eyeling 1.6.4 → 1.6.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,22 +1,23 @@
1
1
  @prefix : <http://example.org/ultramarine-simpson#> .
2
+ @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
2
3
 
3
4
  # ----------------------------------------------------------------------
4
5
  # Proof for derived triple:
5
- # _:b5 :y 4.909297426825682 .
6
+ # _:b5 :y "4.909297426825682"^^xsd:decimal .
6
7
  # It holds because the following instance of the rule body is provable:
7
8
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
8
9
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
9
10
  # _:b5 :x 2.0 .
10
11
  # _:b5 :coef 1.0 .
11
- # 2.0 math:sin 0.9092974268256817 .
12
- # (2.0 2.0) math:exponentiation 4 .
13
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
14
- # 2.0 math:cos -0.4161468365471424 .
15
- # (2.0 2.0) math:product 4 .
16
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
17
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
18
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
19
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
12
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
13
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
14
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
15
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
16
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
17
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
18
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
19
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
20
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
20
21
  # via the schematic forward rule:
21
22
  # {
22
23
  # :Simpson1 :samples ?ss .
@@ -46,40 +47,40 @@
46
47
  # } .
47
48
  # with substitution (on rule variables):
48
49
  # ?c = 1.0
49
- # ?cosx = -0.4161468365471424
50
- # ?ds = 3.720753081997118
51
- # ?dy = 3.5838531634528574
52
- # ?dy2 = 12.844003497191053
53
- # ?onePlus = 13.844003497191053
50
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
51
+ # ?ds = "3.720753081997118"^^xsd:decimal
52
+ # ?dy = "3.5838531634528574"^^xsd:decimal
53
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
54
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
54
55
  # ?s = _:b5
55
- # ?sinx = 0.9092974268256817
56
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
56
57
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
57
- # ?twox = 4
58
+ # ?twox = "4"^^xsd:decimal
58
59
  # ?x = 2.0
59
- # ?x2 = 4
60
- # ?y = 4.909297426825682
60
+ # ?x2 = "4"^^xsd:decimal
61
+ # ?y = "4.909297426825682"^^xsd:decimal
61
62
  # Therefore the derived triple above is entailed by the rules and facts.
62
63
  # ----------------------------------------------------------------------
63
64
 
64
- _:b5 :y 4.909297426825682 .
65
+ _:b5 :y "4.909297426825682"^^xsd:decimal .
65
66
 
66
67
  # ----------------------------------------------------------------------
67
68
  # Proof for derived triple:
68
- # _:b5 :dy 3.5838531634528574 .
69
+ # _:b5 :dy "3.5838531634528574"^^xsd:decimal .
69
70
  # It holds because the following instance of the rule body is provable:
70
71
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
71
72
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
72
73
  # _:b5 :x 2.0 .
73
74
  # _:b5 :coef 1.0 .
74
- # 2.0 math:sin 0.9092974268256817 .
75
- # (2.0 2.0) math:exponentiation 4 .
76
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
77
- # 2.0 math:cos -0.4161468365471424 .
78
- # (2.0 2.0) math:product 4 .
79
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
80
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
81
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
82
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
75
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
76
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
77
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
78
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
79
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
80
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
81
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
82
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
83
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
83
84
  # via the schematic forward rule:
84
85
  # {
85
86
  # :Simpson1 :samples ?ss .
@@ -109,40 +110,40 @@ _:b5 :y 4.909297426825682 .
109
110
  # } .
110
111
  # with substitution (on rule variables):
111
112
  # ?c = 1.0
112
- # ?cosx = -0.4161468365471424
113
- # ?ds = 3.720753081997118
114
- # ?dy = 3.5838531634528574
115
- # ?dy2 = 12.844003497191053
116
- # ?onePlus = 13.844003497191053
113
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
114
+ # ?ds = "3.720753081997118"^^xsd:decimal
115
+ # ?dy = "3.5838531634528574"^^xsd:decimal
116
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
117
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
117
118
  # ?s = _:b5
118
- # ?sinx = 0.9092974268256817
119
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
119
120
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
120
- # ?twox = 4
121
+ # ?twox = "4"^^xsd:decimal
121
122
  # ?x = 2.0
122
- # ?x2 = 4
123
- # ?y = 4.909297426825682
123
+ # ?x2 = "4"^^xsd:decimal
124
+ # ?y = "4.909297426825682"^^xsd:decimal
124
125
  # Therefore the derived triple above is entailed by the rules and facts.
125
126
  # ----------------------------------------------------------------------
126
127
 
127
- _:b5 :dy 3.5838531634528574 .
128
+ _:b5 :dy "3.5838531634528574"^^xsd:decimal .
128
129
 
129
130
  # ----------------------------------------------------------------------
130
131
  # Proof for derived triple:
131
- # _:b5 :ds 3.720753081997118 .
132
+ # _:b5 :ds "3.720753081997118"^^xsd:decimal .
132
133
  # It holds because the following instance of the rule body is provable:
133
134
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
134
135
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
135
136
  # _:b5 :x 2.0 .
136
137
  # _:b5 :coef 1.0 .
137
- # 2.0 math:sin 0.9092974268256817 .
138
- # (2.0 2.0) math:exponentiation 4 .
139
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
140
- # 2.0 math:cos -0.4161468365471424 .
141
- # (2.0 2.0) math:product 4 .
142
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
143
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
144
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
145
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
138
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
139
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
140
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
141
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
142
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
143
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
144
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
145
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
146
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
146
147
  # via the schematic forward rule:
147
148
  # {
148
149
  # :Simpson1 :samples ?ss .
@@ -172,22 +173,22 @@ _:b5 :dy 3.5838531634528574 .
172
173
  # } .
173
174
  # with substitution (on rule variables):
174
175
  # ?c = 1.0
175
- # ?cosx = -0.4161468365471424
176
- # ?ds = 3.720753081997118
177
- # ?dy = 3.5838531634528574
178
- # ?dy2 = 12.844003497191053
179
- # ?onePlus = 13.844003497191053
176
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
177
+ # ?ds = "3.720753081997118"^^xsd:decimal
178
+ # ?dy = "3.5838531634528574"^^xsd:decimal
179
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
180
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
180
181
  # ?s = _:b5
181
- # ?sinx = 0.9092974268256817
182
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
182
183
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
183
- # ?twox = 4
184
+ # ?twox = "4"^^xsd:decimal
184
185
  # ?x = 2.0
185
- # ?x2 = 4
186
- # ?y = 4.909297426825682
186
+ # ?x2 = "4"^^xsd:decimal
187
+ # ?y = "4.909297426825682"^^xsd:decimal
187
188
  # Therefore the derived triple above is entailed by the rules and facts.
188
189
  # ----------------------------------------------------------------------
189
190
 
190
- _:b5 :ds 3.720753081997118 .
191
+ _:b5 :ds "3.720753081997118"^^xsd:decimal .
191
192
 
192
193
  # ----------------------------------------------------------------------
193
194
  # Proof for derived triple:
@@ -197,15 +198,15 @@ _:b5 :ds 3.720753081997118 .
197
198
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
198
199
  # _:b5 :x 2.0 .
199
200
  # _:b5 :coef 1.0 .
200
- # 2.0 math:sin 0.9092974268256817 .
201
- # (2.0 2.0) math:exponentiation 4 .
202
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
203
- # 2.0 math:cos -0.4161468365471424 .
204
- # (2.0 2.0) math:product 4 .
205
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
206
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
207
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
208
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
201
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
202
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
203
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
204
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
205
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
206
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
207
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
208
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
209
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
209
210
  # via the schematic forward rule:
210
211
  # {
211
212
  # :Simpson1 :samples ?ss .
@@ -235,18 +236,18 @@ _:b5 :ds 3.720753081997118 .
235
236
  # } .
236
237
  # with substitution (on rule variables):
237
238
  # ?c = 1.0
238
- # ?cosx = -0.4161468365471424
239
- # ?ds = 3.720753081997118
240
- # ?dy = 3.5838531634528574
241
- # ?dy2 = 12.844003497191053
242
- # ?onePlus = 13.844003497191053
239
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
240
+ # ?ds = "3.720753081997118"^^xsd:decimal
241
+ # ?dy = "3.5838531634528574"^^xsd:decimal
242
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
243
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
243
244
  # ?s = _:b5
244
- # ?sinx = 0.9092974268256817
245
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
245
246
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
246
- # ?twox = 4
247
+ # ?twox = "4"^^xsd:decimal
247
248
  # ?x = 2.0
248
- # ?x2 = 4
249
- # ?y = 4.909297426825682
249
+ # ?x2 = "4"^^xsd:decimal
250
+ # ?y = "4.909297426825682"^^xsd:decimal
250
251
  # Therefore the derived triple above is entailed by the rules and facts.
251
252
  # ----------------------------------------------------------------------
252
253
 
@@ -260,15 +261,15 @@ _:sk_0 :sample _:b5 .
260
261
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
261
262
  # _:b5 :x 2.0 .
262
263
  # _:b5 :coef 1.0 .
263
- # 2.0 math:sin 0.9092974268256817 .
264
- # (2.0 2.0) math:exponentiation 4 .
265
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
266
- # 2.0 math:cos -0.4161468365471424 .
267
- # (2.0 2.0) math:product 4 .
268
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
269
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
270
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
271
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
264
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
265
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
266
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
267
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
268
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
269
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
270
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
271
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
272
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
272
273
  # via the schematic forward rule:
273
274
  # {
274
275
  # :Simpson1 :samples ?ss .
@@ -298,18 +299,18 @@ _:sk_0 :sample _:b5 .
298
299
  # } .
299
300
  # with substitution (on rule variables):
300
301
  # ?c = 1.0
301
- # ?cosx = -0.4161468365471424
302
- # ?ds = 3.720753081997118
303
- # ?dy = 3.5838531634528574
304
- # ?dy2 = 12.844003497191053
305
- # ?onePlus = 13.844003497191053
302
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
303
+ # ?ds = "3.720753081997118"^^xsd:decimal
304
+ # ?dy = "3.5838531634528574"^^xsd:decimal
305
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
306
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
306
307
  # ?s = _:b5
307
- # ?sinx = 0.9092974268256817
308
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
308
309
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
309
- # ?twox = 4
310
+ # ?twox = "4"^^xsd:decimal
310
311
  # ?x = 2.0
311
- # ?x2 = 4
312
- # ?y = 4.909297426825682
312
+ # ?x2 = "4"^^xsd:decimal
313
+ # ?y = "4.909297426825682"^^xsd:decimal
313
314
  # Therefore the derived triple above is entailed by the rules and facts.
314
315
  # ----------------------------------------------------------------------
315
316
 
@@ -323,15 +324,15 @@ _:sk_0 :x 2.0 .
323
324
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
324
325
  # _:b5 :x 2.0 .
325
326
  # _:b5 :coef 1.0 .
326
- # 2.0 math:sin 0.9092974268256817 .
327
- # (2.0 2.0) math:exponentiation 4 .
328
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
329
- # 2.0 math:cos -0.4161468365471424 .
330
- # (2.0 2.0) math:product 4 .
331
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
332
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
333
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
334
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
327
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
328
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
329
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
330
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
331
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
332
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
333
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
334
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
335
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
335
336
  # via the schematic forward rule:
336
337
  # {
337
338
  # :Simpson1 :samples ?ss .
@@ -361,18 +362,18 @@ _:sk_0 :x 2.0 .
361
362
  # } .
362
363
  # with substitution (on rule variables):
363
364
  # ?c = 1.0
364
- # ?cosx = -0.4161468365471424
365
- # ?ds = 3.720753081997118
366
- # ?dy = 3.5838531634528574
367
- # ?dy2 = 12.844003497191053
368
- # ?onePlus = 13.844003497191053
365
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
366
+ # ?ds = "3.720753081997118"^^xsd:decimal
367
+ # ?dy = "3.5838531634528574"^^xsd:decimal
368
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
369
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
369
370
  # ?s = _:b5
370
- # ?sinx = 0.9092974268256817
371
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
371
372
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
372
- # ?twox = 4
373
+ # ?twox = "4"^^xsd:decimal
373
374
  # ?x = 2.0
374
- # ?x2 = 4
375
- # ?y = 4.909297426825682
375
+ # ?x2 = "4"^^xsd:decimal
376
+ # ?y = "4.909297426825682"^^xsd:decimal
376
377
  # Therefore the derived triple above is entailed by the rules and facts.
377
378
  # ----------------------------------------------------------------------
378
379
 
@@ -380,21 +381,21 @@ _:sk_0 :coef 1.0 .
380
381
 
381
382
  # ----------------------------------------------------------------------
382
383
  # Proof for derived triple:
383
- # _:sk_0 :y 4.909297426825682 .
384
+ # _:sk_0 :y "4.909297426825682"^^xsd:decimal .
384
385
  # It holds because the following instance of the rule body is provable:
385
386
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
386
387
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
387
388
  # _:b5 :x 2.0 .
388
389
  # _:b5 :coef 1.0 .
389
- # 2.0 math:sin 0.9092974268256817 .
390
- # (2.0 2.0) math:exponentiation 4 .
391
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
392
- # 2.0 math:cos -0.4161468365471424 .
393
- # (2.0 2.0) math:product 4 .
394
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
395
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
396
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
397
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
390
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
391
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
392
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
393
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
394
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
395
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
396
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
397
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
398
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
398
399
  # via the schematic forward rule:
399
400
  # {
400
401
  # :Simpson1 :samples ?ss .
@@ -424,40 +425,40 @@ _:sk_0 :coef 1.0 .
424
425
  # } .
425
426
  # with substitution (on rule variables):
426
427
  # ?c = 1.0
427
- # ?cosx = -0.4161468365471424
428
- # ?ds = 3.720753081997118
429
- # ?dy = 3.5838531634528574
430
- # ?dy2 = 12.844003497191053
431
- # ?onePlus = 13.844003497191053
428
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
429
+ # ?ds = "3.720753081997118"^^xsd:decimal
430
+ # ?dy = "3.5838531634528574"^^xsd:decimal
431
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
432
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
432
433
  # ?s = _:b5
433
- # ?sinx = 0.9092974268256817
434
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
434
435
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
435
- # ?twox = 4
436
+ # ?twox = "4"^^xsd:decimal
436
437
  # ?x = 2.0
437
- # ?x2 = 4
438
- # ?y = 4.909297426825682
438
+ # ?x2 = "4"^^xsd:decimal
439
+ # ?y = "4.909297426825682"^^xsd:decimal
439
440
  # Therefore the derived triple above is entailed by the rules and facts.
440
441
  # ----------------------------------------------------------------------
441
442
 
442
- _:sk_0 :y 4.909297426825682 .
443
+ _:sk_0 :y "4.909297426825682"^^xsd:decimal .
443
444
 
444
445
  # ----------------------------------------------------------------------
445
446
  # Proof for derived triple:
446
- # _:sk_0 :dy 3.5838531634528574 .
447
+ # _:sk_0 :dy "3.5838531634528574"^^xsd:decimal .
447
448
  # It holds because the following instance of the rule body is provable:
448
449
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
449
450
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
450
451
  # _:b5 :x 2.0 .
451
452
  # _:b5 :coef 1.0 .
452
- # 2.0 math:sin 0.9092974268256817 .
453
- # (2.0 2.0) math:exponentiation 4 .
454
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
455
- # 2.0 math:cos -0.4161468365471424 .
456
- # (2.0 2.0) math:product 4 .
457
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
458
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
459
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
460
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
453
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
454
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
455
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
456
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
457
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
458
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
459
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
460
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
461
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
461
462
  # via the schematic forward rule:
462
463
  # {
463
464
  # :Simpson1 :samples ?ss .
@@ -487,40 +488,40 @@ _:sk_0 :y 4.909297426825682 .
487
488
  # } .
488
489
  # with substitution (on rule variables):
489
490
  # ?c = 1.0
490
- # ?cosx = -0.4161468365471424
491
- # ?ds = 3.720753081997118
492
- # ?dy = 3.5838531634528574
493
- # ?dy2 = 12.844003497191053
494
- # ?onePlus = 13.844003497191053
491
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
492
+ # ?ds = "3.720753081997118"^^xsd:decimal
493
+ # ?dy = "3.5838531634528574"^^xsd:decimal
494
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
495
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
495
496
  # ?s = _:b5
496
- # ?sinx = 0.9092974268256817
497
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
497
498
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
498
- # ?twox = 4
499
+ # ?twox = "4"^^xsd:decimal
499
500
  # ?x = 2.0
500
- # ?x2 = 4
501
- # ?y = 4.909297426825682
501
+ # ?x2 = "4"^^xsd:decimal
502
+ # ?y = "4.909297426825682"^^xsd:decimal
502
503
  # Therefore the derived triple above is entailed by the rules and facts.
503
504
  # ----------------------------------------------------------------------
504
505
 
505
- _:sk_0 :dy 3.5838531634528574 .
506
+ _:sk_0 :dy "3.5838531634528574"^^xsd:decimal .
506
507
 
507
508
  # ----------------------------------------------------------------------
508
509
  # Proof for derived triple:
509
- # _:sk_0 :ds 3.720753081997118 .
510
+ # _:sk_0 :ds "3.720753081997118"^^xsd:decimal .
510
511
  # It holds because the following instance of the rule body is provable:
511
512
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
512
513
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
513
514
  # _:b5 :x 2.0 .
514
515
  # _:b5 :coef 1.0 .
515
- # 2.0 math:sin 0.9092974268256817 .
516
- # (2.0 2.0) math:exponentiation 4 .
517
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
518
- # 2.0 math:cos -0.4161468365471424 .
519
- # (2.0 2.0) math:product 4 .
520
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
521
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
522
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
523
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
516
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
517
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
518
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
519
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
520
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
521
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
522
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
523
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
524
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
524
525
  # via the schematic forward rule:
525
526
  # {
526
527
  # :Simpson1 :samples ?ss .
@@ -550,22 +551,22 @@ _:sk_0 :dy 3.5838531634528574 .
550
551
  # } .
551
552
  # with substitution (on rule variables):
552
553
  # ?c = 1.0
553
- # ?cosx = -0.4161468365471424
554
- # ?ds = 3.720753081997118
555
- # ?dy = 3.5838531634528574
556
- # ?dy2 = 12.844003497191053
557
- # ?onePlus = 13.844003497191053
554
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
555
+ # ?ds = "3.720753081997118"^^xsd:decimal
556
+ # ?dy = "3.5838531634528574"^^xsd:decimal
557
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
558
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
558
559
  # ?s = _:b5
559
- # ?sinx = 0.9092974268256817
560
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
560
561
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
561
- # ?twox = 4
562
+ # ?twox = "4"^^xsd:decimal
562
563
  # ?x = 2.0
563
- # ?x2 = 4
564
- # ?y = 4.909297426825682
564
+ # ?x2 = "4"^^xsd:decimal
565
+ # ?y = "4.909297426825682"^^xsd:decimal
565
566
  # Therefore the derived triple above is entailed by the rules and facts.
566
567
  # ----------------------------------------------------------------------
567
568
 
