eyeling 1.6.4 → 1.6.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/cobalt-kepler-kitchen.n3 +3544 -3543
- package/examples/output/complex.n3 +25 -24
- package/examples/output/control-system.n3 +21 -20
- package/examples/output/cranberry-calculus.n3 +509 -508
- package/examples/output/drone-corridor-planner.n3 +154 -153
- package/examples/output/ev-roundtrip-planner.n3 +81 -80
- package/examples/output/gps.n3 +15 -14
- package/examples/output/jade-eigen-loom.n3 +2033 -2032
- package/examples/output/light-eaters.n3 +51 -50
- package/examples/output/lldm.n3 +244 -243
- package/examples/output/math-builtins-tests.n3 +40 -40
- package/examples/output/oslo-steps-library-scholarly.n3 +197 -196
- package/examples/output/oslo-steps-workflow-composition.n3 +29 -28
- package/examples/output/pi.n3 +5 -4
- package/examples/output/ruby-runge-workshop.n3 +106 -105
- package/examples/output/saffron-slopeworks.n3 +455 -454
- package/examples/output/spectral-week.n3 +81 -80
- package/examples/output/topaz-markov-mill.n3 +1618 -1617
- package/examples/output/ultramarine-simpson-forge.n3 +1213 -1212
- package/eyeling.js +315 -134
- package/package.json +1 -1
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
@prefix : <http://example.org/topaz-markov#> .
|
|
2
|
+
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
2
3
|
|
|
3
4
|
# ----------------------------------------------------------------------
|
|
4
5
|
# Proof for derived triple:
|
|
@@ -8,9 +9,9 @@
|
|
|
8
9
|
# _:b3 :pA 0.25 .
|
|
9
10
|
# _:b3 :pB 0.25 .
|
|
10
11
|
# _:b3 :pC 0.50 .
|
|
11
|
-
# (0.25 0.25) math:sum 0.5 .
|
|
12
|
-
# (0.5 0.50) math:sum 1 .
|
|
13
|
-
# 1 math:equalTo 1.0 .
|
|
12
|
+
# (0.25 0.25) math:sum "0.5"^^xsd:decimal .
|
|
13
|
+
# ("0.5"^^xsd:decimal 0.50) math:sum "1"^^xsd:decimal .
|
|
14
|
+
# "1"^^xsd:decimal math:equalTo 1.0 .
|
|
14
15
|
# via the schematic forward rule:
|
|
15
16
|
# {
|
|
16
17
|
# :MC1 :row ?r .
|
|
@@ -25,11 +26,11 @@
|
|
|
25
26
|
# } .
|
|
26
27
|
# with substitution (on rule variables):
|
|
27
28
|
# ?a = 0.25
|
|
28
|
-
# ?ab = 0.5
|
|
29
|
+
# ?ab = "0.5"^^xsd:decimal
|
|
29
30
|
# ?b = 0.25
|
|
30
31
|
# ?c = 0.50
|
|
31
32
|
# ?r = _:b3
|
|
32
|
-
# ?sum = 1
|
|
33
|
+
# ?sum = "1"^^xsd:decimal
|
|
33
34
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
34
35
|
# ----------------------------------------------------------------------
|
|
35
36
|
|
|
@@ -43,9 +44,9 @@
|
|
|
43
44
|
# _:b2 :pA 0.10 .
|
|
44
45
|
# _:b2 :pB 0.70 .
|
|
45
46
|
# _:b2 :pC 0.20 .
|
|
46
|
-
# (0.10 0.70) math:sum 0.7999999999999999 .
|
|
47
|
-
# (0.7999999999999999 0.20) math:sum 1 .
|
|
48
|
-
# 1 math:equalTo 1.0 .
|
|
47
|
+
# (0.10 0.70) math:sum "0.7999999999999999"^^xsd:decimal .
|
|
48
|
+
# ("0.7999999999999999"^^xsd:decimal 0.20) math:sum "1"^^xsd:decimal .
|
|
49
|
+
# "1"^^xsd:decimal math:equalTo 1.0 .
|
|
49
50
|
# via the schematic forward rule:
|
|
50
51
|
# {
|
|
51
52
|
# :MC1 :row ?r .
|
|
@@ -60,11 +61,11 @@
|
|
|
60
61
|
# } .
|
|
61
62
|
# with substitution (on rule variables):
|
|
62
63
|
# ?a = 0.10
|
|
63
|
-
# ?ab = 0.7999999999999999
|
|
64
|
+
# ?ab = "0.7999999999999999"^^xsd:decimal
|
|
64
65
|
# ?b = 0.70
|
|
65
66
|
# ?c = 0.20
|
|
66
67
|
# ?r = _:b2
|
|
67
|
-
# ?sum = 1
|
|
68
|
+
# ?sum = "1"^^xsd:decimal
|
|
68
69
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
69
70
|
# ----------------------------------------------------------------------
|
|
70
71
|
|
|
@@ -78,9 +79,9 @@
|
|
|
78
79
|
# _:b1 :pA 0.80 .
|
|
79
80
|
# _:b1 :pB 0.15 .
|
|
80
81
|
# _:b1 :pC 0.05 .
|
|
81
|
-
# (0.80 0.15) math:sum 0.9500000000000001 .
|
|
82
|
-
# (0.9500000000000001 0.05) math:sum 1 .
|
|
83
|
-
# 1 math:equalTo 1.0 .
|
|
82
|
+
# (0.80 0.15) math:sum "0.9500000000000001"^^xsd:decimal .
|
|
83
|
+
# ("0.9500000000000001"^^xsd:decimal 0.05) math:sum "1"^^xsd:decimal .
|
|
84
|
+
# "1"^^xsd:decimal math:equalTo 1.0 .
|
|
84
85
|
# via the schematic forward rule:
|
|
85
86
|
# {
|
|
86
87
|
# :MC1 :row ?r .
|
|
@@ -95,11 +96,11 @@
|
|
|
95
96
|
# } .
|
|
96
97
|
# with substitution (on rule variables):
|
|
97
98
|
# ?a = 0.80
|
|
98
|
-
# ?ab = 0.9500000000000001
|
|
99
|
+
# ?ab = "0.9500000000000001"^^xsd:decimal
|
|
99
100
|
# ?b = 0.15
|
|
100
101
|
# ?c = 0.05
|
|
101
102
|
# ?r = _:b1
|
|
102
|
-
# ?sum = 1
|
|
103
|
+
# ?sum = "1"^^xsd:decimal
|
|
103
104
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
104
105
|
# ----------------------------------------------------------------------
|
|
105
106
|
|
|
@@ -107,7 +108,7 @@
|
|
|
107
108
|
|
|
108
109
|
# ----------------------------------------------------------------------
|
|
109
110
|
# Proof for derived triple:
|
|
110
|
-
# _:sk_0 :pA 0.535 .
|
|
111
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
111
112
|
# It holds because the following instance of the rule body is provable:
|
|
112
113
|
# :MC1 :pi0 _:b4 .
|
|
113
114
|
# :MC1 :row _:b1 .
|
|
@@ -128,21 +129,21 @@
|
|
|
128
129
|
# _:b4 :pA 0.60 .
|
|
129
130
|
# _:b4 :pB 0.30 .
|
|
130
131
|
# _:b4 :pC 0.10 .
|
|
131
|
-
# (0.60 0.80) math:product 0.48 .
|
|
132
|
-
# (0.30 0.10) math:product 0.03 .
|
|
133
|
-
# (0.10 0.25) math:product 0.025 .
|
|
134
|
-
# (0.48 0.03) math:sum 0.51 .
|
|
135
|
-
# (0.51 0.025) math:sum 0.535 .
|
|
136
|
-
# (0.60 0.15) math:product 0.09 .
|
|
137
|
-
# (0.30 0.70) math:product 0.21 .
|
|
138
|
-
# (0.10 0.25) math:product 0.025 .
|
|
139
|
-
# (0.09 0.21) math:sum 0.3 .
|
|
140
|
-
# (0.3 0.025) math:sum 0.325 .
|
|
141
|
-
# (0.60 0.05) math:product 0.03 .
|
|
142
|
-
# (0.30 0.20) math:product 0.06 .
|
|
143
|
-
# (0.10 0.50) math:product 0.05 .
|
|
144
|
-
# (0.03 0.06) math:sum 0.09 .
|
|
145
|
-
# (0.09 0.05) math:sum 0.14 .
|
|
132
|
+
# (0.60 0.80) math:product "0.48"^^xsd:decimal .
|
|
133
|
+
# (0.30 0.10) math:product "0.03"^^xsd:decimal .
|
|
134
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
135
|
+
# ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
|
|
136
|
+
# ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
|
|
137
|
+
# (0.60 0.15) math:product "0.09"^^xsd:decimal .
|
|
138
|
+
# (0.30 0.70) math:product "0.21"^^xsd:decimal .
|
|
139
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
140
|
+
# ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
141
|
+
# ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
|
|
142
|
+
# (0.60 0.05) math:product "0.03"^^xsd:decimal .
|
|
143
|
+
# (0.30 0.20) math:product "0.06"^^xsd:decimal .
|
|
144
|
+
# (0.10 0.50) math:product "0.05"^^xsd:decimal .
|
|
145
|
+
# ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
|
|
146
|
+
# ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
|
|
146
147
|
# via the schematic forward rule:
|
|
147
148
|
# {
|
|
148
149
|
# :MC1 :pi0 ?pi .
|
|
@@ -199,32 +200,32 @@
|
|
|
199
200
|
# ?pB = 0.30
|
|
200
201
|
# ?pC = 0.10
|
|
201
202
|
# ?pi = _:b4
|
|
202
|
-
# ?pi1A = 0.535
|
|
203
|
-
# ?pi1B = 0.325
|
|
204
|
-
# ?pi1C = 0.14
|
|
203
|
+
# ?pi1A = "0.535"^^xsd:decimal
|
|
204
|
+
# ?pi1B = "0.325"^^xsd:decimal
|
|
205
|
+
# ?pi1C = "0.14"^^xsd:decimal
|
|
205
206
|
# ?rA = _:b1
|
|
206
207
|
# ?rB = _:b2
|
|
207
208
|
# ?rC = _:b3
|
|
208
|
-
# ?s1 = 0.51
|
|
209
|
-
# ?s2 = 0.3
|
|
210
|
-
# ?s3 = 0.09
|
|
211
|
-
# ?tAA = 0.48
|
|
212
|
-
# ?tAB = 0.09
|
|
213
|
-
# ?tAC = 0.03
|
|
214
|
-
# ?tBA = 0.03
|
|
215
|
-
# ?tBB = 0.21
|
|
216
|
-
# ?tBC = 0.06
|
|
217
|
-
# ?tCA = 0.025
|
|
218
|
-
# ?tCB = 0.025
|
|
219
|
-
# ?tCC = 0.05
|
|
209
|
+
# ?s1 = "0.51"^^xsd:decimal
|
|
210
|
+
# ?s2 = "0.3"^^xsd:decimal
|
|
211
|
+
# ?s3 = "0.09"^^xsd:decimal
|
|
212
|
+
# ?tAA = "0.48"^^xsd:decimal
|
|
213
|
+
# ?tAB = "0.09"^^xsd:decimal
|
|
214
|
+
# ?tAC = "0.03"^^xsd:decimal
|
|
215
|
+
# ?tBA = "0.03"^^xsd:decimal
|
|
216
|
+
# ?tBB = "0.21"^^xsd:decimal
|
|
217
|
+
# ?tBC = "0.06"^^xsd:decimal
|
|
218
|
+
# ?tCA = "0.025"^^xsd:decimal
|
|
219
|
+
# ?tCB = "0.025"^^xsd:decimal
|
|
220
|
+
# ?tCC = "0.05"^^xsd:decimal
|
|
220
221
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
221
222
|
# ----------------------------------------------------------------------
|
|
222
223
|
|
|
223
|
-
_:sk_0 :pA 0.535 .
|
|
224
|
+
_:sk_0 :pA "0.535"^^xsd:decimal .
|
|
224
225
|
|
|
225
226
|
# ----------------------------------------------------------------------
|
|
226
227
|
# Proof for derived triple:
|
|
227
|
-
# _:sk_0 :pB 0.325 .
|
|
228
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
228
229
|
# It holds because the following instance of the rule body is provable:
|
|
229
230
|
# :MC1 :pi0 _:b4 .
|
|
230
231
|
# :MC1 :row _:b1 .
|
|
@@ -245,21 +246,21 @@ _:sk_0 :pA 0.535 .
|
|
|
245
246
|
# _:b4 :pA 0.60 .
|
|
246
247
|
# _:b4 :pB 0.30 .
|
|
247
248
|
# _:b4 :pC 0.10 .
|
|
248
|
-
# (0.60 0.80) math:product 0.48 .
|
|
249
|
-
# (0.30 0.10) math:product 0.03 .
|
|
250
|
-
# (0.10 0.25) math:product 0.025 .
|
|
251
|
-
# (0.48 0.03) math:sum 0.51 .
|
|
252
|
-
# (0.51 0.025) math:sum 0.535 .
|
|
253
|
-
# (0.60 0.15) math:product 0.09 .
|
|
254
|
-
# (0.30 0.70) math:product 0.21 .
|
|
255
|
-
# (0.10 0.25) math:product 0.025 .
|
|
256
|
-
# (0.09 0.21) math:sum 0.3 .
|
|
257
|
-
# (0.3 0.025) math:sum 0.325 .
|
|
258
|
-
# (0.60 0.05) math:product 0.03 .
|
|
259
|
-
# (0.30 0.20) math:product 0.06 .
|
|
260
|
-
# (0.10 0.50) math:product 0.05 .
|
|
261
|
-
# (0.03 0.06) math:sum 0.09 .
|
|
262
|
-
# (0.09 0.05) math:sum 0.14 .
|
|
249
|
+
# (0.60 0.80) math:product "0.48"^^xsd:decimal .
|
|
250
|
+
# (0.30 0.10) math:product "0.03"^^xsd:decimal .
|
|
251
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
252
|
+
# ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
|
|
253
|
+
# ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
|
|
254
|
+
# (0.60 0.15) math:product "0.09"^^xsd:decimal .
|
|
255
|
+
# (0.30 0.70) math:product "0.21"^^xsd:decimal .
|
|
256
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
257
|
+
# ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
258
|
+
# ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
|
|
259
|
+
# (0.60 0.05) math:product "0.03"^^xsd:decimal .
|
|
260
|
+
# (0.30 0.20) math:product "0.06"^^xsd:decimal .
|
|
261
|
+
# (0.10 0.50) math:product "0.05"^^xsd:decimal .
|
|
262
|
+
# ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
|
|
263
|
+
# ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
|
|
263
264
|
# via the schematic forward rule:
|
|
264
265
|
# {
|
|
265
266
|
# :MC1 :pi0 ?pi .
|
|
@@ -316,32 +317,32 @@ _:sk_0 :pA 0.535 .
|
|
|
316
317
|
# ?pB = 0.30
|
|
317
318
|
# ?pC = 0.10
|
|
318
319
|
# ?pi = _:b4
|
|
319
|
-
# ?pi1A = 0.535
|
|
320
|
-
# ?pi1B = 0.325
|
|
321
|
-
# ?pi1C = 0.14
|
|
320
|
+
# ?pi1A = "0.535"^^xsd:decimal
|
|
321
|
+
# ?pi1B = "0.325"^^xsd:decimal
|
|
322
|
+
# ?pi1C = "0.14"^^xsd:decimal
|
|
322
323
|
# ?rA = _:b1
|
|
323
324
|
# ?rB = _:b2
|
|
324
325
|
# ?rC = _:b3
|
|
325
|
-
# ?s1 = 0.51
|
|
326
|
-
# ?s2 = 0.3
|
|
327
|
-
# ?s3 = 0.09
|
|
328
|
-
# ?tAA = 0.48
|
|
329
|
-
# ?tAB = 0.09
|
|
330
|
-
# ?tAC = 0.03
|
|
331
|
-
# ?tBA = 0.03
|
|
332
|
-
# ?tBB = 0.21
|
|
333
|
-
# ?tBC = 0.06
|
|
334
|
-
# ?tCA = 0.025
|
|
335
|
-
# ?tCB = 0.025
|
|
336
|
-
# ?tCC = 0.05
|
|
326
|
+
# ?s1 = "0.51"^^xsd:decimal
|
|
327
|
+
# ?s2 = "0.3"^^xsd:decimal
|
|
328
|
+
# ?s3 = "0.09"^^xsd:decimal
|
|
329
|
+
# ?tAA = "0.48"^^xsd:decimal
|
|
330
|
+
# ?tAB = "0.09"^^xsd:decimal
|
|
331
|
+
# ?tAC = "0.03"^^xsd:decimal
|
|
332
|
+
# ?tBA = "0.03"^^xsd:decimal
|
|
333
|
+
# ?tBB = "0.21"^^xsd:decimal
|
|
334
|
+
# ?tBC = "0.06"^^xsd:decimal
|
|
335
|
+
# ?tCA = "0.025"^^xsd:decimal
|
|
336
|
+
# ?tCB = "0.025"^^xsd:decimal
|
|
337
|
+
# ?tCC = "0.05"^^xsd:decimal
|
|
337
338
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
338
339
|
# ----------------------------------------------------------------------
|
|
339
340
|
|
|
340
|
-
_:sk_0 :pB 0.325 .
|
|
341
|
+
_:sk_0 :pB "0.325"^^xsd:decimal .
|
|
341
342
|
|
|
342
343
|
# ----------------------------------------------------------------------
|
|
343
344
|
# Proof for derived triple:
|
|
344
|
-
# _:sk_0 :pC 0.14 .
|
|
345
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
345
346
|
# It holds because the following instance of the rule body is provable:
|
|
346
347
|
# :MC1 :pi0 _:b4 .
|
|
347
348
|
# :MC1 :row _:b1 .
|
|
@@ -362,21 +363,21 @@ _:sk_0 :pB 0.325 .
|
|
|
362
363
|
# _:b4 :pA 0.60 .
|
|
363
364
|
# _:b4 :pB 0.30 .
|
|
364
365
|
# _:b4 :pC 0.10 .
|
|
365
|
-
# (0.60 0.80) math:product 0.48 .
|
|
366
|
-
# (0.30 0.10) math:product 0.03 .
|
|
367
|
-
# (0.10 0.25) math:product 0.025 .
|
|
368
|
-
# (0.48 0.03) math:sum 0.51 .
|
|
369
|
-
# (0.51 0.025) math:sum 0.535 .
|
|
370
|
-
# (0.60 0.15) math:product 0.09 .
|
|
371
|
-
# (0.30 0.70) math:product 0.21 .
|
|
372
|
-
# (0.10 0.25) math:product 0.025 .
|
|
373
|
-
# (0.09 0.21) math:sum 0.3 .
|
|
374
|
-
# (0.3 0.025) math:sum 0.325 .
|
|
375
|
-
# (0.60 0.05) math:product 0.03 .
|
|
376
|
-
# (0.30 0.20) math:product 0.06 .
|
|
377
|
-
# (0.10 0.50) math:product 0.05 .
|
|
378
|
-
# (0.03 0.06) math:sum 0.09 .
|
|
379
|
-
# (0.09 0.05) math:sum 0.14 .
|
|
366
|
+
# (0.60 0.80) math:product "0.48"^^xsd:decimal .
|
|
367
|
+
# (0.30 0.10) math:product "0.03"^^xsd:decimal .
|
|
368
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
369
|
+
# ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
|
|
370
|
+
# ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
|
|
371
|
+
# (0.60 0.15) math:product "0.09"^^xsd:decimal .
|
|
372
|
+
# (0.30 0.70) math:product "0.21"^^xsd:decimal .
|
|
373
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
374
|
+
# ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
375
|
+
# ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
|
|
376
|
+
# (0.60 0.05) math:product "0.03"^^xsd:decimal .
|
|
377
|
+
# (0.30 0.20) math:product "0.06"^^xsd:decimal .
|
|
378
|
+
# (0.10 0.50) math:product "0.05"^^xsd:decimal .
|
|
379
|
+
# ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
|
|
380
|
+
# ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
|
|
380
381
|
# via the schematic forward rule:
|
|
381
382
|
# {
|
|
382
383
|
# :MC1 :pi0 ?pi .
|
|
@@ -433,28 +434,28 @@ _:sk_0 :pB 0.325 .
|
|
|
433
434
|
# ?pB = 0.30
|
|
434
435
|
# ?pC = 0.10
|
|
435
436
|
# ?pi = _:b4
|
|
436
|
-
# ?pi1A = 0.535
|
|
437
|
-
# ?pi1B = 0.325
|
|
438
|
-
# ?pi1C = 0.14
|
|
437
|
+
# ?pi1A = "0.535"^^xsd:decimal
|
|
438
|
+
# ?pi1B = "0.325"^^xsd:decimal
|
|
439
|
+
# ?pi1C = "0.14"^^xsd:decimal
|
|
439
440
|
# ?rA = _:b1
|
|
440
441
|
# ?rB = _:b2
|
|
441
442
|
# ?rC = _:b3
|
|
442
|
-
# ?s1 = 0.51
|
|
443
|
-
# ?s2 = 0.3
|
|
444
|
-
# ?s3 = 0.09
|
|
445
|
-
# ?tAA = 0.48
|
|
446
|
-
# ?tAB = 0.09
|
|
447
|
-
# ?tAC = 0.03
|
|
448
|
-
# ?tBA = 0.03
|
|
449
|
-
# ?tBB = 0.21
|
|
450
|
-
# ?tBC = 0.06
|
|
451
|
-
# ?tCA = 0.025
|
|
452
|
-
# ?tCB = 0.025
|
|
453
|
-
# ?tCC = 0.05
|
|
443
|
+
# ?s1 = "0.51"^^xsd:decimal
|
|
444
|
+
# ?s2 = "0.3"^^xsd:decimal
|
|
445
|
+
# ?s3 = "0.09"^^xsd:decimal
|
|
446
|
+
# ?tAA = "0.48"^^xsd:decimal
|
|
447
|
+
# ?tAB = "0.09"^^xsd:decimal
|
|
448
|
+
# ?tAC = "0.03"^^xsd:decimal
|
|
449
|
+
# ?tBA = "0.03"^^xsd:decimal
|
|
450
|
+
# ?tBB = "0.21"^^xsd:decimal
|
|
451
|
+
# ?tBC = "0.06"^^xsd:decimal
|
|
452
|
+
# ?tCA = "0.025"^^xsd:decimal
|
|
453
|
+
# ?tCB = "0.025"^^xsd:decimal
|
|
454
|
+
# ?tCC = "0.05"^^xsd:decimal
|
|
454
455
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
455
456
|
# ----------------------------------------------------------------------
|
|
456
457
|
|
|
457
|
-
_:sk_0 :pC 0.14 .
|
|
458
|
+
_:sk_0 :pC "0.14"^^xsd:decimal .
|
|
458
459
|
|
|
459
460
|
# ----------------------------------------------------------------------
|
|
460
461
|
# Proof for derived triple:
|
|
@@ -479,21 +480,21 @@ _:sk_0 :pC 0.14 .
|
|
|
479
480
|
# _:b4 :pA 0.60 .
|
|
480
481
|
# _:b4 :pB 0.30 .
|
|
481
482
|
# _:b4 :pC 0.10 .
|
|
482
|
-
# (0.60 0.80) math:product 0.48 .
|
|
483
|
-
# (0.30 0.10) math:product 0.03 .
|
|
484
|
-
# (0.10 0.25) math:product 0.025 .
|
|
485
|
-
# (0.48 0.03) math:sum 0.51 .
|
|
486
|
-
# (0.51 0.025) math:sum 0.535 .
|
|
487
|
-
# (0.60 0.15) math:product 0.09 .
|
|
488
|
-
# (0.30 0.70) math:product 0.21 .
|
|
489
|
-
# (0.10 0.25) math:product 0.025 .
|
|
490
|
-
# (0.09 0.21) math:sum 0.3 .
|
|
491
|
-
# (0.3 0.025) math:sum 0.325 .
|
|
492
|
-
# (0.60 0.05) math:product 0.03 .
|
|
493
|
-
# (0.30 0.20) math:product 0.06 .
|
|
494
|
-
# (0.10 0.50) math:product 0.05 .
|
|
495
|
-
# (0.03 0.06) math:sum 0.09 .
|
|
496
|
-
# (0.09 0.05) math:sum 0.14 .
|
|
483
|
+
# (0.60 0.80) math:product "0.48"^^xsd:decimal .
|
|
484
|
+
# (0.30 0.10) math:product "0.03"^^xsd:decimal .
|
|
485
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
486
|
+
# ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
|
|
487
|
+
# ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
|
|
488
|
+
# (0.60 0.15) math:product "0.09"^^xsd:decimal .
|
|
489
|
+
# (0.30 0.70) math:product "0.21"^^xsd:decimal .
|
|
490
|
+
# (0.10 0.25) math:product "0.025"^^xsd:decimal .
|
|
491
|
+
# ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
492
|
+
# ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
|
|
493
|
+
# (0.60 0.05) math:product "0.03"^^xsd:decimal .
|
|
494
|
+
# (0.30 0.20) math:product "0.06"^^xsd:decimal .
|
|
495
|
+
# (0.10 0.50) math:product "0.05"^^xsd:decimal .
|
|
496
|
+
# ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
|
|
497
|
+
# ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
|
|
497
498
|
# via the schematic forward rule:
|
|
498
499
|
# {
|
|
499
500
|
# :MC1 :pi0 ?pi .
|
|
@@ -550,24 +551,24 @@ _:sk_0 :pC 0.14 .
|
|
|
550
551
|
# ?pB = 0.30
|
|
551
552
|
# ?pC = 0.10
|
|
552
553
|
# ?pi = _:b4
|
|
553
|
-
# ?pi1A = 0.535
|
|
554
|
-
# ?pi1B = 0.325
|
|
555
|
-
# ?pi1C = 0.14
|
|
554
|
+
# ?pi1A = "0.535"^^xsd:decimal
|
|
555
|
+
# ?pi1B = "0.325"^^xsd:decimal
|
|
556
|
+
# ?pi1C = "0.14"^^xsd:decimal
|
|
556
557
|
# ?rA = _:b1
|
|
557
558
|
# ?rB = _:b2
|
|
558
559
|
# ?rC = _:b3
|
|
559
|
-
# ?s1 = 0.51
|
|
560
|
-
# ?s2 = 0.3
|
|
561
|
-
# ?s3 = 0.09
|
|
562
|
-
# ?tAA = 0.48
|
|
563
|
-
# ?tAB = 0.09
|
|
564
|
-
# ?tAC = 0.03
|
|
565
|
-
# ?tBA = 0.03
|
|
566
|
-
# ?tBB = 0.21
|
|
567
|
-
# ?tBC = 0.06
|
|
568
|
-
# ?tCA = 0.025
|
|
569
|
-
# ?tCB = 0.025
|
|
570
|
-
# ?tCC = 0.05
|
|
560
|
+
# ?s1 = "0.51"^^xsd:decimal
|
|
561
|
+
# ?s2 = "0.3"^^xsd:decimal
|
|
562
|
+
# ?s3 = "0.09"^^xsd:decimal
|
|
563
|
+
# ?tAA = "0.48"^^xsd:decimal
|
|
564
|
+
# ?tAB = "0.09"^^xsd:decimal
|
|
565
|
+
# ?tAC = "0.03"^^xsd:decimal
|
|
566
|
+
# ?tBA = "0.03"^^xsd:decimal
|
|
567
|
+
# ?tBB = "0.21"^^xsd:decimal
|
|
568
|
+
# ?tBC = "0.06"^^xsd:decimal
|
|
569
|
+
# ?tCA = "0.025"^^xsd:decimal
|
|
570
|
+
# ?tCB = "0.025"^^xsd:decimal
|
|
571
|
+
# ?tCC = "0.05"^^xsd:decimal
|
|
571
572
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
572
573
|
# ----------------------------------------------------------------------
|
|
573
574
|
|
|
@@ -575,7 +576,7 @@ _:sk_0 :pC 0.14 .
|
|
|
575
576
|
|
|
576
577
|
# ----------------------------------------------------------------------
|
|
577
578
|
# Proof for derived triple:
|
|
578
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
579
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
579
580
|
# It holds because the following instance of the rule body is provable:
|
|
580
581
|
# :MC1 :pi1 _:sk_0 .
|
|
581
582
|
# :MC1 :row _:b1 .
|
|
@@ -593,24 +594,24 @@ _:sk_0 :pC 0.14 .
|
|
|
593
594
|
# _:b3 :pA 0.25 .
|
|
594
595
|
# _:b3 :pB 0.25 .
|
|
595
596
|
# _:b3 :pC 0.50 .
|
|
596
|
-
# _:sk_0 :pA 0.535 .
|
|
597
|
-
# _:sk_0 :pB 0.325 .
|
|
598
|
-
# _:sk_0 :pC 0.14 .
|
|
599
|
-
# (0.535 0.80) math:product 0.42800000000000005 .
|
|
600
|
-
# (0.325 0.10) math:product 0.0325 .
|
|
601
|
-
# (0.14 0.25) math:product 0.035 .
|
|
602
|
-
# (0.42800000000000005 0.0325) math:sum 0.4605 .
|
|
603
|
-
# (0.4605 0.035) math:sum 0.49550000000000005 .
|
|
604
|
-
# (0.535 0.15) math:product 0.08025 .
|
|
605
|
-
# (0.325 0.70) math:product 0.22749999999999998 .
|
|
606
|
-
# (0.14 0.25) math:product 0.035 .
|
|
607
|
-
# (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
|
|
608
|
-
# (0.30774999999999997 0.035) math:sum 0.34275 .
|
|
609
|
-
# (0.535 0.05) math:product 0.026750000000000003 .
|
|
610
|
-
# (0.325 0.20) math:product 0.065 .
|
|
611
|
-
# (0.14 0.50) math:product 0.07 .
|
|
612
|
-
# (0.026750000000000003 0.065) math:sum 0.09175 .
|
|
613
|
-
# (0.09175 0.07) math:sum 0.16175 .
|
|
597
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
598
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
599
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
600
|
+
# ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
|
|
601
|
+
# ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
|
|
602
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
603
|
+
# ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
|
|
604
|
+
# ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
|
|
605
|
+
# ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
|
|
606
|
+
# ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
|
|
607
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
608
|
+
# ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
|
|
609
|
+
# ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
|
|
610
|
+
# ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
|
|
611
|
+
# ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
|
|
612
|
+
# ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
|
|
613
|
+
# ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
|
|
614
|
+
# ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
|
|
614
615
|
# via the schematic forward rule:
|
|
615
616
|
# {
|
|
616
617
|
# :MC1 :pi1 ?pi .
|
|
@@ -663,36 +664,36 @@ _:sk_0 :pC 0.14 .
