy2 = "12.532728869726997"^^xsd:decimal
|
|
3682
|
+
# ?L = "5.337003110844506"^^xsd:decimal
|
|
3683
|
+
# ?Mx = "6.266364434863498"^^xsd:decimal
|
|
3684
|
+
# ?My = "5.740892970016647"^^xsd:decimal
|
|
3685
|
+
# ?fac = "0.16666666666666666"^^xsd:decimal
|
|
3685
3686
|
# ?h = 0.5
|
|
3686
|
-
# ?sumWDS = 32.02201866506704
|
|
3687
|
-
# ?sumWXY = 34.445357820099886
|
|
3688
|
-
# ?sumWY = 24.499921497274507
|
|
3689
|
-
# ?sumWY2 = 75.19637321836198
|
|
3690
|
-
# ?xbar = 1.405937477143825
|
|
3691
|
-
# ?ybar = 1.5346247788330099
|
|
3687
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3688
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3689
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3690
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3691
|
+
# ?xbar = "1.405937477143825"^^xsd:decimal
|
|
3692
|
+
# ?ybar = "1.5346247788330099"^^xsd:decimal
|
|
3692
3693
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3693
3694
|
# ----------------------------------------------------------------------
|
|
3694
3695
|
|
|
3695
|
-
:Simpson1 :momentAboutY 5.740892970016647 .
|
|
3696
|
+
:Simpson1 :momentAboutY "5.740892970016647"^^xsd:decimal .
|
|
3696
3697
|
|
|
3697
3698
|
# ----------------------------------------------------------------------
|
|
3698
3699
|
# Proof for derived triple:
|
|
3699
|
-
# :Simpson1 :momentAboutX 6.266364434863498 .
|
|
3700
|
+
# :Simpson1 :momentAboutX "6.266364434863498"^^xsd:decimal .
|
|
3700
3701
|
# It holds because the following instance of the rule body is provable:
|
|
3701
3702
|
# :Simpson1 :h 0.5 .
|
|
3702
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3703
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3704
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3705
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3706
|
-
# (0.5 3.0) math:quotient 0.16666666666666666 .
|
|
3707
|
-
# (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
|
|
3708
|
-
# (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
|
|
3709
|
-
# (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
|
|
3710
|
-
# (0.5 12.532728869726997) math:product 6.266364434863498 .
|
|
3711
|
-
# (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
|
|
3712
|
-
# (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
|
|
3713
|
-
# (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
|
|
3703
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3704
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3705
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3706
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3707
|
+
# (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
|
|
3708
|
+
# ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
|
|
3709
|
+
# ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
|
|
3710
|
+
# ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
|
|
3711
|
+
# (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
|
|
3712
|
+
# ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
|
|
3713
|
+
# ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
|
|
3714
|
+
# ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
|
|
3714
3715
|
# via the schematic forward rule:
|
|
3715
3716
|
# {
|
|
3716
3717
|
# :Simpson1 :h ?h .
|
|
@@ -3736,41 +3737,41 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3736
3737
|
# :Simpson1 :centroid _:b7 .
|
|
3737
3738
|
# } .
|
|
3738
3739
|
# with substitution (on rule variables):
|
|
3739
|
-
# ?A = 4.083320249545751
|
|
3740
|
-
# ?Iy2 = 12.532728869726997
|
|
3741
|
-
# ?L = 5.337003110844506
|
|
3742
|
-
# ?Mx = 6.266364434863498
|
|
3743
|
-
# ?My = 5.740892970016647
|
|
3744
|
-
# ?fac = 0.16666666666666666
|
|
3740
|
+
# ?A = "4.083320249545751"^^xsd:decimal
|
|
3741
|
+
# ?Iy2 = "12.532728869726997"^^xsd:decimal
|
|
3742
|
+
# ?L = "5.337003110844506"^^xsd:decimal
|
|
3743
|
+
# ?Mx = "6.266364434863498"^^xsd:decimal
|
|
3744
|
+
# ?My = "5.740892970016647"^^xsd:decimal
|
|
3745
|
+
# ?fac = "0.16666666666666666"^^xsd:decimal
|
|
3745
3746
|
# ?h = 0.5
|
|
3746
|
-
# ?sumWDS = 32.02201866506704
|
|
3747
|
-
# ?sumWXY = 34.445357820099886
|
|
3748
|
-
# ?sumWY = 24.499921497274507
|
|
3749
|
-
# ?sumWY2 = 75.19637321836198
|
|
3750
|
-
# ?xbar = 1.405937477143825
|
|
3751
|
-
# ?ybar = 1.5346247788330099
|
|
3747
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3748
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3749
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3750
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3751
|
+
# ?xbar = "1.405937477143825"^^xsd:decimal
|
|
3752
|
+
# ?ybar = "1.5346247788330099"^^xsd:decimal
|
|
3752
3753
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3753
3754
|
# ----------------------------------------------------------------------
|
|
3754
3755
|
|
|
3755
|
-
:Simpson1 :momentAboutX 6.266364434863498 .