568
- _:sk_0 :ds 3.720753081997118 .
569
+ _:sk_0 :ds "3.720753081997118"^^xsd:decimal .
569
570
 
570
571
  # ----------------------------------------------------------------------
571
572
  # Proof for derived triple:
@@ -575,15 +576,15 @@ _:sk_0 :ds 3.720753081997118 .
575
576
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
576
577
  # _:b5 :x 2.0 .
577
578
  # _:b5 :coef 1.0 .
578
- # 2.0 math:sin 0.9092974268256817 .
579
- # (2.0 2.0) math:exponentiation 4 .
580
- # (0.9092974268256817 4) math:sum 4.909297426825682 .
581
- # 2.0 math:cos -0.4161468365471424 .
582
- # (2.0 2.0) math:product 4 .
583
- # (-0.4161468365471424 4) math:sum 3.5838531634528574 .
584
- # (3.5838531634528574 2.0) math:exponentiation 12.844003497191053 .
585
- # (1.0 12.844003497191053) math:sum 13.844003497191053 .
586
- # (13.844003497191053 0.5) math:exponentiation 3.720753081997118 .
579
+ # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
580
+ # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
581
+ # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
582
+ # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
583
+ # (2.0 2.0) math:product "4"^^xsd:decimal .
584
+ # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
585
+ # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
586
+ # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
587
+ # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
587
588
  # via the schematic forward rule:
588
589
  # {
589
590
  # :Simpson1 :samples ?ss .
@@ -613,18 +614,18 @@ _:sk_0 :ds 3.720753081997118 .
613
614
  # } .
614
615
  # with substitution (on rule variables):
615
616
  # ?c = 1.0
616
- # ?cosx = -0.4161468365471424
617
- # ?ds = 3.720753081997118
618
- # ?dy = 3.5838531634528574
619
- # ?dy2 = 12.844003497191053
620
- # ?onePlus = 13.844003497191053
617
+ # ?cosx = "-0.4161468365471424"^^xsd:decimal
618
+ # ?ds = "3.720753081997118"^^xsd:decimal
619
+ # ?dy = "3.5838531634528574"^^xsd:decimal
620
+ # ?dy2 = "12.844003497191053"^^xsd:decimal
621
+ # ?onePlus = "13.844003497191053"^^xsd:decimal
621
622
  # ?s = _:b5
622
- # ?sinx = 0.9092974268256817
623
+ # ?sinx = "0.9092974268256817"^^xsd:decimal
623
624
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
624
- # ?twox = 4
625
+ # ?twox = "4"^^xsd:decimal
625
626
  # ?x = 2.0
626
- # ?x2 = 4
627
- # ?y = 4.909297426825682
627
+ # ?x2 = "4"^^xsd:decimal
628
+ # ?y = "4.909297426825682"^^xsd:decimal
628
629
  # Therefore the derived triple above is entailed by the rules and facts.
629
630
  # ----------------------------------------------------------------------
630
631
 
@@ -632,21 +633,21 @@ _:sk_0 :ds 3.720753081997118 .
632
633
 
633
634
  # ----------------------------------------------------------------------
634
635
  # Proof for derived triple:
635
- # _:b4 :y 3.2474949866040546 .
636
+ # _:b4 :y "3.2474949866040546"^^xsd:decimal .
636
637
  # It holds because the following instance of the rule body is provable:
637
638
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
638
639
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
639
640
  # _:b4 :x 1.5 .
640
641
  # _:b4 :coef 4.0 .
641
- # 1.5 math:sin 0.9974949866040544 .
642
- # (1.5 2.0) math:exponentiation 2.25 .
643
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
644
- # 1.5 math:cos 0.0707372016677029 .
645
- # (2.0 1.5) math:product 3 .
646
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
647
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
648
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
649
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
642
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
643
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
644
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
645
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
646
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
647
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
648
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
649
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
650
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
650
651
  # via the schematic forward rule:
651
652
  # {
652
653
  # :Simpson1 :samples ?ss .
@@ -676,40 +677,40 @@ _:sk_0 :ds 3.720753081997118 .
676
677
  # } .
677
678
  # with substitution (on rule variables):
678
679
  # ?c = 4.0
679
- # ?cosx = 0.0707372016677029
680
- # ?ds = 3.229462333222977
681
- # ?dy = 3.070737201667703
682
- # ?dy2 = 9.429426961705994
683
- # ?onePlus = 10.429426961705994
680
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
681
+ # ?ds = "3.229462333222977"^^xsd:decimal
682
+ # ?dy = "3.070737201667703"^^xsd:decimal
683
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
684
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
684
685
  # ?s = _:b4
685
- # ?sinx = 0.9974949866040544
686
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
686
687
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
687
- # ?twox = 3
688
+ # ?twox = "3"^^xsd:decimal
688
689
  # ?x = 1.5
689
- # ?x2 = 2.25
690
- # ?y = 3.2474949866040546
690
+ # ?x2 = "2.25"^^xsd:decimal
691
+ # ?y = "3.2474949866040546"^^xsd:decimal
691
692
  # Therefore the derived triple above is entailed by the rules and facts.
692
693
  # ----------------------------------------------------------------------
693
694
 
694
- _:b4 :y 3.2474949866040546 .
695
+ _:b4 :y "3.2474949866040546"^^xsd:decimal .
695
696
 
696
697
  # ----------------------------------------------------------------------
697
698
  # Proof for derived triple:
698
- # _:b4 :dy 3.070737201667703 .
699
+ # _:b4 :dy "3.070737201667703"^^xsd:decimal .
699
700
  # It holds because the following instance of the rule body is provable:
700
701
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
701
702
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
702
703
  # _:b4 :x 1.5 .
703
704
  # _:b4 :coef 4.0 .
704
- # 1.5 math:sin 0.9974949866040544 .
705
- # (1.5 2.0) math:exponentiation 2.25 .
706
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
707
- # 1.5 math:cos 0.0707372016677029 .
708
- # (2.0 1.5) math:product 3 .
709
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
710
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
711
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
712
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
705
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
706
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
707
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
708
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
709
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
710
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
711
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
712
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
713
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
713
714
  # via the schematic forward rule:
714
715
  # {
715
716
  # :Simpson1 :samples ?ss .
@@ -739,40 +740,40 @@ _:b4 :y 3.2474949866040546 .
739
740
  # } .
740
741
  # with substitution (on rule variables):
741
742
  # ?c = 4.0
742
- # ?cosx = 0.0707372016677029
743
- # ?ds = 3.229462333222977
744
- # ?dy = 3.070737201667703
745
- # ?dy2 = 9.429426961705994
746
- # ?onePlus = 10.429426961705994
743
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
744
+ # ?ds = "3.229462333222977"^^xsd:decimal
745
+ # ?dy = "3.070737201667703"^^xsd:decimal
746
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
747
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
747
748
  # ?s = _:b4
748
- # ?sinx = 0.9974949866040544
749
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
749
750
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
750
- # ?twox = 3
751
+ # ?twox = "3"^^xsd:decimal
751
752
  # ?x = 1.5
752
- # ?x2 = 2.25
753
- # ?y = 3.2474949866040546
753
+ # ?x2 = "2.25"^^xsd:decimal
754
+ # ?y = "3.2474949866040546"^^xsd:decimal
754
755
  # Therefore the derived triple above is entailed by the rules and facts.
755
756
  # ----------------------------------------------------------------------
756
757
 
757
- _:b4 :dy 3.070737201667703 .
758
+ _:b4 :dy "3.070737201667703"^^xsd:decimal .
758
759
 
759
760
  # ----------------------------------------------------------------------
760
761
  # Proof for derived triple:
761
- # _:b4 :ds 3.229462333222977 .
762
+ # _:b4 :ds "3.229462333222977"^^xsd:decimal .
762
763
  # It holds because the following instance of the rule body is provable:
763
764
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
764
765
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
765
766
  # _:b4 :x 1.5 .
766
767
  # _:b4 :coef 4.0 .
767
- # 1.5 math:sin 0.9974949866040544 .
768
- # (1.5 2.0) math:exponentiation 2.25 .
769
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
770
- # 1.5 math:cos 0.0707372016677029 .
771
- # (2.0 1.5) math:product 3 .
772
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
773
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
774
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
775
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
768
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
769
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
770
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
771
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
772
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
773
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
774
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
775
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
776
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
776
777
  # via the schematic forward rule:
777
778
  # {
778
779
  # :Simpson1 :samples ?ss .
@@ -802,22 +803,22 @@ _:b4 :dy 3.070737201667703 .
802
803
  # } .
803
804
  # with substitution (on rule variables):
804
805
  # ?c = 4.0
805
- # ?cosx = 0.0707372016677029
806
- # ?ds = 3.229462333222977
807
- # ?dy = 3.070737201667703
808
- # ?dy2 = 9.429426961705994
809
- # ?onePlus = 10.429426961705994
806
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
807
+ # ?ds = "3.229462333222977"^^xsd:decimal
808
+ # ?dy = "3.070737201667703"^^xsd:decimal
809
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
810
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
810
811
  # ?s = _:b4
811
- # ?sinx = 0.9974949866040544
812
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
812
813
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
813
- # ?twox = 3
814
+ # ?twox = "3"^^xsd:decimal
814
815
  # ?x = 1.5
815
- # ?x2 = 2.25
816
- # ?y = 3.2474949866040546
816
+ # ?x2 = "2.25"^^xsd:decimal
817
+ # ?y = "3.2474949866040546"^^xsd:decimal
817
818
  # Therefore the derived triple above is entailed by the rules and facts.
818
819
  # ----------------------------------------------------------------------
819
820
 
820
- _:b4 :ds 3.229462333222977 .
821
+ _:b4 :ds "3.229462333222977"^^xsd:decimal .
821
822
 
822
823
  # ----------------------------------------------------------------------
823
824
  # Proof for derived triple:
@@ -827,15 +828,15 @@ _:b4 :ds 3.229462333222977 .
827
828
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
828
829
  # _:b4 :x 1.5 .
829
830
  # _:b4 :coef 4.0 .
830
- # 1.5 math:sin 0.9974949866040544 .
831
- # (1.5 2.0) math:exponentiation 2.25 .
832
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
833
- # 1.5 math:cos 0.0707372016677029 .
834
- # (2.0 1.5) math:product 3 .
835
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
836
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
837
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
838
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
831
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
832
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
833
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
834
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
835
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
836
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
837
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
838
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
839
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
839
840
  # via the schematic forward rule:
840
841
  # {
841
842
  # :Simpson1 :samples ?ss .
@@ -865,18 +866,18 @@ _:b4 :ds 3.229462333222977 .
865
866
  # } .
866
867
  # with substitution (on rule variables):
867
868
  # ?c = 4.0
868
- # ?cosx = 0.0707372016677029
869
- # ?ds = 3.229462333222977
870
- # ?dy = 3.070737201667703
871
- # ?dy2 = 9.429426961705994
872
- # ?onePlus = 10.429426961705994
869
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
870
+ # ?ds = "3.229462333222977"^^xsd:decimal
871
+ # ?dy = "3.070737201667703"^^xsd:decimal
872
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
873
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
873
874
  # ?s = _:b4
874
- # ?sinx = 0.9974949866040544
875
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
875
876
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
876
- # ?twox = 3
877
+ # ?twox = "3"^^xsd:decimal
877
878
  # ?x = 1.5
878
- # ?x2 = 2.25
879
- # ?y = 3.2474949866040546
879
+ # ?x2 = "2.25"^^xsd:decimal
880
+ # ?y = "3.2474949866040546"^^xsd:decimal
880
881
  # Therefore the derived triple above is entailed by the rules and facts.
881
882
  # ----------------------------------------------------------------------
882
883
 
@@ -890,15 +891,15 @@ _:sk_1 :sample _:b4 .
890
891
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
891
892
  # _:b4 :x 1.5 .
892
893
  # _:b4 :coef 4.0 .
893
- # 1.5 math:sin 0.9974949866040544 .
894
- # (1.5 2.0) math:exponentiation 2.25 .
895
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
896
- # 1.5 math:cos 0.0707372016677029 .
897
- # (2.0 1.5) math:product 3 .
898
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
899
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
900
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
901
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
894
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
895
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
896
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
897
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
898
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
899
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
900
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
901
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
902
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
902
903
  # via the schematic forward rule:
903
904
  # {
904
905
  # :Simpson1 :samples ?ss .
@@ -928,18 +929,18 @@ _:sk_1 :sample _:b4 .
928
929
  # } .
929
930
  # with substitution (on rule variables):
930
931
  # ?c = 4.0
931
- # ?cosx = 0.0707372016677029
932
- # ?ds = 3.229462333222977
933
- # ?dy = 3.070737201667703
934
- # ?dy2 = 9.429426961705994
935
- # ?onePlus = 10.429426961705994
932
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
933
+ # ?ds = "3.229462333222977"^^xsd:decimal
934
+ # ?dy = "3.070737201667703"^^xsd:decimal
935
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
936
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
936
937
  # ?s = _:b4
937
- # ?sinx = 0.9974949866040544
938
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
938
939
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
939
- # ?twox = 3
940
+ # ?twox = "3"^^xsd:decimal
940
941
  # ?x = 1.5
941
- # ?x2 = 2.25
942
- # ?y = 3.2474949866040546
942
+ # ?x2 = "2.25"^^xsd:decimal
943
+ # ?y = "3.2474949866040546"^^xsd:decimal
943
944
  # Therefore the derived triple above is entailed by the rules and facts.
944
945
  # ----------------------------------------------------------------------
945
946
 
@@ -953,15 +954,15 @@ _:sk_1 :x 1.5 .
953
954
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
954
955
  # _:b4 :x 1.5 .
955
956
  # _:b4 :coef 4.0 .
956
- # 1.5 math:sin 0.9974949866040544 .
957
- # (1.5 2.0) math:exponentiation 2.25 .
958
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
959
- # 1.5 math:cos 0.0707372016677029 .
960
- # (2.0 1.5) math:product 3 .
961
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
962
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
963
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
964
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
957
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
958
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
959
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
960
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
961
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
962
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
963
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
964
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
965
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
965
966
  # via the schematic forward rule:
966
967
  # {
967
968
  # :Simpson1 :samples ?ss .
@@ -991,18 +992,18 @@ _:sk_1 :x 1.5 .
991
992
  # } .
992
993
  # with substitution (on rule variables):
993
994
  # ?c = 4.0
994
- # ?cosx = 0.0707372016677029
995
- # ?ds = 3.229462333222977
996
- # ?dy = 3.070737201667703
997
- # ?dy2 = 9.429426961705994
998
- # ?onePlus = 10.429426961705994
995
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
996
+ # ?ds = "3.229462333222977"^^xsd:decimal
997
+ # ?dy = "3.070737201667703"^^xsd:decimal
998
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
999
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
999
1000
  # ?s = _:b4
1000
- # ?sinx = 0.9974949866040544
1001
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
1001
1002
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1002
- # ?twox = 3
1003
+ # ?twox = "3"^^xsd:decimal
1003
1004
  # ?x = 1.5
1004
- # ?x2 = 2.25
1005
- # ?y = 3.2474949866040546
1005
+ # ?x2 = "2.25"^^xsd:decimal
1006
+ # ?y = "3.2474949866040546"^^xsd:decimal
1006
1007
  # Therefore the derived triple above is entailed by the rules and facts.
1007
1008
  # ----------------------------------------------------------------------
1008
1009
 
@@ -1010,21 +1011,21 @@ _:sk_1 :coef 4.0 .
1010
1011
 
1011
1012
  # ----------------------------------------------------------------------
1012
1013
  # Proof for derived triple:
1013
- # _:sk_1 :y 3.2474949866040546 .
1014
+ # _:sk_1 :y "3.2474949866040546"^^xsd:decimal .
1014
1015
  # It holds because the following instance of the rule body is provable:
1015
1016
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1016
1017
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1017
1018
  # _:b4 :x 1.5 .
1018
1019
  # _:b4 :coef 4.0 .
1019
- # 1.5 math:sin 0.9974949866040544 .
1020
- # (1.5 2.0) math:exponentiation 2.25 .
1021
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1022
- # 1.5 math:cos 0.0707372016677029 .
1023
- # (2.0 1.5) math:product 3 .
1024
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
1025
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1026
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1027
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1020
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1021
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1022
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1023
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1024
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
1025
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1026
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1027
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1028
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1028
1029
  # via the schematic forward rule:
1029
1030
  # {
1030
1031
  # :Simpson1 :samples ?ss .
@@ -1054,40 +1055,40 @@ _:sk_1 :coef 4.0 .
1054
1055
  # } .
1055
1056
  # with substitution (on rule variables):
1056
1057
  # ?c = 4.0
1057
- # ?cosx = 0.0707372016677029
1058
- # ?ds = 3.229462333222977
1059
- # ?dy = 3.070737201667703
1060
- # ?dy2 = 9.429426961705994
1061
- # ?onePlus = 10.429426961705994
1058
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
1059
+ # ?ds = "3.229462333222977"^^xsd:decimal
1060
+ # ?dy = "3.070737201667703"^^xsd:decimal
1061
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
1062
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
1062
1063
  # ?s = _:b4
1063
- # ?sinx = 0.9974949866040544
1064
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
1064
1065
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1065
- # ?twox = 3
1066
+ # ?twox = "3"^^xsd:decimal
1066
1067
  # ?x = 1.5
1067
- # ?x2 = 2.25
1068
- # ?y = 3.2474949866040546
1068
+ # ?x2 = "2.25"^^xsd:decimal
1069
+ # ?y = "3.2474949866040546"^^xsd:decimal
1069
1070
  # Therefore the derived triple above is entailed by the rules and facts.
1070
1071
  # ----------------------------------------------------------------------
1071
1072
 
1072
- _:sk_1 :y 3.2474949866040546 .
1073
+ _:sk_1 :y "3.2474949866040546"^^xsd:decimal .
1073
1074
 