|
|
|
663
664
|
# ?CA = 0.25
|
|
664
665
|
# ?CB = 0.25
|
|
665
666
|
# ?CC = 0.50
|
|
666
|
-
# ?pA = 0.535
|
|
667
|
-
# ?pB = 0.325
|
|
668
|
-
# ?pC = 0.14
|
|
667
|
+
# ?pA = "0.535"^^xsd:decimal
|
|
668
|
+
# ?pB = "0.325"^^xsd:decimal
|
|
669
|
+
# ?pC = "0.14"^^xsd:decimal
|
|
669
670
|
# ?pi = _:sk_0
|
|
670
|
-
# ?pi2A = 0.49550000000000005
|
|
671
|
-
# ?pi2B = 0.34275
|
|
672
|
-
# ?pi2C = 0.16175
|
|
671
|
+
# ?pi2A = "0.49550000000000005"^^xsd:decimal
|
|
672
|
+
# ?pi2B = "0.34275"^^xsd:decimal
|
|
673
|
+
# ?pi2C = "0.16175"^^xsd:decimal
|
|
673
674
|
# ?rA = _:b1
|
|
674
675
|
# ?rB = _:b2
|
|
675
676
|
# ?rC = _:b3
|
|
676
|
-
# ?s1 = 0.4605
|
|
677
|
-
# ?s2 = 0.30774999999999997
|
|
678
|
-
# ?s3 = 0.09175
|
|
679
|
-
# ?tAA = 0.42800000000000005
|
|
680
|
-
# ?tAB = 0.08025
|
|
681
|
-
# ?tAC = 0.026750000000000003
|
|
682
|
-
# ?tBA = 0.0325
|
|
683
|
-
# ?tBB = 0.22749999999999998
|
|
684
|
-
# ?tBC = 0.065
|
|
685
|
-
# ?tCA = 0.035
|
|
686
|
-
# ?tCB = 0.035
|
|
687
|
-
# ?tCC = 0.07
|
|
677
|
+
# ?s1 = "0.4605"^^xsd:decimal
|
|
678
|
+
# ?s2 = "0.30774999999999997"^^xsd:decimal
|
|
679
|
+
# ?s3 = "0.09175"^^xsd:decimal
|
|
680
|
+
# ?tAA = "0.42800000000000005"^^xsd:decimal
|
|
681
|
+
# ?tAB = "0.08025"^^xsd:decimal
|
|
682
|
+
# ?tAC = "0.026750000000000003"^^xsd:decimal
|
|
683
|
+
# ?tBA = "0.0325"^^xsd:decimal
|
|
684
|
+
# ?tBB = "0.22749999999999998"^^xsd:decimal
|
|
685
|
+
# ?tBC = "0.065"^^xsd:decimal
|
|
686
|
+
# ?tCA = "0.035"^^xsd:decimal
|
|
687
|
+
# ?tCB = "0.035"^^xsd:decimal
|
|
688
|
+
# ?tCC = "0.07"^^xsd:decimal
|
|
688
689
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
689
690
|
# ----------------------------------------------------------------------
|
|
690
691
|
|
|
691
|
-
_:sk_1 :pA 0.49550000000000005 .
|
|
692
|
+
_:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
692
693
|
|
|
693
694
|
# ----------------------------------------------------------------------
|
|
694
695
|
# Proof for derived triple:
|
|
695
|
-
# _:sk_1 :pB 0.34275 .
|
|
696
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
696
697
|
# It holds because the following instance of the rule body is provable:
|
|
697
698
|
# :MC1 :pi1 _:sk_0 .
|
|
698
699
|
# :MC1 :row _:b1 .
|
|
@@ -710,24 +711,24 @@ _:sk_1 :pA 0.49550000000000005 .
|
|
|
710
711
|
# _:b3 :pA 0.25 .
|
|
711
712
|
# _:b3 :pB 0.25 .
|
|
712
713
|
# _:b3 :pC 0.50 .
|
|
713
|
-
# _:sk_0 :pA 0.535 .
|
|
714
|
-
# _:sk_0 :pB 0.325 .
|
|
715
|
-
# _:sk_0 :pC 0.14 .
|
|
716
|
-
# (0.535 0.80) math:product 0.42800000000000005 .
|
|
717
|
-
# (0.325 0.10) math:product 0.0325 .
|
|
718
|
-
# (0.14 0.25) math:product 0.035 .
|
|
719
|
-
# (0.42800000000000005 0.0325) math:sum 0.4605 .
|
|
720
|
-
# (0.4605 0.035) math:sum 0.49550000000000005 .
|
|
721
|
-
# (0.535 0.15) math:product 0.08025 .
|
|
722
|
-
# (0.325 0.70) math:product 0.22749999999999998 .
|
|
723
|
-
# (0.14 0.25) math:product 0.035 .
|
|
724
|
-
# (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
|
|
725
|
-
# (0.30774999999999997 0.035) math:sum 0.34275 .
|
|
726
|
-
# (0.535 0.05) math:product 0.026750000000000003 .
|
|
727
|
-
# (0.325 0.20) math:product 0.065 .
|
|
728
|
-
# (0.14 0.50) math:product 0.07 .
|
|
729
|
-
# (0.026750000000000003 0.065) math:sum 0.09175 .
|
|
730
|
-
# (0.09175 0.07) math:sum 0.16175 .
|
|
714
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
715
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
716
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
717
|
+
# ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
|
|
718
|
+
# ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
|
|
719
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
720
|
+
# ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
|
|
721
|
+
# ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
|
|
722
|
+
# ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
|
|
723
|
+
# ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
|
|
724
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
725
|
+
# ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
|
|
726
|
+
# ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
|
|
727
|
+
# ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
|
|
728
|
+
# ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
|
|
729
|
+
# ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
|
|
730
|
+
# ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
|
|
731
|
+
# ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
|
|
731
732
|
# via the schematic forward rule:
|
|
732
733
|
# {
|
|
733
734
|
# :MC1 :pi1 ?pi .
|
|
@@ -780,36 +781,36 @@ _:sk_1 :pA 0.49550000000000005 .
|
|
|
780
781
|
# ?CA = 0.25
|
|
781
782
|
# ?CB = 0.25
|
|
782
783
|
# ?CC = 0.50
|
|
783
|
-
# ?pA = 0.535
|
|
784
|
-
# ?pB = 0.325
|
|
785
|
-
# ?pC = 0.14
|
|
784
|
+
# ?pA = "0.535"^^xsd:decimal
|
|
785
|
+
# ?pB = "0.325"^^xsd:decimal
|
|
786
|
+
# ?pC = "0.14"^^xsd:decimal
|
|
786
787
|
# ?pi = _:sk_0
|
|
787
|
-
# ?pi2A = 0.49550000000000005
|
|
788
|
-
# ?pi2B = 0.34275
|
|
789
|
-
# ?pi2C = 0.16175
|
|
788
|
+
# ?pi2A = "0.49550000000000005"^^xsd:decimal
|
|
789
|
+
# ?pi2B = "0.34275"^^xsd:decimal
|
|
790
|
+
# ?pi2C = "0.16175"^^xsd:decimal
|
|
790
791
|
# ?rA = _:b1
|
|
791
792
|
# ?rB = _:b2
|
|
792
793
|
# ?rC = _:b3
|
|
793
|
-
# ?s1 = 0.4605
|
|
794
|
-
# ?s2 = 0.30774999999999997
|
|
795
|
-
# ?s3 = 0.09175
|
|
796
|
-
# ?tAA = 0.42800000000000005
|
|
797
|
-
# ?tAB = 0.08025
|
|
798
|
-
# ?tAC = 0.026750000000000003
|
|
799
|
-
# ?tBA = 0.0325
|
|
800
|
-
# ?tBB = 0.22749999999999998
|
|
801
|
-
# ?tBC = 0.065
|
|
802
|
-
# ?tCA = 0.035
|
|
803
|
-
# ?tCB = 0.035
|
|
804
|
-
# ?tCC = 0.07
|
|
794
|
+
# ?s1 = "0.4605"^^xsd:decimal
|
|
795
|
+
# ?s2 = "0.30774999999999997"^^xsd:decimal
|
|
796
|
+
# ?s3 = "0.09175"^^xsd:decimal
|
|
797
|
+
# ?tAA = "0.42800000000000005"^^xsd:decimal
|
|
798
|
+
# ?tAB = "0.08025"^^xsd:decimal
|
|
799
|
+
# ?tAC = "0.026750000000000003"^^xsd:decimal
|
|
800
|
+
# ?tBA = "0.0325"^^xsd:decimal
|
|
801
|
+
# ?tBB = "0.22749999999999998"^^xsd:decimal
|
|
802
|
+
# ?tBC = "0.065"^^xsd:decimal
|
|
803
|
+
# ?tCA = "0.035"^^xsd:decimal
|
|
804
|
+
# ?tCB = "0.035"^^xsd:decimal
|
|
805
|
+
# ?tCC = "0.07"^^xsd:decimal
|
|
805
806
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
806
807
|
# ----------------------------------------------------------------------
|
|
807
808
|
|
|
808
|
-
_:sk_1 :pB 0.34275 .
|
|
809
|
+
_:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
809
810
|
|
|
810
811
|
# ----------------------------------------------------------------------
|
|
811
812
|
# Proof for derived triple:
|
|
812
|
-
# _:sk_1 :pC 0.16175 .
|
|
813
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
813
814
|
# It holds because the following instance of the rule body is provable:
|
|
814
815
|
# :MC1 :pi1 _:sk_0 .
|
|
815
816
|
# :MC1 :row _:b1 .
|
|
@@ -827,24 +828,24 @@ _:sk_1 :pB 0.34275 .
|
|
|
827
828
|
# _:b3 :pA 0.25 .
|
|
828
829
|
# _:b3 :pB 0.25 .
|
|
829
830
|
# _:b3 :pC 0.50 .
|
|
830
|
-
# _:sk_0 :pA 0.535 .
|
|
831
|
-
# _:sk_0 :pB 0.325 .
|
|
832
|
-
# _:sk_0 :pC 0.14 .
|
|
833
|
-
# (0.535 0.80) math:product 0.42800000000000005 .
|
|
834
|
-
# (0.325 0.10) math:product 0.0325 .
|
|
835
|
-
# (0.14 0.25) math:product 0.035 .
|
|
836
|
-
# (0.42800000000000005 0.0325) math:sum 0.4605 .
|
|
837
|
-
# (0.4605 0.035) math:sum 0.49550000000000005 .
|
|
838
|
-
# (0.535 0.15) math:product 0.08025 .
|
|
839
|
-
# (0.325 0.70) math:product 0.22749999999999998 .
|
|
840
|
-
# (0.14 0.25) math:product 0.035 .
|
|
841
|
-
# (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
|
|
842
|
-
# (0.30774999999999997 0.035) math:sum 0.34275 .
|
|
843
|
-
# (0.535 0.05) math:product 0.026750000000000003 .
|
|
844
|
-
# (0.325 0.20) math:product 0.065 .
|
|
845
|
-
# (0.14 0.50) math:product 0.07 .
|
|
846
|
-
# (0.026750000000000003 0.065) math:sum 0.09175 .
|
|
847
|
-
# (0.09175 0.07) math:sum 0.16175 .
|
|
831
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
832
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
833
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
834
|
+
# ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
|
|
835
|
+
# ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
|
|
836
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
837
|
+
# ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
|
|
838
|
+
# ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
|
|
839
|
+
# ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
|
|
840
|
+
# ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
|
|
841
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
842
|
+
# ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
|
|
843
|
+
# ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
|
|
844
|
+
# ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
|
|
845
|
+
# ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
|
|
846
|
+
# ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
|
|
847
|
+
# ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
|
|
848
|
+
# ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
|
|
848
849
|
# via the schematic forward rule:
|
|
849
850
|
# {
|
|
850
851
|
# :MC1 :pi1 ?pi .
|
|
@@ -897,32 +898,32 @@ _:sk_1 :pB 0.34275 .
|
|
|
897
898
|
# ?CA = 0.25
|
|
898
899
|
# ?CB = 0.25
|
|
899
900
|
# ?CC = 0.50
|
|
900
|
-
# ?pA = 0.535
|
|
901
|
-
# ?pB = 0.325
|
|
902
|
-
# ?pC = 0.14
|
|
901
|
+
# ?pA = "0.535"^^xsd:decimal
|
|
902
|
+
# ?pB = "0.325"^^xsd:decimal
|
|
903
|
+
# ?pC = "0.14"^^xsd:decimal
|
|
903
904
|
# ?pi = _:sk_0
|
|
904
|
-
# ?pi2A = 0.49550000000000005
|
|
905
|
-
# ?pi2B = 0.34275
|
|
906
|
-
# ?pi2C = 0.16175
|
|
905
|
+
# ?pi2A = "0.49550000000000005"^^xsd:decimal
|
|
906
|
+
# ?pi2B = "0.34275"^^xsd:decimal
|
|
907
|
+
# ?pi2C = "0.16175"^^xsd:decimal
|
|
907
908
|
# ?rA = _:b1
|
|
908
909
|
# ?rB = _:b2
|
|
909
910
|
# ?rC = _:b3
|
|
910
|
-
# ?s1 = 0.4605
|
|
911
|
-
# ?s2 = 0.30774999999999997
|
|
912
|
-
# ?s3 = 0.09175
|
|
913
|
-
# ?tAA = 0.42800000000000005
|
|
914
|
-
# ?tAB = 0.08025
|
|
915
|
-
# ?tAC = 0.026750000000000003
|
|
916
|
-
# ?tBA = 0.0325
|
|
917
|
-
# ?tBB = 0.22749999999999998
|
|
918
|
-
# ?tBC = 0.065
|
|
919
|
-
# ?tCA = 0.035
|
|
920
|
-
# ?tCB = 0.035
|
|
921
|
-
# ?tCC = 0.07
|
|
911
|
+
# ?s1 = "0.4605"^^xsd:decimal
|
|
912
|
+
# ?s2 = "0.30774999999999997"^^xsd:decimal
|
|
913
|
+
# ?s3 = "0.09175"^^xsd:decimal
|
|
914
|
+
# ?tAA = "0.42800000000000005"^^xsd:decimal
|
|
915
|
+
# ?tAB = "0.08025"^^xsd:decimal
|
|
916
|
+
# ?tAC = "0.026750000000000003"^^xsd:decimal
|
|
917
|
+
# ?tBA = "0.0325"^^xsd:decimal
|
|
918
|
+
# ?tBB = "0.22749999999999998"^^xsd:decimal
|
|
919
|
+
# ?tBC = "0.065"^^xsd:decimal
|
|
920
|
+
# ?tCA = "0.035"^^xsd:decimal
|
|
921
|
+
# ?tCB = "0.035"^^xsd:decimal
|
|
922
|
+
# ?tCC = "0.07"^^xsd:decimal
|
|
922
923
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
923
924
|
# ----------------------------------------------------------------------
|
|
924
925
|
|
|
925
|
-
_:sk_1 :pC 0.16175 .
|
|
926
|
+
_:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
926
927
|
|
|
927
928
|
# ----------------------------------------------------------------------
|
|
928
929
|
# Proof for derived triple:
|
|
@@ -944,24 +945,24 @@ _:sk_1 :pC 0.16175 .
|
|
|
944
945
|
# _:b3 :pA 0.25 .
|
|
945
946
|
# _:b3 :pB 0.25 .
|
|
946
947
|
# _:b3 :pC 0.50 .
|
|
947
|
-
# _:sk_0 :pA 0.535 .
|
|
948
|
-
# _:sk_0 :pB 0.325 .
|
|
949
|
-
# _:sk_0 :pC 0.14 .
|
|
950
|
-
# (0.535 0.80) math:product 0.42800000000000005 .
|
|
951
|
-
# (0.325 0.10) math:product 0.0325 .
|
|
952
|
-
# (0.14 0.25) math:product 0.035 .
|
|
953
|
-
# (0.42800000000000005 0.0325) math:sum 0.4605 .
|
|
954
|
-
# (0.4605 0.035) math:sum 0.49550000000000005 .
|
|
955
|
-
# (0.535 0.15) math:product 0.08025 .
|
|
956
|
-
# (0.325 0.70) math:product 0.22749999999999998 .
|
|
957
|
-
# (0.14 0.25) math:product 0.035 .
|
|
958
|
-
# (0.08025 0.22749999999999998) math:sum 0.30774999999999997 .
|
|
959
|
-
# (0.30774999999999997 0.035) math:sum 0.34275 .
|
|
960
|
-
# (0.535 0.05) math:product 0.026750000000000003 .
|
|
961
|
-
# (0.325 0.20) math:product 0.065 .
|
|
962
|
-
# (0.14 0.50) math:product 0.07 .
|
|
963
|
-
# (0.026750000000000003 0.065) math:sum 0.09175 .
|
|
964
|
-
# (0.09175 0.07) math:sum 0.16175 .
|
|
948
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
949
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
950
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
951
|
+
# ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
|
|
952
|
+
# ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
|
|
953
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
954
|
+
# ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
|
|
955
|
+
# ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
|
|
956
|
+
# ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
|
|
957
|
+
# ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
|
|
958
|
+
# ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
|
|
959
|
+
# ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
|
|
960
|
+
# ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
|
|
961
|
+
# ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
|
|
962
|
+
# ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
|
|
963
|
+
# ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
|
|
964
|
+
# ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
|
|
965
|
+
# ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
|
|
965
966
|
# via the schematic forward rule:
|
|
966
967
|
# {
|
|
967
968
|
# :MC1 :pi1 ?pi .
|
|
@@ -1014,28 +1015,28 @@ _:sk_1 :pC 0.16175 .
|
|
|
1014
1015
|
# ?CA = 0.25
|
|
1015
1016
|
# ?CB = 0.25
|
|
1016
1017
|
# ?CC = 0.50
|
|
1017
|
-
# ?pA = 0.535
|
|
1018
|
-
# ?pB = 0.325
|
|
1019
|
-
# ?pC = 0.14
|
|
1018
|
+
# ?pA = "0.535"^^xsd:decimal
|
|
1019
|
+
# ?pB = "0.325"^^xsd:decimal
|
|
1020
|
+
# ?pC = "0.14"^^xsd:decimal
|
|
1020
1021
|
# ?pi = _:sk_0
|
|
1021
|
-
# ?pi2A = 0.49550000000000005
|
|
1022
|
-
# ?pi2B = 0.34275
|
|
1023
|
-
# ?pi2C = 0.16175
|
|
1022
|
+
# ?pi2A = "0.49550000000000005"^^xsd:decimal
|
|
1023
|
+
# ?pi2B = "0.34275"^^xsd:decimal
|
|
1024
|
+
# ?pi2C = "0.16175"^^xsd:decimal
|
|
1024
1025
|
# ?rA = _:b1
|
|
1025
1026
|
# ?rB = _:b2
|
|
1026
1027
|
# ?rC = _:b3
|
|
1027
|
-
# ?s1 = 0.4605
|
|
1028
|
-
# ?s2 = 0.30774999999999997
|
|
1029
|
-
# ?s3 = 0.09175
|
|
1030
|
-
# ?tAA = 0.42800000000000005
|
|
1031
|
-
# ?tAB = 0.08025
|
|
1032
|
-
# ?tAC = 0.026750000000000003
|
|
1033
|
-
# ?tBA = 0.0325
|
|
1034
|
-
# ?tBB = 0.22749999999999998
|
|
1035
|
-
# ?tBC = 0.065
|
|
1036
|
-
# ?tCA = 0.035
|
|
1037
|
-
# ?tCB = 0.035
|
|
1038
|
-
# ?tCC = 0.07
|
|
1028
|
+
# ?s1 = "0.4605"^^xsd:decimal
|
|
1029
|
+
# ?s2 = "0.30774999999999997"^^xsd:decimal
|
|
1030
|
+
# ?s3 = "0.09175"^^xsd:decimal
|
|
1031
|
+
# ?tAA = "0.42800000000000005"^^xsd:decimal
|
|
1032
|
+
# ?tAB = "0.08025"^^xsd:decimal
|
|
1033
|
+
# ?tAC = "0.026750000000000003"^^xsd:decimal
|
|
1034
|
+
# ?tBA = "0.0325"^^xsd:decimal
|
|
1035
|
+
# ?tBB = "0.22749999999999998"^^xsd:decimal
|
|
1036
|
+
# ?tBC = "0.065"^^xsd:decimal
|
|
1037
|
+
# ?tCA = "0.035"^^xsd:decimal
|
|
1038
|
+
# ?tCB = "0.035"^^xsd:decimal
|
|
1039
|
+
# ?tCC = "0.07"^^xsd:decimal
|
|
1039
1040
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1040
1041
|
# ----------------------------------------------------------------------
|
|
1041
1042
|
|
|
@@ -1043,7 +1044,7 @@ _:sk_1 :pC 0.16175 .
|
|
|
1043
1044
|
|
|
1044
1045
|
# ----------------------------------------------------------------------
|
|
1045
1046
|
# Proof for derived triple:
|
|
1046
|
-
# _:sk_2 :pA 0.4711125000000001 .
|
|
1047
|
+
# _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
|
|
1047
1048
|
# It holds because the following instance of the rule body is provable:
|
|
1048
1049
|
# :MC1 :pi2 _:sk_1 .
|
|
1049
1050
|
# :MC1 :row _:b1 .
|
|
@@ -1061,24 +1062,24 @@ _:sk_1 :pC 0.16175 .
|
|
|
1061
1062
|
# _:b3 :pA 0.25 .
|
|
1062
1063
|
# _:b3 :pB 0.25 .
|
|
1063
1064
|
# _:b3 :pC 0.50 .
|
|
1064
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
1065
|
-
# _:sk_1 :pB 0.34275 .
|
|
1066
|
-
# _:sk_1 :pC 0.16175 .
|
|
1067
|
-
# (0.49550000000000005 0.80) math:product 0.3964000000000001 .
|
|
1068
|
-
# (0.34275 0.10) math:product 0.034275 .
|
|
1069
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1070
|
-
# (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
|
|
1071
|
-
# (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
|
|
1072
|
-
# (0.49550000000000005 0.15) math:product 0.074325 .
|
|
1073
|
-
# (0.34275 0.70) math:product 0.23992499999999997 .
|
|
1074
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1075
|
-
# (0.074325 0.23992499999999997) math:sum 0.31425 .
|
|
1076
|
-
# (0.31425 0.0404375) math:sum 0.3546875 .
|
|
1077
|
-
# (0.49550000000000005 0.05) math:product 0.024775000000000005 .
|
|
1078
|
-
# (0.34275 0.20) math:product 0.06855 .
|
|
1079
|
-
# (0.16175 0.50) math:product 0.080875 .
|
|
1080
|
-
# (0.024775000000000005 0.06855) math:sum 0.093325 .
|
|
1081
|
-
# (0.093325 0.080875) math:sum 0.17420000000000002 .
|
|
1065
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
1066
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
1067
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
1068
|
+
# ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
|
|
1069
|
+
# ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
|
|
1070
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1071
|
+
# ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
|
|
1072
|
+
# ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
|
|
1073
|
+
# ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
|
|
1074
|
+
# ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
|
|
1075
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1076
|
+
# ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
|
|
1077
|
+
# ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
|
|
1078
|
+
# ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
|
|
1079
|
+
# ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
|
|
1080
|
+
# ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
|
|
1081
|
+
# ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
|
|
1082
|
+
# ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
|
|
1082
1083
|
# via the schematic forward rule:
|
|
1083
1084
|
# {
|
|
1084
1085
|
# :MC1 :pi2 ?pi .
|
|
@@ -1131,36 +1132,36 @@ _:sk_1 :pC 0.16175 .
|
|
|
1131
1132
|
# ?CA = 0.25
|
|
1132
1133
|
# ?CB = 0.25
|
|
1133
1134
|
# ?CC = 0.50
|
|
1134
|
-
# ?pA = 0.49550000000000005
|
|
1135
|
-
# ?pB = 0.34275
|
|
1136
|
-
# ?pC = 0.16175
|
|
1135
|
+
# ?pA = "0.49550000000000005"^^xsd:decimal
|
|
1136
|
+
# ?pB = "0.34275"^^xsd:decimal
|
|
1137
|
+
# ?pC = "0.16175"^^xsd:decimal
|
|
1137
1138
|
# ?pi = _:sk_1
|
|
1138
|
-
# ?pi3A = 0.4711125000000001
|
|
1139
|
-
# ?pi3B = 0.3546875
|
|
1140
|
-
# ?pi3C = 0.17420000000000002
|
|
1139
|
+
# ?pi3A = "0.4711125000000001"^^xsd:decimal
|
|
1140
|
+
# ?pi3B = "0.3546875"^^xsd:decimal
|
|
1141
|
+
# ?pi3C = "0.17420000000000002"^^xsd:decimal
|
|
1141
1142
|
# ?rA = _:b1
|
|
1142
1143
|
# ?rB = _:b2
|
|
1143
1144
|
# ?rC = _:b3
|
|
1144
|
-
# ?s1 = 0.4306750000000001
|
|
1145
|
-
# ?s2 = 0.31425
|
|
1146
|
-
# ?s3 = 0.093325
|
|
1147
|
-
# ?tAA = 0.3964000000000001
|
|
1148
|
-
# ?tAB = 0.074325
|
|
1149
|
-
# ?tAC = 0.024775000000000005
|
|
1150
|
-
# ?tBA = 0.034275
|
|
1151
|
-
# ?tBB = 0.23992499999999997
|
|
1152
|
-
# ?tBC = 0.06855
|
|
1153
|
-
# ?tCA = 0.0404375
|
|
1154
|
-
# ?tCB = 0.0404375
|
|
1155
|
-
# ?tCC = 0.080875
|
|
1145
|
+
# ?s1 = "0.4306750000000001"^^xsd:decimal
|
|
1146
|
+
# ?s2 = "0.31425"^^xsd:decimal
|
|
1147
|
+
# ?s3 = "0.093325"^^xsd:decimal
|
|
1148
|
+
# ?tAA = "0.3964000000000001"^^xsd:decimal
|
|
1149
|
+
# ?tAB = "0.074325"^^xsd:decimal
|
|
1150
|
+
# ?tAC = "0.024775000000000005"^^xsd:decimal
|
|
1151
|
+
# ?tBA = "0.034275"^^xsd:decimal
|
|
1152
|
+
# ?tBB = "0.23992499999999997"^^xsd:decimal
|
|
1153
|
+
# ?tBC = "0.06855"^^xsd:decimal
|
|
1154
|
+
# ?tCA = "0.0404375"^^xsd:decimal
|
|
1155
|
+
# ?tCB = "0.0404375"^^xsd:decimal
|
|
1156
|
+
# ?tCC = "0.080875"^^xsd:decimal
|
|
1156
1157
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1157
1158
|
# ----------------------------------------------------------------------
|
|
1158
1159
|
|
|
1159
|
-
_:sk_2 :pA 0.4711125000000001 .
|
|
1160
|
+
_:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
|
|
1160
1161
|
|
|
1161
1162
|
# ----------------------------------------------------------------------
|
|
1162
1163
|
# Proof for derived triple:
|
|
1163
|
-
# _:sk_2 :pB 0.3546875 .
|
|
1164
|
+
# _:sk_2 :pB "0.3546875"^^xsd:decimal .
|
|
1164
1165
|
# It holds because the following instance of the rule body is provable:
|
|
1165
1166
|
# :MC1 :pi2 _:sk_1 .
|
|
1166
1167
|
# :MC1 :row _:b1 .
|
|
@@ -1178,24 +1179,24 @@ _:sk_2 :pA 0.4711125000000001 .