|
|
3756
|
+
:Simpson1 :momentAboutX "6.266364434863498"^^xsd:decimal .
|
|
3756
3757
|
|
|
3757
3758
|
# ----------------------------------------------------------------------
|
|
3758
3759
|
# Proof for derived triple:
|
|
3759
|
-
# _:sk_5 :xbar 1.405937477143825 .
|
|
3760
|
+
# _:sk_5 :xbar "1.405937477143825"^^xsd:decimal .
|
|
3760
3761
|
# It holds because the following instance of the rule body is provable:
|
|
3761
3762
|
# :Simpson1 :h 0.5 .
|
|
3762
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3763
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3764
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3765
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3766
|
-
# (0.5 3.0) math:quotient 0.16666666666666666 .
|
|
3767
|
-
# (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
|
|
3768
|
-
# (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
|
|
3769
|
-
# (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
|
|
3770
|
-
# (0.5 12.532728869726997) math:product 6.266364434863498 .
|
|
3771
|
-
# (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
|
|
3772
|
-
# (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
|
|
3773
|
-
# (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
|
|
3763
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3764
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3765
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3766
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3767
|
+
# (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
|
|
3768
|
+
# ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
|
|
3769
|
+
# ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
|
|
3770
|
+
# ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
|
|
3771
|
+
# (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
|
|
3772
|
+
# ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
|
|
3773
|
+
# ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
|
|
3774
|
+
# ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
|
|
3774
3775
|
# via the schematic forward rule:
|
|
3775
3776
|
# {
|
|
3776
3777
|
# :Simpson1 :h ?h .
|
|
@@ -3796,41 +3797,41 @@ _:sk_4 :ds 1.4142135623730951 .
|
|
|
3796
3797
|
# :Simpson1 :centroid _:b7 .
|
|
3797
3798
|
# } .
|
|
3798
3799
|
# with substitution (on rule variables):
|
|
3799
|
-
# ?A = 4.083320249545751
|
|
3800
|
-
# ?Iy2 = 12.532728869726997
|
|
3801
|
-
# ?L = 5.337003110844506
|
|
3802
|
-
# ?Mx = 6.266364434863498
|
|
3803
|
-
# ?My = 5.740892970016647
|
|
3804
|
-
# ?fac = 0.16666666666666666
|
|
3800
|
+
# ?A = "4.083320249545751"^^xsd:decimal
|
|
3801
|
+
# ?Iy2 = "12.532728869726997"^^xsd:decimal
|
|
3802
|
+
# ?L = "5.337003110844506"^^xsd:decimal
|
|
3803
|
+
# ?Mx = "6.266364434863498"^^xsd:decimal
|
|
3804
|
+
# ?My = "5.740892970016647"^^xsd:decimal
|
|
3805
|
+
# ?fac = "0.16666666666666666"^^xsd:decimal
|
|
3805
3806
|
# ?h = 0.5
|
|
3806
|
-
# ?sumWDS = 32.02201866506704
|
|
3807
|
-
# ?sumWXY = 34.445357820099886
|
|
3808
|
-
# ?sumWY = 24.499921497274507
|
|
3809
|
-
# ?sumWY2 = 75.19637321836198
|
|
3810
|
-
# ?xbar = 1.405937477143825
|
|
3811
|
-
# ?ybar = 1.5346247788330099
|
|
3807
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3808
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3809
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3810
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3811
|
+
# ?xbar = "1.405937477143825"^^xsd:decimal
|
|
3812
|
+
# ?ybar = "1.5346247788330099"^^xsd:decimal
|
|
3812
3813
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3813
3814
|
# ----------------------------------------------------------------------
|
|
3814
3815
|
|
|
3815
|
-
_:sk_5 :xbar 1.405937477143825 .