1074
1075
  # ----------------------------------------------------------------------
1075
1076
  # Proof for derived triple:
1076
- # _:sk_1 :dy 3.070737201667703 .
1077
+ # _:sk_1 :dy "3.070737201667703"^^xsd:decimal .
1077
1078
  # It holds because the following instance of the rule body is provable:
1078
1079
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1079
1080
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1080
1081
  # _:b4 :x 1.5 .
1081
1082
  # _:b4 :coef 4.0 .
1082
- # 1.5 math:sin 0.9974949866040544 .
1083
- # (1.5 2.0) math:exponentiation 2.25 .
1084
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1085
- # 1.5 math:cos 0.0707372016677029 .
1086
- # (2.0 1.5) math:product 3 .
1087
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
1088
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1089
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1090
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1083
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1084
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1085
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1086
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1087
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
1088
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1089
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1090
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1091
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1091
1092
  # via the schematic forward rule:
1092
1093
  # {
1093
1094
  # :Simpson1 :samples ?ss .
@@ -1117,40 +1118,40 @@ _:sk_1 :y 3.2474949866040546 .
1117
1118
  # } .
1118
1119
  # with substitution (on rule variables):
1119
1120
  # ?c = 4.0
1120
- # ?cosx = 0.0707372016677029
1121
- # ?ds = 3.229462333222977
1122
- # ?dy = 3.070737201667703
1123
- # ?dy2 = 9.429426961705994
1124
- # ?onePlus = 10.429426961705994
1121
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
1122
+ # ?ds = "3.229462333222977"^^xsd:decimal
1123
+ # ?dy = "3.070737201667703"^^xsd:decimal
1124
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
1125
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
1125
1126
  # ?s = _:b4
1126
- # ?sinx = 0.9974949866040544
1127
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
1127
1128
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1128
- # ?twox = 3
1129
+ # ?twox = "3"^^xsd:decimal
1129
1130
  # ?x = 1.5
1130
- # ?x2 = 2.25
1131
- # ?y = 3.2474949866040546
1131
+ # ?x2 = "2.25"^^xsd:decimal
1132
+ # ?y = "3.2474949866040546"^^xsd:decimal
1132
1133
  # Therefore the derived triple above is entailed by the rules and facts.
1133
1134
  # ----------------------------------------------------------------------
1134
1135
 
1135
- _:sk_1 :dy 3.070737201667703 .
1136
+ _:sk_1 :dy "3.070737201667703"^^xsd:decimal .
1136
1137
 
1137
1138
  # ----------------------------------------------------------------------
1138
1139
  # Proof for derived triple:
1139
- # _:sk_1 :ds 3.229462333222977 .
1140
+ # _:sk_1 :ds "3.229462333222977"^^xsd:decimal .
1140
1141
  # It holds because the following instance of the rule body is provable:
1141
1142
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1142
1143
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1143
1144
  # _:b4 :x 1.5 .
1144
1145
  # _:b4 :coef 4.0 .
1145
- # 1.5 math:sin 0.9974949866040544 .
1146
- # (1.5 2.0) math:exponentiation 2.25 .
1147
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1148
- # 1.5 math:cos 0.0707372016677029 .
1149
- # (2.0 1.5) math:product 3 .
1150
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
1151
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1152
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1153
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1146
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1147
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1148
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1149
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1150
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
1151
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1152
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1153
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1154
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1154
1155
  # via the schematic forward rule:
1155
1156
  # {
1156
1157
  # :Simpson1 :samples ?ss .
@@ -1180,22 +1181,22 @@ _:sk_1 :dy 3.070737201667703 .
1180
1181
  # } .
1181
1182
  # with substitution (on rule variables):
1182
1183
  # ?c = 4.0
1183
- # ?cosx = 0.0707372016677029
1184
- # ?ds = 3.229462333222977
1185
- # ?dy = 3.070737201667703
1186
- # ?dy2 = 9.429426961705994
1187
- # ?onePlus = 10.429426961705994
1184
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
1185
+ # ?ds = "3.229462333222977"^^xsd:decimal
1186
+ # ?dy = "3.070737201667703"^^xsd:decimal
1187
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
1188
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
1188
1189
  # ?s = _:b4
1189
- # ?sinx = 0.9974949866040544
1190
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
1190
1191
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1191
- # ?twox = 3
1192
+ # ?twox = "3"^^xsd:decimal
1192
1193
  # ?x = 1.5
1193
- # ?x2 = 2.25
1194
- # ?y = 3.2474949866040546
1194
+ # ?x2 = "2.25"^^xsd:decimal
1195
+ # ?y = "3.2474949866040546"^^xsd:decimal
1195
1196
  # Therefore the derived triple above is entailed by the rules and facts.
1196
1197
  # ----------------------------------------------------------------------
1197
1198
 
1198
- _:sk_1 :ds 3.229462333222977 .
1199
+ _:sk_1 :ds "3.229462333222977"^^xsd:decimal .
1199
1200
 
1200
1201
  # ----------------------------------------------------------------------
1201
1202
  # Proof for derived triple:
@@ -1205,15 +1206,15 @@ _:sk_1 :ds 3.229462333222977 .
1205
1206
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1206
1207
  # _:b4 :x 1.5 .
1207
1208
  # _:b4 :coef 4.0 .
1208
- # 1.5 math:sin 0.9974949866040544 .
1209
- # (1.5 2.0) math:exponentiation 2.25 .
1210
- # (0.9974949866040544 2.25) math:sum 3.2474949866040546 .
1211
- # 1.5 math:cos 0.0707372016677029 .
1212
- # (2.0 1.5) math:product 3 .
1213
- # (0.0707372016677029 3) math:sum 3.070737201667703 .
1214
- # (3.070737201667703 2.0) math:exponentiation 9.429426961705994 .
1215
- # (1.0 9.429426961705994) math:sum 10.429426961705994 .
1216
- # (10.429426961705994 0.5) math:exponentiation 3.229462333222977 .
1209
+ # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1210
+ # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1211
+ # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1212
+ # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1213
+ # (2.0 1.5) math:product "3"^^xsd:decimal .
1214
+ # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1215
+ # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1216
+ # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1217
+ # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1217
1218
  # via the schematic forward rule:
1218
1219
  # {
1219
1220
  # :Simpson1 :samples ?ss .
@@ -1243,18 +1244,18 @@ _:sk_1 :ds 3.229462333222977 .
1243
1244
  # } .
1244
1245
  # with substitution (on rule variables):
1245
1246
  # ?c = 4.0
1246
- # ?cosx = 0.0707372016677029
1247
- # ?ds = 3.229462333222977
1248
- # ?dy = 3.070737201667703
1249
- # ?dy2 = 9.429426961705994
1250
- # ?onePlus = 10.429426961705994
1247
+ # ?cosx = "0.0707372016677029"^^xsd:decimal
1248
+ # ?ds = "3.229462333222977"^^xsd:decimal
1249
+ # ?dy = "3.070737201667703"^^xsd:decimal
1250
+ # ?dy2 = "9.429426961705994"^^xsd:decimal
1251
+ # ?onePlus = "10.429426961705994"^^xsd:decimal
1251
1252
  # ?s = _:b4
1252
- # ?sinx = 0.9974949866040544
1253
+ # ?sinx = "0.9974949866040544"^^xsd:decimal
1253
1254
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1254
- # ?twox = 3
1255
+ # ?twox = "3"^^xsd:decimal
1255
1256
  # ?x = 1.5
1256
- # ?x2 = 2.25
1257
- # ?y = 3.2474949866040546
1257
+ # ?x2 = "2.25"^^xsd:decimal
1258
+ # ?y = "3.2474949866040546"^^xsd:decimal
1258
1259
  # Therefore the derived triple above is entailed by the rules and facts.
1259
1260
  # ----------------------------------------------------------------------
1260
1261
 
@@ -1262,21 +1263,21 @@ _:sk_1 :ds 3.229462333222977 .
1262
1263
 
1263
1264
  # ----------------------------------------------------------------------
1264
1265
  # Proof for derived triple:
1265
- # _:b3 :y 1.8414709848078965 .
1266
+ # _:b3 :y "1.8414709848078965"^^xsd:decimal .
1266
1267
  # It holds because the following instance of the rule body is provable:
1267
1268
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1268
1269
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1269
1270
  # _:b3 :x 1.0 .
1270
1271
  # _:b3 :coef 2.0 .
1271
- # 1.0 math:sin 0.8414709848078965 .
1272
- # (1.0 2.0) math:exponentiation 1 .
1273
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1274
- # 1.0 math:cos 0.5403023058681398 .
1275
- # (2.0 1.0) math:product 2 .
1276
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1277
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1278
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1279
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1272
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1273
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1274
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1275
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1276
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1277
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1278
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1279
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1280
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1280
1281
  # via the schematic forward rule:
1281
1282
  # {
1282
1283
  # :Simpson1 :samples ?ss .
@@ -1306,40 +1307,40 @@ _:sk_1 :ds 3.229462333222977 .
1306
1307
  # } .
1307
1308
  # with substitution (on rule variables):
1308
1309
  # ?c = 2.0
1309
- # ?cosx = 0.5403023058681398
1310
- # ?ds = 2.7300431874237794
1311
- # ?dy = 2.5403023058681398
1312
- # ?dy2 = 6.453135805198988
1313
- # ?onePlus = 7.453135805198988
1310
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1311
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1312
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1313
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1314
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1314
1315
  # ?s = _:b3
1315
- # ?sinx = 0.8414709848078965
1316
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1316
1317
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1317
- # ?twox = 2
1318
+ # ?twox = "2"^^xsd:decimal
1318
1319
  # ?x = 1.0
1319
- # ?x2 = 1
1320
- # ?y = 1.8414709848078965
1320
+ # ?x2 = "1"^^xsd:decimal
1321
+ # ?y = "1.8414709848078965"^^xsd:decimal
1321
1322
  # Therefore the derived triple above is entailed by the rules and facts.
1322
1323
  # ----------------------------------------------------------------------
1323
1324
 
1324
- _:b3 :y 1.8414709848078965 .
1325
+ _:b3 :y "1.8414709848078965"^^xsd:decimal .
1325
1326
 
1326
1327
  # ----------------------------------------------------------------------
1327
1328
  # Proof for derived triple:
1328
- # _:b3 :dy 2.5403023058681398 .
1329
+ # _:b3 :dy "2.5403023058681398"^^xsd:decimal .
1329
1330
  # It holds because the following instance of the rule body is provable:
1330
1331
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1331
1332
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1332
1333
  # _:b3 :x 1.0 .
1333
1334
  # _:b3 :coef 2.0 .
1334
- # 1.0 math:sin 0.8414709848078965 .
1335
- # (1.0 2.0) math:exponentiation 1 .
1336
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1337
- # 1.0 math:cos 0.5403023058681398 .
1338
- # (2.0 1.0) math:product 2 .
1339
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1340
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1341
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1342
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1335
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1336
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1337
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1338
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1339
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1340
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1341
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1342
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1343
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1343
1344
  # via the schematic forward rule:
1344
1345
  # {
1345
1346
  # :Simpson1 :samples ?ss .
@@ -1369,40 +1370,40 @@ _:b3 :y 1.8414709848078965 .
1369
1370
  # } .
1370
1371
  # with substitution (on rule variables):
1371
1372
  # ?c = 2.0
1372
- # ?cosx = 0.5403023058681398
1373
- # ?ds = 2.7300431874237794
1374
- # ?dy = 2.5403023058681398
1375
- # ?dy2 = 6.453135805198988
1376
- # ?onePlus = 7.453135805198988
1373
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1374
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1375
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1376
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1377
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1377
1378
  # ?s = _:b3
1378
- # ?sinx = 0.8414709848078965
1379
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1379
1380
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1380
- # ?twox = 2
1381
+ # ?twox = "2"^^xsd:decimal
1381
1382
  # ?x = 1.0
1382
- # ?x2 = 1
1383
- # ?y = 1.8414709848078965
1383
+ # ?x2 = "1"^^xsd:decimal
1384
+ # ?y = "1.8414709848078965"^^xsd:decimal
1384
1385
  # Therefore the derived triple above is entailed by the rules and facts.
1385
1386
  # ----------------------------------------------------------------------
1386
1387
 
1387
- _:b3 :dy 2.5403023058681398 .
1388
+ _:b3 :dy "2.5403023058681398"^^xsd:decimal .
1388
1389
 
1389
1390
  # ----------------------------------------------------------------------
1390
1391
  # Proof for derived triple:
1391
- # _:b3 :ds 2.7300431874237794 .
1392
+ # _:b3 :ds "2.7300431874237794"^^xsd:decimal .
1392
1393
  # It holds because the following instance of the rule body is provable:
1393
1394
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1394
1395
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1395
1396
  # _:b3 :x 1.0 .
1396
1397
  # _:b3 :coef 2.0 .
1397
- # 1.0 math:sin 0.8414709848078965 .
1398
- # (1.0 2.0) math:exponentiation 1 .
1399
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1400
- # 1.0 math:cos 0.5403023058681398 .
1401
- # (2.0 1.0) math:product 2 .
1402
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1403
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1404
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1405
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1398
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1399
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1400
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1401
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1402
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1403
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1404
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1405
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1406
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1406
1407
  # via the schematic forward rule:
1407
1408
  # {
1408
1409
  # :Simpson1 :samples ?ss .
@@ -1432,22 +1433,22 @@ _:b3 :dy 2.5403023058681398 .
1432
1433
  # } .
1433
1434
  # with substitution (on rule variables):
1434
1435
  # ?c = 2.0
1435
- # ?cosx = 0.5403023058681398
1436
- # ?ds = 2.7300431874237794
1437
- # ?dy = 2.5403023058681398
1438
- # ?dy2 = 6.453135805198988
1439
- # ?onePlus = 7.453135805198988
1436
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1437
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1438
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1439
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1440
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1440
1441
  # ?s = _:b3
1441
- # ?sinx = 0.8414709848078965
1442
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1442
1443
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1443
- # ?twox = 2
1444
+ # ?twox = "2"^^xsd:decimal
1444
1445
  # ?x = 1.0
1445
- # ?x2 = 1
1446
- # ?y = 1.8414709848078965
1446
+ # ?x2 = "1"^^xsd:decimal
1447
+ # ?y = "1.8414709848078965"^^xsd:decimal
1447
1448
  # Therefore the derived triple above is entailed by the rules and facts.
1448
1449
  # ----------------------------------------------------------------------
1449
1450
 
1450
- _:b3 :ds 2.7300431874237794 .
1451
+ _:b3 :ds "2.7300431874237794"^^xsd:decimal .
1451
1452
 
1452
1453
  # ----------------------------------------------------------------------
1453
1454
  # Proof for derived triple:
@@ -1457,15 +1458,15 @@ _:b3 :ds 2.7300431874237794 .
1457
1458
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1458
1459
  # _:b3 :x 1.0 .
1459
1460
  # _:b3 :coef 2.0 .
1460
- # 1.0 math:sin 0.8414709848078965 .
1461
- # (1.0 2.0) math:exponentiation 1 .
1462
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1463
- # 1.0 math:cos 0.5403023058681398 .
1464
- # (2.0 1.0) math:product 2 .
1465
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1466
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1467
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1468
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1461
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1462
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1463
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1464
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1465
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1466
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1467
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1468
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1469
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1469
1470
  # via the schematic forward rule:
1470
1471
  # {
1471
1472
  # :Simpson1 :samples ?ss .
@@ -1495,18 +1496,18 @@ _:b3 :ds 2.7300431874237794 .
1495
1496
  # } .
1496
1497
  # with substitution (on rule variables):
1497
1498
  # ?c = 2.0
1498
- # ?cosx = 0.5403023058681398
1499
- # ?ds = 2.7300431874237794
1500
- # ?dy = 2.5403023058681398
1501
- # ?dy2 = 6.453135805198988
1502
- # ?onePlus = 7.453135805198988
1499
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1500
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1501
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1502
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1503
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1503
1504
  # ?s = _:b3
1504
- # ?sinx = 0.8414709848078965
1505
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1505
1506
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1506
- # ?twox = 2
1507
+ # ?twox = "2"^^xsd:decimal
1507
1508
  # ?x = 1.0
1508
- # ?x2 = 1
1509
- # ?y = 1.8414709848078965
1509
+ # ?x2 = "1"^^xsd:decimal
1510
+ # ?y = "1.8414709848078965"^^xsd:decimal
1510
1511
  # Therefore the derived triple above is entailed by the rules and facts.
1511
1512
  # ----------------------------------------------------------------------
1512
1513
 
@@ -1520,15 +1521,15 @@ _:sk_2 :sample _:b3 .
1520
1521
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1521
1522
  # _:b3 :x 1.0 .
1522
1523
  # _:b3 :coef 2.0 .
1523
- # 1.0 math:sin 0.8414709848078965 .
1524
- # (1.0 2.0) math:exponentiation 1 .
1525
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1526
- # 1.0 math:cos 0.5403023058681398 .
1527
- # (2.0 1.0) math:product 2 .
1528
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1529
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1530
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1531
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1524
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1525
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1526
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1527
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1528
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1529
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1530
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1531
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1532
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1532
1533
  # via the schematic forward rule:
1533
1534
  # {
1534
1535
  # :Simpson1 :samples ?ss .
@@ -1558,18 +1559,18 @@ _:sk_2 :sample _:b3 .
1558
1559
  # } .
1559
1560
  # with substitution (on rule variables):
1560
1561
  # ?c = 2.0
1561
- # ?cosx = 0.5403023058681398
1562
- # ?ds = 2.7300431874237794
1563
- # ?dy = 2.5403023058681398
1564
- # ?dy2 = 6.453135805198988
1565
- # ?onePlus = 7.453135805198988
1562
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1563
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1564
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1565
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1566
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1566
1567
  # ?s = _:b3
1567
- # ?sinx = 0.8414709848078965
1568
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1568
1569
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1569
- # ?twox = 2
1570
+ # ?twox = "2"^^xsd:decimal
1570
1571
  # ?x = 1.0
1571
- # ?x2 = 1
1572
- # ?y = 1.8414709848078965
1572
+ # ?x2 = "1"^^xsd:decimal
1573
+ # ?y = "1.8414709848078965"^^xsd:decimal
1573
1574
  # Therefore the derived triple above is entailed by the rules and facts.
1574
1575
  # ----------------------------------------------------------------------
1575
1576
 