|
|
|
1178
1179
|
# _:b3 :pA 0.25 .
|
|
1179
1180
|
# _:b3 :pB 0.25 .
|
|
1180
1181
|
# _:b3 :pC 0.50 .
|
|
1181
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
1182
|
-
# _:sk_1 :pB 0.34275 .
|
|
1183
|
-
# _:sk_1 :pC 0.16175 .
|
|
1184
|
-
# (0.49550000000000005 0.80) math:product 0.3964000000000001 .
|
|
1185
|
-
# (0.34275 0.10) math:product 0.034275 .
|
|
1186
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1187
|
-
# (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
|
|
1188
|
-
# (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
|
|
1189
|
-
# (0.49550000000000005 0.15) math:product 0.074325 .
|
|
1190
|
-
# (0.34275 0.70) math:product 0.23992499999999997 .
|
|
1191
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1192
|
-
# (0.074325 0.23992499999999997) math:sum 0.31425 .
|
|
1193
|
-
# (0.31425 0.0404375) math:sum 0.3546875 .
|
|
1194
|
-
# (0.49550000000000005 0.05) math:product 0.024775000000000005 .
|
|
1195
|
-
# (0.34275 0.20) math:product 0.06855 .
|
|
1196
|
-
# (0.16175 0.50) math:product 0.080875 .
|
|
1197
|
-
# (0.024775000000000005 0.06855) math:sum 0.093325 .
|
|
1198
|
-
# (0.093325 0.080875) math:sum 0.17420000000000002 .
|
|
1182
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
1183
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
1184
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
1185
|
+
# ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
|
|
1186
|
+
# ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
|
|
1187
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1188
|
+
# ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
|
|
1189
|
+
# ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
|
|
1190
|
+
# ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
|
|
1191
|
+
# ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
|
|
1192
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1193
|
+
# ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
|
|
1194
|
+
# ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
|
|
1195
|
+
# ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
|
|
1196
|
+
# ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
|
|
1197
|
+
# ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
|
|
1198
|
+
# ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
|
|
1199
|
+
# ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
|
|
1199
1200
|
# via the schematic forward rule:
|
|
1200
1201
|
# {
|
|
1201
1202
|
# :MC1 :pi2 ?pi .
|
|
@@ -1248,36 +1249,36 @@ _:sk_2 :pA 0.4711125000000001 .
|
|
|
1248
1249
|
# ?CA = 0.25
|
|
1249
1250
|
# ?CB = 0.25
|
|
1250
1251
|
# ?CC = 0.50
|
|
1251
|
-
# ?pA = 0.49550000000000005
|
|
1252
|
-
# ?pB = 0.34275
|
|
1253
|
-
# ?pC = 0.16175
|
|
1252
|
+
# ?pA = "0.49550000000000005"^^xsd:decimal
|
|
1253
|
+
# ?pB = "0.34275"^^xsd:decimal
|
|
1254
|
+
# ?pC = "0.16175"^^xsd:decimal
|
|
1254
1255
|
# ?pi = _:sk_1
|
|
1255
|
-
# ?pi3A = 0.4711125000000001
|
|
1256
|
-
# ?pi3B = 0.3546875
|
|
1257
|
-
# ?pi3C = 0.17420000000000002
|
|
1256
|
+
# ?pi3A = "0.4711125000000001"^^xsd:decimal
|
|
1257
|
+
# ?pi3B = "0.3546875"^^xsd:decimal
|
|
1258
|
+
# ?pi3C = "0.17420000000000002"^^xsd:decimal
|
|
1258
1259
|
# ?rA = _:b1
|
|
1259
1260
|
# ?rB = _:b2
|
|
1260
1261
|
# ?rC = _:b3
|
|
1261
|
-
# ?s1 = 0.4306750000000001
|
|
1262
|
-
# ?s2 = 0.31425
|
|
1263
|
-
# ?s3 = 0.093325
|
|
1264
|
-
# ?tAA = 0.3964000000000001
|
|
1265
|
-
# ?tAB = 0.074325
|
|
1266
|
-
# ?tAC = 0.024775000000000005
|
|
1267
|
-
# ?tBA = 0.034275
|
|
1268
|
-
# ?tBB = 0.23992499999999997
|
|
1269
|
-
# ?tBC = 0.06855
|
|
1270
|
-
# ?tCA = 0.0404375
|
|
1271
|
-
# ?tCB = 0.0404375
|
|
1272
|
-
# ?tCC = 0.080875
|
|
1262
|
+
# ?s1 = "0.4306750000000001"^^xsd:decimal
|
|
1263
|
+
# ?s2 = "0.31425"^^xsd:decimal
|
|
1264
|
+
# ?s3 = "0.093325"^^xsd:decimal
|
|
1265
|
+
# ?tAA = "0.3964000000000001"^^xsd:decimal
|
|
1266
|
+
# ?tAB = "0.074325"^^xsd:decimal
|
|
1267
|
+
# ?tAC = "0.024775000000000005"^^xsd:decimal
|
|
1268
|
+
# ?tBA = "0.034275"^^xsd:decimal
|
|
1269
|
+
# ?tBB = "0.23992499999999997"^^xsd:decimal
|
|
1270
|
+
# ?tBC = "0.06855"^^xsd:decimal
|
|
1271
|
+
# ?tCA = "0.0404375"^^xsd:decimal
|
|
1272
|
+
# ?tCB = "0.0404375"^^xsd:decimal
|
|
1273
|
+
# ?tCC = "0.080875"^^xsd:decimal
|
|
1273
1274
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1274
1275
|
# ----------------------------------------------------------------------
|
|
1275
1276
|
|
|
1276
|
-
_:sk_2 :pB 0.3546875 .
|
|
1277
|
+
_:sk_2 :pB "0.3546875"^^xsd:decimal .
|
|
1277
1278
|
|
|
1278
1279
|
# ----------------------------------------------------------------------
|
|
1279
1280
|
# Proof for derived triple:
|
|
1280
|
-
# _:sk_2 :pC 0.17420000000000002 .
|
|
1281
|
+
# _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
|
|
1281
1282
|
# It holds because the following instance of the rule body is provable:
|
|
1282
1283
|
# :MC1 :pi2 _:sk_1 .
|
|
1283
1284
|
# :MC1 :row _:b1 .
|
|
@@ -1295,24 +1296,24 @@ _:sk_2 :pB 0.3546875 .
|
|
|
1295
1296
|
# _:b3 :pA 0.25 .
|
|
1296
1297
|
# _:b3 :pB 0.25 .
|
|
1297
1298
|
# _:b3 :pC 0.50 .
|
|
1298
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
1299
|
-
# _:sk_1 :pB 0.34275 .
|
|
1300
|
-
# _:sk_1 :pC 0.16175 .
|
|
1301
|
-
# (0.49550000000000005 0.80) math:product 0.3964000000000001 .
|
|
1302
|
-
# (0.34275 0.10) math:product 0.034275 .
|
|
1303
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1304
|
-
# (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
|
|
1305
|
-
# (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
|
|
1306
|
-
# (0.49550000000000005 0.15) math:product 0.074325 .
|
|
1307
|
-
# (0.34275 0.70) math:product 0.23992499999999997 .
|
|
1308
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1309
|
-
# (0.074325 0.23992499999999997) math:sum 0.31425 .
|
|
1310
|
-
# (0.31425 0.0404375) math:sum 0.3546875 .
|
|
1311
|
-
# (0.49550000000000005 0.05) math:product 0.024775000000000005 .
|
|
1312
|
-
# (0.34275 0.20) math:product 0.06855 .
|
|
1313
|
-
# (0.16175 0.50) math:product 0.080875 .
|
|
1314
|
-
# (0.024775000000000005 0.06855) math:sum 0.093325 .
|
|
1315
|
-
# (0.093325 0.080875) math:sum 0.17420000000000002 .
|
|
1299
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
1300
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
1301
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
1302
|
+
# ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
|
|
1303
|
+
# ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
|
|
1304
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1305
|
+
# ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
|
|
1306
|
+
# ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
|
|
1307
|
+
# ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
|
|
1308
|
+
# ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
|
|
1309
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1310
|
+
# ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
|
|
1311
|
+
# ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
|
|
1312
|
+
# ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
|
|
1313
|
+
# ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
|
|
1314
|
+
# ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
|
|
1315
|
+
# ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
|
|
1316
|
+
# ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
|
|
1316
1317
|
# via the schematic forward rule:
|
|
1317
1318
|
# {
|
|
1318
1319
|
# :MC1 :pi2 ?pi .
|
|
@@ -1365,32 +1366,32 @@ _:sk_2 :pB 0.3546875 .
|
|
|
1365
1366
|
# ?CA = 0.25
|
|
1366
1367
|
# ?CB = 0.25
|
|
1367
1368
|
# ?CC = 0.50
|
|
1368
|
-
# ?pA = 0.49550000000000005
|
|
1369
|
-
# ?pB = 0.34275
|
|
1370
|
-
# ?pC = 0.16175
|
|
1369
|
+
# ?pA = "0.49550000000000005"^^xsd:decimal
|
|
1370
|
+
# ?pB = "0.34275"^^xsd:decimal
|
|
1371
|
+
# ?pC = "0.16175"^^xsd:decimal
|
|
1371
1372
|
# ?pi = _:sk_1
|
|
1372
|
-
# ?pi3A = 0.4711125000000001
|
|
1373
|
-
# ?pi3B = 0.3546875
|
|
1374
|
-
# ?pi3C = 0.17420000000000002
|
|
1373
|
+
# ?pi3A = "0.4711125000000001"^^xsd:decimal
|
|
1374
|
+
# ?pi3B = "0.3546875"^^xsd:decimal
|
|
1375
|
+
# ?pi3C = "0.17420000000000002"^^xsd:decimal
|
|
1375
1376
|
# ?rA = _:b1
|
|
1376
1377
|
# ?rB = _:b2
|
|
1377
1378
|
# ?rC = _:b3
|
|
1378
|
-
# ?s1 = 0.4306750000000001
|
|
1379
|
-
# ?s2 = 0.31425
|
|
1380
|
-
# ?s3 = 0.093325
|
|
1381
|
-
# ?tAA = 0.3964000000000001
|
|
1382
|
-
# ?tAB = 0.074325
|
|
1383
|
-
# ?tAC = 0.024775000000000005
|
|
1384
|
-
# ?tBA = 0.034275
|
|
1385
|
-
# ?tBB = 0.23992499999999997
|
|
1386
|
-
# ?tBC = 0.06855
|
|
1387
|
-
# ?tCA = 0.0404375
|
|
1388
|
-
# ?tCB = 0.0404375
|
|
1389
|
-
# ?tCC = 0.080875
|
|
1379
|
+
# ?s1 = "0.4306750000000001"^^xsd:decimal
|
|
1380
|
+
# ?s2 = "0.31425"^^xsd:decimal
|
|
1381
|
+
# ?s3 = "0.093325"^^xsd:decimal
|
|
1382
|
+
# ?tAA = "0.3964000000000001"^^xsd:decimal
|
|
1383
|
+
# ?tAB = "0.074325"^^xsd:decimal
|
|
1384
|
+
# ?tAC = "0.024775000000000005"^^xsd:decimal
|
|
1385
|
+
# ?tBA = "0.034275"^^xsd:decimal
|
|
1386
|
+
# ?tBB = "0.23992499999999997"^^xsd:decimal
|
|
1387
|
+
# ?tBC = "0.06855"^^xsd:decimal
|
|
1388
|
+
# ?tCA = "0.0404375"^^xsd:decimal
|
|
1389
|
+
# ?tCB = "0.0404375"^^xsd:decimal
|
|
1390
|
+
# ?tCC = "0.080875"^^xsd:decimal
|
|
1390
1391
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1391
1392
|
# ----------------------------------------------------------------------
|
|
1392
1393
|
|
|
1393
|
-
_:sk_2 :pC 0.17420000000000002 .
|
|
1394
|
+
_:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
|
|
1394
1395
|
|
|
1395
1396
|
# ----------------------------------------------------------------------
|
|
1396
1397
|
# Proof for derived triple:
|
|
@@ -1412,24 +1413,24 @@ _:sk_2 :pC 0.17420000000000002 .
|
|
|
1412
1413
|
# _:b3 :pA 0.25 .
|
|
1413
1414
|
# _:b3 :pB 0.25 .
|
|
1414
1415
|
# _:b3 :pC 0.50 .
|
|
1415
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
1416
|
-
# _:sk_1 :pB 0.34275 .
|
|
1417
|
-
# _:sk_1 :pC 0.16175 .
|
|
1418
|
-
# (0.49550000000000005 0.80) math:product 0.3964000000000001 .
|
|
1419
|
-
# (0.34275 0.10) math:product 0.034275 .
|
|
1420
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1421
|
-
# (0.3964000000000001 0.034275) math:sum 0.4306750000000001 .
|
|
1422
|
-
# (0.4306750000000001 0.0404375) math:sum 0.4711125000000001 .
|
|
1423
|
-
# (0.49550000000000005 0.15) math:product 0.074325 .
|
|
1424
|
-
# (0.34275 0.70) math:product 0.23992499999999997 .
|
|
1425
|
-
# (0.16175 0.25) math:product 0.0404375 .
|
|
1426
|
-
# (0.074325 0.23992499999999997) math:sum 0.31425 .
|
|
1427
|
-
# (0.31425 0.0404375) math:sum 0.3546875 .
|
|
1428
|
-
# (0.49550000000000005 0.05) math:product 0.024775000000000005 .
|
|
1429
|
-
# (0.34275 0.20) math:product 0.06855 .
|
|
1430
|
-
# (0.16175 0.50) math:product 0.080875 .
|
|
1431
|
-
# (0.024775000000000005 0.06855) math:sum 0.093325 .
|
|
1432
|
-
# (0.093325 0.080875) math:sum 0.17420000000000002 .
|
|
1416
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
1417
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
1418
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
1419
|
+
# ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
|
|
1420
|
+
# ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
|
|
1421
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1422
|
+
# ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
|
|
1423
|
+
# ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
|
|
1424
|
+
# ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
|
|
1425
|
+
# ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
|
|
1426
|
+
# ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
|
|
1427
|
+
# ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
|
|
1428
|
+
# ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
|
|
1429
|
+
# ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
|
|
1430
|
+
# ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
|
|
1431
|
+
# ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
|
|
1432
|
+
# ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
|
|
1433
|
+
# ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
|
|
1433
1434
|
# via the schematic forward rule:
|
|
1434
1435
|
# {
|
|
1435
1436
|
# :MC1 :pi2 ?pi .
|
|
@@ -1482,28 +1483,28 @@ _:sk_2 :pC 0.17420000000000002 .
|
|
|
1482
1483
|
# ?CA = 0.25
|
|
1483
1484
|
# ?CB = 0.25
|
|
1484
1485
|
# ?CC = 0.50
|
|
1485
|
-
# ?pA = 0.49550000000000005
|
|
1486
|
-
# ?pB = 0.34275
|
|
1487
|
-
# ?pC = 0.16175
|
|
1486
|
+
# ?pA = "0.49550000000000005"^^xsd:decimal
|
|
1487
|
+
# ?pB = "0.34275"^^xsd:decimal
|
|
1488
|
+
# ?pC = "0.16175"^^xsd:decimal
|
|
1488
1489
|
# ?pi = _:sk_1
|
|
1489
|
-
# ?pi3A = 0.4711125000000001
|
|
1490
|
-
# ?pi3B = 0.3546875
|
|
1491
|
-
# ?pi3C = 0.17420000000000002
|
|
1490
|
+
# ?pi3A = "0.4711125000000001"^^xsd:decimal
|
|
1491
|
+
# ?pi3B = "0.3546875"^^xsd:decimal
|
|
1492
|
+
# ?pi3C = "0.17420000000000002"^^xsd:decimal
|
|
1492
1493
|
# ?rA = _:b1
|
|
1493
1494
|
# ?rB = _:b2
|
|
1494
1495
|
# ?rC = _:b3
|
|
1495
|
-
# ?s1 = 0.4306750000000001
|
|
1496
|
-
# ?s2 = 0.31425
|
|
1497
|
-
# ?s3 = 0.093325
|
|
1498
|
-
# ?tAA = 0.3964000000000001
|
|
1499
|
-
# ?tAB = 0.074325
|
|
1500
|
-
# ?tAC = 0.024775000000000005
|
|
1501
|
-
# ?tBA = 0.034275
|
|
1502
|
-
# ?tBB = 0.23992499999999997
|
|
1503
|
-
# ?tBC = 0.06855
|
|
1504
|
-
# ?tCA = 0.0404375
|
|
1505
|
-
# ?tCB = 0.0404375
|
|
1506
|
-
# ?tCC = 0.080875
|
|
1496
|
+
# ?s1 = "0.4306750000000001"^^xsd:decimal
|
|
1497
|
+
# ?s2 = "0.31425"^^xsd:decimal
|
|
1498
|
+
# ?s3 = "0.093325"^^xsd:decimal
|
|
1499
|
+
# ?tAA = "0.3964000000000001"^^xsd:decimal
|
|
1500
|
+
# ?tAB = "0.074325"^^xsd:decimal
|
|
1501
|
+
# ?tAC = "0.024775000000000005"^^xsd:decimal
|
|
1502
|
+
# ?tBA = "0.034275"^^xsd:decimal
|
|
1503
|
+
# ?tBB = "0.23992499999999997"^^xsd:decimal
|
|
1504
|
+
# ?tBC = "0.06855"^^xsd:decimal
|
|
1505
|
+
# ?tCA = "0.0404375"^^xsd:decimal
|
|
1506
|
+
# ?tCB = "0.0404375"^^xsd:decimal
|
|
1507
|
+
# ?tCC = "0.080875"^^xsd:decimal
|
|
1507
1508
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1508
1509
|
# ----------------------------------------------------------------------
|
|
1509
1510
|
|
|
@@ -1511,7 +1512,7 @@ _:sk_2 :pC 0.17420000000000002 .
|
|
|
1511
1512
|
|
|
1512
1513
|
# ----------------------------------------------------------------------
|
|
1513
1514
|
# Proof for derived triple:
|
|
1514
|
-
# _:sk_3 :pA 0.6675000000000001 .
|
|
1515
|
+
# _:sk_3 :pA "0.6675000000000001"^^xsd:decimal .
|
|
1515
1516
|
# It holds because the following instance of the rule body is provable:
|
|
1516
1517
|
# :MC1 :row _:b1 .
|
|
1517
1518
|
# _:b1 :from :A .
|
|
@@ -1528,21 +1529,21 @@ _:sk_2 :pC 0.17420000000000002 .
|
|
|
1528
1529
|
# _:b3 :pA 0.25 .
|
|
1529
1530
|
# _:b3 :pB 0.25 .
|
|
1530
1531
|
# _:b3 :pC 0.50 .
|
|
1531
|
-
# (0.80 0.80) math:product 0.6400000000000001 .
|
|
1532
|
-
# (0.15 0.10) math:product 0.015 .
|
|
1533
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1534
|
-
# (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
|
|
1535
|
-
# (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
|
|
1536
|
-
# (0.80 0.15) math:product 0.12 .
|
|
1537
|
-
# (0.15 0.70) math:product 0.105 .
|
|
1538
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1539
|
-
# (0.12 0.105) math:sum 0.22499999999999998 .
|
|
1540
|
-
# (0.22499999999999998 0.0125) math:sum 0.2375 .
|
|
1541
|
-
# (0.80 0.05) math:product 0.04000000000000001 .
|
|
1542
|
-
# (0.15 0.20) math:product 0.03 .
|
|
1543
|
-
# (0.05 0.50) math:product 0.025 .
|
|
1544
|
-
# (0.04000000000000001 0.03) math:sum 0.07 .
|
|
1545
|
-
# (0.07 0.025) math:sum 0.095 .
|
|
1532
|
+
# (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
|
|
1533
|
+
# (0.15 0.10) math:product "0.015"^^xsd:decimal .
|
|
1534
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1535
|
+
# ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
|
|
1536
|
+
# ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
|
|
1537
|
+
# (0.80 0.15) math:product "0.12"^^xsd:decimal .
|
|
1538
|
+
# (0.15 0.70) math:product "0.105"^^xsd:decimal .
|
|
1539
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1540
|
+
# ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
|
|
1541
|
+
# ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
|
|
1542
|
+
# (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
|
|
1543
|
+
# (0.15 0.20) math:product "0.03"^^xsd:decimal .
|
|
1544
|
+
# (0.05 0.50) math:product "0.025"^^xsd:decimal .
|
|
1545
|
+
# ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
|
|
1546
|
+
# ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
|
|
1546
1547
|
# via the schematic forward rule:
|
|
1547
1548
|
# {
|
|
1548
1549
|
# :MC1 :row ?rA .
|
|
@@ -1583,40 +1584,40 @@ _:sk_2 :pC 0.17420000000000002 .
|
|
|
1583
1584
|
# } .
|
|
1584
1585
|
# with substitution (on rule variables):
|
|
1585
1586
|
# ?AA = 0.80
|
|
1586
|
-
# ?AA_AA = 0.6400000000000001
|
|
1587
|
-
# ?AA_AB = 0.12
|
|
1588
|
-
# ?AA_AC = 0.04000000000000001
|
|
1587
|
+
# ?AA_AA = "0.6400000000000001"^^xsd:decimal
|
|
1588
|
+
# ?AA_AB = "0.12"^^xsd:decimal
|
|
1589
|
+
# ?AA_AC = "0.04000000000000001"^^xsd:decimal
|
|
1589
1590
|
# ?AB = 0.15
|
|
1590
|
-
# ?AB_BA = 0.015
|
|
1591
|
-
# ?AB_BB = 0.105
|
|
1592
|
-
# ?AB_BC = 0.03
|
|
1591
|
+
# ?AB_BA = "0.015"^^xsd:decimal
|
|
1592
|
+
# ?AB_BB = "0.105"^^xsd:decimal
|
|
1593
|
+
# ?AB_BC = "0.03"^^xsd:decimal
|
|
1593
1594
|
# ?AC = 0.05
|
|
1594
|
-
# ?AC_CA = 0.0125
|
|
1595
|
-
# ?AC_CB = 0.0125
|
|
1596
|
-
# ?AC_CC = 0.025
|
|
1595
|
+
# ?AC_CA = "0.0125"^^xsd:decimal
|
|
1596
|
+
# ?AC_CB = "0.0125"^^xsd:decimal
|
|
1597
|
+
# ?AC_CC = "0.025"^^xsd:decimal
|
|
1597
1598
|
# ?BA = 0.10
|
|
1598
1599
|
# ?BB = 0.70
|
|
1599
1600
|
# ?BC = 0.20
|
|
1600
1601
|
# ?CA = 0.25
|
|
1601
1602
|
# ?CB = 0.25
|
|
1602
1603
|
# ?CC = 0.50
|
|
1603
|
-
# ?P2AA = 0.6675000000000001
|
|
1604
|
-
# ?P2AB = 0.2375
|
|
1605
|
-
# ?P2AC = 0.095
|
|
1604
|
+
# ?P2AA = "0.6675000000000001"^^xsd:decimal
|
|
1605
|
+
# ?P2AB = "0.2375"^^xsd:decimal
|
|
1606
|
+
# ?P2AC = "0.095"^^xsd:decimal
|
|
1606
1607
|
# ?rA = _:b1
|
|
1607
1608
|
# ?rB = _:b2
|
|
1608
1609
|
# ?rC = _:b3
|
|
1609
|
-
# ?sAA = 0.6550000000000001
|
|
1610
|
-
# ?sAB = 0.22499999999999998
|
|
1611
|
-
# ?sAC = 0.07
|
|
1610
|
+
# ?sAA = "0.6550000000000001"^^xsd:decimal
|
|
1611
|
+
# ?sAB = "0.22499999999999998"^^xsd:decimal
|
|
1612
|
+
# ?sAC = "0.07"^^xsd:decimal
|
|
1612
1613
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1613
1614
|
# ----------------------------------------------------------------------
|
|
1614
1615
|
|
|
1615
|
-
_:sk_3 :pA 0.6675000000000001 .
|
|
1616
|
+
_:sk_3 :pA "0.6675000000000001"^^xsd:decimal .
|
|
1616
1617
|
|
|
1617
1618
|
# ----------------------------------------------------------------------
|
|
1618
1619
|
# Proof for derived triple:
|
|
1619
|
-
# _:sk_3 :pB 0.2375 .
|
|
1620
|
+
# _:sk_3 :pB "0.2375"^^xsd:decimal .
|
|
1620
1621
|
# It holds because the following instance of the rule body is provable:
|
|
1621
1622
|
# :MC1 :row _:b1 .
|
|
1622
1623
|
# _:b1 :from :A .
|
|
@@ -1633,21 +1634,21 @@ _:sk_3 :pA 0.6675000000000001 .
|
|
|
1633
1634
|
# _:b3 :pA 0.25 .
|
|
1634
1635
|
# _:b3 :pB 0.25 .
|
|
1635
1636
|
# _:b3 :pC 0.50 .
|
|
1636
|
-
# (0.80 0.80) math:product 0.6400000000000001 .
|
|
1637
|
-
# (0.15 0.10) math:product 0.015 .
|
|
1638
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1639
|
-
# (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
|
|
1640
|
-
# (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
|
|
1641
|
-
# (0.80 0.15) math:product 0.12 .
|
|
1642
|
-
# (0.15 0.70) math:product 0.105 .
|
|
1643
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1644
|
-
# (0.12 0.105) math:sum 0.22499999999999998 .
|
|
1645
|
-
# (0.22499999999999998 0.0125) math:sum 0.2375 .
|
|
1646
|
-
# (0.80 0.05) math:product 0.04000000000000001 .
|
|
1647
|
-
# (0.15 0.20) math:product 0.03 .
|
|
1648
|
-
# (0.05 0.50) math:product 0.025 .
|
|
1649
|
-
# (0.04000000000000001 0.03) math:sum 0.07 .
|
|
1650
|
-
# (0.07 0.025) math:sum 0.095 .
|
|
1637
|
+
# (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
|
|
1638
|
+
# (0.15 0.10) math:product "0.015"^^xsd:decimal .
|
|
1639
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1640
|
+
# ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
|
|
1641
|
+
# ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
|
|
1642
|
+
# (0.80 0.15) math:product "0.12"^^xsd:decimal .
|
|
1643
|
+
# (0.15 0.70) math:product "0.105"^^xsd:decimal .
|
|
1644
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1645
|
+
# ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
|
|
1646
|
+
# ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
|
|
1647
|
+
# (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
|
|
1648
|
+
# (0.15 0.20) math:product "0.03"^^xsd:decimal .
|
|
1649
|
+
# (0.05 0.50) math:product "0.025"^^xsd:decimal .
|
|
1650
|
+
# ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
|
|
1651
|
+
# ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
|
|
1651
1652
|
# via the schematic forward rule:
|
|
1652
1653
|
# {
|
|
1653
1654
|
# :MC1 :row ?rA .
|
|
@@ -1688,40 +1689,40 @@ _:sk_3 :pA 0.6675000000000001 .
|
|
|
1688
1689
|
# } .
|
|
1689
1690
|
# with substitution (on rule variables):
|
|
1690
1691
|
# ?AA = 0.80
|
|
1691
|
-
# ?AA_AA = 0.6400000000000001
|
|
1692
|
-
# ?AA_AB = 0.12
|
|
1693
|
-
# ?AA_AC = 0.04000000000000001
|
|
1692
|
+
# ?AA_AA = "0.6400000000000001"^^xsd:decimal
|
|
1693
|
+
# ?AA_AB = "0.12"^^xsd:decimal
|
|
1694
|
+
# ?AA_AC = "0.04000000000000001"^^xsd:decimal
|
|
1694
1695
|
# ?AB = 0.15
|
|
1695
|
-
# ?AB_BA = 0.015
|
|
1696
|
-
# ?AB_BB = 0.105
|
|
1697
|
-
# ?AB_BC = 0.03
|
|
1696
|
+
# ?AB_BA = "0.015"^^xsd:decimal
|
|
1697
|
+
# ?AB_BB = "0.105"^^xsd:decimal
|
|
1698
|
+
# ?AB_BC = "0.03"^^xsd:decimal
|
|
1698
1699
|
# ?AC = 0.05
|
|
1699
|
-
# ?AC_CA = 0.0125
|
|
1700
|
-
# ?AC_CB = 0.0125
|
|
1701
|
-
# ?AC_CC = 0.025
|
|
1700
|
+
# ?AC_CA = "0.0125"^^xsd:decimal
|
|
1701
|
+
# ?AC_CB = "0.0125"^^xsd:decimal
|
|
1702
|
+
# ?AC_CC = "0.025"^^xsd:decimal
|
|
1702
1703
|
# ?BA = 0.10
|
|
1703
1704
|
# ?BB = 0.70
|
|
1704
1705
|
# ?BC = 0.20
|
|
1705
1706
|
# ?CA = 0.25
|
|
1706
1707
|
# ?CB = 0.25
|
|
1707
1708
|
# ?CC = 0.50
|
|
1708
|
-
# ?P2AA = 0.6675000000000001
|
|
1709
|
-
# ?P2AB = 0.2375
|
|
1710
|
-
# ?P2AC = 0.095
|
|
1709
|
+
# ?P2AA = "0.6675000000000001"^^xsd:decimal
|
|
1710
|
+
# ?P2AB = "0.2375"^^xsd:decimal
|
|
1711
|
+
# ?P2AC = "0.095"^^xsd:decimal
|
|
1711
1712
|
# ?rA = _:b1
|
|
1712
1713
|
# ?rB = _:b2
|
|
1713
1714
|
# ?rC = _:b3
|
|
1714
|
-
# ?sAA = 0.6550000000000001
|
|
1715
|
-
# ?sAB = 0.22499999999999998
|
|
1716
|
-
# ?sAC = 0.07
|
|
1715
|
+
# ?sAA = "0.6550000000000001"^^xsd:decimal
|
|
1716
|
+
# ?sAB = "0.22499999999999998"^^xsd:decimal
|
|
1717
|
+
# ?sAC = "0.07"^^xsd:decimal
|
|
1717
1718
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1718
1719
|
# ----------------------------------------------------------------------
|
|
1719
1720
|
|
|
1720
|
-
_:sk_3 :pB 0.2375 .
|
|
1721
|
+
_:sk_3 :pB "0.2375"^^xsd:decimal .
|
|
1721
1722
|
|
|
1722
1723
|
# ----------------------------------------------------------------------
|
|
1723
1724
|
# Proof for derived triple:
|
|
1724
|
-
# _:sk_3 :pC 0.095 .
|
|
1725
|
+
# _:sk_3 :pC "0.095"^^xsd:decimal .
|
|
1725
1726
|
# It holds because the following instance of the rule body is provable:
|
|
1726
1727
|
# :MC1 :row _:b1 .
|
|
1727
1728
|
# _:b1 :from :A .
|
|
@@ -1738,21 +1739,21 @@ _:sk_3 :pB 0.2375 .