|
|
3816
|
+
_:sk_5 :xbar "1.405937477143825"^^xsd:decimal .
|
|
3816
3817
|
|
|
3817
3818
|
# ----------------------------------------------------------------------
|
|
3818
3819
|
# Proof for derived triple:
|
|
3819
|
-
# _:sk_5 :ybar 1.5346247788330099 .
|
|
3820
|
+
# _:sk_5 :ybar "1.5346247788330099"^^xsd:decimal .
|
|
3820
3821
|
# It holds because the following instance of the rule body is provable:
|
|
3821
3822
|
# :Simpson1 :h 0.5 .
|
|
3822
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3823
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3824
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3825
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3826
|
-
# (0.5 3.0) math:quotient 0.16666666666666666 .
|
|
3827
|
-
# (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
|
|
3828
|
-
# (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
|
|
3829
|
-
# (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
|
|
3830
|
-
# (0.5 12.532728869726997) math:product 6.266364434863498 .
|
|
3831
|
-
# (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
|
|
3832
|
-
# (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
|
|
3833
|
-
# (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
|
|
3823
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3824
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3825
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3826
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3827
|
+
# (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
|
|
3828
|
+
# ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
|
|
3829
|
+
# ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
|
|
3830
|
+
# ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
|
|
3831
|
+
# (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
|
|
3832
|
+
# ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
|
|
3833
|
+
# ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
|
|
3834
|
+
# ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
|
|
3834
3835
|
# via the schematic forward rule:
|
|
3835
3836
|
# {
|
|
3836
3837
|
# :Simpson1 :h ?h .
|
|
@@ -3856,41 +3857,41 @@ _:sk_5 :xbar 1.405937477143825 .
|
|
|
3856
3857
|
# :Simpson1 :centroid _:b7 .
|
|
3857
3858
|
# } .
|
|
3858
3859
|
# with substitution (on rule variables):
|
|
3859
|
-
# ?A = 4.083320249545751
|
|
3860
|
-
# ?Iy2 = 12.532728869726997
|
|
3861
|
-
# ?L = 5.337003110844506
|
|
3862
|
-
# ?Mx = 6.266364434863498
|
|
3863
|
-
# ?My = 5.740892970016647
|
|
3864
|
-
# ?fac = 0.16666666666666666
|
|
3860
|
+
# ?A = "4.083320249545751"^^xsd:decimal
|
|
3861
|
+
# ?Iy2 = "12.532728869726997"^^xsd:decimal
|
|
3862
|
+
# ?L = "5.337003110844506"^^xsd:decimal
|
|
3863
|
+
# ?Mx = "6.266364434863498"^^xsd:decimal
|
|
3864
|
+
# ?My = "5.740892970016647"^^xsd:decimal
|
|
3865
|
+
# ?fac = "0.16666666666666666"^^xsd:decimal
|
|
3865
3866
|
# ?h = 0.5
|
|
3866
|
-
# ?sumWDS = 32.02201866506704
|
|
3867
|
-
# ?sumWXY = 34.445357820099886
|
|
3868
|
-
# ?sumWY = 24.499921497274507
|
|
3869
|
-
# ?sumWY2 = 75.19637321836198
|
|
3870
|
-
# ?xbar = 1.405937477143825
|
|
3871
|
-
# ?ybar = 1.5346247788330099
|
|
3867
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3868
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3869
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3870
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3871
|
+
# ?xbar = "1.405937477143825"^^xsd:decimal
|
|
3872
|
+
# ?ybar = "1.5346247788330099"^^xsd:decimal
|
|
3872
3873
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3873
3874
|
# ----------------------------------------------------------------------
|
|
3874
3875
|
|
|
3875
|
-
_:sk_5 :ybar 1.5346247788330099 .
|
|
3876
|
+
_:sk_5 :ybar "1.5346247788330099"^^xsd:decimal .