@@ -1583,15 +1584,15 @@ _:sk_2 :x 1.0 .
1583
1584
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1584
1585
  # _:b3 :x 1.0 .
1585
1586
  # _:b3 :coef 2.0 .
1586
- # 1.0 math:sin 0.8414709848078965 .
1587
- # (1.0 2.0) math:exponentiation 1 .
1588
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1589
- # 1.0 math:cos 0.5403023058681398 .
1590
- # (2.0 1.0) math:product 2 .
1591
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1592
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1593
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1594
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1587
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1588
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1589
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1590
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1591
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1592
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1593
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1594
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1595
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1595
1596
  # via the schematic forward rule:
1596
1597
  # {
1597
1598
  # :Simpson1 :samples ?ss .
@@ -1621,18 +1622,18 @@ _:sk_2 :x 1.0 .
1621
1622
  # } .
1622
1623
  # with substitution (on rule variables):
1623
1624
  # ?c = 2.0
1624
- # ?cosx = 0.5403023058681398
1625
- # ?ds = 2.7300431874237794
1626
- # ?dy = 2.5403023058681398
1627
- # ?dy2 = 6.453135805198988
1628
- # ?onePlus = 7.453135805198988
1625
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1626
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1627
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1628
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1629
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1629
1630
  # ?s = _:b3
1630
- # ?sinx = 0.8414709848078965
1631
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1631
1632
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1632
- # ?twox = 2
1633
+ # ?twox = "2"^^xsd:decimal
1633
1634
  # ?x = 1.0
1634
- # ?x2 = 1
1635
- # ?y = 1.8414709848078965
1635
+ # ?x2 = "1"^^xsd:decimal
1636
+ # ?y = "1.8414709848078965"^^xsd:decimal
1636
1637
  # Therefore the derived triple above is entailed by the rules and facts.
1637
1638
  # ----------------------------------------------------------------------
1638
1639
 
@@ -1640,21 +1641,21 @@ _:sk_2 :coef 2.0 .
1640
1641
 
1641
1642
  # ----------------------------------------------------------------------
1642
1643
  # Proof for derived triple:
1643
- # _:sk_2 :y 1.8414709848078965 .
1644
+ # _:sk_2 :y "1.8414709848078965"^^xsd:decimal .
1644
1645
  # It holds because the following instance of the rule body is provable:
1645
1646
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1646
1647
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1647
1648
  # _:b3 :x 1.0 .
1648
1649
  # _:b3 :coef 2.0 .
1649
- # 1.0 math:sin 0.8414709848078965 .
1650
- # (1.0 2.0) math:exponentiation 1 .
1651
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1652
- # 1.0 math:cos 0.5403023058681398 .
1653
- # (2.0 1.0) math:product 2 .
1654
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1655
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1656
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1657
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1650
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1651
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1652
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1653
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1654
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1655
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1656
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1657
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1658
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1658
1659
  # via the schematic forward rule:
1659
1660
  # {
1660
1661
  # :Simpson1 :samples ?ss .
@@ -1684,40 +1685,40 @@ _:sk_2 :coef 2.0 .
1684
1685
  # } .
1685
1686
  # with substitution (on rule variables):
1686
1687
  # ?c = 2.0
1687
- # ?cosx = 0.5403023058681398
1688
- # ?ds = 2.7300431874237794
1689
- # ?dy = 2.5403023058681398
1690
- # ?dy2 = 6.453135805198988
1691
- # ?onePlus = 7.453135805198988
1688
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1689
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1690
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1691
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1692
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1692
1693
  # ?s = _:b3
1693
- # ?sinx = 0.8414709848078965
1694
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1694
1695
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1695
- # ?twox = 2
1696
+ # ?twox = "2"^^xsd:decimal
1696
1697
  # ?x = 1.0
1697
- # ?x2 = 1
1698
- # ?y = 1.8414709848078965
1698
+ # ?x2 = "1"^^xsd:decimal
1699
+ # ?y = "1.8414709848078965"^^xsd:decimal
1699
1700
  # Therefore the derived triple above is entailed by the rules and facts.
1700
1701
  # ----------------------------------------------------------------------
1701
1702
 
1702
- _:sk_2 :y 1.8414709848078965 .
1703
+ _:sk_2 :y "1.8414709848078965"^^xsd:decimal .
1703
1704
 
1704
1705
  # ----------------------------------------------------------------------
1705
1706
  # Proof for derived triple:
1706
- # _:sk_2 :dy 2.5403023058681398 .
1707
+ # _:sk_2 :dy "2.5403023058681398"^^xsd:decimal .
1707
1708
  # It holds because the following instance of the rule body is provable:
1708
1709
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1709
1710
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1710
1711
  # _:b3 :x 1.0 .
1711
1712
  # _:b3 :coef 2.0 .
1712
- # 1.0 math:sin 0.8414709848078965 .
1713
- # (1.0 2.0) math:exponentiation 1 .
1714
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1715
- # 1.0 math:cos 0.5403023058681398 .
1716
- # (2.0 1.0) math:product 2 .
1717
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1718
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1719
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1720
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1713
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1714
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1715
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1716
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1717
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1718
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1719
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1720
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1721
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1721
1722
  # via the schematic forward rule:
1722
1723
  # {
1723
1724
  # :Simpson1 :samples ?ss .
@@ -1747,40 +1748,40 @@ _:sk_2 :y 1.8414709848078965 .
1747
1748
  # } .
1748
1749
  # with substitution (on rule variables):
1749
1750
  # ?c = 2.0
1750
- # ?cosx = 0.5403023058681398
1751
- # ?ds = 2.7300431874237794
1752
- # ?dy = 2.5403023058681398
1753
- # ?dy2 = 6.453135805198988
1754
- # ?onePlus = 7.453135805198988
1751
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1752
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1753
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1754
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1755
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1755
1756
  # ?s = _:b3
1756
- # ?sinx = 0.8414709848078965
1757
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1757
1758
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1758
- # ?twox = 2
1759
+ # ?twox = "2"^^xsd:decimal
1759
1760
  # ?x = 1.0
1760
- # ?x2 = 1
1761
- # ?y = 1.8414709848078965
1761
+ # ?x2 = "1"^^xsd:decimal
1762
+ # ?y = "1.8414709848078965"^^xsd:decimal
1762
1763
  # Therefore the derived triple above is entailed by the rules and facts.
1763
1764
  # ----------------------------------------------------------------------
1764
1765
 
1765
- _:sk_2 :dy 2.5403023058681398 .
1766
+ _:sk_2 :dy "2.5403023058681398"^^xsd:decimal .
1766
1767
 
1767
1768
  # ----------------------------------------------------------------------
1768
1769
  # Proof for derived triple:
1769
- # _:sk_2 :ds 2.7300431874237794 .
1770
+ # _:sk_2 :ds "2.7300431874237794"^^xsd:decimal .
1770
1771
  # It holds because the following instance of the rule body is provable:
1771
1772
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1772
1773
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1773
1774
  # _:b3 :x 1.0 .
1774
1775
  # _:b3 :coef 2.0 .
1775
- # 1.0 math:sin 0.8414709848078965 .
1776
- # (1.0 2.0) math:exponentiation 1 .
1777
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1778
- # 1.0 math:cos 0.5403023058681398 .
1779
- # (2.0 1.0) math:product 2 .
1780
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1781
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1782
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1783
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1776
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1777
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1778
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1779
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1780
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1781
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1782
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1783
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1784
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1784
1785
  # via the schematic forward rule:
1785
1786
  # {
1786
1787
  # :Simpson1 :samples ?ss .
@@ -1810,22 +1811,22 @@ _:sk_2 :dy 2.5403023058681398 .
1810
1811
  # } .
1811
1812
  # with substitution (on rule variables):
1812
1813
  # ?c = 2.0
1813
- # ?cosx = 0.5403023058681398
1814
- # ?ds = 2.7300431874237794
1815
- # ?dy = 2.5403023058681398
1816
- # ?dy2 = 6.453135805198988
1817
- # ?onePlus = 7.453135805198988
1814
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1815
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1816
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1817
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1818
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1818
1819
  # ?s = _:b3
1819
- # ?sinx = 0.8414709848078965
1820
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1820
1821
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1821
- # ?twox = 2
1822
+ # ?twox = "2"^^xsd:decimal
1822
1823
  # ?x = 1.0
1823
- # ?x2 = 1
1824
- # ?y = 1.8414709848078965
1824
+ # ?x2 = "1"^^xsd:decimal
1825
+ # ?y = "1.8414709848078965"^^xsd:decimal
1825
1826
  # Therefore the derived triple above is entailed by the rules and facts.
1826
1827
  # ----------------------------------------------------------------------
1827
1828
 
1828
- _:sk_2 :ds 2.7300431874237794 .
1829
+ _:sk_2 :ds "2.7300431874237794"^^xsd:decimal .
1829
1830
 
1830
1831
  # ----------------------------------------------------------------------
1831
1832
  # Proof for derived triple:
@@ -1835,15 +1836,15 @@ _:sk_2 :ds 2.7300431874237794 .
1835
1836
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1836
1837
  # _:b3 :x 1.0 .
1837
1838
  # _:b3 :coef 2.0 .
1838
- # 1.0 math:sin 0.8414709848078965 .
1839
- # (1.0 2.0) math:exponentiation 1 .
1840
- # (0.8414709848078965 1) math:sum 1.8414709848078965 .
1841
- # 1.0 math:cos 0.5403023058681398 .
1842
- # (2.0 1.0) math:product 2 .
1843
- # (0.5403023058681398 2) math:sum 2.5403023058681398 .
1844
- # (2.5403023058681398 2.0) math:exponentiation 6.453135805198988 .
1845
- # (1.0 6.453135805198988) math:sum 7.453135805198988 .
1846
- # (7.453135805198988 0.5) math:exponentiation 2.7300431874237794 .
1839
+ # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1840
+ # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1841
+ # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1842
+ # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1843
+ # (2.0 1.0) math:product "2"^^xsd:decimal .
1844
+ # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1845
+ # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1846
+ # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1847
+ # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1847
1848
  # via the schematic forward rule:
1848
1849
  # {
1849
1850
  # :Simpson1 :samples ?ss .
@@ -1873,18 +1874,18 @@ _:sk_2 :ds 2.7300431874237794 .
1873
1874
  # } .
1874
1875
  # with substitution (on rule variables):
1875
1876
  # ?c = 2.0
1876
- # ?cosx = 0.5403023058681398
1877
- # ?ds = 2.7300431874237794
1878
- # ?dy = 2.5403023058681398
1879
- # ?dy2 = 6.453135805198988
1880
- # ?onePlus = 7.453135805198988
1877
+ # ?cosx = "0.5403023058681398"^^xsd:decimal
1878
+ # ?ds = "2.7300431874237794"^^xsd:decimal
1879
+ # ?dy = "2.5403023058681398"^^xsd:decimal
1880
+ # ?dy2 = "6.453135805198988"^^xsd:decimal
1881
+ # ?onePlus = "7.453135805198988"^^xsd:decimal
1881
1882
  # ?s = _:b3
1882
- # ?sinx = 0.8414709848078965
1883
+ # ?sinx = "0.8414709848078965"^^xsd:decimal
1883
1884
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1884
- # ?twox = 2
1885
+ # ?twox = "2"^^xsd:decimal
1885
1886
  # ?x = 1.0
1886
- # ?x2 = 1
1887
- # ?y = 1.8414709848078965
1887
+ # ?x2 = "1"^^xsd:decimal
1888
+ # ?y = "1.8414709848078965"^^xsd:decimal
1888
1889
  # Therefore the derived triple above is entailed by the rules and facts.
1889
1890
  # ----------------------------------------------------------------------
1890
1891
 
@@ -1892,21 +1893,21 @@ _:sk_2 :ds 2.7300431874237794 .
1892
1893
 
1893
1894
  # ----------------------------------------------------------------------
1894
1895
  # Proof for derived triple:
1895
- # _:b2 :y 0.729425538604203 .
1896
+ # _:b2 :y "0.729425538604203"^^xsd:decimal .
1896
1897
  # It holds because the following instance of the rule body is provable:
1897
1898
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1898
1899
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
1899
1900
  # _:b2 :x 0.5 .
1900
1901
  # _:b2 :coef 4.0 .
1901
- # 0.5 math:sin 0.479425538604203 .
1902
- # (0.5 2.0) math:exponentiation 0.25 .
1903
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
1904
- # 0.5 math:cos 0.8775825618903728 .
1905
- # (2.0 0.5) math:product 1 .
1906
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
1907
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
1908
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
1909
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
1902
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
1903
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
1904
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
1905
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
1906
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
1907
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
1908
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
1909
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
1910
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
1910
1911
  # via the schematic forward rule:
1911
1912
  # {
1912
1913
  # :Simpson1 :samples ?ss .
@@ -1936,40 +1937,40 @@ _:sk_2 :ds 2.7300431874237794 .
1936
1937
  # } .
1937
1938
  # with substitution (on rule variables):
1938
1939
  # ?c = 4.0
1939
- # ?cosx = 0.8775825618903728
1940
- # ?ds = 2.12727907823934
1941
- # ?dy = 1.8775825618903728
1942
- # ?dy2 = 3.5253162767148156
1943
- # ?onePlus = 4.525316276714816
1940
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
1941
+ # ?ds = "2.12727907823934"^^xsd:decimal
1942
+ # ?dy = "1.8775825618903728"^^xsd:decimal
1943
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
1944
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
1944
1945
  # ?s = _:b2
1945
- # ?sinx = 0.479425538604203
1946
+ # ?sinx = "0.479425538604203"^^xsd:decimal
1946
1947
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1947
- # ?twox = 1
1948
+ # ?twox = "1"^^xsd:decimal
1948
1949
  # ?x = 0.5
1949
- # ?x2 = 0.25
1950
- # ?y = 0.729425538604203
1950
+ # ?x2 = "0.25"^^xsd:decimal
1951
+ # ?y = "0.729425538604203"^^xsd:decimal
1951
1952
  # Therefore the derived triple above is entailed by the rules and facts.
1952
1953
  # ----------------------------------------------------------------------
1953
1954
 
1954
- _:b2 :y 0.729425538604203 .
1955
+ _:b2 :y "0.729425538604203"^^xsd:decimal .
1955
1956
 
1956
1957
  # ----------------------------------------------------------------------
1957
1958
  # Proof for derived triple:
1958
- # _:b2 :dy 1.8775825618903728 .
1959
+ # _:b2 :dy "1.8775825618903728"^^xsd:decimal .
1959
1960
  # It holds because the following instance of the rule body is provable:
1960
1961
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1961
1962
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
1962
1963
  # _:b2 :x 0.5 .
1963
1964
  # _:b2 :coef 4.0 .
1964
- # 0.5 math:sin 0.479425538604203 .
1965
- # (0.5 2.0) math:exponentiation 0.25 .
1966
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
1967
- # 0.5 math:cos 0.8775825618903728 .
1968
- # (2.0 0.5) math:product 1 .
1969
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
1970
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
1971
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
1972
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
1965
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
1966
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
1967
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
1968
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
1969
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
1970
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
1971
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
1972
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
1973
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
1973
1974
  # via the schematic forward rule:
1974
1975
  # {
1975
1976
  # :Simpson1 :samples ?ss .
@@ -1999,40 +2000,40 @@ _:b2 :y 0.729425538604203 .
1999
2000
  # } .
2000
2001
  # with substitution (on rule variables):
2001
2002
  # ?c = 4.0
2002
- # ?cosx = 0.8775825618903728
2003
- # ?ds = 2.12727907823934
2004
- # ?dy = 1.8775825618903728
2005
- # ?dy2 = 3.5253162767148156
2006
- # ?onePlus = 4.525316276714816
2003
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2004
+ # ?ds = "2.12727907823934"^^xsd:decimal
2005
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2006
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2007
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2007
2008
  # ?s = _:b2
2008
- # ?sinx = 0.479425538604203
2009
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2009
2010
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2010
- # ?twox = 1
2011
+ # ?twox = "1"^^xsd:decimal
2011
2012
  # ?x = 0.5
2012
- # ?x2 = 0.25
2013
- # ?y = 0.729425538604203
2013
+ # ?x2 = "0.25"^^xsd:decimal
2014
+ # ?y = "0.729425538604203"^^xsd:decimal
2014
2015
  # Therefore the derived triple above is entailed by the rules and facts.
2015
2016
  # ----------------------------------------------------------------------
2016
2017
 
2017
- _:b2 :dy 1.8775825618903728 .
2018
+ _:b2 :dy "1.8775825618903728"^^xsd:decimal .
2018
2019
 
2019
2020
  # ----------------------------------------------------------------------
2020
2021
  # Proof for derived triple:
2021
- # _:b2 :ds 2.12727907823934 .
2022
+ # _:b2 :ds "2.12727907823934"^^xsd:decimal .
2022
2023
  # It holds because the following instance of the rule body is provable:
2023
2024
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2024
2025
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2025
2026
  # _:b2 :x 0.5 .
2026
2027
  # _:b2 :coef 4.0 .
2027
- # 0.5 math:sin 0.479425538604203 .
2028
- # (0.5 2.0) math:exponentiation 0.25 .
2029
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2030
- # 0.5 math:cos 0.8775825618903728 .
2031
- # (2.0 0.5) math:product 1 .
2032
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2033
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2034
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2035
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2028
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2029
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2030
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2031
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2032
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2033
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2034
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2035
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2036
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2036
2037
  # via the schematic forward rule:
2037
2038
  # {
2038
2039
  # :Simpson1 :samples ?ss .
@@ -2062,22 +2063,22 @@ _:b2 :dy 1.8775825618903728 .
2062
2063
  # } .
2063
2064
  # with substitution (on rule variables):
2064
2065
  # ?c = 4.0
2065
- # ?cosx = 0.8775825618903728
2066
- # ?ds = 2.12727907823934
2067
- # ?dy = 1.8775825618903728
2068
- # ?dy2 = 3.5253162767148156
2069
- # ?onePlus = 4.525316276714816
2066
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2067
+ # ?ds = "2.12727907823934"^^xsd:decimal
2068
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2069
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2070
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2070
2071
  # ?s = _:b2
2071
- # ?sinx = 0.479425538604203
2072
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2072
2073
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2073
- # ?twox = 1
2074
+ # ?twox = "1"^^xsd:decimal
2074
2075
  # ?x = 0.5
2075
- # ?x2 = 0.25
2076
- # ?y = 0.729425538604203
2076
+ # ?x2 = "0.25"^^xsd:decimal
2077
+ # ?y = "0.729425538604203"^^xsd:decimal
2077
2078
  # Therefore the derived triple above is entailed by the rules and facts.
2078
2079
  # ----------------------------------------------------------------------
2079
2080
 
2080
- _:b2 :ds 2.12727907823934 .
2081
+ _:b2 :ds "2.12727907823934"^^xsd:decimal .
2081
2082
 