|
|
|
1738
1739
|
# _:b3 :pA 0.25 .
|
|
1739
1740
|
# _:b3 :pB 0.25 .
|
|
1740
1741
|
# _:b3 :pC 0.50 .
|
|
1741
|
-
# (0.80 0.80) math:product 0.6400000000000001 .
|
|
1742
|
-
# (0.15 0.10) math:product 0.015 .
|
|
1743
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1744
|
-
# (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
|
|
1745
|
-
# (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
|
|
1746
|
-
# (0.80 0.15) math:product 0.12 .
|
|
1747
|
-
# (0.15 0.70) math:product 0.105 .
|
|
1748
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1749
|
-
# (0.12 0.105) math:sum 0.22499999999999998 .
|
|
1750
|
-
# (0.22499999999999998 0.0125) math:sum 0.2375 .
|
|
1751
|
-
# (0.80 0.05) math:product 0.04000000000000001 .
|
|
1752
|
-
# (0.15 0.20) math:product 0.03 .
|
|
1753
|
-
# (0.05 0.50) math:product 0.025 .
|
|
1754
|
-
# (0.04000000000000001 0.03) math:sum 0.07 .
|
|
1755
|
-
# (0.07 0.025) math:sum 0.095 .
|
|
1742
|
+
# (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
|
|
1743
|
+
# (0.15 0.10) math:product "0.015"^^xsd:decimal .
|
|
1744
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1745
|
+
# ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
|
|
1746
|
+
# ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
|
|
1747
|
+
# (0.80 0.15) math:product "0.12"^^xsd:decimal .
|
|
1748
|
+
# (0.15 0.70) math:product "0.105"^^xsd:decimal .
|
|
1749
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1750
|
+
# ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
|
|
1751
|
+
# ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
|
|
1752
|
+
# (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
|
|
1753
|
+
# (0.15 0.20) math:product "0.03"^^xsd:decimal .
|
|
1754
|
+
# (0.05 0.50) math:product "0.025"^^xsd:decimal .
|
|
1755
|
+
# ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
|
|
1756
|
+
# ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
|
|
1756
1757
|
# via the schematic forward rule:
|
|
1757
1758
|
# {
|
|
1758
1759
|
# :MC1 :row ?rA .
|
|
@@ -1793,36 +1794,36 @@ _:sk_3 :pB 0.2375 .
|
|
|
1793
1794
|
# } .
|
|
1794
1795
|
# with substitution (on rule variables):
|
|
1795
1796
|
# ?AA = 0.80
|
|
1796
|
-
# ?AA_AA = 0.6400000000000001
|
|
1797
|
-
# ?AA_AB = 0.12
|
|
1798
|
-
# ?AA_AC = 0.04000000000000001
|
|
1797
|
+
# ?AA_AA = "0.6400000000000001"^^xsd:decimal
|
|
1798
|
+
# ?AA_AB = "0.12"^^xsd:decimal
|
|
1799
|
+
# ?AA_AC = "0.04000000000000001"^^xsd:decimal
|
|
1799
1800
|
# ?AB = 0.15
|
|
1800
|
-
# ?AB_BA = 0.015
|
|
1801
|
-
# ?AB_BB = 0.105
|
|
1802
|
-
# ?AB_BC = 0.03
|
|
1801
|
+
# ?AB_BA = "0.015"^^xsd:decimal
|
|
1802
|
+
# ?AB_BB = "0.105"^^xsd:decimal
|
|
1803
|
+
# ?AB_BC = "0.03"^^xsd:decimal
|
|
1803
1804
|
# ?AC = 0.05
|
|
1804
|
-
# ?AC_CA = 0.0125
|
|
1805
|
-
# ?AC_CB = 0.0125
|
|
1806
|
-
# ?AC_CC = 0.025
|
|
1805
|
+
# ?AC_CA = "0.0125"^^xsd:decimal
|
|
1806
|
+
# ?AC_CB = "0.0125"^^xsd:decimal
|
|
1807
|
+
# ?AC_CC = "0.025"^^xsd:decimal
|
|
1807
1808
|
# ?BA = 0.10
|
|
1808
1809
|
# ?BB = 0.70
|
|
1809
1810
|
# ?BC = 0.20
|
|
1810
1811
|
# ?CA = 0.25
|
|
1811
1812
|
# ?CB = 0.25
|
|
1812
1813
|
# ?CC = 0.50
|
|
1813
|
-
# ?P2AA = 0.6675000000000001
|
|
1814
|
-
# ?P2AB = 0.2375
|
|
1815
|
-
# ?P2AC = 0.095
|
|
1814
|
+
# ?P2AA = "0.6675000000000001"^^xsd:decimal
|
|
1815
|
+
# ?P2AB = "0.2375"^^xsd:decimal
|
|
1816
|
+
# ?P2AC = "0.095"^^xsd:decimal
|
|
1816
1817
|
# ?rA = _:b1
|
|
1817
1818
|
# ?rB = _:b2
|
|
1818
1819
|
# ?rC = _:b3
|
|
1819
|
-
# ?sAA = 0.6550000000000001
|
|
1820
|
-
# ?sAB = 0.22499999999999998
|
|
1821
|
-
# ?sAC = 0.07
|
|
1820
|
+
# ?sAA = "0.6550000000000001"^^xsd:decimal
|
|
1821
|
+
# ?sAB = "0.22499999999999998"^^xsd:decimal
|
|
1822
|
+
# ?sAC = "0.07"^^xsd:decimal
|
|
1822
1823
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1823
1824
|
# ----------------------------------------------------------------------
|
|
1824
1825
|
|
|
1825
|
-
_:sk_3 :pC 0.095 .
|
|
1826
|
+
_:sk_3 :pC "0.095"^^xsd:decimal .
|
|
1826
1827
|
|
|
1827
1828
|
# ----------------------------------------------------------------------
|
|
1828
1829
|
# Proof for derived triple:
|
|
@@ -1843,21 +1844,21 @@ _:sk_3 :pC 0.095 .
|
|
|
1843
1844
|
# _:b3 :pA 0.25 .
|
|
1844
1845
|
# _:b3 :pB 0.25 .
|
|
1845
1846
|
# _:b3 :pC 0.50 .
|
|
1846
|
-
# (0.80 0.80) math:product 0.6400000000000001 .
|
|
1847
|
-
# (0.15 0.10) math:product 0.015 .
|
|
1848
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1849
|
-
# (0.6400000000000001 0.015) math:sum 0.6550000000000001 .
|
|
1850
|
-
# (0.6550000000000001 0.0125) math:sum 0.6675000000000001 .
|
|
1851
|
-
# (0.80 0.15) math:product 0.12 .
|
|
1852
|
-
# (0.15 0.70) math:product 0.105 .
|
|
1853
|
-
# (0.05 0.25) math:product 0.0125 .
|
|
1854
|
-
# (0.12 0.105) math:sum 0.22499999999999998 .
|
|
1855
|
-
# (0.22499999999999998 0.0125) math:sum 0.2375 .
|
|
1856
|
-
# (0.80 0.05) math:product 0.04000000000000001 .
|
|
1857
|
-
# (0.15 0.20) math:product 0.03 .
|
|
1858
|
-
# (0.05 0.50) math:product 0.025 .
|
|
1859
|
-
# (0.04000000000000001 0.03) math:sum 0.07 .
|
|
1860
|
-
# (0.07 0.025) math:sum 0.095 .
|
|
1847
|
+
# (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
|
|
1848
|
+
# (0.15 0.10) math:product "0.015"^^xsd:decimal .
|
|
1849
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1850
|
+
# ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
|
|
1851
|
+
# ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
|
|
1852
|
+
# (0.80 0.15) math:product "0.12"^^xsd:decimal .
|
|
1853
|
+
# (0.15 0.70) math:product "0.105"^^xsd:decimal .
|
|
1854
|
+
# (0.05 0.25) math:product "0.0125"^^xsd:decimal .
|
|
1855
|
+
# ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
|
|
1856
|
+
# ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
|
|
1857
|
+
# (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
|
|
1858
|
+
# (0.15 0.20) math:product "0.03"^^xsd:decimal .
|
|
1859
|
+
# (0.05 0.50) math:product "0.025"^^xsd:decimal .
|
|
1860
|
+
# ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
|
|
1861
|
+
# ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
|
|
1861
1862
|
# via the schematic forward rule:
|
|
1862
1863
|
# {
|
|
1863
1864
|
# :MC1 :row ?rA .
|
|
@@ -1898,32 +1899,32 @@ _:sk_3 :pC 0.095 .
|
|
|
1898
1899
|
# } .
|
|
1899
1900
|
# with substitution (on rule variables):
|
|
1900
1901
|
# ?AA = 0.80
|
|
1901
|
-
# ?AA_AA = 0.6400000000000001
|
|
1902
|
-
# ?AA_AB = 0.12
|
|
1903
|
-
# ?AA_AC = 0.04000000000000001
|
|
1902
|
+
# ?AA_AA = "0.6400000000000001"^^xsd:decimal
|
|
1903
|
+
# ?AA_AB = "0.12"^^xsd:decimal
|
|
1904
|
+
# ?AA_AC = "0.04000000000000001"^^xsd:decimal
|
|
1904
1905
|
# ?AB = 0.15
|
|
1905
|
-
# ?AB_BA = 0.015
|
|
1906
|
-
# ?AB_BB = 0.105
|
|
1907
|
-
# ?AB_BC = 0.03
|
|
1906
|
+
# ?AB_BA = "0.015"^^xsd:decimal
|
|
1907
|
+
# ?AB_BB = "0.105"^^xsd:decimal
|
|
1908
|
+
# ?AB_BC = "0.03"^^xsd:decimal
|
|
1908
1909
|
# ?AC = 0.05
|
|
1909
|
-
# ?AC_CA = 0.0125
|
|
1910
|
-
# ?AC_CB = 0.0125
|
|
1911
|
-
# ?AC_CC = 0.025
|
|
1910
|
+
# ?AC_CA = "0.0125"^^xsd:decimal
|
|
1911
|
+
# ?AC_CB = "0.0125"^^xsd:decimal
|
|
1912
|
+
# ?AC_CC = "0.025"^^xsd:decimal
|
|
1912
1913
|
# ?BA = 0.10
|
|
1913
1914
|
# ?BB = 0.70
|
|
1914
1915
|
# ?BC = 0.20
|
|
1915
1916
|
# ?CA = 0.25
|
|
1916
1917
|
# ?CB = 0.25
|
|
1917
1918
|
# ?CC = 0.50
|
|
1918
|
-
# ?P2AA = 0.6675000000000001
|
|
1919
|
-
# ?P2AB = 0.2375
|
|
1920
|
-
# ?P2AC = 0.095
|
|
1919
|
+
# ?P2AA = "0.6675000000000001"^^xsd:decimal
|
|
1920
|
+
# ?P2AB = "0.2375"^^xsd:decimal
|
|
1921
|
+
# ?P2AC = "0.095"^^xsd:decimal
|
|
1921
1922
|
# ?rA = _:b1
|
|
1922
1923
|
# ?rB = _:b2
|
|
1923
1924
|
# ?rC = _:b3
|
|
1924
|
-
# ?sAA = 0.6550000000000001
|
|
1925
|
-
# ?sAB = 0.22499999999999998
|
|
1926
|
-
# ?sAC = 0.07
|
|
1925
|
+
# ?sAA = "0.6550000000000001"^^xsd:decimal
|
|
1926
|
+
# ?sAB = "0.22499999999999998"^^xsd:decimal
|
|
1927
|
+
# ?sAC = "0.07"^^xsd:decimal
|
|
1927
1928
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1928
1929
|
# ----------------------------------------------------------------------
|
|
1929
1930
|
|
|
@@ -2171,36 +2172,36 @@ _:sk_7 :pi _:sk_2 .
|
|
|
2171
2172
|
|
|
2172
2173
|
# ----------------------------------------------------------------------
|
|
2173
2174
|
# Proof for derived triple:
|
|
2174
|
-
# _:sk_7 :sumSq 0.3780958503125001 .
|
|
2175
|
+
# _:sk_7 :sumSq "0.3780958503125001"^^xsd:decimal .
|
|
2175
2176
|
# It holds because the following instance of the rule body is provable:
|
|
2176
2177
|
# :MC1 :metrics _:sk_7 .
|
|
2177
2178
|
# _:sk_7 :pi _:sk_2 .
|
|
2178
|
-
# _:sk_2 :pA 0.4711125000000001 .
|
|
2179
|
-
# _:sk_2 :pB 0.3546875 .
|
|
2180
|
-
# _:sk_2 :pC 0.17420000000000002 .
|
|
2181
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2182
|
-
# (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
|
|
2183
|
-
# (0.3546875 2.0) math:exponentiation 0.12580322265625 .
|
|
2184
|
-
# (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
|
|
2185
|
-
# (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
|
|
2186
|
-
# (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
|
|
2187
|
-
# (1.0 0.3780958503125001) math:difference 0.6219041496875 .
|
|
2188
|
-
# (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
|
|
2189
|
-
# (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
|
|
2190
|
-
# 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
|
|
2191
|
-
# (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
|
|
2192
|
-
# 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
|
|
2193
|
-
# (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
|
|
2194
|
-
# -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
|
|
2195
|
-
# (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
|
|
2196
|
-
# (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
|
|
2197
|
-
# (0.5 0.31826666666666675) math:product 0.15913333333333338 .
|
|
2198
|
-
# (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
|
|
2199
|
-
# (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
|
|
2200
|
-
# (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
|
|
2201
|
-
# (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
|
|
2202
|
-
# (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
|
|
2203
|
-
# (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
|
|
2179
|
+
# _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
|
|
2180
|
+
# _:sk_2 :pB "0.3546875"^^xsd:decimal .
|
|
2181
|
+
# _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
|
|
2182
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2183
|
+
# ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
|
|
2184
|
+
# ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
|
|
2185
|
+
# ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
|
|
2186
|
+
# ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
|
|
2187
|
+
# ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
|
|
2188
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
|
|
2189
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
|
|
2190
|
+
# ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
|
|
2191
|
+
# "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
|
|
2192
|
+
# ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
|
|
2193
|
+
# "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
|
|
2194
|
+
# ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
|
|
2195
|
+
# "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
|
|
2196
|
+
# ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
|
|
2197
|
+
# ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
|
|
2198
|
+
# (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
|
|
2199
|
+
# ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
|
|
2200
|
+
# ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
|
|
2201
|
+
# ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
|
|
2202
|
+
# ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
|
|
2203
|
+
# ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
|
|
2204
|
+
# ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
|
|
2204
2205
|
# via the schematic forward rule:
|
|
2205
2206
|
# {
|
|
2206
2207
|
# :MC1 :metrics ?m .
|
|
@@ -2239,71 +2240,71 @@ _:sk_7 :pi _:sk_2 .
|
|
|
2239
2240
|
# ?m :l2ToUniform ?l2 .
|
|
2240
2241
|
# } .
|
|
2241
2242
|
# with substitution (on rule variables):
|
|
2242
|
-
# ?a = 0.4711125000000001
|
|
2243
|
-
# ?a2 = 0.2219469876562501
|
|
2244
|
-
# ?ab2 = 0.3477502103125001
|
|
2245
|
-
# ?ada = 0.13777916666666679
|
|
2246
|
-
# ?adb = 0.021354166666666674
|
|
2247
|
-
# ?adc = 0.1591333333333333
|
|
2248
|
-
# ?b = 0.3546875
|
|
2249
|
-
# ?b2 = 0.12580322265625
|
|
2250
|
-
# ?c = 0.17420000000000002
|
|
2251
|
-
# ?c2 = 0.030345640000000007
|
|
2252
|
-
# ?da = 0.13777916666666679
|
|
2253
|
-
# ?da2 = 0.018983098767361144
|
|
2254
|
-
# ?db = 0.021354166666666674
|
|
2255
|
-
# ?db2 = 0.0004560004340277781
|
|
2256
|
-
# ?dc = -0.1591333333333333
|
|
2257
|
-
# ?dc2 = 0.025323417777777767
|
|
2258
|
-
# ?effN = 2.644831989490204
|
|
2259
|
-
# ?gini = 0.6219041496875
|
|
2260
|
-
# ?l2 = 0.2115715410426617
|
|
2243
|
+
# ?a = "0.4711125000000001"^^xsd:decimal
|
|
2244
|
+
# ?a2 = "0.2219469876562501"^^xsd:decimal
|
|
2245
|
+
# ?ab2 = "0.3477502103125001"^^xsd:decimal
|
|
2246
|
+
# ?ada = "0.13777916666666679"^^xsd:decimal
|
|
2247
|
+
# ?adb = "0.021354166666666674"^^xsd:decimal
|
|
2248
|
+
# ?adc = "0.1591333333333333"^^xsd:decimal
|
|
2249
|
+
# ?b = "0.3546875"^^xsd:decimal
|
|
2250
|
+
# ?b2 = "0.12580322265625"^^xsd:decimal
|
|
2251
|
+
# ?c = "0.17420000000000002"^^xsd:decimal
|
|
2252
|
+
# ?c2 = "0.030345640000000007"^^xsd:decimal
|
|
2253
|
+
# ?da = "0.13777916666666679"^^xsd:decimal
|
|
2254
|
+
# ?da2 = "0.018983098767361144"^^xsd:decimal
|
|
2255
|
+
# ?db = "0.021354166666666674"^^xsd:decimal
|
|
2256
|
+
# ?db2 = "0.0004560004340277781"^^xsd:decimal
|
|
2257
|
+
# ?dc = "-0.1591333333333333"^^xsd:decimal
|
|
2258
|
+
# ?dc2 = "0.025323417777777767"^^xsd:decimal
|
|
2259
|
+
# ?effN = "2.644831989490204"^^xsd:decimal
|
|
2260
|
+
# ?gini = "0.6219041496875"^^xsd:decimal
|
|
2261
|
+
# ?l2 = "0.2115715410426617"^^xsd:decimal
|
|
2261
2262
|
# ?m = _:sk_7
|
|
2262
2263
|
# ?pi = _:sk_2
|
|
2263
|
-
# ?s1 = 0.15913333333333346
|
|
2264
|
-
# ?s2 = 0.01943909920138892
|
|
2265
|
-
# ?s3 = 0.04476251697916669
|
|
2266
|
-
# ?sAbs = 0.31826666666666675
|
|
2267
|
-
# ?sumSq = 0.3780958503125001
|
|
2268
|
-
# ?tv = 0.15913333333333338
|
|
2269
|
-
# ?u = 0.3333333333333333
|
|
2264
|
+
# ?s1 = "0.15913333333333346"^^xsd:decimal
|
|
2265
|
+
# ?s2 = "0.01943909920138892"^^xsd:decimal
|
|
2266
|
+
# ?s3 = "0.04476251697916669"^^xsd:decimal
|
|
2267
|
+
# ?sAbs = "0.31826666666666675"^^xsd:decimal
|
|
2268
|
+
# ?sumSq = "0.3780958503125001"^^xsd:decimal
|
|
2269
|
+
# ?tv = "0.15913333333333338"^^xsd:decimal
|
|
2270
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2270
2271
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2271
2272
|
# ----------------------------------------------------------------------
|
|
2272
2273
|
|
|
2273
|
-
_:sk_7 :sumSq 0.3780958503125001 .
|
|
2274
|
+
_:sk_7 :sumSq "0.3780958503125001"^^xsd:decimal .
|
|
2274
2275
|
|
|
2275
2276
|
# ----------------------------------------------------------------------
|
|
2276
2277
|
# Proof for derived triple:
|
|
2277
|
-
# _:sk_7 :gini 0.6219041496875 .
|
|
2278
|
+
# _:sk_7 :gini "0.6219041496875"^^xsd:decimal .
|
|
2278
2279
|
# It holds because the following instance of the rule body is provable:
|
|
2279
2280
|
# :MC1 :metrics _:sk_7 .
|
|
2280
2281
|
# _:sk_7 :pi _:sk_2 .
|
|
2281
|
-
# _:sk_2 :pA 0.4711125000000001 .
|
|
2282
|
-
# _:sk_2 :pB 0.3546875 .
|
|
2283
|
-
# _:sk_2 :pC 0.17420000000000002 .
|
|
2284
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2285
|
-
# (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
|
|
2286
|
-
# (0.3546875 2.0) math:exponentiation 0.12580322265625 .
|
|
2287
|
-
# (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
|
|
2288
|
-
# (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
|
|
2289
|
-
# (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
|
|
2290
|
-
# (1.0 0.3780958503125001) math:difference 0.6219041496875 .
|
|
2291
|
-
# (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
|
|
2292
|
-
# (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
|
|
2293
|
-
# 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
|
|
2294
|
-
# (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
|
|
2295
|
-
# 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
|
|
2296
|
-
# (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
|
|
2297
|
-
# -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
|
|
2298
|
-
# (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
|
|
2299
|
-
# (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
|
|
2300
|
-
# (0.5 0.31826666666666675) math:product 0.15913333333333338 .
|
|
2301
|
-
# (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
|
|
2302
|
-
# (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
|
|
2303
|
-
# (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
|
|
2304
|
-
# (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
|
|
2305
|
-
# (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
|
|
2306
|
-
# (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
|
|
2282
|
+
# _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
|
|
2283
|
+
# _:sk_2 :pB "0.3546875"^^xsd:decimal .
|
|
2284
|
+
# _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
|
|
2285
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2286
|
+
# ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
|
|
2287
|
+
# ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
|
|
2288
|
+
# ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
|
|
2289
|
+
# ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
|
|
2290
|
+
# ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
|
|
2291
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
|
|
2292
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
|
|
2293
|
+
# ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
|
|
2294
|
+
# "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
|
|
2295
|
+
# ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
|
|
2296
|
+
# "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
|
|
2297
|
+
# ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
|
|
2298
|
+
# "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
|
|
2299
|
+
# ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
|
|
2300
|
+
# ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
|
|
2301
|
+
# (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
|
|
2302
|
+
# ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
|
|
2303
|
+
# ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
|
|
2304
|
+
# ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
|
|
2305
|
+
# ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
|
|
2306
|
+
# ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
|
|
2307
|
+
# ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
|
|
2307
2308
|
# via the schematic forward rule:
|
|
2308
2309
|
# {
|
|
2309
2310
|
# :MC1 :metrics ?m .
|
|
@@ -2342,71 +2343,71 @@ _:sk_7 :sumSq 0.3780958503125001 .
|
|
|
2342
2343
|
# ?m :l2ToUniform ?l2 .
|
|
2343
2344
|
# } .
|
|
2344
2345
|
# with substitution (on rule variables):
|
|
2345
|
-
# ?a = 0.4711125000000001
|
|
2346
|
-
# ?a2 = 0.2219469876562501
|
|
2347
|
-
# ?ab2 = 0.3477502103125001
|
|
2348
|
-
# ?ada = 0.13777916666666679
|
|
2349
|
-
# ?adb = 0.021354166666666674
|
|
2350
|
-
# ?adc = 0.1591333333333333
|
|
2351
|
-
# ?b = 0.3546875
|
|
2352
|
-
# ?b2 = 0.12580322265625
|
|
2353
|
-
# ?c = 0.17420000000000002
|
|
2354
|
-
# ?c2 = 0.030345640000000007
|
|
2355
|
-
# ?da = 0.13777916666666679
|
|
2356
|
-
# ?da2 = 0.018983098767361144
|
|
2357
|
-
# ?db = 0.021354166666666674
|
|
2358
|
-
# ?db2 = 0.0004560004340277781
|
|
2359
|
-
# ?dc = -0.1591333333333333
|
|
2360
|
-
# ?dc2 = 0.025323417777777767
|
|
2361
|
-
# ?effN = 2.644831989490204
|
|
2362
|
-
# ?gini = 0.6219041496875
|
|
2363
|
-
# ?l2 = 0.2115715410426617
|
|
2346
|
+
# ?a = "0.4711125000000001"^^xsd:decimal
|
|
2347
|
+
# ?a2 = "0.2219469876562501"^^xsd:decimal
|
|
2348
|
+
# ?ab2 = "0.3477502103125001"^^xsd:decimal
|
|
2349
|
+
# ?ada = "0.13777916666666679"^^xsd:decimal
|
|
2350
|
+
# ?adb = "0.021354166666666674"^^xsd:decimal
|
|
2351
|
+
# ?adc = "0.1591333333333333"^^xsd:decimal
|
|
2352
|
+
# ?b = "0.3546875"^^xsd:decimal
|
|
2353
|
+
# ?b2 = "0.12580322265625"^^xsd:decimal
|
|
2354
|
+
# ?c = "0.17420000000000002"^^xsd:decimal
|
|
2355
|
+
# ?c2 = "0.030345640000000007"^^xsd:decimal
|
|
2356
|
+
# ?da = "0.13777916666666679"^^xsd:decimal
|
|
2357
|
+
# ?da2 = "0.018983098767361144"^^xsd:decimal
|
|
2358
|
+
# ?db = "0.021354166666666674"^^xsd:decimal
|
|
2359
|
+
# ?db2 = "0.0004560004340277781"^^xsd:decimal
|
|
2360
|
+
# ?dc = "-0.1591333333333333"^^xsd:decimal
|
|
2361
|
+
# ?dc2 = "0.025323417777777767"^^xsd:decimal
|
|
2362
|
+
# ?effN = "2.644831989490204"^^xsd:decimal
|
|
2363
|
+
# ?gini = "0.6219041496875"^^xsd:decimal
|
|
2364
|
+
# ?l2 = "0.2115715410426617"^^xsd:decimal
|
|
2364
2365
|
# ?m = _:sk_7
|
|
2365
2366
|
# ?pi = _:sk_2
|
|
2366
|
-
# ?s1 = 0.15913333333333346
|
|
2367
|
-
# ?s2 = 0.01943909920138892
|
|
2368
|
-
# ?s3 = 0.04476251697916669
|
|
2369
|
-
# ?sAbs = 0.31826666666666675
|
|
2370
|
-
# ?sumSq = 0.3780958503125001
|
|
2371
|
-
# ?tv = 0.15913333333333338
|
|
2372
|
-
# ?u = 0.3333333333333333
|
|
2367
|
+
# ?s1 = "0.15913333333333346"^^xsd:decimal
|
|
2368
|
+
# ?s2 = "0.01943909920138892"^^xsd:decimal
|
|
2369
|
+
# ?s3 = "0.04476251697916669"^^xsd:decimal
|
|
2370
|
+
# ?sAbs = "0.31826666666666675"^^xsd:decimal
|
|
2371
|
+
# ?sumSq = "0.3780958503125001"^^xsd:decimal
|
|
2372
|
+
# ?tv = "0.15913333333333338"^^xsd:decimal
|
|
2373
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2373
2374
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2374
2375
|
# ----------------------------------------------------------------------
|
|
2375
2376
|
|
|
2376
|
-
_:sk_7 :gini 0.6219041496875 .
|
|
2377
|
+
_:sk_7 :gini "0.6219041496875"^^xsd:decimal .
|
|
2377
2378
|
|
|
2378
2379
|
# ----------------------------------------------------------------------
|
|
2379
2380
|
# Proof for derived triple:
|
|
2380
|
-
# _:sk_7 :effectiveStates 2.644831989490204 .
|
|
2381
|
+
# _:sk_7 :effectiveStates "2.644831989490204"^^xsd:decimal .
|
|
2381
2382
|
# It holds because the following instance of the rule body is provable:
|
|
2382
2383
|
# :MC1 :metrics _:sk_7 .
|
|
2383
2384
|
# _:sk_7 :pi _:sk_2 .
|
|
2384
|
-
# _:sk_2 :pA 0.4711125000000001 .
|
|
2385
|
-
# _:sk_2 :pB 0.3546875 .
|
|
2386
|
-
# _:sk_2 :pC 0.17420000000000002 .
|
|
2387
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2388
|
-
# (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
|
|
2389
|
-
# (0.3546875 2.0) math:exponentiation 0.12580322265625 .
|
|
2390
|
-
# (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
|
|
2391
|
-
# (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
|
|
2392
|
-
# (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
|
|
2393
|
-
# (1.0 0.3780958503125001) math:difference 0.6219041496875 .
|
|
2394
|
-
# (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
|
|
2395
|
-
# (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
|
|
2396
|
-
# 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
|
|
2397
|
-
# (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
|
|
2398
|
-
# 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
|
|
2399
|
-
# (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
|
|
2400
|
-
# -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
|
|
2401
|
-
# (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
|
|
2402
|
-
# (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
|
|
2403
|
-
# (0.5 0.31826666666666675) math:product 0.15913333333333338 .
|
|
2404
|
-
# (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
|
|
2405
|
-
# (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
|
|
2406
|
-
# (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
|
|
2407
|
-
# (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
|
|
2408
|
-
# (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
|
|
2409
|
-
# (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
|
|
2385
|
+
# _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
|
|
2386
|
+
# _:sk_2 :pB "0.3546875"^^xsd:decimal .
|
|
2387
|
+
# _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
|
|
2388
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2389
|
+
# ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
|
|
2390
|
+
# ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
|
|
2391
|
+
# ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
|
|
2392
|
+
# ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
|
|
2393
|
+
# ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
|
|
2394
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
|
|
2395
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
|
|
2396
|
+
# ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
|
|
2397
|
+
# "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
|
|
2398
|
+
# ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
|
|
2399
|
+
# "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
|
|
2400
|
+
# ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
|
|
2401
|
+
# "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
|
|
2402
|
+
# ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
|
|
2403
|
+
# ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
|
|
2404
|
+
# (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
|
|
2405
|
+
# ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
|
|
2406
|
+
# ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
|
|
2407
|
+
# ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
|
|
2408
|
+
# ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
|
|
2409
|
+
# ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
|
|
2410
|
+
# ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
|
|
2410
2411
|
# via the schematic forward rule:
|
|
2411
2412
|
# {
|
|
2412
2413
|
# :MC1 :metrics ?m .
|
|
@@ -2445,71 +2446,71 @@ _:sk_7 :gini 0.6219041496875 .