|
|
3876
3877
|
|
|
3877
3878
|
# ----------------------------------------------------------------------
|
|
3878
3879
|
# Proof for derived triple:
|
|
3879
3880
|
# :Simpson1 :centroid _:sk_5 .
|
|
3880
3881
|
# It holds because the following instance of the rule body is provable:
|
|
3881
3882
|
# :Simpson1 :h 0.5 .
|
|
3882
|
-
# :Simpson1 :sumWY 24.499921497274507 .
|
|
3883
|
-
# :Simpson1 :sumWXY 34.445357820099886 .
|
|
3884
|
-
# :Simpson1 :sumWY2 75.19637321836198 .
|
|
3885
|
-
# :Simpson1 :sumWDS 32.02201866506704 .
|
|
3886
|
-
# (0.5 3.0) math:quotient 0.16666666666666666 .
|
|
3887
|
-
# (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
|
|
3888
|
-
# (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
|
|
3889
|
-
# (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
|
|
3890
|
-
# (0.5 12.532728869726997) math:product 6.266364434863498 .
|
|
3891
|
-
# (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
|
|
3892
|
-
# (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
|
|
3893
|
-
# (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
|
|
3883
|
+
# :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
|
|
3884
|
+
# :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
|
|
3885
|
+
# :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
|
|
3886
|
+
# :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
|
|
3887
|
+
# (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
|
|
3888
|
+
# ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
|
|
3889
|
+
# ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
|
|
3890
|
+
# ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
|
|
3891
|
+
# (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
|
|
3892
|
+
# ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
|
|
3893
|
+
# ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
|
|
3894
|
+
# ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
|
|
3894
3895
|
# via the schematic forward rule:
|
|
3895
3896
|
# {
|
|
3896
3897
|
# :Simpson1 :h ?h .
|
|
@@ -3916,19 +3917,19 @@ _:sk_5 :ybar 1.5346247788330099 .
|
|
|
3916
3917
|
# :Simpson1 :centroid _:b7 .
|
|
3917
3918
|
# } .
|
|
3918
3919
|
# with substitution (on rule variables):
|
|
3919
|
-
# ?A = 4.083320249545751
|
|
3920
|
-
# ?Iy2 = 12.532728869726997
|
|
3921
|
-
# ?L = 5.337003110844506
|
|
3922
|
-
# ?Mx = 6.266364434863498
|
|
3923
|
-
# ?My = 5.740892970016647
|
|
3924
|
-
# ?fac = 0.16666666666666666
|
|
3920
|
+
# ?A = "4.083320249545751"^^xsd:decimal
|
|
3921
|
+
# ?Iy2 = "12.532728869726997"^^xsd:decimal
|
|
3922
|
+
# ?L = "5.337003110844506"^^xsd:decimal
|
|
3923
|
+
# ?Mx = "6.266364434863498"^^xsd:decimal
|
|
3924
|
+
# ?My = "5.740892970016647"^^xsd:decimal
|
|
3925
|
+
# ?fac = "0.16666666666666666"^^xsd:decimal
|
|
3925
3926
|
# ?h = 0.5
|
|
3926
|
-
# ?sumWDS = 32.02201866506704
|
|
3927
|
-
# ?sumWXY = 34.445357820099886
|
|
3928
|
-
# ?sumWY = 24.499921497274507
|
|
3929
|
-
# ?sumWY2 = 75.19637321836198
|
|
3930
|
-
# ?xbar = 1.405937477143825
|
|
3931
|
-
# ?ybar = 1.5346247788330099
|
|
3927
|
+
# ?sumWDS = "32.02201866506704"^^xsd:decimal
|
|
3928
|
+
# ?sumWXY = "34.445357820099886"^^xsd:decimal
|
|
3929
|
+
# ?sumWY = "24.499921497274507"^^xsd:decimal
|
|
3930
|
+
# ?sumWY2 = "75.19637321836198"^^xsd:decimal
|
|
3931
|
+
# ?xbar = "1.405937477143825"^^xsd:decimal
|
|
3932
|
+
# ?ybar = "1.5346247788330099"^^xsd:decimal
|
|
3932
3933
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3933
3934
|
# ----------------------------------------------------------------------
|
|
3934
3935
|
|