2082
2083
  # ----------------------------------------------------------------------
2083
2084
  # Proof for derived triple:
@@ -2087,15 +2088,15 @@ _:b2 :ds 2.12727907823934 .
2087
2088
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2088
2089
  # _:b2 :x 0.5 .
2089
2090
  # _:b2 :coef 4.0 .
2090
- # 0.5 math:sin 0.479425538604203 .
2091
- # (0.5 2.0) math:exponentiation 0.25 .
2092
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2093
- # 0.5 math:cos 0.8775825618903728 .
2094
- # (2.0 0.5) math:product 1 .
2095
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2096
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2097
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2098
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2091
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2092
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2093
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2094
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2095
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2096
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2097
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2098
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2099
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2099
2100
  # via the schematic forward rule:
2100
2101
  # {
2101
2102
  # :Simpson1 :samples ?ss .
@@ -2125,18 +2126,18 @@ _:b2 :ds 2.12727907823934 .
2125
2126
  # } .
2126
2127
  # with substitution (on rule variables):
2127
2128
  # ?c = 4.0
2128
- # ?cosx = 0.8775825618903728
2129
- # ?ds = 2.12727907823934
2130
- # ?dy = 1.8775825618903728
2131
- # ?dy2 = 3.5253162767148156
2132
- # ?onePlus = 4.525316276714816
2129
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2130
+ # ?ds = "2.12727907823934"^^xsd:decimal
2131
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2132
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2133
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2133
2134
  # ?s = _:b2
2134
- # ?sinx = 0.479425538604203
2135
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2135
2136
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2136
- # ?twox = 1
2137
+ # ?twox = "1"^^xsd:decimal
2137
2138
  # ?x = 0.5
2138
- # ?x2 = 0.25
2139
- # ?y = 0.729425538604203
2139
+ # ?x2 = "0.25"^^xsd:decimal
2140
+ # ?y = "0.729425538604203"^^xsd:decimal
2140
2141
  # Therefore the derived triple above is entailed by the rules and facts.
2141
2142
  # ----------------------------------------------------------------------
2142
2143
 
@@ -2150,15 +2151,15 @@ _:sk_3 :sample _:b2 .
2150
2151
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2151
2152
  # _:b2 :x 0.5 .
2152
2153
  # _:b2 :coef 4.0 .
2153
- # 0.5 math:sin 0.479425538604203 .
2154
- # (0.5 2.0) math:exponentiation 0.25 .
2155
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2156
- # 0.5 math:cos 0.8775825618903728 .
2157
- # (2.0 0.5) math:product 1 .
2158
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2159
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2160
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2161
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2154
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2155
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2156
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2157
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2158
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2159
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2160
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2161
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2162
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2162
2163
  # via the schematic forward rule:
2163
2164
  # {
2164
2165
  # :Simpson1 :samples ?ss .
@@ -2188,18 +2189,18 @@ _:sk_3 :sample _:b2 .
2188
2189
  # } .
2189
2190
  # with substitution (on rule variables):
2190
2191
  # ?c = 4.0
2191
- # ?cosx = 0.8775825618903728
2192
- # ?ds = 2.12727907823934
2193
- # ?dy = 1.8775825618903728
2194
- # ?dy2 = 3.5253162767148156
2195
- # ?onePlus = 4.525316276714816
2192
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2193
+ # ?ds = "2.12727907823934"^^xsd:decimal
2194
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2195
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2196
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2196
2197
  # ?s = _:b2
2197
- # ?sinx = 0.479425538604203
2198
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2198
2199
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2199
- # ?twox = 1
2200
+ # ?twox = "1"^^xsd:decimal
2200
2201
  # ?x = 0.5
2201
- # ?x2 = 0.25
2202
- # ?y = 0.729425538604203
2202
+ # ?x2 = "0.25"^^xsd:decimal
2203
+ # ?y = "0.729425538604203"^^xsd:decimal
2203
2204
  # Therefore the derived triple above is entailed by the rules and facts.
2204
2205
  # ----------------------------------------------------------------------
2205
2206
 
@@ -2213,15 +2214,15 @@ _:sk_3 :x 0.5 .
2213
2214
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2214
2215
  # _:b2 :x 0.5 .
2215
2216
  # _:b2 :coef 4.0 .
2216
- # 0.5 math:sin 0.479425538604203 .
2217
- # (0.5 2.0) math:exponentiation 0.25 .
2218
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2219
- # 0.5 math:cos 0.8775825618903728 .
2220
- # (2.0 0.5) math:product 1 .
2221
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2222
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2223
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2224
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2217
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2218
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2219
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2220
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2221
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2222
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2223
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2224
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2225
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2225
2226
  # via the schematic forward rule:
2226
2227
  # {
2227
2228
  # :Simpson1 :samples ?ss .
@@ -2251,18 +2252,18 @@ _:sk_3 :x 0.5 .
2251
2252
  # } .
2252
2253
  # with substitution (on rule variables):
2253
2254
  # ?c = 4.0
2254
- # ?cosx = 0.8775825618903728
2255
- # ?ds = 2.12727907823934
2256
- # ?dy = 1.8775825618903728
2257
- # ?dy2 = 3.5253162767148156
2258
- # ?onePlus = 4.525316276714816
2255
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2256
+ # ?ds = "2.12727907823934"^^xsd:decimal
2257
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2258
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2259
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2259
2260
  # ?s = _:b2
2260
- # ?sinx = 0.479425538604203
2261
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2261
2262
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2262
- # ?twox = 1
2263
+ # ?twox = "1"^^xsd:decimal
2263
2264
  # ?x = 0.5
2264
- # ?x2 = 0.25
2265
- # ?y = 0.729425538604203
2265
+ # ?x2 = "0.25"^^xsd:decimal
2266
+ # ?y = "0.729425538604203"^^xsd:decimal
2266
2267
  # Therefore the derived triple above is entailed by the rules and facts.
2267
2268
  # ----------------------------------------------------------------------
2268
2269
 
@@ -2270,21 +2271,21 @@ _:sk_3 :coef 4.0 .
2270
2271
 
2271
2272
  # ----------------------------------------------------------------------
2272
2273
  # Proof for derived triple:
2273
- # _:sk_3 :y 0.729425538604203 .
2274
+ # _:sk_3 :y "0.729425538604203"^^xsd:decimal .
2274
2275
  # It holds because the following instance of the rule body is provable:
2275
2276
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2276
2277
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2277
2278
  # _:b2 :x 0.5 .
2278
2279
  # _:b2 :coef 4.0 .
2279
- # 0.5 math:sin 0.479425538604203 .
2280
- # (0.5 2.0) math:exponentiation 0.25 .
2281
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2282
- # 0.5 math:cos 0.8775825618903728 .
2283
- # (2.0 0.5) math:product 1 .
2284
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2285
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2286
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2287
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2280
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2281
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2282
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2283
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2284
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2285
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2286
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2287
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2288
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2288
2289
  # via the schematic forward rule:
2289
2290
  # {
2290
2291
  # :Simpson1 :samples ?ss .
@@ -2314,40 +2315,40 @@ _:sk_3 :coef 4.0 .
2314
2315
  # } .
2315
2316
  # with substitution (on rule variables):
2316
2317
  # ?c = 4.0
2317
- # ?cosx = 0.8775825618903728
2318
- # ?ds = 2.12727907823934
2319
- # ?dy = 1.8775825618903728
2320
- # ?dy2 = 3.5253162767148156
2321
- # ?onePlus = 4.525316276714816
2318
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2319
+ # ?ds = "2.12727907823934"^^xsd:decimal
2320
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2321
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2322
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2322
2323
  # ?s = _:b2
2323
- # ?sinx = 0.479425538604203
2324
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2324
2325
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2325
- # ?twox = 1
2326
+ # ?twox = "1"^^xsd:decimal
2326
2327
  # ?x = 0.5
2327
- # ?x2 = 0.25
2328
- # ?y = 0.729425538604203
2328
+ # ?x2 = "0.25"^^xsd:decimal
2329
+ # ?y = "0.729425538604203"^^xsd:decimal
2329
2330
  # Therefore the derived triple above is entailed by the rules and facts.
2330
2331
  # ----------------------------------------------------------------------
2331
2332
 
2332
- _:sk_3 :y 0.729425538604203 .
2333
+ _:sk_3 :y "0.729425538604203"^^xsd:decimal .
2333
2334
 
2334
2335
  # ----------------------------------------------------------------------
2335
2336
  # Proof for derived triple:
2336
- # _:sk_3 :dy 1.8775825618903728 .
2337
+ # _:sk_3 :dy "1.8775825618903728"^^xsd:decimal .
2337
2338
  # It holds because the following instance of the rule body is provable:
2338
2339
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2339
2340
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2340
2341
  # _:b2 :x 0.5 .
2341
2342
  # _:b2 :coef 4.0 .
2342
- # 0.5 math:sin 0.479425538604203 .
2343
- # (0.5 2.0) math:exponentiation 0.25 .
2344
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2345
- # 0.5 math:cos 0.8775825618903728 .
2346
- # (2.0 0.5) math:product 1 .
2347
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2348
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2349
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2350
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2343
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2344
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2345
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2346
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2347
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2348
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2349
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2350
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2351
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2351
2352
  # via the schematic forward rule:
2352
2353
  # {
2353
2354
  # :Simpson1 :samples ?ss .
@@ -2377,40 +2378,40 @@ _:sk_3 :y 0.729425538604203 .
2377
2378
  # } .
2378
2379
  # with substitution (on rule variables):
2379
2380
  # ?c = 4.0
2380
- # ?cosx = 0.8775825618903728
2381
- # ?ds = 2.12727907823934
2382
- # ?dy = 1.8775825618903728
2383
- # ?dy2 = 3.5253162767148156
2384
- # ?onePlus = 4.525316276714816
2381
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2382
+ # ?ds = "2.12727907823934"^^xsd:decimal
2383
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2384
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2385
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2385
2386
  # ?s = _:b2
2386
- # ?sinx = 0.479425538604203
2387
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2387
2388
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2388
- # ?twox = 1
2389
+ # ?twox = "1"^^xsd:decimal
2389
2390
  # ?x = 0.5
2390
- # ?x2 = 0.25
2391
- # ?y = 0.729425538604203
2391
+ # ?x2 = "0.25"^^xsd:decimal
2392
+ # ?y = "0.729425538604203"^^xsd:decimal
2392
2393
  # Therefore the derived triple above is entailed by the rules and facts.
2393
2394
  # ----------------------------------------------------------------------
2394
2395
 
2395
- _:sk_3 :dy 1.8775825618903728 .
2396
+ _:sk_3 :dy "1.8775825618903728"^^xsd:decimal .
2396
2397
 
2397
2398
  # ----------------------------------------------------------------------
2398
2399
  # Proof for derived triple:
2399
- # _:sk_3 :ds 2.12727907823934 .
2400
+ # _:sk_3 :ds "2.12727907823934"^^xsd:decimal .
2400
2401
  # It holds because the following instance of the rule body is provable:
2401
2402
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2402
2403
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2403
2404
  # _:b2 :x 0.5 .
2404
2405
  # _:b2 :coef 4.0 .
2405
- # 0.5 math:sin 0.479425538604203 .
2406
- # (0.5 2.0) math:exponentiation 0.25 .
2407
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2408
- # 0.5 math:cos 0.8775825618903728 .
2409
- # (2.0 0.5) math:product 1 .
2410
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2411
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2412
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2413
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2406
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2407
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2408
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2409
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2410
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2411
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2412
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2413
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2414
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2414
2415
  # via the schematic forward rule:
2415
2416
  # {
2416
2417
  # :Simpson1 :samples ?ss .
@@ -2440,22 +2441,22 @@ _:sk_3 :dy 1.8775825618903728 .
2440
2441
  # } .
2441
2442
  # with substitution (on rule variables):
2442
2443
  # ?c = 4.0
2443
- # ?cosx = 0.8775825618903728
2444
- # ?ds = 2.12727907823934
2445
- # ?dy = 1.8775825618903728
2446
- # ?dy2 = 3.5253162767148156
2447
- # ?onePlus = 4.525316276714816
2444
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2445
+ # ?ds = "2.12727907823934"^^xsd:decimal
2446
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2447
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2448
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2448
2449
  # ?s = _:b2
2449
- # ?sinx = 0.479425538604203
2450
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2450
2451
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2451
- # ?twox = 1
2452
+ # ?twox = "1"^^xsd:decimal
2452
2453
  # ?x = 0.5
2453
- # ?x2 = 0.25
2454
- # ?y = 0.729425538604203
2454
+ # ?x2 = "0.25"^^xsd:decimal
2455
+ # ?y = "0.729425538604203"^^xsd:decimal
2455
2456
  # Therefore the derived triple above is entailed by the rules and facts.
2456
2457
  # ----------------------------------------------------------------------
2457
2458
 
2458
- _:sk_3 :ds 2.12727907823934 .
2459
+ _:sk_3 :ds "2.12727907823934"^^xsd:decimal .
2459
2460
 
2460
2461
  # ----------------------------------------------------------------------
2461
2462
  # Proof for derived triple:
@@ -2465,15 +2466,15 @@ _:sk_3 :ds 2.12727907823934 .
2465
2466
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2466
2467
  # _:b2 :x 0.5 .
2467
2468
  # _:b2 :coef 4.0 .
2468
- # 0.5 math:sin 0.479425538604203 .
2469
- # (0.5 2.0) math:exponentiation 0.25 .
2470
- # (0.479425538604203 0.25) math:sum 0.729425538604203 .
2471
- # 0.5 math:cos 0.8775825618903728 .
2472
- # (2.0 0.5) math:product 1 .
2473
- # (0.8775825618903728 1) math:sum 1.8775825618903728 .
2474
- # (1.8775825618903728 2.0) math:exponentiation 3.5253162767148156 .
2475
- # (1.0 3.5253162767148156) math:sum 4.525316276714816 .
2476
- # (4.525316276714816 0.5) math:exponentiation 2.12727907823934 .
2469
+ # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2470
+ # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2471
+ # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2472
+ # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2473
+ # (2.0 0.5) math:product "1"^^xsd:decimal .
2474
+ # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2475
+ # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2476
+ # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2477
+ # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2477
2478
  # via the schematic forward rule:
2478
2479
  # {
2479
2480
  # :Simpson1 :samples ?ss .
@@ -2503,18 +2504,18 @@ _:sk_3 :ds 2.12727907823934 .
2503
2504
  # } .
2504
2505
  # with substitution (on rule variables):
2505
2506
  # ?c = 4.0
2506
- # ?cosx = 0.8775825618903728
2507
- # ?ds = 2.12727907823934
2508
- # ?dy = 1.8775825618903728
2509
- # ?dy2 = 3.5253162767148156
2510
- # ?onePlus = 4.525316276714816
2507
+ # ?cosx = "0.8775825618903728"^^xsd:decimal
2508
+ # ?ds = "2.12727907823934"^^xsd:decimal
2509
+ # ?dy = "1.8775825618903728"^^xsd:decimal
2510
+ # ?dy2 = "3.5253162767148156"^^xsd:decimal
2511
+ # ?onePlus = "4.525316276714816"^^xsd:decimal
2511
2512
  # ?s = _:b2
2512
- # ?sinx = 0.479425538604203
2513
+ # ?sinx = "0.479425538604203"^^xsd:decimal
2513
2514
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2514
- # ?twox = 1
2515
+ # ?twox = "1"^^xsd:decimal
2515
2516
  # ?x = 0.5
2516
- # ?x2 = 0.25
2517
- # ?y = 0.729425538604203
2517
+ # ?x2 = "0.25"^^xsd:decimal
2518
+ # ?y = "0.729425538604203"^^xsd:decimal
2518
2519
  # Therefore the derived triple above is entailed by the rules and facts.
2519
2520
  # ----------------------------------------------------------------------
2520
2521
 
@@ -2522,21 +2523,21 @@ _:sk_3 :ds 2.12727907823934 .
2522
2523
 
2523
2524
  # ----------------------------------------------------------------------
2524
2525
  # Proof for derived triple:
2525
- # _:b1 :y 0 .
2526
+ # _:b1 :y "0"^^xsd:decimal .
2526
2527
  # It holds because the following instance of the rule body is provable:
2527
2528
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2528
2529
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2529
2530
  # _:b1 :x 0.0 .
2530
2531
  # _:b1 :coef 1.0 .
2531
- # 0.0 math:sin 0 .
2532
- # (0.0 2.0) math:exponentiation 0 .
2533
- # (0 0) math:sum 0 .
2534
- # 0.0 math:cos 1 .
2535
- # (2.0 0.0) math:product 0 .
2536
- # (1 0) math:sum 1 .
2537
- # (1 2.0) math:exponentiation 1 .
2538
- # (1.0 1) math:sum 2 .
2539
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2532
+ # 0.0 math:sin "0"^^xsd:decimal .
2533
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2534
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2535
+ # 0.0 math:cos "1"^^xsd:decimal .
2536
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2537
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2538
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2539
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2540
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2540
2541
  # via the schematic forward rule:
2541
2542
  # {
2542
2543
  # :Simpson1 :samples ?ss .
@@ -2566,40 +2567,40 @@ _:sk_3 :ds 2.12727907823934 .
2566
2567
  # } .
2567
2568
  # with substitution (on rule variables):
2568
2569
  # ?c = 1.0
2569
- # ?cosx = 1
2570
- # ?ds = 1.4142135623730951
2571
- # ?dy = 1
2572
- # ?dy2 = 1
2573
- # ?onePlus = 2
2570
+ # ?cosx = "1"^^xsd:decimal
2571
+ # ?ds = "1.4142135623730951"^^xsd:decimal
2572
+ # ?dy = "1"^^xsd:decimal
2573
+ # ?dy2 = "1"^^xsd:decimal
2574
+ # ?onePlus = "2"^^xsd:decimal
2574
2575
  # ?s = _:b1
2575
- # ?sinx = 0
2576
+ # ?sinx = "0"^^xsd:decimal
2576
2577
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2577
- # ?twox = 0
2578
+ # ?twox = "0"^^xsd:decimal
2578
2579
  # ?x = 0.0
2579
- # ?x2 = 0
2580
- # ?y = 0
2580
+ # ?x2 = "0"^^xsd:decimal
2581
+ # ?y = "0"^^xsd:decimal
2581
2582
  # Therefore the derived triple above is entailed by the rules and facts.
2582
2583
  # ----------------------------------------------------------------------
2583
2584
 