|
|
|
2445
2446
|
# ?m :l2ToUniform ?l2 .
|
|
2446
2447
|
# } .
|
|
2447
2448
|
# with substitution (on rule variables):
|
|
2448
|
-
# ?a = 0.4711125000000001
|
|
2449
|
-
# ?a2 = 0.2219469876562501
|
|
2450
|
-
# ?ab2 = 0.3477502103125001
|
|
2451
|
-
# ?ada = 0.13777916666666679
|
|
2452
|
-
# ?adb = 0.021354166666666674
|
|
2453
|
-
# ?adc = 0.1591333333333333
|
|
2454
|
-
# ?b = 0.3546875
|
|
2455
|
-
# ?b2 = 0.12580322265625
|
|
2456
|
-
# ?c = 0.17420000000000002
|
|
2457
|
-
# ?c2 = 0.030345640000000007
|
|
2458
|
-
# ?da = 0.13777916666666679
|
|
2459
|
-
# ?da2 = 0.018983098767361144
|
|
2460
|
-
# ?db = 0.021354166666666674
|
|
2461
|
-
# ?db2 = 0.0004560004340277781
|
|
2462
|
-
# ?dc = -0.1591333333333333
|
|
2463
|
-
# ?dc2 = 0.025323417777777767
|
|
2464
|
-
# ?effN = 2.644831989490204
|
|
2465
|
-
# ?gini = 0.6219041496875
|
|
2466
|
-
# ?l2 = 0.2115715410426617
|
|
2449
|
+
# ?a = "0.4711125000000001"^^xsd:decimal
|
|
2450
|
+
# ?a2 = "0.2219469876562501"^^xsd:decimal
|
|
2451
|
+
# ?ab2 = "0.3477502103125001"^^xsd:decimal
|
|
2452
|
+
# ?ada = "0.13777916666666679"^^xsd:decimal
|
|
2453
|
+
# ?adb = "0.021354166666666674"^^xsd:decimal
|
|
2454
|
+
# ?adc = "0.1591333333333333"^^xsd:decimal
|
|
2455
|
+
# ?b = "0.3546875"^^xsd:decimal
|
|
2456
|
+
# ?b2 = "0.12580322265625"^^xsd:decimal
|
|
2457
|
+
# ?c = "0.17420000000000002"^^xsd:decimal
|
|
2458
|
+
# ?c2 = "0.030345640000000007"^^xsd:decimal
|
|
2459
|
+
# ?da = "0.13777916666666679"^^xsd:decimal
|
|
2460
|
+
# ?da2 = "0.018983098767361144"^^xsd:decimal
|
|
2461
|
+
# ?db = "0.021354166666666674"^^xsd:decimal
|
|
2462
|
+
# ?db2 = "0.0004560004340277781"^^xsd:decimal
|
|
2463
|
+
# ?dc = "-0.1591333333333333"^^xsd:decimal
|
|
2464
|
+
# ?dc2 = "0.025323417777777767"^^xsd:decimal
|
|
2465
|
+
# ?effN = "2.644831989490204"^^xsd:decimal
|
|
2466
|
+
# ?gini = "0.6219041496875"^^xsd:decimal
|
|
2467
|
+
# ?l2 = "0.2115715410426617"^^xsd:decimal
|
|
2467
2468
|
# ?m = _:sk_7
|
|
2468
2469
|
# ?pi = _:sk_2
|
|
2469
|
-
# ?s1 = 0.15913333333333346
|
|
2470
|
-
# ?s2 = 0.01943909920138892
|
|
2471
|
-
# ?s3 = 0.04476251697916669
|
|
2472
|
-
# ?sAbs = 0.31826666666666675
|
|
2473
|
-
# ?sumSq = 0.3780958503125001
|
|
2474
|
-
# ?tv = 0.15913333333333338
|
|
2475
|
-
# ?u = 0.3333333333333333
|
|
2470
|
+
# ?s1 = "0.15913333333333346"^^xsd:decimal
|
|
2471
|
+
# ?s2 = "0.01943909920138892"^^xsd:decimal
|
|
2472
|
+
# ?s3 = "0.04476251697916669"^^xsd:decimal
|
|
2473
|
+
# ?sAbs = "0.31826666666666675"^^xsd:decimal
|
|
2474
|
+
# ?sumSq = "0.3780958503125001"^^xsd:decimal
|
|
2475
|
+
# ?tv = "0.15913333333333338"^^xsd:decimal
|
|
2476
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2476
2477
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2477
2478
|
# ----------------------------------------------------------------------
|
|
2478
2479
|
|
|
2479
|
-
_:sk_7 :effectiveStates 2.644831989490204 .
|
|
2480
|
+
_:sk_7 :effectiveStates "2.644831989490204"^^xsd:decimal .
|
|
2480
2481
|
|
|
2481
2482
|
# ----------------------------------------------------------------------
|
|
2482
2483
|
# Proof for derived triple:
|
|
2483
|
-
# _:sk_7 :tvToUniform 0.15913333333333338 .
|
|
2484
|
+
# _:sk_7 :tvToUniform "0.15913333333333338"^^xsd:decimal .
|
|
2484
2485
|
# It holds because the following instance of the rule body is provable:
|
|
2485
2486
|
# :MC1 :metrics _:sk_7 .
|
|
2486
2487
|
# _:sk_7 :pi _:sk_2 .
|
|
2487
|
-
# _:sk_2 :pA 0.4711125000000001 .
|
|
2488
|
-
# _:sk_2 :pB 0.3546875 .
|
|
2489
|
-
# _:sk_2 :pC 0.17420000000000002 .
|
|
2490
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2491
|
-
# (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
|
|
2492
|
-
# (0.3546875 2.0) math:exponentiation 0.12580322265625 .
|
|
2493
|
-
# (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
|
|
2494
|
-
# (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
|
|
2495
|
-
# (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
|
|
2496
|
-
# (1.0 0.3780958503125001) math:difference 0.6219041496875 .
|
|
2497
|
-
# (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
|
|
2498
|
-
# (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
|
|
2499
|
-
# 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
|
|
2500
|
-
# (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
|
|
2501
|
-
# 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
|
|
2502
|
-
# (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
|
|
2503
|
-
# -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
|
|
2504
|
-
# (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
|
|
2505
|
-
# (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
|
|
2506
|
-
# (0.5 0.31826666666666675) math:product 0.15913333333333338 .
|
|
2507
|
-
# (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
|
|
2508
|
-
# (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
|
|
2509
|
-
# (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
|
|
2510
|
-
# (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
|
|
2511
|
-
# (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
|
|
2512
|
-
# (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
|
|
2488
|
+
# _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
|
|
2489
|
+
# _:sk_2 :pB "0.3546875"^^xsd:decimal .
|
|
2490
|
+
# _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
|
|
2491
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2492
|
+
# ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
|
|
2493
|
+
# ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
|
|
2494
|
+
# ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
|
|
2495
|
+
# ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
|
|
2496
|
+
# ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
|
|
2497
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
|
|
2498
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
|
|
2499
|
+
# ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
|
|
2500
|
+
# "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
|
|
2501
|
+
# ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
|
|
2502
|
+
# "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
|
|
2503
|
+
# ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
|
|
2504
|
+
# "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
|
|
2505
|
+
# ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
|
|
2506
|
+
# ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
|
|
2507
|
+
# (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
|
|
2508
|
+
# ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
|
|
2509
|
+
# ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
|
|
2510
|
+
# ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
|
|
2511
|
+
# ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
|
|
2512
|
+
# ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
|
|
2513
|
+
# ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
|
|
2513
2514
|
# via the schematic forward rule:
|
|
2514
2515
|
# {
|
|
2515
2516
|
# :MC1 :metrics ?m .
|
|
@@ -2548,71 +2549,71 @@ _:sk_7 :effectiveStates 2.644831989490204 .
|
|
|
2548
2549
|
# ?m :l2ToUniform ?l2 .
|
|
2549
2550
|
# } .
|
|
2550
2551
|
# with substitution (on rule variables):
|
|
2551
|
-
# ?a = 0.4711125000000001
|
|
2552
|
-
# ?a2 = 0.2219469876562501
|
|
2553
|
-
# ?ab2 = 0.3477502103125001
|
|
2554
|
-
# ?ada = 0.13777916666666679
|
|
2555
|
-
# ?adb = 0.021354166666666674
|
|
2556
|
-
# ?adc = 0.1591333333333333
|
|
2557
|
-
# ?b = 0.3546875
|
|
2558
|
-
# ?b2 = 0.12580322265625
|
|
2559
|
-
# ?c = 0.17420000000000002
|
|
2560
|
-
# ?c2 = 0.030345640000000007
|
|
2561
|
-
# ?da = 0.13777916666666679
|
|
2562
|
-
# ?da2 = 0.018983098767361144
|
|
2563
|
-
# ?db = 0.021354166666666674
|
|
2564
|
-
# ?db2 = 0.0004560004340277781
|
|
2565
|
-
# ?dc = -0.1591333333333333
|
|
2566
|
-
# ?dc2 = 0.025323417777777767
|
|
2567
|
-
# ?effN = 2.644831989490204
|
|
2568
|
-
# ?gini = 0.6219041496875
|
|
2569
|
-
# ?l2 = 0.2115715410426617
|
|
2552
|
+
# ?a = "0.4711125000000001"^^xsd:decimal
|
|
2553
|
+
# ?a2 = "0.2219469876562501"^^xsd:decimal
|
|
2554
|
+
# ?ab2 = "0.3477502103125001"^^xsd:decimal
|
|
2555
|
+
# ?ada = "0.13777916666666679"^^xsd:decimal
|
|
2556
|
+
# ?adb = "0.021354166666666674"^^xsd:decimal
|
|
2557
|
+
# ?adc = "0.1591333333333333"^^xsd:decimal
|
|
2558
|
+
# ?b = "0.3546875"^^xsd:decimal
|
|
2559
|
+
# ?b2 = "0.12580322265625"^^xsd:decimal
|
|
2560
|
+
# ?c = "0.17420000000000002"^^xsd:decimal
|
|
2561
|
+
# ?c2 = "0.030345640000000007"^^xsd:decimal
|
|
2562
|
+
# ?da = "0.13777916666666679"^^xsd:decimal
|
|
2563
|
+
# ?da2 = "0.018983098767361144"^^xsd:decimal
|
|
2564
|
+
# ?db = "0.021354166666666674"^^xsd:decimal
|
|
2565
|
+
# ?db2 = "0.0004560004340277781"^^xsd:decimal
|
|
2566
|
+
# ?dc = "-0.1591333333333333"^^xsd:decimal
|
|
2567
|
+
# ?dc2 = "0.025323417777777767"^^xsd:decimal
|
|
2568
|
+
# ?effN = "2.644831989490204"^^xsd:decimal
|
|
2569
|
+
# ?gini = "0.6219041496875"^^xsd:decimal
|
|
2570
|
+
# ?l2 = "0.2115715410426617"^^xsd:decimal
|
|
2570
2571
|
# ?m = _:sk_7
|
|
2571
2572
|
# ?pi = _:sk_2
|
|
2572
|
-
# ?s1 = 0.15913333333333346
|
|
2573
|
-
# ?s2 = 0.01943909920138892
|
|
2574
|
-
# ?s3 = 0.04476251697916669
|
|
2575
|
-
# ?sAbs = 0.31826666666666675
|
|
2576
|
-
# ?sumSq = 0.3780958503125001
|
|
2577
|
-
# ?tv = 0.15913333333333338
|
|
2578
|
-
# ?u = 0.3333333333333333
|
|
2573
|
+
# ?s1 = "0.15913333333333346"^^xsd:decimal
|
|
2574
|
+
# ?s2 = "0.01943909920138892"^^xsd:decimal
|
|
2575
|
+
# ?s3 = "0.04476251697916669"^^xsd:decimal
|
|
2576
|
+
# ?sAbs = "0.31826666666666675"^^xsd:decimal
|
|
2577
|
+
# ?sumSq = "0.3780958503125001"^^xsd:decimal
|
|
2578
|
+
# ?tv = "0.15913333333333338"^^xsd:decimal
|
|
2579
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2579
2580
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2580
2581
|
# ----------------------------------------------------------------------
|
|
2581
2582
|
|
|
2582
|
-
_:sk_7 :tvToUniform 0.15913333333333338 .
|
|
2583
|
+
_:sk_7 :tvToUniform "0.15913333333333338"^^xsd:decimal .
|
|
2583
2584
|
|
|
2584
2585
|
# ----------------------------------------------------------------------
|
|
2585
2586
|
# Proof for derived triple:
|
|
2586
|
-
# _:sk_7 :l2ToUniform 0.2115715410426617 .
|
|
2587
|
+
# _:sk_7 :l2ToUniform "0.2115715410426617"^^xsd:decimal .
|
|
2587
2588
|
# It holds because the following instance of the rule body is provable:
|
|
2588
2589
|
# :MC1 :metrics _:sk_7 .
|
|
2589
2590
|
# _:sk_7 :pi _:sk_2 .
|
|
2590
|
-
# _:sk_2 :pA 0.4711125000000001 .
|
|
2591
|
-
# _:sk_2 :pB 0.3546875 .
|
|
2592
|
-
# _:sk_2 :pC 0.17420000000000002 .
|
|
2593
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2594
|
-
# (0.4711125000000001 2.0) math:exponentiation 0.2219469876562501 .
|
|
2595
|
-
# (0.3546875 2.0) math:exponentiation 0.12580322265625 .
|
|
2596
|
-
# (0.17420000000000002 2.0) math:exponentiation 0.030345640000000007 .
|
|
2597
|
-
# (0.2219469876562501 0.12580322265625) math:sum 0.3477502103125001 .
|
|
2598
|
-
# (0.3477502103125001 0.030345640000000007) math:sum 0.3780958503125001 .
|
|
2599
|
-
# (1.0 0.3780958503125001) math:difference 0.6219041496875 .
|
|
2600
|
-
# (1.0 0.3780958503125001) math:quotient 2.644831989490204 .
|
|
2601
|
-
# (0.4711125000000001 0.3333333333333333) math:difference 0.13777916666666679 .
|
|
2602
|
-
# 0.13777916666666679 math:absoluteValue 0.13777916666666679 .
|
|
2603
|
-
# (0.3546875 0.3333333333333333) math:difference 0.021354166666666674 .
|
|
2604
|
-
# 0.021354166666666674 math:absoluteValue 0.021354166666666674 .
|
|
2605
|
-
# (0.17420000000000002 0.3333333333333333) math:difference -0.1591333333333333 .
|
|
2606
|
-
# -0.1591333333333333 math:absoluteValue 0.1591333333333333 .
|
|
2607
|
-
# (0.13777916666666679 0.021354166666666674) math:sum 0.15913333333333346 .
|
|
2608
|
-
# (0.15913333333333346 0.1591333333333333) math:sum 0.31826666666666675 .
|
|
2609
|
-
# (0.5 0.31826666666666675) math:product 0.15913333333333338 .
|
|
2610
|
-
# (0.13777916666666679 2.0) math:exponentiation 0.018983098767361144 .
|
|
2611
|
-
# (0.021354166666666674 2.0) math:exponentiation 0.0004560004340277781 .
|
|
2612
|
-
# (-0.1591333333333333 2.0) math:exponentiation 0.025323417777777767 .
|
|
2613
|
-
# (0.018983098767361144 0.0004560004340277781) math:sum 0.01943909920138892 .
|
|
2614
|
-
# (0.01943909920138892 0.025323417777777767) math:sum 0.04476251697916669 .
|
|
2615
|
-
# (0.04476251697916669 0.5) math:exponentiation 0.2115715410426617 .
|
|
2591
|
+
# _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
|
|
2592
|
+
# _:sk_2 :pB "0.3546875"^^xsd:decimal .
|
|
2593
|
+
# _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
|
|
2594
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2595
|
+
# ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
|
|
2596
|
+
# ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
|
|
2597
|
+
# ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
|
|
2598
|
+
# ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
|
|
2599
|
+
# ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
|
|
2600
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
|
|
2601
|
+
# (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
|
|
2602
|
+
# ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
|
|
2603
|
+
# "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
|
|
2604
|
+
# ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
|
|
2605
|
+
# "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
|
|
2606
|
+
# ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
|
|
2607
|
+
# "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
|
|
2608
|
+
# ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
|
|
2609
|
+
# ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
|
|
2610
|
+
# (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
|
|
2611
|
+
# ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
|
|
2612
|
+
# ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
|
|
2613
|
+
# ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
|
|
2614
|
+
# ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
|
|
2615
|
+
# ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
|
|
2616
|
+
# ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
|
|
2616
2617
|
# via the schematic forward rule:
|
|
2617
2618
|
# {
|
|
2618
2619
|
# :MC1 :metrics ?m .
|
|
@@ -2651,71 +2652,71 @@ _:sk_7 :tvToUniform 0.15913333333333338 .
|
|
|
2651
2652
|
# ?m :l2ToUniform ?l2 .
|
|
2652
2653
|
# } .
|
|
2653
2654
|
# with substitution (on rule variables):
|
|
2654
|
-
# ?a = 0.4711125000000001
|
|
2655
|
-
# ?a2 = 0.2219469876562501
|
|
2656
|
-
# ?ab2 = 0.3477502103125001
|
|
2657
|
-
# ?ada = 0.13777916666666679
|
|
2658
|
-
# ?adb = 0.021354166666666674
|
|
2659
|
-
# ?adc = 0.1591333333333333
|
|
2660
|
-
# ?b = 0.3546875
|
|
2661
|
-
# ?b2 = 0.12580322265625
|
|
2662
|
-
# ?c = 0.17420000000000002
|
|
2663
|
-
# ?c2 = 0.030345640000000007
|
|
2664
|
-
# ?da = 0.13777916666666679
|
|
2665
|
-
# ?da2 = 0.018983098767361144
|
|
2666
|
-
# ?db = 0.021354166666666674
|
|
2667
|
-
# ?db2 = 0.0004560004340277781
|
|
2668
|
-
# ?dc = -0.1591333333333333
|
|
2669
|
-
# ?dc2 = 0.025323417777777767
|
|
2670
|
-
# ?effN = 2.644831989490204
|
|
2671
|
-
# ?gini = 0.6219041496875
|
|
2672
|
-
# ?l2 = 0.2115715410426617
|
|
2655
|
+
# ?a = "0.4711125000000001"^^xsd:decimal
|
|
2656
|
+
# ?a2 = "0.2219469876562501"^^xsd:decimal
|
|
2657
|
+
# ?ab2 = "0.3477502103125001"^^xsd:decimal
|
|
2658
|
+
# ?ada = "0.13777916666666679"^^xsd:decimal
|
|
2659
|
+
# ?adb = "0.021354166666666674"^^xsd:decimal
|
|
2660
|
+
# ?adc = "0.1591333333333333"^^xsd:decimal
|
|
2661
|
+
# ?b = "0.3546875"^^xsd:decimal
|
|
2662
|
+
# ?b2 = "0.12580322265625"^^xsd:decimal
|
|
2663
|
+
# ?c = "0.17420000000000002"^^xsd:decimal
|
|
2664
|
+
# ?c2 = "0.030345640000000007"^^xsd:decimal
|
|
2665
|
+
# ?da = "0.13777916666666679"^^xsd:decimal
|
|
2666
|
+
# ?da2 = "0.018983098767361144"^^xsd:decimal
|
|
2667
|
+
# ?db = "0.021354166666666674"^^xsd:decimal
|
|
2668
|
+
# ?db2 = "0.0004560004340277781"^^xsd:decimal
|
|
2669
|
+
# ?dc = "-0.1591333333333333"^^xsd:decimal
|
|
2670
|
+
# ?dc2 = "0.025323417777777767"^^xsd:decimal
|
|
2671
|
+
# ?effN = "2.644831989490204"^^xsd:decimal
|
|
2672
|
+
# ?gini = "0.6219041496875"^^xsd:decimal
|
|
2673
|
+
# ?l2 = "0.2115715410426617"^^xsd:decimal
|
|
2673
2674
|
# ?m = _:sk_7
|
|
2674
2675
|
# ?pi = _:sk_2
|
|
2675
|
-
# ?s1 = 0.15913333333333346
|
|
2676
|
-
# ?s2 = 0.01943909920138892
|
|
2677
|
-
# ?s3 = 0.04476251697916669
|
|
2678
|
-
# ?sAbs = 0.31826666666666675
|
|
2679
|
-
# ?sumSq = 0.3780958503125001
|
|
2680
|
-
# ?tv = 0.15913333333333338
|
|
2681
|
-
# ?u = 0.3333333333333333
|
|
2676
|
+
# ?s1 = "0.15913333333333346"^^xsd:decimal
|
|
2677
|
+
# ?s2 = "0.01943909920138892"^^xsd:decimal
|
|
2678
|
+
# ?s3 = "0.04476251697916669"^^xsd:decimal
|
|
2679
|
+
# ?sAbs = "0.31826666666666675"^^xsd:decimal
|
|
2680
|
+
# ?sumSq = "0.3780958503125001"^^xsd:decimal
|
|
2681
|
+
# ?tv = "0.15913333333333338"^^xsd:decimal
|
|
2682
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2682
2683
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2683
2684
|
# ----------------------------------------------------------------------
|
|
2684
2685
|
|
|
2685
|
-
_:sk_7 :l2ToUniform 0.2115715410426617 .
|
|
2686
|
+
_:sk_7 :l2ToUniform "0.2115715410426617"^^xsd:decimal .
|
|
2686
2687
|
|
|
2687
2688
|
# ----------------------------------------------------------------------
|
|
2688
2689
|
# Proof for derived triple:
|
|
2689
|
-
# _:sk_6 :sumSq 0.3891608750000001 .
|
|
2690
|
+
# _:sk_6 :sumSq "0.3891608750000001"^^xsd:decimal .
|
|
2690
2691
|
# It holds because the following instance of the rule body is provable:
|
|
2691
2692
|
# :MC1 :metrics _:sk_6 .
|
|
2692
2693
|
# _:sk_6 :pi _:sk_1 .
|
|
2693
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
2694
|
-
# _:sk_1 :pB 0.34275 .
|
|
2695
|
-
# _:sk_1 :pC 0.16175 .
|
|
2696
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2697
|
-
# (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
|
|
2698
|
-
# (0.34275 2.0) math:exponentiation 0.1174775625 .
|
|
2699
|
-
# (0.16175 2.0) math:exponentiation 0.0261630625 .
|
|
2700
|
-
# (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
|
|
2701
|
-
# (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
|
|
2702
|
-
# (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
|
|
2703
|
-
# (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
|
|
2704
|
-
# (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
|
|
2705
|
-
# 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
|
|
2706
|
-
# (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
|
|
2707
|
-
# 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
|
|
2708
|
-
# (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
|
|
2709
|
-
# -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
|
|
2710
|
-
# (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
|
|
2711
|
-
# (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
|
|
2712
|
-
# (0.5 0.34316666666666673) math:product 0.17158333333333337 .
|
|
2713
|
-
# (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
|
|
2714
|
-
# (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
|
|
2715
|
-
# (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
|
|
2716
|
-
# (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
|
|
2717
|
-
# (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
|
|
2718
|
-
# (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
|
|
2694
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
2695
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
2696
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
2697
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2698
|
+
# ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
|
|
2699
|
+
# ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
|
|
2700
|
+
# ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
|
|
2701
|
+
# ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
|
|
2702
|
+
# ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
|
|
2703
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
|
|
2704
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
|
|
2705
|
+
# ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
|
|
2706
|
+
# "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
|
|
2707
|
+
# ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
|
|
2708
|
+
# "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
|
|
2709
|
+
# ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
|
|
2710
|
+
# "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
|
|
2711
|
+
# ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
|
|
2712
|
+
# ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
|
|
2713
|
+
# (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
|
|
2714
|
+
# ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
|
|
2715
|
+
# ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
|
|
2716
|
+
# ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
|
|
2717
|
+
# ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
|
|
2718
|
+
# ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
|
|
2719
|
+
# ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
|
|
2719
2720
|
# via the schematic forward rule:
|
|
2720
2721
|
# {
|
|
2721
2722
|
# :MC1 :metrics ?m .
|
|
@@ -2754,71 +2755,71 @@ _:sk_7 :l2ToUniform 0.2115715410426617 .
|
|
|
2754
2755
|
# ?m :l2ToUniform ?l2 .
|
|
2755
2756
|
# } .
|
|
2756
2757
|
# with substitution (on rule variables):
|
|
2757
|
-
# ?a = 0.49550000000000005
|
|
2758
|
-
# ?a2 = 0.24552025000000005
|
|
2759
|
-
# ?ab2 = 0.36299781250000007
|
|
2760
|
-
# ?ada = 0.16216666666666674
|
|
2761
|
-
# ?adb = 0.009416666666666684
|
|
2762
|
-
# ?adc = 0.1715833333333333
|
|
2763
|
-
# ?b = 0.34275
|
|
2764
|
-
# ?b2 = 0.1174775625
|
|
2765
|
-
# ?c = 0.16175
|
|
2766
|
-
# ?c2 = 0.0261630625
|
|
2767
|
-
# ?da = 0.16216666666666674
|
|
2768
|
-
# ?da2 = 0.026298027777777802
|
|
2769
|
-
# ?db = 0.009416666666666684
|
|
2770
|
-
# ?db2 = 0.00008867361111111145
|
|
2771
|
-
# ?dc = -0.1715833333333333
|
|
2772
|
-
# ?dc2 = 0.02944084027777777
|
|
2773
|
-
# ?effN = 2.569631389589202
|
|
2774
|
-
# ?gini = 0.6108391249999999
|
|
2775
|
-
# ?l2 = 0.23627852561472165
|
|
2758
|
+
# ?a = "0.49550000000000005"^^xsd:decimal
|
|
2759
|
+
# ?a2 = "0.24552025000000005"^^xsd:decimal
|
|
2760
|
+
# ?ab2 = "0.36299781250000007"^^xsd:decimal
|
|
2761
|
+
# ?ada = "0.16216666666666674"^^xsd:decimal
|
|
2762
|
+
# ?adb = "0.009416666666666684"^^xsd:decimal
|
|
2763
|
+
# ?adc = "0.1715833333333333"^^xsd:decimal
|
|
2764
|
+
# ?b = "0.34275"^^xsd:decimal
|
|
2765
|
+
# ?b2 = "0.1174775625"^^xsd:decimal
|
|
2766
|
+
# ?c = "0.16175"^^xsd:decimal
|
|
2767
|
+
# ?c2 = "0.0261630625"^^xsd:decimal
|
|
2768
|
+
# ?da = "0.16216666666666674"^^xsd:decimal
|
|
2769
|
+
# ?da2 = "0.026298027777777802"^^xsd:decimal
|
|
2770
|
+
# ?db = "0.009416666666666684"^^xsd:decimal
|
|
2771
|
+
# ?db2 = "0.00008867361111111145"^^xsd:decimal
|
|
2772
|
+
# ?dc = "-0.1715833333333333"^^xsd:decimal
|
|
2773
|
+
# ?dc2 = "0.02944084027777777"^^xsd:decimal
|
|
2774
|
+
# ?effN = "2.569631389589202"^^xsd:decimal
|
|
2775
|
+
# ?gini = "0.6108391249999999"^^xsd:decimal
|
|
2776
|
+
# ?l2 = "0.23627852561472165"^^xsd:decimal
|
|
2776
2777
|
# ?m = _:sk_6
|
|
2777
2778
|
# ?pi = _:sk_1
|
|
2778
|
-
# ?s1 = 0.17158333333333342
|
|
2779
|
-
# ?s2 = 0.026386701388888913
|
|
2780
|
-
# ?s3 = 0.05582754166666668
|
|
2781
|
-
# ?sAbs = 0.34316666666666673
|
|
2782
|
-
# ?sumSq = 0.3891608750000001
|
|
2783
|
-
# ?tv = 0.17158333333333337
|
|
2784
|
-
# ?u = 0.3333333333333333
|
|
2779
|
+
# ?s1 = "0.17158333333333342"^^xsd:decimal
|
|
2780
|
+
# ?s2 = "0.026386701388888913"^^xsd:decimal
|
|
2781
|
+
# ?s3 = "0.05582754166666668"^^xsd:decimal
|
|
2782
|
+
# ?sAbs = "0.34316666666666673"^^xsd:decimal
|
|
2783
|
+
# ?sumSq = "0.3891608750000001"^^xsd:decimal
|
|
2784
|
+
# ?tv = "0.17158333333333337"^^xsd:decimal
|
|
2785
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2785
2786
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2786
2787
|
# ----------------------------------------------------------------------
|
|
2787
2788
|
|
|
2788
|
-
_:sk_6 :sumSq 0.3891608750000001 .
|
|
2789
|
+
_:sk_6 :sumSq "0.3891608750000001"^^xsd:decimal .