2584
- _:b1 :y 0 .
2585
+ _:b1 :y "0"^^xsd:decimal .
2585
2586
 
2586
2587
  # ----------------------------------------------------------------------
2587
2588
  # Proof for derived triple:
2588
- # _:b1 :dy 1 .
2589
+ # _:b1 :dy "1"^^xsd:decimal .
2589
2590
  # It holds because the following instance of the rule body is provable:
2590
2591
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2591
2592
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2592
2593
  # _:b1 :x 0.0 .
2593
2594
  # _:b1 :coef 1.0 .
2594
- # 0.0 math:sin 0 .
2595
- # (0.0 2.0) math:exponentiation 0 .
2596
- # (0 0) math:sum 0 .
2597
- # 0.0 math:cos 1 .
2598
- # (2.0 0.0) math:product 0 .
2599
- # (1 0) math:sum 1 .
2600
- # (1 2.0) math:exponentiation 1 .
2601
- # (1.0 1) math:sum 2 .
2602
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2595
+ # 0.0 math:sin "0"^^xsd:decimal .
2596
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2597
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2598
+ # 0.0 math:cos "1"^^xsd:decimal .
2599
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2600
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2601
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2602
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2603
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2603
2604
  # via the schematic forward rule:
2604
2605
  # {
2605
2606
  # :Simpson1 :samples ?ss .
@@ -2629,40 +2630,40 @@ _:b1 :y 0 .
2629
2630
  # } .
2630
2631
  # with substitution (on rule variables):
2631
2632
  # ?c = 1.0
2632
- # ?cosx = 1
2633
- # ?ds = 1.4142135623730951
2634
- # ?dy = 1
2635
- # ?dy2 = 1
2636
- # ?onePlus = 2
2633
+ # ?cosx = "1"^^xsd:decimal
2634
+ # ?ds = "1.4142135623730951"^^xsd:decimal
2635
+ # ?dy = "1"^^xsd:decimal
2636
+ # ?dy2 = "1"^^xsd:decimal
2637
+ # ?onePlus = "2"^^xsd:decimal
2637
2638
  # ?s = _:b1
2638
- # ?sinx = 0
2639
+ # ?sinx = "0"^^xsd:decimal
2639
2640
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2640
- # ?twox = 0
2641
+ # ?twox = "0"^^xsd:decimal
2641
2642
  # ?x = 0.0
2642
- # ?x2 = 0
2643
- # ?y = 0
2643
+ # ?x2 = "0"^^xsd:decimal
2644
+ # ?y = "0"^^xsd:decimal
2644
2645
  # Therefore the derived triple above is entailed by the rules and facts.
2645
2646
  # ----------------------------------------------------------------------
2646
2647
 
2647
- _:b1 :dy 1 .
2648
+ _:b1 :dy "1"^^xsd:decimal .
2648
2649
 
2649
2650
  # ----------------------------------------------------------------------
2650
2651
  # Proof for derived triple:
2651
- # _:b1 :ds 1.4142135623730951 .
2652
+ # _:b1 :ds "1.4142135623730951"^^xsd:decimal .
2652
2653
  # It holds because the following instance of the rule body is provable:
2653
2654
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2654
2655
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2655
2656
  # _:b1 :x 0.0 .
2656
2657
  # _:b1 :coef 1.0 .
2657
- # 0.0 math:sin 0 .
2658
- # (0.0 2.0) math:exponentiation 0 .
2659
- # (0 0) math:sum 0 .
2660
- # 0.0 math:cos 1 .
2661
- # (2.0 0.0) math:product 0 .
2662
- # (1 0) math:sum 1 .
2663
- # (1 2.0) math:exponentiation 1 .
2664
- # (1.0 1) math:sum 2 .
2665
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2658
+ # 0.0 math:sin "0"^^xsd:decimal .
2659
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2660
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2661
+ # 0.0 math:cos "1"^^xsd:decimal .
2662
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2663
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2664
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2665
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2666
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2666
2667
  # via the schematic forward rule:
2667
2668
  # {
2668
2669
  # :Simpson1 :samples ?ss .
@@ -2692,22 +2693,22 @@ _:b1 :dy 1 .
2692
2693
  # } .
2693
2694
  # with substitution (on rule variables):
2694
2695
  # ?c = 1.0
2695
- # ?cosx = 1
2696
- # ?ds = 1.4142135623730951
2697
- # ?dy = 1
2698
- # ?dy2 = 1
2699
- # ?onePlus = 2
2696
+ # ?cosx = "1"^^xsd:decimal
2697
+ # ?ds = "1.4142135623730951"^^xsd:decimal
2698
+ # ?dy = "1"^^xsd:decimal
2699
+ # ?dy2 = "1"^^xsd:decimal
2700
+ # ?onePlus = "2"^^xsd:decimal
2700
2701
  # ?s = _:b1
2701
- # ?sinx = 0
2702
+ # ?sinx = "0"^^xsd:decimal
2702
2703
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2703
- # ?twox = 0
2704
+ # ?twox = "0"^^xsd:decimal
2704
2705
  # ?x = 0.0
2705
- # ?x2 = 0
2706
- # ?y = 0
2706
+ # ?x2 = "0"^^xsd:decimal
2707
+ # ?y = "0"^^xsd:decimal
2707
2708
  # Therefore the derived triple above is entailed by the rules and facts.
2708
2709
  # ----------------------------------------------------------------------
2709
2710
 
2710
- _:b1 :ds 1.4142135623730951 .
2711
+ _:b1 :ds "1.4142135623730951"^^xsd:decimal .
2711
2712
 
2712
2713
  # ----------------------------------------------------------------------
2713
2714
  # Proof for derived triple:
@@ -2717,15 +2718,15 @@ _:b1 :ds 1.4142135623730951 .
2717
2718
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2718
2719
  # _:b1 :x 0.0 .
2719
2720
  # _:b1 :coef 1.0 .
2720
- # 0.0 math:sin 0 .
2721
- # (0.0 2.0) math:exponentiation 0 .
2722
- # (0 0) math:sum 0 .
2723
- # 0.0 math:cos 1 .
2724
- # (2.0 0.0) math:product 0 .
2725
- # (1 0) math:sum 1 .
2726
- # (1 2.0) math:exponentiation 1 .
2727
- # (1.0 1) math:sum 2 .
2728
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2721
+ # 0.0 math:sin "0"^^xsd:decimal .
2722
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2723
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2724
+ # 0.0 math:cos "1"^^xsd:decimal .
2725
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2726
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2727
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2728
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2729
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2729
2730
  # via the schematic forward rule:
2730
2731
  # {
2731
2732
  # :Simpson1 :samples ?ss .
@@ -2755,18 +2756,18 @@ _:b1 :ds 1.4142135623730951 .
2755
2756
  # } .
2756
2757
  # with substitution (on rule variables):
2757
2758
  # ?c = 1.0
2758
- # ?cosx = 1
2759
- # ?ds = 1.4142135623730951
2760
- # ?dy = 1
2761
- # ?dy2 = 1
2762
- # ?onePlus = 2
2759
+ # ?cosx = "1"^^xsd:decimal
2760
+ # ?ds = "1.4142135623730951"^^xsd:decimal
2761
+ # ?dy = "1"^^xsd:decimal
2762
+ # ?dy2 = "1"^^xsd:decimal
2763
+ # ?onePlus = "2"^^xsd:decimal
2763
2764
  # ?s = _:b1
2764
- # ?sinx = 0
2765
+ # ?sinx = "0"^^xsd:decimal
2765
2766
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2766
- # ?twox = 0
2767
+ # ?twox = "0"^^xsd:decimal
2767
2768
  # ?x = 0.0
2768
- # ?x2 = 0
2769
- # ?y = 0
2769
+ # ?x2 = "0"^^xsd:decimal
2770
+ # ?y = "0"^^xsd:decimal
2770
2771
  # Therefore the derived triple above is entailed by the rules and facts.
2771
2772
  # ----------------------------------------------------------------------
2772
2773
 
@@ -2780,15 +2781,15 @@ _:sk_4 :sample _:b1 .
2780
2781
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2781
2782
  # _:b1 :x 0.0 .
2782
2783
  # _:b1 :coef 1.0 .
2783
- # 0.0 math:sin 0 .
2784
- # (0.0 2.0) math:exponentiation 0 .
2785
- # (0 0) math:sum 0 .
2786
- # 0.0 math:cos 1 .
2787
- # (2.0 0.0) math:product 0 .
2788
- # (1 0) math:sum 1 .
2789
- # (1 2.0) math:exponentiation 1 .
2790
- # (1.0 1) math:sum 2 .
2791
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2784
+ # 0.0 math:sin "0"^^xsd:decimal .
2785
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2786
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2787
+ # 0.0 math:cos "1"^^xsd:decimal .
2788
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2789
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2790
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2791
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2792
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2792
2793
  # via the schematic forward rule:
2793
2794
  # {
2794
2795
  # :Simpson1 :samples ?ss .
@@ -2818,18 +2819,18 @@ _:sk_4 :sample _:b1 .
2818
2819
  # } .
2819
2820
  # with substitution (on rule variables):
2820
2821
  # ?c = 1.0
2821
- # ?cosx = 1
2822
- # ?ds = 1.4142135623730951
2823
- # ?dy = 1
2824
- # ?dy2 = 1
2825
- # ?onePlus = 2
2822
+ # ?cosx = "1"^^xsd:decimal
2823
+ # ?ds = "1.4142135623730951"^^xsd:decimal
2824
+ # ?dy = "1"^^xsd:decimal
2825
+ # ?dy2 = "1"^^xsd:decimal
2826
+ # ?onePlus = "2"^^xsd:decimal
2826
2827
  # ?s = _:b1
2827
- # ?sinx = 0
2828
+ # ?sinx = "0"^^xsd:decimal
2828
2829
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2829
- # ?twox = 0
2830
+ # ?twox = "0"^^xsd:decimal
2830
2831
  # ?x = 0.0
2831
- # ?x2 = 0
2832
- # ?y = 0
2832
+ # ?x2 = "0"^^xsd:decimal
2833
+ # ?y = "0"^^xsd:decimal
2833
2834
  # Therefore the derived triple above is entailed by the rules and facts.
2834
2835
  # ----------------------------------------------------------------------
2835
2836
 
@@ -2843,15 +2844,15 @@ _:sk_4 :x 0.0 .
2843
2844
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2844
2845
  # _:b1 :x 0.0 .
2845
2846
  # _:b1 :coef 1.0 .
2846
- # 0.0 math:sin 0 .
2847
- # (0.0 2.0) math:exponentiation 0 .
2848
- # (0 0) math:sum 0 .
2849
- # 0.0 math:cos 1 .
2850
- # (2.0 0.0) math:product 0 .
2851
- # (1 0) math:sum 1 .
2852
- # (1 2.0) math:exponentiation 1 .
2853
- # (1.0 1) math:sum 2 .
2854
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2847
+ # 0.0 math:sin "0"^^xsd:decimal .
2848
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2849
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2850
+ # 0.0 math:cos "1"^^xsd:decimal .
2851
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2852
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2853
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2854
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2855
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2855
2856
  # via the schematic forward rule:
2856
2857
  # {
2857
2858
  # :Simpson1 :samples ?ss .
@@ -2881,18 +2882,18 @@ _:sk_4 :x 0.0 .
2881
2882
  # } .
2882
2883
  # with substitution (on rule variables):
2883
2884
  # ?c = 1.0
2884
- # ?cosx = 1
2885
- # ?ds = 1.4142135623730951
2886
- # ?dy = 1
2887
- # ?dy2 = 1
2888
- # ?onePlus = 2
2885
+ # ?cosx = "1"^^xsd:decimal
2886
+ # ?ds = "1.4142135623730951"^^xsd:decimal
2887
+ # ?dy = "1"^^xsd:decimal
2888
+ # ?dy2 = "1"^^xsd:decimal
2889
+ # ?onePlus = "2"^^xsd:decimal
2889
2890
  # ?s = _:b1
2890
- # ?sinx = 0
2891
+ # ?sinx = "0"^^xsd:decimal
2891
2892
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2892
- # ?twox = 0
2893
+ # ?twox = "0"^^xsd:decimal
2893
2894
  # ?x = 0.0
2894
- # ?x2 = 0
2895
- # ?y = 0
2895
+ # ?x2 = "0"^^xsd:decimal
2896
+ # ?y = "0"^^xsd:decimal
2896
2897
  # Therefore the derived triple above is entailed by the rules and facts.
2897
2898
  # ----------------------------------------------------------------------
2898
2899
 
@@ -2900,21 +2901,21 @@ _:sk_4 :coef 1.0 .
2900
2901
 
2901
2902
  # ----------------------------------------------------------------------
2902
2903
  # Proof for derived triple:
2903
- # _:sk_4 :y 0 .
2904
+ # _:sk_4 :y "0"^^xsd:decimal .
2904
2905
  # It holds because the following instance of the rule body is provable:
2905
2906
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2906
2907
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2907
2908
  # _:b1 :x 0.0 .
2908
2909
  # _:b1 :coef 1.0 .
2909
- # 0.0 math:sin 0 .
2910
- # (0.0 2.0) math:exponentiation 0 .
2911
- # (0 0) math:sum 0 .
2912
- # 0.0 math:cos 1 .
2913
- # (2.0 0.0) math:product 0 .
2914
- # (1 0) math:sum 1 .
2915
- # (1 2.0) math:exponentiation 1 .
2916
- # (1.0 1) math:sum 2 .
2917
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2910
+ # 0.0 math:sin "0"^^xsd:decimal .
2911
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2912
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2913
+ # 0.0 math:cos "1"^^xsd:decimal .
2914
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2915
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2916
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2917
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2918
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2918
2919
  # via the schematic forward rule:
2919
2920
  # {
2920
2921
  # :Simpson1 :samples ?ss .
@@ -2944,40 +2945,40 @@ _:sk_4 :coef 1.0 .
2944
2945
  # } .
2945
2946
  # with substitution (on rule variables):
2946
2947
  # ?c = 1.0
2947
- # ?cosx = 1
2948
- # ?ds = 1.4142135623730951
2949
- # ?dy = 1
2950
- # ?dy2 = 1
2951
- # ?onePlus = 2
2948
+ # ?cosx = "1"^^xsd:decimal
2949
+ # ?ds = "1.4142135623730951"^^xsd:decimal
2950
+ # ?dy = "1"^^xsd:decimal
2951
+ # ?dy2 = "1"^^xsd:decimal
2952
+ # ?onePlus = "2"^^xsd:decimal
2952
2953
  # ?s = _:b1
2953
- # ?sinx = 0
2954
+ # ?sinx = "0"^^xsd:decimal
2954
2955
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2955
- # ?twox = 0
2956
+ # ?twox = "0"^^xsd:decimal
2956
2957
  # ?x = 0.0
2957
- # ?x2 = 0
2958
- # ?y = 0
2958
+ # ?x2 = "0"^^xsd:decimal
2959
+ # ?y = "0"^^xsd:decimal
2959
2960
  # Therefore the derived triple above is entailed by the rules and facts.
2960
2961
  # ----------------------------------------------------------------------
2961
2962
 
2962
- _:sk_4 :y 0 .
2963
+ _:sk_4 :y "0"^^xsd:decimal .
2963
2964
 
2964
2965
  # ----------------------------------------------------------------------
2965
2966
  # Proof for derived triple:
2966
- # _:sk_4 :dy 1 .
2967
+ # _:sk_4 :dy "1"^^xsd:decimal .
2967
2968
  # It holds because the following instance of the rule body is provable:
2968
2969
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2969
2970
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2970
2971
  # _:b1 :x 0.0 .
2971
2972
  # _:b1 :coef 1.0 .
2972
- # 0.0 math:sin 0 .
2973
- # (0.0 2.0) math:exponentiation 0 .
2974
- # (0 0) math:sum 0 .
2975
- # 0.0 math:cos 1 .
2976
- # (2.0 0.0) math:product 0 .
2977
- # (1 0) math:sum 1 .
2978
- # (1 2.0) math:exponentiation 1 .
2979
- # (1.0 1) math:sum 2 .
2980
- # (2 0.5) math:exponentiation 1.4142135623730951 .
2973
+ # 0.0 math:sin "0"^^xsd:decimal .
2974
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2975
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2976
+ # 0.0 math:cos "1"^^xsd:decimal .
2977
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
2978
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2979
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2980
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2981
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2981
2982
  # via the schematic forward rule:
2982
2983
  # {
2983
2984
  # :Simpson1 :samples ?ss .
@@ -3007,40 +3008,40 @@ _:sk_4 :y 0 .
3007
3008
  # } .
3008
3009
  # with substitution (on rule variables):
3009
3010
  # ?c = 1.0
3010
- # ?cosx = 1
3011
- # ?ds = 1.4142135623730951
3012
- # ?dy = 1
3013
- # ?dy2 = 1
3014
- # ?onePlus = 2
3011
+ # ?cosx = "1"^^xsd:decimal
3012
+ # ?ds = "1.4142135623730951"^^xsd:decimal
3013
+ # ?dy = "1"^^xsd:decimal
3014
+ # ?dy2 = "1"^^xsd:decimal
3015
+ # ?onePlus = "2"^^xsd:decimal
3015
3016
  # ?s = _:b1
3016
- # ?sinx = 0
3017
+ # ?sinx = "0"^^xsd:decimal
3017
3018
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3018
- # ?twox = 0
3019
+ # ?twox = "0"^^xsd:decimal
3019
3020
  # ?x = 0.0
3020
- # ?x2 = 0
3021
- # ?y = 0
3021
+ # ?x2 = "0"^^xsd:decimal
3022
+ # ?y = "0"^^xsd:decimal
3022
3023
  # Therefore the derived triple above is entailed by the rules and facts.
3023
3024
  # ----------------------------------------------------------------------
3024
3025
 
3025
- _:sk_4 :dy 1 .
3026
+ _:sk_4 :dy "1"^^xsd:decimal .
3026
3027
 
3027
3028
  # ----------------------------------------------------------------------
3028
3029
  # Proof for derived triple:
3029
- # _:sk_4 :ds 1.4142135623730951 .
3030
+ # _:sk_4 :ds "1.4142135623730951"^^xsd:decimal .
3030
3031
  # It holds because the following instance of the rule body is provable:
3031
3032
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3032
3033
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
3033
3034
  # _:b1 :x 0.0 .
3034
3035
  # _:b1 :coef 1.0 .
3035
- # 0.0 math:sin 0 .
3036
- # (0.0 2.0) math:exponentiation 0 .
3037
- # (0 0) math:sum 0 .
3038
- # 0.0 math:cos 1 .
3039
- # (2.0 0.0) math:product 0 .
3040
- # (1 0) math:sum 1 .
3041
- # (1 2.0) math:exponentiation 1 .
3042
- # (1.0 1) math:sum 2 .
3043
- # (2 0.5) math:exponentiation 1.4142135623730951 .
3036
+ # 0.0 math:sin "0"^^xsd:decimal .
3037
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
3038
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
3039
+ # 0.0 math:cos "1"^^xsd:decimal .
3040
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
3041
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
3042
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
3043
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
3044
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
3044
3045
  # via the schematic forward rule:
3045
3046
  # {
3046
3047
  # :Simpson1 :samples ?ss .
@@ -3070,22 +3071,22 @@ _:sk_4 :dy 1 .
3070
3071
  # } .
3071
3072
  # with substitution (on rule variables):
3072
3073
  # ?c = 1.0
3073
- # ?cosx = 1
3074
- # ?ds = 1.4142135623730951
3075
- # ?dy = 1
3076
- # ?dy2 = 1
3077
- # ?onePlus = 2
3074
+ # ?cosx = "1"^^xsd:decimal
3075
+ # ?ds = "1.4142135623730951"^^xsd:decimal
3076
+ # ?dy = "1"^^xsd:decimal
3077
+ # ?dy2 = "1"^^xsd:decimal
3078
+ # ?onePlus = "2"^^xsd:decimal
3078
3079
  # ?s = _:b1
3079
- # ?sinx = 0
3080
+ # ?sinx = "0"^^xsd:decimal
3080
3081
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3081
- # ?twox = 0
3082
+ # ?twox = "0"^^xsd:decimal
3082
3083
  # ?x = 0.0
3083
- # ?x2 = 0
3084
- # ?y = 0
3084
+ # ?x2 = "0"^^xsd:decimal
3085
+ # ?y = "0"^^xsd:decimal
3085
3086
  # Therefore the derived triple above is entailed by the rules and facts.
3086
3087
  # ----------------------------------------------------------------------
3087
3088
 