|
|
2789
2790
|
|
|
2790
2791
|
# ----------------------------------------------------------------------
|
|
2791
2792
|
# Proof for derived triple:
|
|
2792
|
-
# _:sk_6 :gini 0.6108391249999999 .
|
|
2793
|
+
# _:sk_6 :gini "0.6108391249999999"^^xsd:decimal .
|
|
2793
2794
|
# It holds because the following instance of the rule body is provable:
|
|
2794
2795
|
# :MC1 :metrics _:sk_6 .
|
|
2795
2796
|
# _:sk_6 :pi _:sk_1 .
|
|
2796
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
2797
|
-
# _:sk_1 :pB 0.34275 .
|
|
2798
|
-
# _:sk_1 :pC 0.16175 .
|
|
2799
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2800
|
-
# (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
|
|
2801
|
-
# (0.34275 2.0) math:exponentiation 0.1174775625 .
|
|
2802
|
-
# (0.16175 2.0) math:exponentiation 0.0261630625 .
|
|
2803
|
-
# (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
|
|
2804
|
-
# (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
|
|
2805
|
-
# (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
|
|
2806
|
-
# (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
|
|
2807
|
-
# (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
|
|
2808
|
-
# 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
|
|
2809
|
-
# (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
|
|
2810
|
-
# 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
|
|
2811
|
-
# (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
|
|
2812
|
-
# -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
|
|
2813
|
-
# (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
|
|
2814
|
-
# (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
|
|
2815
|
-
# (0.5 0.34316666666666673) math:product 0.17158333333333337 .
|
|
2816
|
-
# (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
|
|
2817
|
-
# (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
|
|
2818
|
-
# (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
|
|
2819
|
-
# (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
|
|
2820
|
-
# (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
|
|
2821
|
-
# (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
|
|
2797
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
2798
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
2799
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
2800
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2801
|
+
# ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
|
|
2802
|
+
# ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
|
|
2803
|
+
# ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
|
|
2804
|
+
# ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
|
|
2805
|
+
# ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
|
|
2806
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
|
|
2807
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
|
|
2808
|
+
# ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
|
|
2809
|
+
# "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
|
|
2810
|
+
# ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
|
|
2811
|
+
# "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
|
|
2812
|
+
# ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
|
|
2813
|
+
# "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
|
|
2814
|
+
# ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
|
|
2815
|
+
# ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
|
|
2816
|
+
# (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
|
|
2817
|
+
# ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
|
|
2818
|
+
# ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
|
|
2819
|
+
# ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
|
|
2820
|
+
# ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
|
|
2821
|
+
# ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
|
|
2822
|
+
# ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
|
|
2822
2823
|
# via the schematic forward rule:
|
|
2823
2824
|
# {
|
|
2824
2825
|
# :MC1 :metrics ?m .
|
|
@@ -2857,71 +2858,71 @@ _:sk_6 :sumSq 0.3891608750000001 .
|
|
|
2857
2858
|
# ?m :l2ToUniform ?l2 .
|
|
2858
2859
|
# } .
|
|
2859
2860
|
# with substitution (on rule variables):
|
|
2860
|
-
# ?a = 0.49550000000000005
|
|
2861
|
-
# ?a2 = 0.24552025000000005
|
|
2862
|
-
# ?ab2 = 0.36299781250000007
|
|
2863
|
-
# ?ada = 0.16216666666666674
|
|
2864
|
-
# ?adb = 0.009416666666666684
|
|
2865
|
-
# ?adc = 0.1715833333333333
|
|
2866
|
-
# ?b = 0.34275
|
|
2867
|
-
# ?b2 = 0.1174775625
|
|
2868
|
-
# ?c = 0.16175
|
|
2869
|
-
# ?c2 = 0.0261630625
|
|
2870
|
-
# ?da = 0.16216666666666674
|
|
2871
|
-
# ?da2 = 0.026298027777777802
|
|
2872
|
-
# ?db = 0.009416666666666684
|
|
2873
|
-
# ?db2 = 0.00008867361111111145
|
|
2874
|
-
# ?dc = -0.1715833333333333
|
|
2875
|
-
# ?dc2 = 0.02944084027777777
|
|
2876
|
-
# ?effN = 2.569631389589202
|
|
2877
|
-
# ?gini = 0.6108391249999999
|
|
2878
|
-
# ?l2 = 0.23627852561472165
|
|
2861
|
+
# ?a = "0.49550000000000005"^^xsd:decimal
|
|
2862
|
+
# ?a2 = "0.24552025000000005"^^xsd:decimal
|
|
2863
|
+
# ?ab2 = "0.36299781250000007"^^xsd:decimal
|
|
2864
|
+
# ?ada = "0.16216666666666674"^^xsd:decimal
|
|
2865
|
+
# ?adb = "0.009416666666666684"^^xsd:decimal
|
|
2866
|
+
# ?adc = "0.1715833333333333"^^xsd:decimal
|
|
2867
|
+
# ?b = "0.34275"^^xsd:decimal
|
|
2868
|
+
# ?b2 = "0.1174775625"^^xsd:decimal
|
|
2869
|
+
# ?c = "0.16175"^^xsd:decimal
|
|
2870
|
+
# ?c2 = "0.0261630625"^^xsd:decimal
|
|
2871
|
+
# ?da = "0.16216666666666674"^^xsd:decimal
|
|
2872
|
+
# ?da2 = "0.026298027777777802"^^xsd:decimal
|
|
2873
|
+
# ?db = "0.009416666666666684"^^xsd:decimal
|
|
2874
|
+
# ?db2 = "0.00008867361111111145"^^xsd:decimal
|
|
2875
|
+
# ?dc = "-0.1715833333333333"^^xsd:decimal
|
|
2876
|
+
# ?dc2 = "0.02944084027777777"^^xsd:decimal
|
|
2877
|
+
# ?effN = "2.569631389589202"^^xsd:decimal
|
|
2878
|
+
# ?gini = "0.6108391249999999"^^xsd:decimal
|
|
2879
|
+
# ?l2 = "0.23627852561472165"^^xsd:decimal
|
|
2879
2880
|
# ?m = _:sk_6
|
|
2880
2881
|
# ?pi = _:sk_1
|
|
2881
|
-
# ?s1 = 0.17158333333333342
|
|
2882
|
-
# ?s2 = 0.026386701388888913
|
|
2883
|
-
# ?s3 = 0.05582754166666668
|
|
2884
|
-
# ?sAbs = 0.34316666666666673
|
|
2885
|
-
# ?sumSq = 0.3891608750000001
|
|
2886
|
-
# ?tv = 0.17158333333333337
|
|
2887
|
-
# ?u = 0.3333333333333333
|
|
2882
|
+
# ?s1 = "0.17158333333333342"^^xsd:decimal
|
|
2883
|
+
# ?s2 = "0.026386701388888913"^^xsd:decimal
|
|
2884
|
+
# ?s3 = "0.05582754166666668"^^xsd:decimal
|
|
2885
|
+
# ?sAbs = "0.34316666666666673"^^xsd:decimal
|
|
2886
|
+
# ?sumSq = "0.3891608750000001"^^xsd:decimal
|
|
2887
|
+
# ?tv = "0.17158333333333337"^^xsd:decimal
|
|
2888
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2888
2889
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2889
2890
|
# ----------------------------------------------------------------------
|
|
2890
2891
|
|
|
2891
|
-
_:sk_6 :gini 0.6108391249999999 .
|
|
2892
|
+
_:sk_6 :gini "0.6108391249999999"^^xsd:decimal .
|
|
2892
2893
|
|
|
2893
2894
|
# ----------------------------------------------------------------------
|
|
2894
2895
|
# Proof for derived triple:
|
|
2895
|
-
# _:sk_6 :effectiveStates 2.569631389589202 .
|
|
2896
|
+
# _:sk_6 :effectiveStates "2.569631389589202"^^xsd:decimal .
|
|
2896
2897
|
# It holds because the following instance of the rule body is provable:
|
|
2897
2898
|
# :MC1 :metrics _:sk_6 .
|
|
2898
2899
|
# _:sk_6 :pi _:sk_1 .
|
|
2899
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
2900
|
-
# _:sk_1 :pB 0.34275 .
|
|
2901
|
-
# _:sk_1 :pC 0.16175 .
|
|
2902
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
2903
|
-
# (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
|
|
2904
|
-
# (0.34275 2.0) math:exponentiation 0.1174775625 .
|
|
2905
|
-
# (0.16175 2.0) math:exponentiation 0.0261630625 .
|
|
2906
|
-
# (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
|
|
2907
|
-
# (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
|
|
2908
|
-
# (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
|
|
2909
|
-
# (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
|
|
2910
|
-
# (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
|
|
2911
|
-
# 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
|
|
2912
|
-
# (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
|
|
2913
|
-
# 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
|
|
2914
|
-
# (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
|
|
2915
|
-
# -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
|
|
2916
|
-
# (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
|
|
2917
|
-
# (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
|
|
2918
|
-
# (0.5 0.34316666666666673) math:product 0.17158333333333337 .
|
|
2919
|
-
# (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
|
|
2920
|
-
# (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
|
|
2921
|
-
# (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
|
|
2922
|
-
# (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
|
|
2923
|
-
# (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
|
|
2924
|
-
# (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
|
|
2900
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
2901
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
2902
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
2903
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
2904
|
+
# ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
|
|
2905
|
+
# ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
|
|
2906
|
+
# ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
|
|
2907
|
+
# ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
|
|
2908
|
+
# ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
|
|
2909
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
|
|
2910
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
|
|
2911
|
+
# ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
|
|
2912
|
+
# "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
|
|
2913
|
+
# ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
|
|
2914
|
+
# "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
|
|
2915
|
+
# ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
|
|
2916
|
+
# "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
|
|
2917
|
+
# ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
|
|
2918
|
+
# ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
|
|
2919
|
+
# (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
|
|
2920
|
+
# ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
|
|
2921
|
+
# ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
|
|
2922
|
+
# ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
|
|
2923
|
+
# ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
|
|
2924
|
+
# ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
|
|
2925
|
+
# ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
|
|
2925
2926
|
# via the schematic forward rule:
|
|
2926
2927
|
# {
|
|
2927
2928
|
# :MC1 :metrics ?m .
|
|
@@ -2960,71 +2961,71 @@ _:sk_6 :gini 0.6108391249999999 .
|
|
|
2960
2961
|
# ?m :l2ToUniform ?l2 .
|
|
2961
2962
|
# } .
|
|
2962
2963
|
# with substitution (on rule variables):
|
|
2963
|
-
# ?a = 0.49550000000000005
|
|
2964
|
-
# ?a2 = 0.24552025000000005
|
|
2965
|
-
# ?ab2 = 0.36299781250000007
|
|
2966
|
-
# ?ada = 0.16216666666666674
|
|
2967
|
-
# ?adb = 0.009416666666666684
|
|
2968
|
-
# ?adc = 0.1715833333333333
|
|
2969
|
-
# ?b = 0.34275
|
|
2970
|
-
# ?b2 = 0.1174775625
|
|
2971
|
-
# ?c = 0.16175
|
|
2972
|
-
# ?c2 = 0.0261630625
|
|
2973
|
-
# ?da = 0.16216666666666674
|
|
2974
|
-
# ?da2 = 0.026298027777777802
|
|
2975
|
-
# ?db = 0.009416666666666684
|
|
2976
|
-
# ?db2 = 0.00008867361111111145
|
|
2977
|
-
# ?dc = -0.1715833333333333
|
|
2978
|
-
# ?dc2 = 0.02944084027777777
|
|
2979
|
-
# ?effN = 2.569631389589202
|
|
2980
|
-
# ?gini = 0.6108391249999999
|
|
2981
|
-
# ?l2 = 0.23627852561472165
|
|
2964
|
+
# ?a = "0.49550000000000005"^^xsd:decimal
|
|
2965
|
+
# ?a2 = "0.24552025000000005"^^xsd:decimal
|
|
2966
|
+
# ?ab2 = "0.36299781250000007"^^xsd:decimal
|
|
2967
|
+
# ?ada = "0.16216666666666674"^^xsd:decimal
|
|
2968
|
+
# ?adb = "0.009416666666666684"^^xsd:decimal
|
|
2969
|
+
# ?adc = "0.1715833333333333"^^xsd:decimal
|
|
2970
|
+
# ?b = "0.34275"^^xsd:decimal
|
|
2971
|
+
# ?b2 = "0.1174775625"^^xsd:decimal
|
|
2972
|
+
# ?c = "0.16175"^^xsd:decimal
|
|
2973
|
+
# ?c2 = "0.0261630625"^^xsd:decimal
|
|
2974
|
+
# ?da = "0.16216666666666674"^^xsd:decimal
|
|
2975
|
+
# ?da2 = "0.026298027777777802"^^xsd:decimal
|
|
2976
|
+
# ?db = "0.009416666666666684"^^xsd:decimal
|
|
2977
|
+
# ?db2 = "0.00008867361111111145"^^xsd:decimal
|
|
2978
|
+
# ?dc = "-0.1715833333333333"^^xsd:decimal
|
|
2979
|
+
# ?dc2 = "0.02944084027777777"^^xsd:decimal
|
|
2980
|
+
# ?effN = "2.569631389589202"^^xsd:decimal
|
|
2981
|
+
# ?gini = "0.6108391249999999"^^xsd:decimal
|
|
2982
|
+
# ?l2 = "0.23627852561472165"^^xsd:decimal
|
|
2982
2983
|
# ?m = _:sk_6
|
|
2983
2984
|
# ?pi = _:sk_1
|
|
2984
|
-
# ?s1 = 0.17158333333333342
|
|
2985
|
-
# ?s2 = 0.026386701388888913
|
|
2986
|
-
# ?s3 = 0.05582754166666668
|
|
2987
|
-
# ?sAbs = 0.34316666666666673
|
|
2988
|
-
# ?sumSq = 0.3891608750000001
|
|
2989
|
-
# ?tv = 0.17158333333333337
|
|
2990
|
-
# ?u = 0.3333333333333333
|
|
2985
|
+
# ?s1 = "0.17158333333333342"^^xsd:decimal
|
|
2986
|
+
# ?s2 = "0.026386701388888913"^^xsd:decimal
|
|
2987
|
+
# ?s3 = "0.05582754166666668"^^xsd:decimal
|
|
2988
|
+
# ?sAbs = "0.34316666666666673"^^xsd:decimal
|
|
2989
|
+
# ?sumSq = "0.3891608750000001"^^xsd:decimal
|
|
2990
|
+
# ?tv = "0.17158333333333337"^^xsd:decimal
|
|
2991
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
2991
2992
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
2992
2993
|
# ----------------------------------------------------------------------
|
|
2993
2994
|
|
|
2994
|
-
_:sk_6 :effectiveStates 2.569631389589202 .
|
|
2995
|
+
_:sk_6 :effectiveStates "2.569631389589202"^^xsd:decimal .
|
|
2995
2996
|
|
|
2996
2997
|
# ----------------------------------------------------------------------
|
|
2997
2998
|
# Proof for derived triple:
|
|
2998
|
-
# _:sk_6 :tvToUniform 0.17158333333333337 .
|
|
2999
|
+
# _:sk_6 :tvToUniform "0.17158333333333337"^^xsd:decimal .
|
|
2999
3000
|
# It holds because the following instance of the rule body is provable:
|
|
3000
3001
|
# :MC1 :metrics _:sk_6 .
|
|
3001
3002
|
# _:sk_6 :pi _:sk_1 .
|
|
3002
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
3003
|
-
# _:sk_1 :pB 0.34275 .
|
|
3004
|
-
# _:sk_1 :pC 0.16175 .
|
|
3005
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3006
|
-
# (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
|
|
3007
|
-
# (0.34275 2.0) math:exponentiation 0.1174775625 .
|
|
3008
|
-
# (0.16175 2.0) math:exponentiation 0.0261630625 .
|
|
3009
|
-
# (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
|
|
3010
|
-
# (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
|
|
3011
|
-
# (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
|
|
3012
|
-
# (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
|
|
3013
|
-
# (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
|
|
3014
|
-
# 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
|
|
3015
|
-
# (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
|
|
3016
|
-
# 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
|
|
3017
|
-
# (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
|
|
3018
|
-
# -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
|
|
3019
|
-
# (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
|
|
3020
|
-
# (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
|
|
3021
|
-
# (0.5 0.34316666666666673) math:product 0.17158333333333337 .
|
|
3022
|
-
# (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
|
|
3023
|
-
# (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
|
|
3024
|
-
# (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
|
|
3025
|
-
# (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
|
|
3026
|
-
# (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
|
|
3027
|
-
# (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
|
|
3003
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
3004
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
3005
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
3006
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3007
|
+
# ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
|
|
3008
|
+
# ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
|
|
3009
|
+
# ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
|
|
3010
|
+
# ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
|
|
3011
|
+
# ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
|
|
3012
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
|
|
3013
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
|
|
3014
|
+
# ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
|
|
3015
|
+
# "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
|
|
3016
|
+
# ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
|
|
3017
|
+
# "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
|
|
3018
|
+
# ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
|
|
3019
|
+
# "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
|
|
3020
|
+
# ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
|
|
3021
|
+
# ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
|
|
3022
|
+
# (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
|
|
3023
|
+
# ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
|
|
3024
|
+
# ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
|
|
3025
|
+
# ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
|
|
3026
|
+
# ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
|
|
3027
|
+
# ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
|
|
3028
|
+
# ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
|
|
3028
3029
|
# via the schematic forward rule:
|
|
3029
3030
|
# {
|
|
3030
3031
|
# :MC1 :metrics ?m .
|
|
@@ -3063,71 +3064,71 @@ _:sk_6 :effectiveStates 2.569631389589202 .
|
|
|
3063
3064
|
# ?m :l2ToUniform ?l2 .
|
|
3064
3065
|
# } .
|
|
3065
3066
|
# with substitution (on rule variables):
|
|
3066
|
-
# ?a = 0.49550000000000005
|
|
3067
|
-
# ?a2 = 0.24552025000000005
|
|
3068
|
-
# ?ab2 = 0.36299781250000007
|
|
3069
|
-
# ?ada = 0.16216666666666674
|
|
3070
|
-
# ?adb = 0.009416666666666684
|
|
3071
|
-
# ?adc = 0.1715833333333333
|
|
3072
|
-
# ?b = 0.34275
|
|
3073
|
-
# ?b2 = 0.1174775625
|
|
3074
|
-
# ?c = 0.16175
|
|
3075
|
-
# ?c2 = 0.0261630625
|
|
3076
|
-
# ?da = 0.16216666666666674
|
|
3077
|
-
# ?da2 = 0.026298027777777802
|
|
3078
|
-
# ?db = 0.009416666666666684
|
|
3079
|
-
# ?db2 = 0.00008867361111111145
|
|
3080
|
-
# ?dc = -0.1715833333333333
|
|
3081
|
-
# ?dc2 = 0.02944084027777777
|
|
3082
|
-
# ?effN = 2.569631389589202
|
|
3083
|
-
# ?gini = 0.6108391249999999
|
|
3084
|
-
# ?l2 = 0.23627852561472165
|
|
3067
|
+
# ?a = "0.49550000000000005"^^xsd:decimal
|
|
3068
|
+
# ?a2 = "0.24552025000000005"^^xsd:decimal
|
|
3069
|
+
# ?ab2 = "0.36299781250000007"^^xsd:decimal
|
|
3070
|
+
# ?ada = "0.16216666666666674"^^xsd:decimal
|
|
3071
|
+
# ?adb = "0.009416666666666684"^^xsd:decimal
|
|
3072
|
+
# ?adc = "0.1715833333333333"^^xsd:decimal
|
|
3073
|
+
# ?b = "0.34275"^^xsd:decimal
|
|
3074
|
+
# ?b2 = "0.1174775625"^^xsd:decimal
|
|
3075
|
+
# ?c = "0.16175"^^xsd:decimal
|
|
3076
|
+
# ?c2 = "0.0261630625"^^xsd:decimal
|
|
3077
|
+
# ?da = "0.16216666666666674"^^xsd:decimal
|
|
3078
|
+
# ?da2 = "0.026298027777777802"^^xsd:decimal
|
|
3079
|
+
# ?db = "0.009416666666666684"^^xsd:decimal
|
|
3080
|
+
# ?db2 = "0.00008867361111111145"^^xsd:decimal
|
|
3081
|
+
# ?dc = "-0.1715833333333333"^^xsd:decimal
|
|
3082
|
+
# ?dc2 = "0.02944084027777777"^^xsd:decimal
|
|
3083
|
+
# ?effN = "2.569631389589202"^^xsd:decimal
|
|
3084
|
+
# ?gini = "0.6108391249999999"^^xsd:decimal
|
|
3085
|
+
# ?l2 = "0.23627852561472165"^^xsd:decimal
|
|
3085
3086
|
# ?m = _:sk_6
|
|
3086
3087
|
# ?pi = _:sk_1
|
|
3087
|
-
# ?s1 = 0.17158333333333342
|
|
3088
|
-
# ?s2 = 0.026386701388888913
|
|
3089
|
-
# ?s3 = 0.05582754166666668
|
|
3090
|
-
# ?sAbs = 0.34316666666666673
|
|
3091
|
-
# ?sumSq = 0.3891608750000001
|
|
3092
|
-
# ?tv = 0.17158333333333337
|
|
3093
|
-
# ?u = 0.3333333333333333
|
|
3088
|
+
# ?s1 = "0.17158333333333342"^^xsd:decimal
|
|
3089
|
+
# ?s2 = "0.026386701388888913"^^xsd:decimal
|
|
3090
|
+
# ?s3 = "0.05582754166666668"^^xsd:decimal
|
|
3091
|
+
# ?sAbs = "0.34316666666666673"^^xsd:decimal
|
|
3092
|
+
# ?sumSq = "0.3891608750000001"^^xsd:decimal
|
|
3093
|
+
# ?tv = "0.17158333333333337"^^xsd:decimal
|
|
3094
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3094
3095
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3095
3096
|
# ----------------------------------------------------------------------
|
|
3096
3097
|
|
|
3097
|
-
_:sk_6 :tvToUniform 0.17158333333333337 .
|
|
3098
|
+
_:sk_6 :tvToUniform "0.17158333333333337"^^xsd:decimal .
|
|
3098
3099
|
|
|
3099
3100
|
# ----------------------------------------------------------------------
|
|
3100
3101
|
# Proof for derived triple:
|
|
3101
|
-
# _:sk_6 :l2ToUniform 0.23627852561472165 .
|
|
3102
|
+
# _:sk_6 :l2ToUniform "0.23627852561472165"^^xsd:decimal .
|
|
3102
3103
|
# It holds because the following instance of the rule body is provable:
|
|
3103
3104
|
# :MC1 :metrics _:sk_6 .
|
|
3104
3105
|
# _:sk_6 :pi _:sk_1 .
|
|
3105
|
-
# _:sk_1 :pA 0.49550000000000005 .
|
|
3106
|
-
# _:sk_1 :pB 0.34275 .
|
|
3107
|
-
# _:sk_1 :pC 0.16175 .
|
|
3108
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3109
|
-
# (0.49550000000000005 2.0) math:exponentiation 0.24552025000000005 .
|
|
3110
|
-
# (0.34275 2.0) math:exponentiation 0.1174775625 .
|
|
3111
|
-
# (0.16175 2.0) math:exponentiation 0.0261630625 .
|
|
3112
|
-
# (0.24552025000000005 0.1174775625) math:sum 0.36299781250000007 .
|
|
3113
|
-
# (0.36299781250000007 0.0261630625) math:sum 0.3891608750000001 .
|
|
3114
|
-
# (1.0 0.3891608750000001) math:difference 0.6108391249999999 .
|
|
3115
|
-
# (1.0 0.3891608750000001) math:quotient 2.569631389589202 .
|
|
3116
|
-
# (0.49550000000000005 0.3333333333333333) math:difference 0.16216666666666674 .
|
|
3117
|
-
# 0.16216666666666674 math:absoluteValue 0.16216666666666674 .
|
|
3118
|
-
# (0.34275 0.3333333333333333) math:difference 0.009416666666666684 .
|
|
3119
|
-
# 0.009416666666666684 math:absoluteValue 0.009416666666666684 .
|
|
3120
|
-
# (0.16175 0.3333333333333333) math:difference -0.1715833333333333 .
|
|
3121
|
-
# -0.1715833333333333 math:absoluteValue 0.1715833333333333 .
|
|
3122
|
-
# (0.16216666666666674 0.009416666666666684) math:sum 0.17158333333333342 .
|
|
3123
|
-
# (0.17158333333333342 0.1715833333333333) math:sum 0.34316666666666673 .
|
|
3124
|
-
# (0.5 0.34316666666666673) math:product 0.17158333333333337 .
|
|
3125
|
-
# (0.16216666666666674 2.0) math:exponentiation 0.026298027777777802 .
|
|
3126
|
-
# (0.009416666666666684 2.0) math:exponentiation 0.00008867361111111145 .
|
|
3127
|
-
# (-0.1715833333333333 2.0) math:exponentiation 0.02944084027777777 .
|
|
3128
|
-
# (0.026298027777777802 0.00008867361111111145) math:sum 0.026386701388888913 .
|
|
3129
|
-
# (0.026386701388888913 0.02944084027777777) math:sum 0.05582754166666668 .
|
|
3130
|
-
# (0.05582754166666668 0.5) math:exponentiation 0.23627852561472165 .
|
|
3106
|
+
# _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
|
|
3107
|
+
# _:sk_1 :pB "0.34275"^^xsd:decimal .
|
|
3108
|
+
# _:sk_1 :pC "0.16175"^^xsd:decimal .
|
|
3109
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3110
|
+
# ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
|
|
3111
|
+
# ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
|
|
3112
|
+
# ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
|
|
3113
|
+
# ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
|
|
3114
|
+
# ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
|
|
3115
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
|
|
3116
|
+
# (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
|
|
3117
|
+
# ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
|
|
3118
|
+
# "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
|
|
3119
|
+
# ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
|
|
3120
|
+
# "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
|
|
3121
|
+
# ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
|
|
3122
|
+
# "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
|
|
3123
|
+
# ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
|
|
3124
|
+
# ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
|
|
3125
|
+
# (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
|
|
3126
|
+
# ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
|
|
3127
|
+
# ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
|
|
3128
|
+
# ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
|
|
3129
|
+
# ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
|
|
3130
|
+
# ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
|
|
3131
|
+
# ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
|
|
3131
3132
|
# via the schematic forward rule:
|
|
3132
3133
|
# {
|
|
3133
3134
|
# :MC1 :metrics ?m .
|
|
@@ -3166,71 +3167,71 @@ _:sk_6 :tvToUniform 0.17158333333333337 .
|
|
|
3166
3167
|
# ?m :l2ToUniform ?l2 .
|
|
3167
3168
|
# } .
|
|
3168
3169
|
# with substitution (on rule variables):
|
|
3169
|
-
# ?a = 0.49550000000000005
|
|
3170
|
-
# ?a2 = 0.24552025000000005
|
|
3171
|
-
# ?ab2 = 0.36299781250000007
|
|
3172
|
-
# ?ada = 0.16216666666666674
|
|
3173
|
-
# ?adb = 0.009416666666666684
|
|
3174
|
-
# ?adc = 0.1715833333333333
|
|
3175
|
-
# ?b = 0.34275
|
|
3176
|
-
# ?b2 = 0.1174775625
|
|
3177
|
-
# ?c = 0.16175
|
|
3178
|
-
# ?c2 = 0.0261630625
|
|
3179
|
-
# ?da = 0.16216666666666674
|
|
3180
|
-
# ?da2 = 0.026298027777777802
|
|
3181
|
-
# ?db = 0.009416666666666684
|
|
3182
|
-
# ?db2 = 0.00008867361111111145
|
|
3183
|
-
# ?dc = -0.1715833333333333
|
|
3184
|
-
# ?dc2 = 0.02944084027777777
|
|
3185
|
-
# ?effN = 2.569631389589202
|
|
3186
|
-
# ?gini = 0.6108391249999999
|
|
3187
|
-
# ?l2 = 0.23627852561472165
|
|
3170
|
+
# ?a = "0.49550000000000005"^^xsd:decimal
|
|
3171
|
+
# ?a2 = "0.24552025000000005"^^xsd:decimal
|
|
3172
|
+
# ?ab2 = "0.36299781250000007"^^xsd:decimal
|
|
3173
|
+
# ?ada = "0.16216666666666674"^^xsd:decimal
|
|
3174
|
+
# ?adb = "0.009416666666666684"^^xsd:decimal
|
|
3175
|
+
# ?adc = "0.1715833333333333"^^xsd:decimal
|
|
3176
|
+
# ?b = "0.34275"^^xsd:decimal
|
|
3177
|
+
# ?b2 = "0.1174775625"^^xsd:decimal
|
|
3178
|
+
# ?c = "0.16175"^^xsd:decimal
|
|
3179
|
+
# ?c2 = "0.0261630625"^^xsd:decimal
|
|
3180
|
+
# ?da = "0.16216666666666674"^^xsd:decimal
|
|
3181
|
+
# ?da2 = "0.026298027777777802"^^xsd:decimal
|
|
3182
|
+
# ?db = "0.009416666666666684"^^xsd:decimal
|
|
3183
|
+
# ?db2 = "0.00008867361111111145"^^xsd:decimal
|
|
3184
|
+
# ?dc = "-0.1715833333333333"^^xsd:decimal
|
|
3185
|
+
# ?dc2 = "0.02944084027777777"^^xsd:decimal
|
|
3186
|
+
# ?effN = "2.569631389589202"^^xsd:decimal
|
|
3187
|
+
# ?gini = "0.6108391249999999"^^xsd:decimal
|
|
3188
|
+
# ?l2 = "0.23627852561472165"^^xsd:decimal
|
|
3188
3189
|
# ?m = _:sk_6
|
|
3189
3190
|
# ?pi = _:sk_1
|
|
3190
|
-
# ?s1 = 0.17158333333333342
|
|
3191
|
-
# ?s2 = 0.026386701388888913
|
|
3192
|
-
# ?s3 = 0.05582754166666668
|
|
3193
|
-
# ?sAbs = 0.34316666666666673
|
|
3194
|
-
# ?sumSq = 0.3891608750000001
|
|
3195
|
-
# ?tv = 0.17158333333333337
|
|
3196
|
-
# ?u = 0.3333333333333333
|
|
3191
|
+
# ?s1 = "0.17158333333333342"^^xsd:decimal
|
|
3192
|
+
# ?s2 = "0.026386701388888913"^^xsd:decimal
|
|
3193
|
+
# ?s3 = "0.05582754166666668"^^xsd:decimal
|
|
3194
|
+
# ?sAbs = "0.34316666666666673"^^xsd:decimal
|
|
3195
|
+
# ?sumSq = "0.3891608750000001"^^xsd:decimal
|
|
3196
|
+
# ?tv = "0.17158333333333337"^^xsd:decimal
|
|
3197
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3197
3198
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3198
3199
|
# ----------------------------------------------------------------------
|
|
3199
3200
|
|
|
3200
|
-
_:sk_6 :l2ToUniform 0.23627852561472165 .
|
|
3201
|
+
_:sk_6 :l2ToUniform "0.23627852561472165"^^xsd:decimal .
|
|
3201
3202
|
|
|
3202
3203
|
# ----------------------------------------------------------------------
|
|
3203
3204
|
# Proof for derived triple:
|
|
3204
|
-
# _:sk_5 :sumSq 0.41145000000000004 .
|
|
3205
|
+
# _:sk_5 :sumSq "0.41145000000000004"^^xsd:decimal .
|
|
3205
3206
|
# It holds because the following instance of the rule body is provable:
|
|
3206
3207
|
# :MC1 :metrics _:sk_5 .
|
|
3207
3208
|
# _:sk_5 :pi _:sk_0 .
|
|
3208
|
-
# _:sk_0 :pA 0.535 .
|
|
3209
|
-
# _:sk_0 :pB 0.325 .
|
|
3210
|
-
# _:sk_0 :pC 0.14 .
|
|
3211
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3212
|
-
# (0.535 2.0) math:exponentiation 0.286225 .
|
|
3213
|
-
# (0.325 2.0) math:exponentiation 0.10562500000000001 .
|
|
3214
|
-
# (0.14 2.0) math:exponentiation 0.019600000000000003 .
|
|
3215
|
-
# (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
|
|
3216
|
-
# (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
|
|
3217
|
-
# (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
|
|
3218
|
-
# (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
|
|
3219
|
-
# (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
|
|
3220
|
-
# 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
|
|
3221
|
-
# (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
|
|
3222
|
-
# -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
|
|
3223
|
-
# (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
|
|
3224
|
-
# -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
|
|
3225
|
-
# (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
|
|
3226
|
-
# (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
|
|
3227
|
-
# (0.5 0.4033333333333333) math:product 0.20166666666666666 .
|
|
3228
|
-
# (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
|
|
3229
|
-
# (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
|
|
3230
|
-
# (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
|
|
3231
|
-
# (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
|
|
3232
|
-
# (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
|
|
3233
|
-
# (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
|
|
3209
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
3210
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
3211
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
3212
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3213
|
+
# ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
|
|
3214
|
+
# ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
|
|
3215
|
+
# ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
|
|
3216
|
+
# ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
|
|
3217
|
+
# ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
|
|
3218
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
|
|
3219
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
|
|
3220
|
+
# ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
|
|
3221
|
+
# "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
|
|
3222
|
+
# ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
|
|
3223
|
+
# "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
|
|
3224
|
+
# ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
|
|
3225
|
+
# "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
|
|
3226
|
+
# ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
|
|
3227
|
+
# ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
|
|
3228
|
+
# (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
|
|
3229
|
+
# ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
|
|
3230
|
+
# ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
|
|
3231
|
+
# ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
|
|
3232
|
+
# ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
|
|
3233
|
+
# ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
|
|
3234
|
+
# ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
|
|
3234
3235
|
# via the schematic forward rule:
|
|
3235
3236
|
# {
|
|
3236
3237
|
# :MC1 :metrics ?m .
|
|
@@ -3269,71 +3270,71 @@ _:sk_6 :l2ToUniform 0.23627852561472165 .
|
|
|
3269
3270
|
# ?m :l2ToUniform ?l2 .
|
|
3270
3271
|
# } .
|
|
3271
3272
|
# with substitution (on rule variables):
|
|
3272
|
-
# ?a = 0.535
|
|
3273
|
-
# ?a2 = 0.286225
|
|
3274
|
-
# ?ab2 = 0.39185000000000003
|
|
3275
|
-
# ?ada = 0.20166666666666672
|
|
3276
|
-
# ?adb = 0.008333333333333304
|
|
3277
|
-
# ?adc = 0.1933333333333333
|
|
3278
|
-
# ?b = 0.325
|
|
3279
|
-
# ?b2 = 0.10562500000000001
|
|
3280
|
-
# ?c = 0.14
|
|
3281
|
-
# ?c2 = 0.019600000000000003
|
|
3282
|
-
# ?da = 0.20166666666666672
|
|
3283
|
-
# ?da2 = 0.040669444444444466
|
|
3284
|
-
# ?db = -0.008333333333333304
|
|
3285
|
-
# ?db2 = 0.00006944444444444396
|
|
3286
|
-
# ?dc = -0.1933333333333333
|
|
3287
|
-
# ?dc2 = 0.03737777777777777
|
|
3288
|
-
# ?effN = 2.4304289707133306
|
|
3289
|
-
# ?gini = 0.5885499999999999
|
|
3290
|
-
# ?l2 = 0.2794935896700793
|
|
3273
|
+
# ?a = "0.535"^^xsd:decimal
|
|
3274
|
+
# ?a2 = "0.286225"^^xsd:decimal
|
|
3275
|
+
# ?ab2 = "0.39185000000000003"^^xsd:decimal
|
|
3276
|
+
# ?ada = "0.20166666666666672"^^xsd:decimal
|
|
3277
|
+
# ?adb = "0.008333333333333304"^^xsd:decimal
|
|
3278
|
+
# ?adc = "0.1933333333333333"^^xsd:decimal
|
|
3279
|
+
# ?b = "0.325"^^xsd:decimal
|
|
3280
|
+
# ?b2 = "0.10562500000000001"^^xsd:decimal
|
|
3281
|
+
# ?c = "0.14"^^xsd:decimal
|
|
3282
|
+
# ?c2 = "0.019600000000000003"^^xsd:decimal
|
|
3283
|
+
# ?da = "0.20166666666666672"^^xsd:decimal
|
|
3284
|
+
# ?da2 = "0.040669444444444466"^^xsd:decimal
|
|
3285
|
+
# ?db = "-0.008333333333333304"^^xsd:decimal
|
|
3286
|
+
# ?db2 = "0.00006944444444444396"^^xsd:decimal
|
|
3287
|
+
# ?dc = "-0.1933333333333333"^^xsd:decimal
|
|
3288
|
+
# ?dc2 = "0.03737777777777777"^^xsd:decimal
|
|
3289
|
+
# ?effN = "2.4304289707133306"^^xsd:decimal
|
|
3290
|
+
# ?gini = "0.5885499999999999"^^xsd:decimal
|
|
3291
|
+
# ?l2 = "0.2794935896700793"^^xsd:decimal
|
|
3291
3292
|
# ?m = _:sk_5
|
|
3292
3293
|
# ?pi = _:sk_0
|
|
3293
|
-
# ?s1 = 0.21000000000000002
|
|
3294
|
-
# ?s2 = 0.04073888888888891
|
|
3295
|
-
# ?s3 = 0.07811666666666667
|
|
3296
|
-
# ?sAbs = 0.4033333333333333
|
|
3297
|
-
# ?sumSq = 0.41145000000000004
|
|
3298
|
-
# ?tv = 0.20166666666666666
|
|
3299
|
-
# ?u = 0.3333333333333333
|
|
3294
|
+
# ?s1 = "0.21000000000000002"^^xsd:decimal
|
|
3295
|
+
# ?s2 = "0.04073888888888891"^^xsd:decimal
|
|
3296
|
+
# ?s3 = "0.07811666666666667"^^xsd:decimal
|
|
3297
|
+
# ?sAbs = "0.4033333333333333"^^xsd:decimal
|
|
3298
|
+
# ?sumSq = "0.41145000000000004"^^xsd:decimal
|
|
3299
|
+
# ?tv = "0.20166666666666666"^^xsd:decimal
|
|
3300
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3300
3301
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3301
3302
|
# ----------------------------------------------------------------------
|
|
3302
3303
|
|
|
3303
|
-
_:sk_5 :sumSq 0.41145000000000004 .
|
|
3304
|
+
_:sk_5 :sumSq "0.41145000000000004"^^xsd:decimal .
|
|
3304
3305
|
|
|
3305
3306
|
# ----------------------------------------------------------------------
|
|
3306
3307
|
# Proof for derived triple:
|
|
3307
|
-
# _:sk_5 :gini 0.5885499999999999 .
|
|
3308
|
+
# _:sk_5 :gini "0.5885499999999999"^^xsd:decimal .
|
|
3308
3309
|
# It holds because the following instance of the rule body is provable:
|
|
3309
3310
|
# :MC1 :metrics _:sk_5 .
|
|
3310
3311
|
# _:sk_5 :pi _:sk_0 .
|
|
3311
|
-
# _:sk_0 :pA 0.535 .
|
|
3312
|
-
# _:sk_0 :pB 0.325 .
|
|
3313
|
-
# _:sk_0 :pC 0.14 .
|
|
3314
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3315
|
-
# (0.535 2.0) math:exponentiation 0.286225 .
|
|
3316
|
-
# (0.325 2.0) math:exponentiation 0.10562500000000001 .
|
|
3317
|
-
# (0.14 2.0) math:exponentiation 0.019600000000000003 .
|
|
3318
|
-
# (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
|
|
3319
|
-
# (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
|
|
3320
|
-
# (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
|
|
3321
|
-
# (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
|
|
3322
|
-
# (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
|
|
3323
|
-
# 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
|
|
3324
|
-
# (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
|
|
3325
|
-
# -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
|
|
3326
|
-
# (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
|
|
3327
|
-
# -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
|
|
3328
|
-
# (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
|
|
3329
|
-
# (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
|
|
3330
|
-
# (0.5 0.4033333333333333) math:product 0.20166666666666666 .
|
|
3331
|
-
# (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
|
|
3332
|
-
# (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
|
|
3333
|
-
# (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
|
|
3334
|
-
# (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
|
|
3335
|
-
# (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
|
|
3336
|
-
# (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
|
|
3312
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
3313
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
3314
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
3315
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3316
|
+
# ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
|
|
3317
|
+
# ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
|
|
3318
|
+
# ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
|
|
3319
|
+
# ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
|
|
3320
|
+
# ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
|
|
3321
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
|
|
3322
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
|
|
3323
|
+
# ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
|
|
3324
|
+
# "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
|
|
3325
|
+
# ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
|
|
3326
|
+
# "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
|
|
3327
|
+
# ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
|
|
3328
|
+
# "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
|
|
3329
|
+
# ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
|
|
3330
|
+
# ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
|
|
3331
|
+
# (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
|
|
3332
|
+
# ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
|
|
3333
|
+
# ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
|
|
3334
|
+
# ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
|
|
3335
|
+
# ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
|
|
3336
|
+
# ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
|
|
3337
|
+
# ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
|
|
3337
3338
|
# via the schematic forward rule:
|
|
3338
3339
|
# {
|
|
3339
3340
|
# :MC1 :metrics ?m .
|
|
@@ -3372,71 +3373,71 @@ _:sk_5 :sumSq 0.41145000000000004 .
|
|
|
3372
3373
|
# ?m :l2ToUniform ?l2 .
|
|
3373
3374
|
# } .
|
|
3374
3375
|
# with substitution (on rule variables):
|
|
3375
|
-
# ?a = 0.535
|
|
3376
|
-
# ?a2 = 0.286225
|
|
3377
|
-
# ?ab2 = 0.39185000000000003
|
|
3378
|
-
# ?ada = 0.20166666666666672
|
|
3379
|
-
# ?adb = 0.008333333333333304
|
|
3380
|
-
# ?adc = 0.1933333333333333
|
|
3381
|
-
# ?b = 0.325
|
|
3382
|
-
# ?b2 = 0.10562500000000001
|
|
3383
|
-
# ?c = 0.14
|
|
3384
|
-
# ?c2 = 0.019600000000000003
|
|
3385
|
-
# ?da = 0.20166666666666672
|
|
3386
|
-
# ?da2 = 0.040669444444444466
|
|
3387
|
-
# ?db = -0.008333333333333304
|
|
3388
|
-
# ?db2 = 0.00006944444444444396
|
|
3389
|
-
# ?dc = -0.1933333333333333
|
|
3390
|
-
# ?dc2 = 0.03737777777777777
|
|
3391
|
-
# ?effN = 2.4304289707133306
|
|
3392
|
-
# ?gini = 0.5885499999999999
|
|
3393
|
-
# ?l2 = 0.2794935896700793
|
|
3376
|
+
# ?a = "0.535"^^xsd:decimal
|
|
3377
|
+
# ?a2 = "0.286225"^^xsd:decimal
|
|
3378
|
+
# ?ab2 = "0.39185000000000003"^^xsd:decimal
|
|
3379
|
+
# ?ada = "0.20166666666666672"^^xsd:decimal
|
|
3380
|
+
# ?adb = "0.008333333333333304"^^xsd:decimal
|
|
3381
|
+
# ?adc = "0.1933333333333333"^^xsd:decimal
|
|
3382
|
+
# ?b = "0.325"^^xsd:decimal
|
|
3383
|
+
# ?b2 = "0.10562500000000001"^^xsd:decimal
|
|
3384
|
+
# ?c = "0.14"^^xsd:decimal
|
|
3385
|
+
# ?c2 = "0.019600000000000003"^^xsd:decimal
|
|
3386
|
+
# ?da = "0.20166666666666672"^^xsd:decimal
|
|
3387
|
+
# ?da2 = "0.040669444444444466"^^xsd:decimal
|
|
3388
|
+
# ?db = "-0.008333333333333304"^^xsd:decimal
|
|
3389
|
+
# ?db2 = "0.00006944444444444396"^^xsd:decimal
|
|
3390
|
+
# ?dc = "-0.1933333333333333"^^xsd:decimal
|
|
3391
|
+
# ?dc2 = "0.03737777777777777"^^xsd:decimal
|
|
3392
|
+
# ?effN = "2.4304289707133306"^^xsd:decimal
|
|
3393
|
+
# ?gini = "0.5885499999999999"^^xsd:decimal
|
|
3394
|
+
# ?l2 = "0.2794935896700793"^^xsd:decimal
|
|
3394
3395
|
# ?m = _:sk_5
|
|
3395
3396
|
# ?pi = _:sk_0
|
|
3396
|
-
# ?s1 = 0.21000000000000002
|
|
3397
|
-
# ?s2 = 0.04073888888888891
|
|
3398
|
-
# ?s3 = 0.07811666666666667
|
|
3399
|
-
# ?sAbs = 0.4033333333333333
|
|
3400
|
-
# ?sumSq = 0.41145000000000004
|
|
3401
|
-
# ?tv = 0.20166666666666666
|
|
3402
|
-
# ?u = 0.3333333333333333
|
|
3397
|
+
# ?s1 = "0.21000000000000002"^^xsd:decimal
|
|
3398
|
+
# ?s2 = "0.04073888888888891"^^xsd:decimal
|
|
3399
|
+
# ?s3 = "0.07811666666666667"^^xsd:decimal
|
|
3400
|
+
# ?sAbs = "0.4033333333333333"^^xsd:decimal
|
|
3401
|
+
# ?sumSq = "0.41145000000000004"^^xsd:decimal
|
|
3402
|
+
# ?tv = "0.20166666666666666"^^xsd:decimal
|
|
3403
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3403
3404
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3404
3405
|
# ----------------------------------------------------------------------
|
|
3405
3406
|
|
|
3406
|
-
_:sk_5 :gini 0.5885499999999999 .
|
|
3407
|
+
_:sk_5 :gini "0.5885499999999999"^^xsd:decimal .
|
|
3407
3408
|
|
|
3408
3409
|
# ----------------------------------------------------------------------
|
|
3409
3410
|
# Proof for derived triple:
|
|
3410
|
-
# _:sk_5 :effectiveStates 2.4304289707133306 .
|
|
3411
|
+
# _:sk_5 :effectiveStates "2.4304289707133306"^^xsd:decimal .
|
|
3411
3412
|
# It holds because the following instance of the rule body is provable:
|
|
3412
3413
|
# :MC1 :metrics _:sk_5 .
|
|
3413
3414
|
# _:sk_5 :pi _:sk_0 .
|
|
3414
|
-
# _:sk_0 :pA 0.535 .
|
|
3415
|
-
# _:sk_0 :pB 0.325 .
|
|
3416
|
-
# _:sk_0 :pC 0.14 .
|
|
3417
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3418
|
-
# (0.535 2.0) math:exponentiation 0.286225 .
|
|
3419
|
-
# (0.325 2.0) math:exponentiation 0.10562500000000001 .
|
|
3420
|
-
# (0.14 2.0) math:exponentiation 0.019600000000000003 .
|
|
3421
|
-
# (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
|
|
3422
|
-
# (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
|
|
3423
|
-
# (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
|
|
3424
|
-
# (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
|
|
3425
|
-
# (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
|
|
3426
|
-
# 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
|
|
3427
|
-
# (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
|
|
3428
|
-
# -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
|
|
3429
|
-
# (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
|
|
3430
|
-
# -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
|
|
3431
|
-
# (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
|
|
3432
|
-
# (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
|
|
3433
|
-
# (0.5 0.4033333333333333) math:product 0.20166666666666666 .
|
|
3434
|
-
# (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
|
|
3435
|
-
# (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
|
|
3436
|
-
# (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
|
|
3437
|
-
# (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
|
|
3438
|
-
# (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
|
|
3439
|
-
# (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
|
|
3415
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
3416
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
3417
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
3418
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3419
|
+
# ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
|
|
3420
|
+
# ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
|
|
3421
|
+
# ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
|
|
3422
|
+
# ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
|
|
3423
|
+
# ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
|
|
3424
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
|
|
3425
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
|
|
3426
|
+
# ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
|
|
3427
|
+
# "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
|
|
3428
|
+
# ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
|
|
3429
|
+
# "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
|
|
3430
|
+
# ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
|
|
3431
|
+
# "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
|
|
3432
|
+
# ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
|
|
3433
|
+
# ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
|
|
3434
|
+
# (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
|
|
3435
|
+
# ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
|
|
3436
|
+
# ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
|
|
3437
|
+
# ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
|
|
3438
|
+
# ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
|
|
3439
|
+
# ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
|
|
3440
|
+
# ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
|
|
3440
3441
|
# via the schematic forward rule:
|
|
3441
3442
|
# {
|
|
3442
3443
|
# :MC1 :metrics ?m .
|
|
@@ -3475,71 +3476,71 @@ _:sk_5 :gini 0.5885499999999999 .
|
|
|
3475
3476
|
# ?m :l2ToUniform ?l2 .
|
|
3476
3477
|
# } .
|
|
3477
3478
|
# with substitution (on rule variables):
|
|
3478
|
-
# ?a = 0.535
|
|
3479
|
-
# ?a2 = 0.286225
|
|
3480
|
-
# ?ab2 = 0.39185000000000003
|
|
3481
|
-
# ?ada = 0.20166666666666672
|
|
3482
|
-
# ?adb = 0.008333333333333304
|
|
3483
|
-
# ?adc = 0.1933333333333333
|
|
3484
|
-
# ?b = 0.325
|
|
3485
|
-
# ?b2 = 0.10562500000000001
|
|
3486
|
-
# ?c = 0.14
|
|
3487
|
-
# ?c2 = 0.019600000000000003
|
|
3488
|
-
# ?da = 0.20166666666666672
|
|
3489
|
-
# ?da2 = 0.040669444444444466
|
|
3490
|
-
# ?db = -0.008333333333333304
|
|
3491
|
-
# ?db2 = 0.00006944444444444396
|
|
3492
|
-
# ?dc = -0.1933333333333333
|
|
3493
|
-
# ?dc2 = 0.03737777777777777
|
|
3494
|
-
# ?effN = 2.4304289707133306
|
|
3495
|
-
# ?gini = 0.5885499999999999
|
|
3496
|
-
# ?l2 = 0.2794935896700793
|
|
3479
|
+
# ?a = "0.535"^^xsd:decimal
|
|
3480
|
+
# ?a2 = "0.286225"^^xsd:decimal
|
|
3481
|
+
# ?ab2 = "0.39185000000000003"^^xsd:decimal
|
|
3482
|
+
# ?ada = "0.20166666666666672"^^xsd:decimal
|
|
3483
|
+
# ?adb = "0.008333333333333304"^^xsd:decimal
|
|
3484
|
+
# ?adc = "0.1933333333333333"^^xsd:decimal
|
|
3485
|
+
# ?b = "0.325"^^xsd:decimal
|
|
3486
|
+
# ?b2 = "0.10562500000000001"^^xsd:decimal
|
|
3487
|
+
# ?c = "0.14"^^xsd:decimal
|
|
3488
|
+
# ?c2 = "0.019600000000000003"^^xsd:decimal
|
|
3489
|
+
# ?da = "0.20166666666666672"^^xsd:decimal
|
|
3490
|
+
# ?da2 = "0.040669444444444466"^^xsd:decimal
|
|
3491
|
+
# ?db = "-0.008333333333333304"^^xsd:decimal
|
|
3492
|
+
# ?db2 = "0.00006944444444444396"^^xsd:decimal
|
|
3493
|
+
# ?dc = "-0.1933333333333333"^^xsd:decimal
|
|
3494
|
+
# ?dc2 = "0.03737777777777777"^^xsd:decimal
|
|
3495
|
+
# ?effN = "2.4304289707133306"^^xsd:decimal
|
|
3496
|
+
# ?gini = "0.5885499999999999"^^xsd:decimal
|
|
3497
|
+
# ?l2 = "0.2794935896700793"^^xsd:decimal
|
|
3497
3498
|
# ?m = _:sk_5
|
|
3498
3499
|
# ?pi = _:sk_0
|
|
3499
|
-
# ?s1 = 0.21000000000000002
|
|
3500
|
-
# ?s2 = 0.04073888888888891
|
|
3501
|
-
# ?s3 = 0.07811666666666667
|
|
3502
|
-
# ?sAbs = 0.4033333333333333
|
|
3503
|
-
# ?sumSq = 0.41145000000000004
|
|
3504
|
-
# ?tv = 0.20166666666666666
|
|
3505
|
-
# ?u = 0.3333333333333333
|
|
3500
|
+
# ?s1 = "0.21000000000000002"^^xsd:decimal
|
|
3501
|
+
# ?s2 = "0.04073888888888891"^^xsd:decimal
|
|
3502
|
+
# ?s3 = "0.07811666666666667"^^xsd:decimal
|
|
3503
|
+
# ?sAbs = "0.4033333333333333"^^xsd:decimal
|
|
3504
|
+
# ?sumSq = "0.41145000000000004"^^xsd:decimal
|
|
3505
|
+
# ?tv = "0.20166666666666666"^^xsd:decimal
|
|
3506
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3506
3507
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3507
3508
|
# ----------------------------------------------------------------------
|
|
3508
3509
|
|
|
3509
|
-
_:sk_5 :effectiveStates 2.4304289707133306 .
|
|
3510
|
+
_:sk_5 :effectiveStates "2.4304289707133306"^^xsd:decimal .
|
|
3510
3511
|
|
|
3511
3512
|
# ----------------------------------------------------------------------
|
|
3512
3513
|
# Proof for derived triple:
|
|
3513
|
-
# _:sk_5 :tvToUniform 0.20166666666666666 .
|
|
3514
|
+
# _:sk_5 :tvToUniform "0.20166666666666666"^^xsd:decimal .
|
|
3514
3515
|
# It holds because the following instance of the rule body is provable:
|
|
3515
3516
|
# :MC1 :metrics _:sk_5 .
|
|
3516
3517
|
# _:sk_5 :pi _:sk_0 .
|
|
3517
|
-
# _:sk_0 :pA 0.535 .
|
|
3518
|
-
# _:sk_0 :pB 0.325 .
|
|
3519
|
-
# _:sk_0 :pC 0.14 .
|
|
3520
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3521
|
-
# (0.535 2.0) math:exponentiation 0.286225 .
|
|
3522
|
-
# (0.325 2.0) math:exponentiation 0.10562500000000001 .
|
|
3523
|
-
# (0.14 2.0) math:exponentiation 0.019600000000000003 .
|
|
3524
|
-
# (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
|
|
3525
|
-
# (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
|
|
3526
|
-
# (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
|
|
3527
|
-
# (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
|
|
3528
|
-
# (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
|
|
3529
|
-
# 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
|
|
3530
|
-
# (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
|
|
3531
|
-
# -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
|
|
3532
|
-
# (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
|
|
3533
|
-
# -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
|
|
3534
|
-
# (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
|
|
3535
|
-
# (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
|
|
3536
|
-
# (0.5 0.4033333333333333) math:product 0.20166666666666666 .
|
|
3537
|
-
# (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
|
|
3538
|
-
# (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
|
|
3539
|
-
# (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
|
|
3540
|
-
# (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
|
|
3541
|
-
# (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
|
|
3542
|
-
# (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
|
|
3518
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
3519
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
3520
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
3521
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3522
|
+
# ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
|
|
3523
|
+
# ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
|
|
3524
|
+
# ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
|
|
3525
|
+
# ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
|
|
3526
|
+
# ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
|
|
3527
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
|
|
3528
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
|
|
3529
|
+
# ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
|
|
3530
|
+
# "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
|
|
3531
|
+
# ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
|
|
3532
|
+
# "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
|
|
3533
|
+
# ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
|
|
3534
|
+
# "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
|
|
3535
|
+
# ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
|
|
3536
|
+
# ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
|
|
3537
|
+
# (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
|
|
3538
|
+
# ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
|
|
3539
|
+
# ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
|
|
3540
|
+
# ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
|
|
3541
|
+
# ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
|
|
3542
|
+
# ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
|
|
3543
|
+
# ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
|
|
3543
3544
|
# via the schematic forward rule:
|
|
3544
3545
|
# {
|
|
3545
3546
|
# :MC1 :metrics ?m .
|
|
@@ -3578,71 +3579,71 @@ _:sk_5 :effectiveStates 2.4304289707133306 .
|
|
|
3578
3579
|
# ?m :l2ToUniform ?l2 .
|
|
3579
3580
|
# } .
|
|
3580
3581
|
# with substitution (on rule variables):
|
|
3581
|
-
# ?a = 0.535
|
|
3582
|
-
# ?a2 = 0.286225
|
|
3583
|
-
# ?ab2 = 0.39185000000000003
|
|
3584
|
-
# ?ada = 0.20166666666666672
|
|
3585
|
-
# ?adb = 0.008333333333333304
|
|
3586
|
-
# ?adc = 0.1933333333333333
|
|
3587
|
-
# ?b = 0.325
|
|
3588
|
-
# ?b2 = 0.10562500000000001
|
|
3589
|
-
# ?c = 0.14
|
|
3590
|
-
# ?c2 = 0.019600000000000003
|
|
3591
|
-
# ?da = 0.20166666666666672
|
|
3592
|
-
# ?da2 = 0.040669444444444466
|
|
3593
|
-
# ?db = -0.008333333333333304
|
|
3594
|
-
# ?db2 = 0.00006944444444444396
|
|
3595
|
-
# ?dc = -0.1933333333333333
|
|
3596
|
-
# ?dc2 = 0.03737777777777777
|
|
3597
|
-
# ?effN = 2.4304289707133306
|
|
3598
|
-
# ?gini = 0.5885499999999999
|
|
3599
|
-
# ?l2 = 0.2794935896700793
|
|
3582
|
+
# ?a = "0.535"^^xsd:decimal
|
|
3583
|
+
# ?a2 = "0.286225"^^xsd:decimal
|
|
3584
|
+
# ?ab2 = "0.39185000000000003"^^xsd:decimal
|
|
3585
|
+
# ?ada = "0.20166666666666672"^^xsd:decimal
|
|
3586
|
+
# ?adb = "0.008333333333333304"^^xsd:decimal
|
|
3587
|
+
# ?adc = "0.1933333333333333"^^xsd:decimal
|
|
3588
|
+
# ?b = "0.325"^^xsd:decimal
|
|
3589
|
+
# ?b2 = "0.10562500000000001"^^xsd:decimal
|
|
3590
|
+
# ?c = "0.14"^^xsd:decimal
|
|
3591
|
+
# ?c2 = "0.019600000000000003"^^xsd:decimal
|
|
3592
|
+
# ?da = "0.20166666666666672"^^xsd:decimal
|
|
3593
|
+
# ?da2 = "0.040669444444444466"^^xsd:decimal
|
|
3594
|
+
# ?db = "-0.008333333333333304"^^xsd:decimal
|
|
3595
|
+
# ?db2 = "0.00006944444444444396"^^xsd:decimal
|
|
3596
|
+
# ?dc = "-0.1933333333333333"^^xsd:decimal
|
|
3597
|
+
# ?dc2 = "0.03737777777777777"^^xsd:decimal
|
|
3598
|
+
# ?effN = "2.4304289707133306"^^xsd:decimal
|
|
3599
|
+
# ?gini = "0.5885499999999999"^^xsd:decimal
|
|
3600
|
+
# ?l2 = "0.2794935896700793"^^xsd:decimal
|
|
3600
3601
|
# ?m = _:sk_5
|
|
3601
3602
|
# ?pi = _:sk_0
|
|
3602
|
-
# ?s1 = 0.21000000000000002
|
|
3603
|
-
# ?s2 = 0.04073888888888891
|
|
3604
|
-
# ?s3 = 0.07811666666666667
|
|
3605
|
-
# ?sAbs = 0.4033333333333333
|
|
3606
|
-
# ?sumSq = 0.41145000000000004
|
|
3607
|
-
# ?tv = 0.20166666666666666
|
|
3608
|
-
# ?u = 0.3333333333333333
|
|
3603
|
+
# ?s1 = "0.21000000000000002"^^xsd:decimal
|
|
3604
|
+
# ?s2 = "0.04073888888888891"^^xsd:decimal
|
|
3605
|
+
# ?s3 = "0.07811666666666667"^^xsd:decimal
|
|
3606
|
+
# ?sAbs = "0.4033333333333333"^^xsd:decimal
|
|
3607
|
+
# ?sumSq = "0.41145000000000004"^^xsd:decimal
|
|
3608
|
+
# ?tv = "0.20166666666666666"^^xsd:decimal
|
|
3609
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3609
3610
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3610
3611
|
# ----------------------------------------------------------------------
|
|
3611
3612
|
|
|
3612
|
-
_:sk_5 :tvToUniform 0.20166666666666666 .