3088
- _:sk_4 :ds 1.4142135623730951 .
3089
+ _:sk_4 :ds "1.4142135623730951"^^xsd:decimal .
3089
3090
 
3090
3091
  # ----------------------------------------------------------------------
3091
3092
  # Proof for derived triple:
@@ -3095,15 +3096,15 @@ _:sk_4 :ds 1.4142135623730951 .
3095
3096
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
3096
3097
  # _:b1 :x 0.0 .
3097
3098
  # _:b1 :coef 1.0 .
3098
- # 0.0 math:sin 0 .
3099
- # (0.0 2.0) math:exponentiation 0 .
3100
- # (0 0) math:sum 0 .
3101
- # 0.0 math:cos 1 .
3102
- # (2.0 0.0) math:product 0 .
3103
- # (1 0) math:sum 1 .
3104
- # (1 2.0) math:exponentiation 1 .
3105
- # (1.0 1) math:sum 2 .
3106
- # (2 0.5) math:exponentiation 1.4142135623730951 .
3099
+ # 0.0 math:sin "0"^^xsd:decimal .
3100
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
3101
+ # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
3102
+ # 0.0 math:cos "1"^^xsd:decimal .
3103
+ # (2.0 0.0) math:product "0"^^xsd:decimal .
3104
+ # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
3105
+ # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
3106
+ # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
3107
+ # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
3107
3108
  # via the schematic forward rule:
3108
3109
  # {
3109
3110
  # :Simpson1 :samples ?ss .
@@ -3133,18 +3134,18 @@ _:sk_4 :ds 1.4142135623730951 .
3133
3134
  # } .
3134
3135
  # with substitution (on rule variables):
3135
3136
  # ?c = 1.0
3136
- # ?cosx = 1
3137
- # ?ds = 1.4142135623730951
3138
- # ?dy = 1
3139
- # ?dy2 = 1
3140
- # ?onePlus = 2
3137
+ # ?cosx = "1"^^xsd:decimal
3138
+ # ?ds = "1.4142135623730951"^^xsd:decimal
3139
+ # ?dy = "1"^^xsd:decimal
3140
+ # ?dy2 = "1"^^xsd:decimal
3141
+ # ?onePlus = "2"^^xsd:decimal
3141
3142
  # ?s = _:b1
3142
- # ?sinx = 0
3143
+ # ?sinx = "0"^^xsd:decimal
3143
3144
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3144
- # ?twox = 0
3145
+ # ?twox = "0"^^xsd:decimal
3145
3146
  # ?x = 0.0
3146
- # ?x2 = 0
3147
- # ?y = 0
3147
+ # ?x2 = "0"^^xsd:decimal
3148
+ # ?y = "0"^^xsd:decimal
3148
3149
  # Therefore the derived triple above is entailed by the rules and facts.
3149
3150
  # ----------------------------------------------------------------------
3150
3151
 
@@ -3152,7 +3153,7 @@ _:sk_4 :ds 1.4142135623730951 .
3152
3153
 
3153
3154
  # ----------------------------------------------------------------------
3154
3155
  # Proof for derived triple:
3155
- # :Simpson1 :sumWY 24.499921497274507 .
3156
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3156
3157
  # It holds because the following instance of the rule body is provable:
3157
3158
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3158
3159
  # (?wy {
@@ -3160,8 +3161,8 @@ _:sk_4 :ds 1.4142135623730951 .
3160
3161
  # ?s :coef ?c .
3161
3162
  # ?s :y ?y .
3162
3163
  # (?c ?y) math:product ?wy .
3163
- # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3164
- # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3164
+ # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3165
+ # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3165
3166
  # (?wxy {
3166
3167
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3167
3168
  # ?s :coef ?c .
@@ -3169,23 +3170,23 @@ _:sk_4 :ds 1.4142135623730951 .
3169
3170
  # ?s :y ?y .
3170
3171
  # (?x ?y) math:product ?xy .
3171
3172
  # (?c ?xy) math:product ?wxy .
3172
- # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3173
- # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3173
+ # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3174
+ # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3174
3175
  # (?wy2 {
3175
3176
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3176
3177
  # ?s :coef ?c .
3177
3178
  # ?s :y ?y .
3178
3179
  # (?y 2.0) math:exponentiation ?y2 .
3179
3180
  # (?c ?y2) math:product ?wy2 .
3180
- # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3181
- # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3181
+ # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3182
+ # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3182
3183
  # (?wds {
3183
3184
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3184
3185
  # ?s :coef ?c .
3185
3186
  # ?s :ds ?ds .
3186
3187
  # (?c ?ds) math:product ?wds .
3187
- # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3188
- # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3188
+ # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3189
+ # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3189
3190
  # via the schematic forward rule:
3190
3191
  # {
3191
3192
  # :Simpson1 :samples ?ss .
@@ -3228,22 +3229,22 @@ _:sk_4 :ds 1.4142135623730951 .
3228
3229
  # } .
3229
3230
  # with substitution (on rule variables):
3230
3231
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3231
- # ?sumWDS = 32.02201866506704
3232
- # ?sumWXY = 34.445357820099886
3233
- # ?sumWY = 24.499921497274507
3234
- # ?sumWY2 = 75.19637321836198
3235
- # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3236
- # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3237
- # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3238
- # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3232
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3233
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3234
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3235
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3236
+ # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3237
+ # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3238
+ # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3239
+ # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3239
3240
  # Therefore the derived triple above is entailed by the rules and facts.
3240
3241
  # ----------------------------------------------------------------------
3241
3242
 
3242
- :Simpson1 :sumWY 24.499921497274507 .
3243
+ :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3243
3244
 
3244
3245
  # ----------------------------------------------------------------------
3245
3246
  # Proof for derived triple:
3246
- # :Simpson1 :sumWXY 34.445357820099886 .
3247
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3247
3248
  # It holds because the following instance of the rule body is provable:
3248
3249
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3249
3250
  # (?wy {
@@ -3251,8 +3252,8 @@ _:sk_4 :ds 1.4142135623730951 .
3251
3252
  # ?s :coef ?c .
3252
3253
  # ?s :y ?y .
3253
3254
  # (?c ?y) math:product ?wy .
3254
- # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3255
- # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3255
+ # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3256
+ # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3256
3257
  # (?wxy {
3257
3258
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3258
3259
  # ?s :coef ?c .
@@ -3260,23 +3261,23 @@ _:sk_4 :ds 1.4142135623730951 .
3260
3261
  # ?s :y ?y .
3261
3262
  # (?x ?y) math:product ?xy .
3262
3263
  # (?c ?xy) math:product ?wxy .
3263
- # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3264
- # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3264
+ # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3265
+ # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3265
3266
  # (?wy2 {
3266
3267
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3267
3268
  # ?s :coef ?c .
3268
3269
  # ?s :y ?y .
3269
3270
  # (?y 2.0) math:exponentiation ?y2 .
3270
3271
  # (?c ?y2) math:product ?wy2 .
3271
- # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3272
- # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3272
+ # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3273
+ # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3273
3274
  # (?wds {
3274
3275
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3275
3276
  # ?s :coef ?c .
3276
3277
  # ?s :ds ?ds .
3277
3278
  # (?c ?ds) math:product ?wds .
3278
- # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3279
- # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3279
+ # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3280
+ # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3280
3281
  # via the schematic forward rule:
3281
3282
  # {
3282
3283
  # :Simpson1 :samples ?ss .
@@ -3319,22 +3320,22 @@ _:sk_4 :ds 1.4142135623730951 .
3319
3320
  # } .
3320
3321
  # with substitution (on rule variables):
3321
3322
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3322
- # ?sumWDS = 32.02201866506704
3323
- # ?sumWXY = 34.445357820099886
3324
- # ?sumWY = 24.499921497274507
3325
- # ?sumWY2 = 75.19637321836198
3326
- # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3327
- # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3328
- # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3329
- # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3323
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3324
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3325
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3326
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3327
+ # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3328
+ # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3329
+ # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3330
+ # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3330
3331
  # Therefore the derived triple above is entailed by the rules and facts.
3331
3332
  # ----------------------------------------------------------------------
3332
3333
 
3333
- :Simpson1 :sumWXY 34.445357820099886 .
3334
+ :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3334
3335
 
3335
3336
  # ----------------------------------------------------------------------
3336
3337
  # Proof for derived triple:
3337
- # :Simpson1 :sumWY2 75.19637321836198 .
3338
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3338
3339
  # It holds because the following instance of the rule body is provable:
3339
3340
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3340
3341
  # (?wy {
@@ -3342,8 +3343,8 @@ _:sk_4 :ds 1.4142135623730951 .
3342
3343
  # ?s :coef ?c .
3343
3344
  # ?s :y ?y .
3344
3345
  # (?c ?y) math:product ?wy .
3345
- # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3346
- # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3346
+ # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3347
+ # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3347
3348
  # (?wxy {
3348
3349
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3349
3350
  # ?s :coef ?c .
@@ -3351,23 +3352,23 @@ _:sk_4 :ds 1.4142135623730951 .
3351
3352
  # ?s :y ?y .
3352
3353
  # (?x ?y) math:product ?xy .
3353
3354
  # (?c ?xy) math:product ?wxy .
3354
- # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3355
- # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3355
+ # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3356
+ # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3356
3357
  # (?wy2 {
3357
3358
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3358
3359
  # ?s :coef ?c .
3359
3360
  # ?s :y ?y .
3360
3361
  # (?y 2.0) math:exponentiation ?y2 .
3361
3362
  # (?c ?y2) math:product ?wy2 .
3362
- # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3363
- # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3363
+ # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3364
+ # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3364
3365
  # (?wds {
3365
3366
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3366
3367
  # ?s :coef ?c .
3367
3368
  # ?s :ds ?ds .
3368
3369
  # (?c ?ds) math:product ?wds .
3369
- # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3370
- # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3370
+ # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3371
+ # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3371
3372
  # via the schematic forward rule:
3372
3373
  # {
3373
3374
  # :Simpson1 :samples ?ss .
@@ -3410,22 +3411,22 @@ _:sk_4 :ds 1.4142135623730951 .
3410
3411
  # } .
3411
3412
  # with substitution (on rule variables):
3412
3413
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3413
- # ?sumWDS = 32.02201866506704
3414
- # ?sumWXY = 34.445357820099886
3415
- # ?sumWY = 24.499921497274507
3416
- # ?sumWY2 = 75.19637321836198
3417
- # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3418
- # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3419
- # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3420
- # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3414
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3415
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3416
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3417
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3418
+ # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3419
+ # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3420
+ # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3421
+ # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3421
3422
  # Therefore the derived triple above is entailed by the rules and facts.
3422
3423
  # ----------------------------------------------------------------------
3423
3424
 
3424
- :Simpson1 :sumWY2 75.19637321836198 .
3425
+ :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3425
3426
 
3426
3427
  # ----------------------------------------------------------------------
3427
3428
  # Proof for derived triple:
3428
- # :Simpson1 :sumWDS 32.02201866506704 .
3429
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3429
3430
  # It holds because the following instance of the rule body is provable:
3430
3431
  # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3431
3432
  # (?wy {
@@ -3433,8 +3434,8 @@ _:sk_4 :ds 1.4142135623730951 .
3433
3434
  # ?s :coef ?c .
3434
3435
  # ?s :y ?y .
3435
3436
  # (?c ?y) math:product ?wy .
3436
- # } (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)) log:collectAllIn ?_b1 .
3437
- # (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0) math:sum 24.499921497274507 .
3437
+ # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3438
+ # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3438
3439
  # (?wxy {
3439
3440
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3440
3441
  # ?s :coef ?c .
@@ -3442,23 +3443,23 @@ _:sk_4 :ds 1.4142135623730951 .
3442
3443
  # ?s :y ?y .
3443
3444
  # (?x ?y) math:product ?xy .
3444
3445
  # (?c ?xy) math:product ?wxy .
3445
- # } (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)) log:collectAllIn ?_b2 .
3446
- # (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0) math:sum 34.445357820099886 .
3446
+ # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3447
+ # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3447
3448
  # (?wy2 {
3448
3449
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3449
3450
  # ?s :coef ?c .
3450
3451
  # ?s :y ?y .
3451
3452
  # (?y 2.0) math:exponentiation ?y2 .
3452
3453
  # (?c ?y2) math:product ?wy2 .
3453
- # } (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)) log:collectAllIn ?_b3 .
3454
- # (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0) math:sum 75.19637321836198 .
3454
+ # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3455
+ # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3455
3456
  # (?wds {
3456
3457
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3457
3458
  # ?s :coef ?c .
3458
3459
  # ?s :ds ?ds .
3459
3460
  # (?c ?ds) math:product ?wds .
3460
- # } (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)) log:collectAllIn ?_b4 .
3461
- # (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951) math:sum 32.02201866506704 .
3461
+ # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3462
+ # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3462
3463
  # via the schematic forward rule:
3463
3464
  # {
3464
3465
  # :Simpson1 :samples ?ss .
@@ -3501,36 +3502,36 @@ _:sk_4 :ds 1.4142135623730951 .
3501
3502
  # } .
3502
3503
  # with substitution (on rule variables):
3503
3504
  # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3504
- # ?sumWDS = 32.02201866506704
3505
- # ?sumWXY = 34.445357820099886
3506
- # ?sumWY = 24.499921497274507
3507
- # ?sumWY2 = 75.19637321836198
3508
- # ?wdss = (3.720753081997118 12.917849332891908 5.460086374847559 8.50911631295736 1.4142135623730951)
3509
- # ?wxys = (9.818594853651364 19.484969919624326 3.682941969615793 1.458851077208406 0)
3510
- # ?wy2s = (24.10120122503726 42.18489475207387 6.782030775778728 2.1282464654721265 0)
3511
- # ?wys = (4.909297426825682 12.989979946416218 3.682941969615793 2.917702154416812 0)
3505
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3506
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3507
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3508
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3509
+ # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3510
+ # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3511
+ # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3512
+ # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3512
3513
  # Therefore the derived triple above is entailed by the rules and facts.
3513
3514
  # ----------------------------------------------------------------------
3514
3515
 
3515
- :Simpson1 :sumWDS 32.02201866506704 .
3516
+ :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3516
3517
 
3517
3518
  # ----------------------------------------------------------------------
3518
3519
  # Proof for derived triple:
3519
- # :Simpson1 :areaUnderCurve 4.083320249545751 .
3520
+ # :Simpson1 :areaUnderCurve "4.083320249545751"^^xsd:decimal .
3520
3521
  # It holds because the following instance of the rule body is provable:
3521
3522
  # :Simpson1 :h 0.5 .
3522
- # :Simpson1 :sumWY 24.499921497274507 .
3523
- # :Simpson1 :sumWXY 34.445357820099886 .
3524
- # :Simpson1 :sumWY2 75.19637321836198 .
3525
- # :Simpson1 :sumWDS 32.02201866506704 .
3526
- # (0.5 3.0) math:quotient 0.16666666666666666 .
3527
- # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3528
- # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3529
- # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3530
- # (0.5 12.532728869726997) math:product 6.266364434863498 .
3531
- # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3532
- # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3533
- # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3523
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3524
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3525
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3526
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3527
+ # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3528
+ # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3529
+ # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3530
+ # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3531
+ # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3532
+ # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3533
+ # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3534
+ # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3534
3535
  # via the schematic forward rule:
3535
3536
  # {
3536
3537
  # :Simpson1 :h ?h .
@@ -3556,41 +3557,41 @@ _:sk_4 :ds 1.4142135623730951 .
3556
3557
  # :Simpson1 :centroid _:b7 .
3557
3558
  # } .
3558
3559
  # with substitution (on rule variables):
3559
- # ?A = 4.083320249545751
3560
- # ?Iy2 = 12.532728869726997
3561
- # ?L = 5.337003110844506
3562
- # ?Mx = 6.266364434863498
3563
- # ?My = 5.740892970016647
3564
- # ?fac = 0.16666666666666666
3560
+ # ?A = "4.083320249545751"^^xsd:decimal
3561
+ # ?Iy2 = "12.532728869726997"^^xsd:decimal
3562
+ # ?L = "5.337003110844506"^^xsd:decimal
3563
+ # ?Mx = "6.266364434863498"^^xsd:decimal
3564
+ # ?My = "5.740892970016647"^^xsd:decimal
3565
+ # ?fac = "0.16666666666666666"^^xsd:decimal
3565
3566
  # ?h = 0.5
3566
- # ?sumWDS = 32.02201866506704
3567
- # ?sumWXY = 34.445357820099886
3568
- # ?sumWY = 24.499921497274507
3569
- # ?sumWY2 = 75.19637321836198
3570
- # ?xbar = 1.405937477143825
3571
- # ?ybar = 1.5346247788330099
3567
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3568
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3569
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3570
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3571
+ # ?xbar = "1.405937477143825"^^xsd:decimal
3572
+ # ?ybar = "1.5346247788330099"^^xsd:decimal
3572
3573
  # Therefore the derived triple above is entailed by the rules and facts.
3573
3574
  # ----------------------------------------------------------------------
3574
3575
 
3575
- :Simpson1 :areaUnderCurve 4.083320249545751 .
3576
+ :Simpson1 :areaUnderCurve "4.083320249545751"^^xsd:decimal .
3576
3577
 
3577
3578
  # ----------------------------------------------------------------------
3578
3579
  # Proof for derived triple:
3579
- # :Simpson1 :arcLength 5.337003110844506 .
3580
+ # :Simpson1 :arcLength "5.337003110844506"^^xsd:decimal .
3580
3581
  # It holds because the following instance of the rule body is provable:
3581
3582
  # :Simpson1 :h 0.5 .
3582
- # :Simpson1 :sumWY 24.499921497274507 .
3583
- # :Simpson1 :sumWXY 34.445357820099886 .
3584
- # :Simpson1 :sumWY2 75.19637321836198 .
3585
- # :Simpson1 :sumWDS 32.02201866506704 .
3586
- # (0.5 3.0) math:quotient 0.16666666666666666 .
3587
- # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3588
- # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3589
- # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3590
- # (0.5 12.532728869726997) math:product 6.266364434863498 .
3591
- # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3592
- # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3593
- # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3583
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3584
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3585
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3586
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3587
+ # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3588
+ # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3589
+ # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3590
+ # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3591
+ # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3592
+ # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3593
+ # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3594
+ # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3594
3595
  # via the schematic forward rule:
3595
3596
  # {
3596
3597
  # :Simpson1 :h ?h .
@@ -3616,41 +3617,41 @@ _:sk_4 :ds 1.4142135623730951 .
3616
3617
  # :Simpson1 :centroid _:b7 .
3617
3618
  # } .
3618
3619
  # with substitution (on rule variables):
3619
- # ?A = 4.083320249545751
3620
- # ?Iy2 = 12.532728869726997
3621
- # ?L = 5.337003110844506
3622
- # ?Mx = 6.266364434863498
3623
- # ?My = 5.740892970016647
3624
- # ?fac = 0.16666666666666666
3620
+ # ?A = "4.083320249545751"^^xsd:decimal
3621
+ # ?Iy2 = "12.532728869726997"^^xsd:decimal
3622
+ # ?L = "5.337003110844506"^^xsd:decimal
3623
+ # ?Mx = "6.266364434863498"^^xsd:decimal
3624
+ # ?My = "5.740892970016647"^^xsd:decimal
3625
+ # ?fac = "0.16666666666666666"^^xsd:decimal
3625
3626
  # ?h = 0.5
3626
- # ?sumWDS = 32.02201866506704
3627
- # ?sumWXY = 34.445357820099886
3628
- # ?sumWY = 24.499921497274507
3629
- # ?sumWY2 = 75.19637321836198
3630
- # ?xbar = 1.405937477143825
3631
- # ?ybar = 1.5346247788330099
3627
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3628
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3629
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3630
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3631
+ # ?xbar = "1.405937477143825"^^xsd:decimal
3632
+ # ?ybar = "1.5346247788330099"^^xsd:decimal
3632
3633
  # Therefore the derived triple above is entailed by the rules and facts.
3633
3634
  # ----------------------------------------------------------------------
3634
3635
 
3635
- :Simpson1 :arcLength 5.337003110844506 .
3636
+ :Simpson1 :arcLength "5.337003110844506"^^xsd:decimal .
3636
3637
 
3637
3638
  # ----------------------------------------------------------------------
3638
3639
  # Proof for derived triple:
3639
- # :Simpson1 :momentAboutY 5.740892970016647 .
3640
+ # :Simpson1 :momentAboutY "5.740892970016647"^^xsd:decimal .
3640
3641
  # It holds because the following instance of the rule body is provable:
3641
3642
  # :Simpson1 :h 0.5 .
3642
- # :Simpson1 :sumWY 24.499921497274507 .
3643
- # :Simpson1 :sumWXY 34.445357820099886 .
3644
- # :Simpson1 :sumWY2 75.19637321836198 .
3645
- # :Simpson1 :sumWDS 32.02201866506704 .
3646
- # (0.5 3.0) math:quotient 0.16666666666666666 .
3647
- # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3648
- # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3649
- # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3650
- # (0.5 12.532728869726997) math:product 6.266364434863498 .
3651
- # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3652
- # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3653
- # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3643
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3644
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3645
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3646
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3647
+ # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3648
+ # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3649
+ # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3650
+ # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3651
+ # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3652
+ # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3653
+ # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3654
+ # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3654
3655
  # via the schematic forward rule:
3655
3656
  # {
3656
3657
  # :Simpson1 :h ?h .
@@ -3676,41 +3677,41 @@ _:sk_4 :ds 1.4142135623730951 .
3676
3677
  # :Simpson1 :centroid _:b7 .
3677
3678
  # } .
3678
3679
  # with substitution (on rule variables):
3679
- # ?A = 4.083320249545751
3680
- # ?Iy2 = 12.532728869726997
3681
- # ?L = 5.337003110844506
3682
- # ?Mx = 6.266364434863498
3683
- # ?My = 5.740892970016647
3684
- # ?fac = 0.16666666666666666
3680
+ # ?A = "4.083320249545751"^^xsd:decimal
3681
+ # ?Iy2 = "12.532728869726997"^^xsd:decimal
3682
+ # ?L = "5.337003110844506"^^xsd:decimal
3683
+ # ?Mx = "6.266364434863498"^^xsd:decimal
3684
+ # ?My = "5.740892970016647"^^xsd:decimal
3685
+ # ?fac = "0.16666666666666666"^^xsd:decimal
3685
3686
  # ?h = 0.5
3686
- # ?sumWDS = 32.02201866506704
3687
- # ?sumWXY = 34.445357820099886
3688
- # ?sumWY = 24.499921497274507
3689
- # ?sumWY2 = 75.19637321836198
3690
- # ?xbar = 1.405937477143825
3691
- # ?ybar = 1.5346247788330099
3687
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3688
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3689
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3690
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3691
+ # ?xbar = "1.405937477143825"^^xsd:decimal
3692
+ # ?ybar = "1.5346247788330099"^^xsd:decimal
3692
3693
  # Therefore the derived triple above is entailed by the rules and facts.
3693
3694
  # ----------------------------------------------------------------------
3694
3695
 
3695
- :Simpson1 :momentAboutY 5.740892970016647 .
3696
+ :Simpson1 :momentAboutY "5.740892970016647"^^xsd:decimal .
3696
3697
 
3697
3698
  # ----------------------------------------------------------------------
3698
3699
  # Proof for derived triple:
3699
- # :Simpson1 :momentAboutX 6.266364434863498 .
3700
+ # :Simpson1 :momentAboutX "6.266364434863498"^^xsd:decimal .
3700
3701
  # It holds because the following instance of the rule body is provable:
3701
3702
  # :Simpson1 :h 0.5 .
3702
- # :Simpson1 :sumWY 24.499921497274507 .
3703
- # :Simpson1 :sumWXY 34.445357820099886 .
3704
- # :Simpson1 :sumWY2 75.19637321836198 .
3705
- # :Simpson1 :sumWDS 32.02201866506704 .
3706
- # (0.5 3.0) math:quotient 0.16666666666666666 .
3707
- # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3708
- # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3709
- # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3710
- # (0.5 12.532728869726997) math:product 6.266364434863498 .
3711
- # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3712
- # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3713
- # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3703
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3704
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3705
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3706
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3707
+ # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3708
+ # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3709
+ # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3710
+ # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3711
+ # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3712
+ # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3713
+ # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3714
+ # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3714
3715
  # via the schematic forward rule:
3715
3716
  # {
3716
3717
  # :Simpson1 :h ?h .
@@ -3736,41 +3737,41 @@ _:sk_4 :ds 1.4142135623730951 .
3736
3737
  # :Simpson1 :centroid _:b7 .
3737
3738
  # } .
3738
3739
  # with substitution (on rule variables):
3739
- # ?A = 4.083320249545751
3740
- # ?Iy2 = 12.532728869726997
3741
- # ?L = 5.337003110844506
3742
- # ?Mx = 6.266364434863498
3743
- # ?My = 5.740892970016647
3744
- # ?fac = 0.16666666666666666
3740
+ # ?A = "4.083320249545751"^^xsd:decimal
3741
+ # ?Iy2 = "12.532728869726997"^^xsd:decimal
3742
+ # ?L = "5.337003110844506"^^xsd:decimal
3743
+ # ?Mx = "6.266364434863498"^^xsd:decimal
3744
+ # ?My = "5.740892970016647"^^xsd:decimal
3745
+ # ?fac = "0.16666666666666666"^^xsd:decimal
3745
3746
  # ?h = 0.5
3746
- # ?sumWDS = 32.02201866506704
3747
- # ?sumWXY = 34.445357820099886
3748
- # ?sumWY = 24.499921497274507
3749
- # ?sumWY2 = 75.19637321836198
3750
- # ?xbar = 1.405937477143825
3751
- # ?ybar = 1.5346247788330099
3747
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3748
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3749
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3750
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3751
+ # ?xbar = "1.405937477143825"^^xsd:decimal
3752
+ # ?ybar = "1.5346247788330099"^^xsd:decimal
3752
3753
  # Therefore the derived triple above is entailed by the rules and facts.
3753
3754
  # ----------------------------------------------------------------------
3754
3755
 
3755
- :Simpson1 :momentAboutX 6.266364434863498 .
3756
+ :Simpson1 :momentAboutX "6.266364434863498"^^xsd:decimal .
3756
3757
 
3757
3758
  # ----------------------------------------------------------------------
3758
3759
  # Proof for derived triple:
3759
- # _:sk_5 :xbar 1.405937477143825 .
3760
+ # _:sk_5 :xbar "1.405937477143825"^^xsd:decimal .
3760
3761
  # It holds because the following instance of the rule body is provable:
3761
3762
  # :Simpson1 :h 0.5 .
3762
- # :Simpson1 :sumWY 24.499921497274507 .
3763
- # :Simpson1 :sumWXY 34.445357820099886 .
3764
- # :Simpson1 :sumWY2 75.19637321836198 .
3765
- # :Simpson1 :sumWDS 32.02201866506704 .
3766
- # (0.5 3.0) math:quotient 0.16666666666666666 .
3767
- # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3768
- # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3769
- # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3770
- # (0.5 12.532728869726997) math:product 6.266364434863498 .
3771
- # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3772
- # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3773
- # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3763
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3764
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3765
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3766
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3767
+ # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3768
+ # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3769
+ # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3770
+ # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3771
+ # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3772
+ # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3773
+ # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3774
+ # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3774
3775
  # via the schematic forward rule:
3775
3776
  # {
3776
3777
  # :Simpson1 :h ?h .
@@ -3796,41 +3797,41 @@ _:sk_4 :ds 1.4142135623730951 .
3796
3797
  # :Simpson1 :centroid _:b7 .
3797
3798
  # } .
3798
3799
  # with substitution (on rule variables):
3799
- # ?A = 4.083320249545751
3800
- # ?Iy2 = 12.532728869726997
3801
- # ?L = 5.337003110844506
3802
- # ?Mx = 6.266364434863498
3803
- # ?My = 5.740892970016647
3804
- # ?fac = 0.16666666666666666
3800
+ # ?A = "4.083320249545751"^^xsd:decimal
3801
+ # ?Iy2 = "12.532728869726997"^^xsd:decimal
3802
+ # ?L = "5.337003110844506"^^xsd:decimal
3803
+ # ?Mx = "6.266364434863498"^^xsd:decimal
3804
+ # ?My = "5.740892970016647"^^xsd:decimal
3805
+ # ?fac = "0.16666666666666666"^^xsd:decimal
3805
3806
  # ?h = 0.5
3806
- # ?sumWDS = 32.02201866506704
3807
- # ?sumWXY = 34.445357820099886
3808
- # ?sumWY = 24.499921497274507
3809
- # ?sumWY2 = 75.19637321836198
3810
- # ?xbar = 1.405937477143825
3811
- # ?ybar = 1.5346247788330099
3807
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3808
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3809
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3810
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3811
+ # ?xbar = "1.405937477143825"^^xsd:decimal
3812
+ # ?ybar = "1.5346247788330099"^^xsd:decimal
3812
3813
  # Therefore the derived triple above is entailed by the rules and facts.
3813
3814
  # ----------------------------------------------------------------------
3814
3815
 
3815
- _:sk_5 :xbar 1.405937477143825 .
3816
+ _:sk_5 :xbar "1.405937477143825"^^xsd:decimal .
3816
3817
 
3817
3818
  # ----------------------------------------------------------------------
3818
3819
  # Proof for derived triple:
3819
- # _:sk_5 :ybar 1.5346247788330099 .
3820
+ # _:sk_5 :ybar "1.5346247788330099"^^xsd:decimal .
3820
3821
  # It holds because the following instance of the rule body is provable:
3821
3822
  # :Simpson1 :h 0.5 .
3822
- # :Simpson1 :sumWY 24.499921497274507 .
3823
- # :Simpson1 :sumWXY 34.445357820099886 .
3824
- # :Simpson1 :sumWY2 75.19637321836198 .
3825
- # :Simpson1 :sumWDS 32.02201866506704 .
3826
- # (0.5 3.0) math:quotient 0.16666666666666666 .
3827
- # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3828
- # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3829
- # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3830
- # (0.5 12.532728869726997) math:product 6.266364434863498 .
3831
- # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3832
- # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3833
- # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3823
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3824
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3825
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3826
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3827
+ # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3828
+ # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3829
+ # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3830
+ # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3831
+ # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3832
+ # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3833
+ # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3834
+ # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3834
3835
  # via the schematic forward rule:
3835
3836
  # {
3836
3837
  # :Simpson1 :h ?h .
@@ -3856,41 +3857,41 @@ _:sk_5 :xbar 1.405937477143825 .
3856
3857
  # :Simpson1 :centroid _:b7 .
3857
3858
  # } .
3858
3859
  # with substitution (on rule variables):
3859
- # ?A = 4.083320249545751
3860
- # ?Iy2 = 12.532728869726997
3861
- # ?L = 5.337003110844506
3862
- # ?Mx = 6.266364434863498
3863
- # ?My = 5.740892970016647
3864
- # ?fac = 0.16666666666666666
3860
+ # ?A = "4.083320249545751"^^xsd:decimal
3861
+ # ?Iy2 = "12.532728869726997"^^xsd:decimal
3862
+ # ?L = "5.337003110844506"^^xsd:decimal
3863
+ # ?Mx = "6.266364434863498"^^xsd:decimal
3864
+ # ?My = "5.740892970016647"^^xsd:decimal
3865
+ # ?fac = "0.16666666666666666"^^xsd:decimal
3865
3866
  # ?h = 0.5
3866
- # ?sumWDS = 32.02201866506704
3867
- # ?sumWXY = 34.445357820099886
3868
- # ?sumWY = 24.499921497274507
3869
- # ?sumWY2 = 75.19637321836198
3870
- # ?xbar = 1.405937477143825
3871
- # ?ybar = 1.5346247788330099
3867
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3868
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3869
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3870
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3871
+ # ?xbar = "1.405937477143825"^^xsd:decimal
3872
+ # ?ybar = "1.5346247788330099"^^xsd:decimal
3872
3873
  # Therefore the derived triple above is entailed by the rules and facts.
3873
3874
  # ----------------------------------------------------------------------
3874
3875
 
3875
- _:sk_5 :ybar 1.5346247788330099 .
3876
+ _:sk_5 :ybar "1.5346247788330099"^^xsd:decimal .
3876
3877
 
3877
3878
  # ----------------------------------------------------------------------
3878
3879
  # Proof for derived triple:
3879
3880
  # :Simpson1 :centroid _:sk_5 .
3880
3881
  # It holds because the following instance of the rule body is provable:
3881
3882
  # :Simpson1 :h 0.5 .
3882
- # :Simpson1 :sumWY 24.499921497274507 .
3883
- # :Simpson1 :sumWXY 34.445357820099886 .
3884
- # :Simpson1 :sumWY2 75.19637321836198 .
3885
- # :Simpson1 :sumWDS 32.02201866506704 .
3886
- # (0.5 3.0) math:quotient 0.16666666666666666 .
3887
- # (0.16666666666666666 24.499921497274507) math:product 4.083320249545751 .
3888
- # (0.16666666666666666 34.445357820099886) math:product 5.740892970016647 .
3889
- # (0.16666666666666666 75.19637321836198) math:product 12.532728869726997 .
3890
- # (0.5 12.532728869726997) math:product 6.266364434863498 .
3891
- # (0.16666666666666666 32.02201866506704) math:product 5.337003110844506 .
3892
- # (5.740892970016647 4.083320249545751) math:quotient 1.405937477143825 .
3893
- # (6.266364434863498 4.083320249545751) math:quotient 1.5346247788330099 .
3883
+ # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3884
+ # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3885
+ # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3886
+ # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3887
+ # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3888
+ # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3889
+ # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3890
+ # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3891
+ # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3892
+ # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3893
+ # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3894
+ # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3894
3895
  # via the schematic forward rule:
3895
3896
  # {
3896
3897
  # :Simpson1 :h ?h .
@@ -3916,19 +3917,19 @@ _:sk_5 :ybar 1.5346247788330099 .
3916
3917
  # :Simpson1 :centroid _:b7 .
3917
3918
  # } .
3918
3919
  # with substitution (on rule variables):
3919
- # ?A = 4.083320249545751
3920
- # ?Iy2 = 12.532728869726997
3921
- # ?L = 5.337003110844506
3922
- # ?Mx = 6.266364434863498
3923
- # ?My = 5.740892970016647
3924
- # ?fac = 0.16666666666666666
3920
+ # ?A = "4.083320249545751"^^xsd:decimal
3921
+ # ?Iy2 = "12.532728869726997"^^xsd:decimal
3922
+ # ?L = "5.337003110844506"^^xsd:decimal
3923
+ # ?Mx = "6.266364434863498"^^xsd:decimal
3924
+ # ?My = "5.740892970016647"^^xsd:decimal
3925
+ # ?fac = "0.16666666666666666"^^xsd:decimal
3925
3926
  # ?h = 0.5
3926
- # ?sumWDS = 32.02201866506704
3927
- # ?sumWXY = 34.445357820099886
3928
- # ?sumWY = 24.499921497274507
3929
- # ?sumWY2 = 75.19637321836198
3930
- # ?xbar = 1.405937477143825
3931
- # ?ybar = 1.5346247788330099
3927
+ # ?sumWDS = "32.02201866506704"^^xsd:decimal
3928
+ # ?sumWXY = "34.445357820099886"^^xsd:decimal
3929
+ # ?sumWY = "24.499921497274507"^^xsd:decimal
3930
+ # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3931
+ # ?xbar = "1.405937477143825"^^xsd:decimal
3932
+ # ?ybar = "1.5346247788330099"^^xsd:decimal
3932
3933
  # Therefore the derived triple above is entailed by the rules and facts.
3933
3934
  # ----------------------------------------------------------------------
3934
3935