|
|
3613
|
+
_:sk_5 :tvToUniform "0.20166666666666666"^^xsd:decimal .
|
|
3613
3614
|
|
|
3614
3615
|
# ----------------------------------------------------------------------
|
|
3615
3616
|
# Proof for derived triple:
|
|
3616
|
-
# _:sk_5 :l2ToUniform 0.2794935896700793 .
|
|
3617
|
+
# _:sk_5 :l2ToUniform "0.2794935896700793"^^xsd:decimal .
|
|
3617
3618
|
# It holds because the following instance of the rule body is provable:
|
|
3618
3619
|
# :MC1 :metrics _:sk_5 .
|
|
3619
3620
|
# _:sk_5 :pi _:sk_0 .
|
|
3620
|
-
# _:sk_0 :pA 0.535 .
|
|
3621
|
-
# _:sk_0 :pB 0.325 .
|
|
3622
|
-
# _:sk_0 :pC 0.14 .
|
|
3623
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3624
|
-
# (0.535 2.0) math:exponentiation 0.286225 .
|
|
3625
|
-
# (0.325 2.0) math:exponentiation 0.10562500000000001 .
|
|
3626
|
-
# (0.14 2.0) math:exponentiation 0.019600000000000003 .
|
|
3627
|
-
# (0.286225 0.10562500000000001) math:sum 0.39185000000000003 .
|
|
3628
|
-
# (0.39185000000000003 0.019600000000000003) math:sum 0.41145000000000004 .
|
|
3629
|
-
# (1.0 0.41145000000000004) math:difference 0.5885499999999999 .
|
|
3630
|
-
# (1.0 0.41145000000000004) math:quotient 2.4304289707133306 .
|
|
3631
|
-
# (0.535 0.3333333333333333) math:difference 0.20166666666666672 .
|
|
3632
|
-
# 0.20166666666666672 math:absoluteValue 0.20166666666666672 .
|
|
3633
|
-
# (0.325 0.3333333333333333) math:difference -0.008333333333333304 .
|
|
3634
|
-
# -0.008333333333333304 math:absoluteValue 0.008333333333333304 .
|
|
3635
|
-
# (0.14 0.3333333333333333) math:difference -0.1933333333333333 .
|
|
3636
|
-
# -0.1933333333333333 math:absoluteValue 0.1933333333333333 .
|
|
3637
|
-
# (0.20166666666666672 0.008333333333333304) math:sum 0.21000000000000002 .
|
|
3638
|
-
# (0.21000000000000002 0.1933333333333333) math:sum 0.4033333333333333 .
|
|
3639
|
-
# (0.5 0.4033333333333333) math:product 0.20166666666666666 .
|
|
3640
|
-
# (0.20166666666666672 2.0) math:exponentiation 0.040669444444444466 .
|
|
3641
|
-
# (-0.008333333333333304 2.0) math:exponentiation 0.00006944444444444396 .
|
|
3642
|
-
# (-0.1933333333333333 2.0) math:exponentiation 0.03737777777777777 .
|
|
3643
|
-
# (0.040669444444444466 0.00006944444444444396) math:sum 0.04073888888888891 .
|
|
3644
|
-
# (0.04073888888888891 0.03737777777777777) math:sum 0.07811666666666667 .
|
|
3645
|
-
# (0.07811666666666667 0.5) math:exponentiation 0.2794935896700793 .
|
|
3621
|
+
# _:sk_0 :pA "0.535"^^xsd:decimal .
|
|
3622
|
+
# _:sk_0 :pB "0.325"^^xsd:decimal .
|
|
3623
|
+
# _:sk_0 :pC "0.14"^^xsd:decimal .
|
|
3624
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3625
|
+
# ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
|
|
3626
|
+
# ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
|
|
3627
|
+
# ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
|
|
3628
|
+
# ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
|
|
3629
|
+
# ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
|
|
3630
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
|
|
3631
|
+
# (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
|
|
3632
|
+
# ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
|
|
3633
|
+
# "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
|
|
3634
|
+
# ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
|
|
3635
|
+
# "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
|
|
3636
|
+
# ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
|
|
3637
|
+
# "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
|
|
3638
|
+
# ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
|
|
3639
|
+
# ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
|
|
3640
|
+
# (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
|
|
3641
|
+
# ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
|
|
3642
|
+
# ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
|
|
3643
|
+
# ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
|
|
3644
|
+
# ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
|
|
3645
|
+
# ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
|
|
3646
|
+
# ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
|
|
3646
3647
|
# via the schematic forward rule:
|
|
3647
3648
|
# {
|
|
3648
3649
|
# :MC1 :metrics ?m .
|
|
@@ -3681,71 +3682,71 @@ _:sk_5 :tvToUniform 0.20166666666666666 .
|
|
|
3681
3682
|
# ?m :l2ToUniform ?l2 .
|
|
3682
3683
|
# } .
|
|
3683
3684
|
# with substitution (on rule variables):
|
|
3684
|
-
# ?a = 0.535
|
|
3685
|
-
# ?a2 = 0.286225
|
|
3686
|
-
# ?ab2 = 0.39185000000000003
|
|
3687
|
-
# ?ada = 0.20166666666666672
|
|
3688
|
-
# ?adb = 0.008333333333333304
|
|
3689
|
-
# ?adc = 0.1933333333333333
|
|
3690
|
-
# ?b = 0.325
|
|
3691
|
-
# ?b2 = 0.10562500000000001
|
|
3692
|
-
# ?c = 0.14
|
|
3693
|
-
# ?c2 = 0.019600000000000003
|
|
3694
|
-
# ?da = 0.20166666666666672
|
|
3695
|
-
# ?da2 = 0.040669444444444466
|
|
3696
|
-
# ?db = -0.008333333333333304
|
|
3697
|
-
# ?db2 = 0.00006944444444444396
|
|
3698
|
-
# ?dc = -0.1933333333333333
|
|
3699
|
-
# ?dc2 = 0.03737777777777777
|
|
3700
|
-
# ?effN = 2.4304289707133306
|
|
3701
|
-
# ?gini = 0.5885499999999999
|
|
3702
|
-
# ?l2 = 0.2794935896700793
|
|
3685
|
+
# ?a = "0.535"^^xsd:decimal
|
|
3686
|
+
# ?a2 = "0.286225"^^xsd:decimal
|
|
3687
|
+
# ?ab2 = "0.39185000000000003"^^xsd:decimal
|
|
3688
|
+
# ?ada = "0.20166666666666672"^^xsd:decimal
|
|
3689
|
+
# ?adb = "0.008333333333333304"^^xsd:decimal
|
|
3690
|
+
# ?adc = "0.1933333333333333"^^xsd:decimal
|
|
3691
|
+
# ?b = "0.325"^^xsd:decimal
|
|
3692
|
+
# ?b2 = "0.10562500000000001"^^xsd:decimal
|
|
3693
|
+
# ?c = "0.14"^^xsd:decimal
|
|
3694
|
+
# ?c2 = "0.019600000000000003"^^xsd:decimal
|
|
3695
|
+
# ?da = "0.20166666666666672"^^xsd:decimal
|
|
3696
|
+
# ?da2 = "0.040669444444444466"^^xsd:decimal
|
|
3697
|
+
# ?db = "-0.008333333333333304"^^xsd:decimal
|
|
3698
|
+
# ?db2 = "0.00006944444444444396"^^xsd:decimal
|
|
3699
|
+
# ?dc = "-0.1933333333333333"^^xsd:decimal
|
|
3700
|
+
# ?dc2 = "0.03737777777777777"^^xsd:decimal
|
|
3701
|
+
# ?effN = "2.4304289707133306"^^xsd:decimal
|
|
3702
|
+
# ?gini = "0.5885499999999999"^^xsd:decimal
|
|
3703
|
+
# ?l2 = "0.2794935896700793"^^xsd:decimal
|
|
3703
3704
|
# ?m = _:sk_5
|
|
3704
3705
|
# ?pi = _:sk_0
|
|
3705
|
-
# ?s1 = 0.21000000000000002
|
|
3706
|
-
# ?s2 = 0.04073888888888891
|
|
3707
|
-
# ?s3 = 0.07811666666666667
|
|
3708
|
-
# ?sAbs = 0.4033333333333333
|
|
3709
|
-
# ?sumSq = 0.41145000000000004
|
|
3710
|
-
# ?tv = 0.20166666666666666
|
|
3711
|
-
# ?u = 0.3333333333333333
|
|
3706
|
+
# ?s1 = "0.21000000000000002"^^xsd:decimal
|
|
3707
|
+
# ?s2 = "0.04073888888888891"^^xsd:decimal
|
|
3708
|
+
# ?s3 = "0.07811666666666667"^^xsd:decimal
|
|
3709
|
+
# ?sAbs = "0.4033333333333333"^^xsd:decimal
|
|
3710
|
+
# ?sumSq = "0.41145000000000004"^^xsd:decimal
|
|
3711
|
+
# ?tv = "0.20166666666666666"^^xsd:decimal
|
|
3712
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3712
3713
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3713
3714
|
# ----------------------------------------------------------------------
|
|
3714
3715
|
|
|
3715
|
-
_:sk_5 :l2ToUniform 0.2794935896700793 .
|
|
3716
|
+
_:sk_5 :l2ToUniform "0.2794935896700793"^^xsd:decimal .
|
|
3716
3717
|
|
|
3717
3718
|
# ----------------------------------------------------------------------
|
|
3718
3719
|
# Proof for derived triple:
|
|
3719
|
-
# _:sk_4 :sumSq 0.45999999999999996 .
|
|
3720
|
+
# _:sk_4 :sumSq "0.45999999999999996"^^xsd:decimal .
|
|
3720
3721
|
# It holds because the following instance of the rule body is provable:
|
|
3721
3722
|
# :MC1 :metrics _:sk_4 .
|
|
3722
3723
|
# _:sk_4 :pi _:b4 .
|
|
3723
3724
|
# _:b4 :pA 0.60 .
|
|
3724
3725
|
# _:b4 :pB 0.30 .
|
|
3725
3726
|
# _:b4 :pC 0.10 .
|
|
3726
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3727
|
-
# (0.60 2.0) math:exponentiation 0.36 .
|
|
3728
|
-
# (0.30 2.0) math:exponentiation 0.09 .
|
|
3729
|
-
# (0.10 2.0) math:exponentiation 0.010000000000000002 .
|
|
3730
|
-
# (0.36 0.09) math:sum 0.44999999999999996 .
|
|
3731
|
-
# (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
|
|
3732
|
-
# (1.0 0.45999999999999996) math:difference 0.54 .
|
|
3733
|
-
# (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
|
|
3734
|
-
# (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
|
|
3735
|
-
# 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
|
|
3736
|
-
# (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
|
|
3737
|
-
# -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
|
|
3738
|
-
# (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
|
|
3739
|
-
# -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
|
|
3740
|
-
# (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
|
|
3741
|
-
# (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
|
|
3742
|
-
# (0.5 0.5333333333333333) math:product 0.26666666666666666 .
|
|
3743
|
-
# (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
|
|
3744
|
-
# (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
|
|
3745
|
-
# (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
|
|
3746
|
-
# (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
|
|
3747
|
-
# (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
|
|
3748
|
-
# (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
|
|
3727
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3728
|
+
# (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
|
|
3729
|
+
# (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
|
|
3730
|
+
# (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
|
|
3731
|
+
# ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
|
|
3732
|
+
# ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
|
|
3733
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
|
|
3734
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
|
|
3735
|
+
# (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
|
|
3736
|
+
# "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
|
|
3737
|
+
# (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
|
|
3738
|
+
# "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
|
|
3739
|
+
# (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
|
|
3740
|
+
# "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
|
|
3741
|
+
# ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
3742
|
+
# ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
|
|
3743
|
+
# (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
|
|
3744
|
+
# ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
|
|
3745
|
+
# ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
|
|
3746
|
+
# ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
|
|
3747
|
+
# ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
|
|
3748
|
+
# ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
|
|
3749
|
+
# ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
|
|
3749
3750
|
# via the schematic forward rule:
|
|
3750
3751
|
# {
|
|
3751
3752
|
# :MC1 :metrics ?m .
|
|
@@ -3785,70 +3786,70 @@ _:sk_5 :l2ToUniform 0.2794935896700793 .
|
|
|
3785
3786
|
# } .
|
|
3786
3787
|
# with substitution (on rule variables):
|
|
3787
3788
|
# ?a = 0.60
|
|
3788
|
-
# ?a2 = 0.36
|
|
3789
|
-
# ?ab2 = 0.44999999999999996
|
|
3790
|
-
# ?ada = 0.26666666666666666
|
|
3791
|
-
# ?adb = 0.033333333333333326
|
|
3792
|
-
# ?adc = 0.2333333333333333
|
|
3789
|
+
# ?a2 = "0.36"^^xsd:decimal
|
|
3790
|
+
# ?ab2 = "0.44999999999999996"^^xsd:decimal
|
|
3791
|
+
# ?ada = "0.26666666666666666"^^xsd:decimal
|
|
3792
|
+
# ?adb = "0.033333333333333326"^^xsd:decimal
|
|
3793
|
+
# ?adc = "0.2333333333333333"^^xsd:decimal
|
|
3793
3794
|
# ?b = 0.30
|
|
3794
|
-
# ?b2 = 0.09
|
|
3795
|
+
# ?b2 = "0.09"^^xsd:decimal
|
|
3795
3796
|
# ?c = 0.10
|
|
3796
|
-
# ?c2 = 0.010000000000000002
|
|
3797
|
-
# ?da = 0.26666666666666666
|
|
3798
|
-
# ?da2 = 0.07111111111111111
|
|
3799
|
-
# ?db = -0.033333333333333326
|
|
3800
|
-
# ?db2 = 0.0011111111111111107
|
|
3801
|
-
# ?dc = -0.2333333333333333
|
|
3802
|
-
# ?dc2 = 0.054444444444444434
|
|
3803
|
-
# ?effN = 2.173913043478261
|
|
3804
|
-
# ?gini = 0.54
|
|
3805
|
-
# ?l2 = 0.3559026084010437
|
|
3797
|
+
# ?c2 = "0.010000000000000002"^^xsd:decimal
|
|
3798
|
+
# ?da = "0.26666666666666666"^^xsd:decimal
|
|
3799
|
+
# ?da2 = "0.07111111111111111"^^xsd:decimal
|
|
3800
|
+
# ?db = "-0.033333333333333326"^^xsd:decimal
|
|
3801
|
+
# ?db2 = "0.0011111111111111107"^^xsd:decimal
|
|
3802
|
+
# ?dc = "-0.2333333333333333"^^xsd:decimal
|
|
3803
|
+
# ?dc2 = "0.054444444444444434"^^xsd:decimal
|
|
3804
|
+
# ?effN = "2.173913043478261"^^xsd:decimal
|
|
3805
|
+
# ?gini = "0.54"^^xsd:decimal
|
|
3806
|
+
# ?l2 = "0.3559026084010437"^^xsd:decimal
|
|
3806
3807
|
# ?m = _:sk_4
|
|
3807
3808
|
# ?pi = _:b4
|
|
3808
|
-
# ?s1 = 0.3
|
|
3809
|
-
# ?s2 = 0.07222222222222222
|
|
3810
|
-
# ?s3 = 0.12666666666666665
|
|
3811
|
-
# ?sAbs = 0.5333333333333333
|
|
3812
|
-
# ?sumSq = 0.45999999999999996
|
|
3813
|
-
# ?tv = 0.26666666666666666
|
|
3814
|
-
# ?u = 0.3333333333333333
|
|
3809
|
+
# ?s1 = "0.3"^^xsd:decimal
|
|
3810
|
+
# ?s2 = "0.07222222222222222"^^xsd:decimal
|
|
3811
|
+
# ?s3 = "0.12666666666666665"^^xsd:decimal
|
|
3812
|
+
# ?sAbs = "0.5333333333333333"^^xsd:decimal
|
|
3813
|
+
# ?sumSq = "0.45999999999999996"^^xsd:decimal
|
|
3814
|
+
# ?tv = "0.26666666666666666"^^xsd:decimal
|
|
3815
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3815
3816
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3816
3817
|
# ----------------------------------------------------------------------
|
|
3817
3818
|
|
|
3818
|
-
_:sk_4 :sumSq 0.45999999999999996 .
|
|
3819
|
+
_:sk_4 :sumSq "0.45999999999999996"^^xsd:decimal .
|
|
3819
3820
|
|
|
3820
3821
|
# ----------------------------------------------------------------------
|
|
3821
3822
|
# Proof for derived triple:
|
|
3822
|
-
# _:sk_4 :gini 0.54 .
|
|
3823
|
+
# _:sk_4 :gini "0.54"^^xsd:decimal .
|
|
3823
3824
|
# It holds because the following instance of the rule body is provable:
|
|
3824
3825
|
# :MC1 :metrics _:sk_4 .
|
|
3825
3826
|
# _:sk_4 :pi _:b4 .
|
|
3826
3827
|
# _:b4 :pA 0.60 .
|
|
3827
3828
|
# _:b4 :pB 0.30 .
|
|
3828
3829
|
# _:b4 :pC 0.10 .
|
|
3829
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3830
|
-
# (0.60 2.0) math:exponentiation 0.36 .
|
|
3831
|
-
# (0.30 2.0) math:exponentiation 0.09 .
|
|
3832
|
-
# (0.10 2.0) math:exponentiation 0.010000000000000002 .
|
|
3833
|
-
# (0.36 0.09) math:sum 0.44999999999999996 .
|
|
3834
|
-
# (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
|
|
3835
|
-
# (1.0 0.45999999999999996) math:difference 0.54 .
|
|
3836
|
-
# (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
|
|
3837
|
-
# (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
|
|
3838
|
-
# 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
|
|
3839
|
-
# (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
|
|
3840
|
-
# -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
|
|
3841
|
-
# (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
|
|
3842
|
-
# -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
|
|
3843
|
-
# (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
|
|
3844
|
-
# (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
|
|
3845
|
-
# (0.5 0.5333333333333333) math:product 0.26666666666666666 .
|
|
3846
|
-
# (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
|
|
3847
|
-
# (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
|
|
3848
|
-
# (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
|
|
3849
|
-
# (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
|
|
3850
|
-
# (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
|
|
3851
|
-
# (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
|
|
3830
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3831
|
+
# (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
|
|
3832
|
+
# (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
|
|
3833
|
+
# (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
|
|
3834
|
+
# ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
|
|
3835
|
+
# ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
|
|
3836
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
|
|
3837
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
|
|
3838
|
+
# (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
|
|
3839
|
+
# "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
|
|
3840
|
+
# (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
|
|
3841
|
+
# "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
|
|
3842
|
+
# (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
|
|
3843
|
+
# "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
|
|
3844
|
+
# ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
3845
|
+
# ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
|
|
3846
|
+
# (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
|
|
3847
|
+
# ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
|
|
3848
|
+
# ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
|
|
3849
|
+
# ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
|
|
3850
|
+
# ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
|
|
3851
|
+
# ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
|
|
3852
|
+
# ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
|
|
3852
3853
|
# via the schematic forward rule:
|
|
3853
3854
|
# {
|
|
3854
3855
|
# :MC1 :metrics ?m .
|
|
@@ -3888,70 +3889,70 @@ _:sk_4 :sumSq 0.45999999999999996 .
|
|
|
3888
3889
|
# } .
|
|
3889
3890
|
# with substitution (on rule variables):
|
|
3890
3891
|
# ?a = 0.60
|
|
3891
|
-
# ?a2 = 0.36
|
|
3892
|
-
# ?ab2 = 0.44999999999999996
|
|
3893
|
-
# ?ada = 0.26666666666666666
|
|
3894
|
-
# ?adb = 0.033333333333333326
|
|
3895
|
-
# ?adc = 0.2333333333333333
|
|
3892
|
+
# ?a2 = "0.36"^^xsd:decimal
|
|
3893
|
+
# ?ab2 = "0.44999999999999996"^^xsd:decimal
|
|
3894
|
+
# ?ada = "0.26666666666666666"^^xsd:decimal
|
|
3895
|
+
# ?adb = "0.033333333333333326"^^xsd:decimal
|
|
3896
|
+
# ?adc = "0.2333333333333333"^^xsd:decimal
|
|
3896
3897
|
# ?b = 0.30
|
|
3897
|
-
# ?b2 = 0.09
|
|
3898
|
+
# ?b2 = "0.09"^^xsd:decimal
|
|
3898
3899
|
# ?c = 0.10
|
|
3899
|
-
# ?c2 = 0.010000000000000002
|
|
3900
|
-
# ?da = 0.26666666666666666
|
|
3901
|
-
# ?da2 = 0.07111111111111111
|
|
3902
|
-
# ?db = -0.033333333333333326
|
|
3903
|
-
# ?db2 = 0.0011111111111111107
|
|
3904
|
-
# ?dc = -0.2333333333333333
|
|
3905
|
-
# ?dc2 = 0.054444444444444434
|
|
3906
|
-
# ?effN = 2.173913043478261
|
|
3907
|
-
# ?gini = 0.54
|
|
3908
|
-
# ?l2 = 0.3559026084010437
|
|
3900
|
+
# ?c2 = "0.010000000000000002"^^xsd:decimal
|
|
3901
|
+
# ?da = "0.26666666666666666"^^xsd:decimal
|
|
3902
|
+
# ?da2 = "0.07111111111111111"^^xsd:decimal
|
|
3903
|
+
# ?db = "-0.033333333333333326"^^xsd:decimal
|
|
3904
|
+
# ?db2 = "0.0011111111111111107"^^xsd:decimal
|
|
3905
|
+
# ?dc = "-0.2333333333333333"^^xsd:decimal
|
|
3906
|
+
# ?dc2 = "0.054444444444444434"^^xsd:decimal
|
|
3907
|
+
# ?effN = "2.173913043478261"^^xsd:decimal
|
|
3908
|
+
# ?gini = "0.54"^^xsd:decimal
|
|
3909
|
+
# ?l2 = "0.3559026084010437"^^xsd:decimal
|
|
3909
3910
|
# ?m = _:sk_4
|
|
3910
3911
|
# ?pi = _:b4
|
|
3911
|
-
# ?s1 = 0.3
|
|
3912
|
-
# ?s2 = 0.07222222222222222
|
|
3913
|
-
# ?s3 = 0.12666666666666665
|
|
3914
|
-
# ?sAbs = 0.5333333333333333
|
|
3915
|
-
# ?sumSq = 0.45999999999999996
|
|
3916
|
-
# ?tv = 0.26666666666666666
|
|
3917
|
-
# ?u = 0.3333333333333333
|
|
3912
|
+
# ?s1 = "0.3"^^xsd:decimal
|
|
3913
|
+
# ?s2 = "0.07222222222222222"^^xsd:decimal
|
|
3914
|
+
# ?s3 = "0.12666666666666665"^^xsd:decimal
|
|
3915
|
+
# ?sAbs = "0.5333333333333333"^^xsd:decimal
|
|
3916
|
+
# ?sumSq = "0.45999999999999996"^^xsd:decimal
|
|
3917
|
+
# ?tv = "0.26666666666666666"^^xsd:decimal
|
|
3918
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
3918
3919
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
3919
3920
|
# ----------------------------------------------------------------------
|
|
3920
3921
|
|
|
3921
|
-
_:sk_4 :gini 0.54 .
|
|
3922
|
+
_:sk_4 :gini "0.54"^^xsd:decimal .
|
|
3922
3923
|
|
|
3923
3924
|
# ----------------------------------------------------------------------
|
|
3924
3925
|
# Proof for derived triple:
|
|
3925
|
-
# _:sk_4 :effectiveStates 2.173913043478261 .
|
|
3926
|
+
# _:sk_4 :effectiveStates "2.173913043478261"^^xsd:decimal .
|
|
3926
3927
|
# It holds because the following instance of the rule body is provable:
|
|
3927
3928
|
# :MC1 :metrics _:sk_4 .
|
|
3928
3929
|
# _:sk_4 :pi _:b4 .
|
|
3929
3930
|
# _:b4 :pA 0.60 .
|
|
3930
3931
|
# _:b4 :pB 0.30 .
|
|
3931
3932
|
# _:b4 :pC 0.10 .
|
|
3932
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
3933
|
-
# (0.60 2.0) math:exponentiation 0.36 .
|
|
3934
|
-
# (0.30 2.0) math:exponentiation 0.09 .
|
|
3935
|
-
# (0.10 2.0) math:exponentiation 0.010000000000000002 .
|
|
3936
|
-
# (0.36 0.09) math:sum 0.44999999999999996 .
|
|
3937
|
-
# (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
|
|
3938
|
-
# (1.0 0.45999999999999996) math:difference 0.54 .
|
|
3939
|
-
# (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
|
|
3940
|
-
# (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
|
|
3941
|
-
# 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
|
|
3942
|
-
# (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
|
|
3943
|
-
# -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
|
|
3944
|
-
# (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
|
|
3945
|
-
# -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
|
|
3946
|
-
# (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
|
|
3947
|
-
# (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
|
|
3948
|
-
# (0.5 0.5333333333333333) math:product 0.26666666666666666 .
|
|
3949
|
-
# (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
|
|
3950
|
-
# (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
|
|
3951
|
-
# (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
|
|
3952
|
-
# (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
|
|
3953
|
-
# (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
|
|
3954
|
-
# (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
|
|
3933
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
3934
|
+
# (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
|
|
3935
|
+
# (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
|
|
3936
|
+
# (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
|
|
3937
|
+
# ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
|
|
3938
|
+
# ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
|
|
3939
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
|
|
3940
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
|
|
3941
|
+
# (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
|
|
3942
|
+
# "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
|
|
3943
|
+
# (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
|
|
3944
|
+
# "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
|
|
3945
|
+
# (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
|
|
3946
|
+
# "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
|
|
3947
|
+
# ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
3948
|
+
# ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
|
|
3949
|
+
# (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
|
|
3950
|
+
# ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
|
|
3951
|
+
# ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
|
|
3952
|
+
# ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
|
|
3953
|
+
# ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
|
|
3954
|
+
# ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
|
|
3955
|
+
# ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
|
|
3955
3956
|
# via the schematic forward rule:
|
|
3956
3957
|
# {
|
|
3957
3958
|
# :MC1 :metrics ?m .
|
|
@@ -3991,70 +3992,70 @@ _:sk_4 :gini 0.54 .
|
|
|
3991
3992
|
# } .
|
|
3992
3993
|
# with substitution (on rule variables):
|
|
3993
3994
|
# ?a = 0.60
|
|
3994
|
-
# ?a2 = 0.36
|
|
3995
|
-
# ?ab2 = 0.44999999999999996
|
|
3996
|
-
# ?ada = 0.26666666666666666
|
|
3997
|
-
# ?adb = 0.033333333333333326
|
|
3998
|
-
# ?adc = 0.2333333333333333
|
|
3995
|
+
# ?a2 = "0.36"^^xsd:decimal
|
|
3996
|
+
# ?ab2 = "0.44999999999999996"^^xsd:decimal
|
|
3997
|
+
# ?ada = "0.26666666666666666"^^xsd:decimal
|
|
3998
|
+
# ?adb = "0.033333333333333326"^^xsd:decimal
|
|
3999
|
+
# ?adc = "0.2333333333333333"^^xsd:decimal
|
|
3999
4000
|
# ?b = 0.30
|
|
4000
|
-
# ?b2 = 0.09
|
|
4001
|
+
# ?b2 = "0.09"^^xsd:decimal
|
|
4001
4002
|
# ?c = 0.10
|
|
4002
|
-
# ?c2 = 0.010000000000000002
|
|
4003
|
-
# ?da = 0.26666666666666666
|
|
4004
|
-
# ?da2 = 0.07111111111111111
|
|
4005
|
-
# ?db = -0.033333333333333326
|
|
4006
|
-
# ?db2 = 0.0011111111111111107
|
|
4007
|
-
# ?dc = -0.2333333333333333
|
|
4008
|
-
# ?dc2 = 0.054444444444444434
|
|
4009
|
-
# ?effN = 2.173913043478261
|
|
4010
|
-
# ?gini = 0.54
|
|
4011
|
-
# ?l2 = 0.3559026084010437
|
|
4003
|
+
# ?c2 = "0.010000000000000002"^^xsd:decimal
|
|
4004
|
+
# ?da = "0.26666666666666666"^^xsd:decimal
|
|
4005
|
+
# ?da2 = "0.07111111111111111"^^xsd:decimal
|
|
4006
|
+
# ?db = "-0.033333333333333326"^^xsd:decimal
|
|
4007
|
+
# ?db2 = "0.0011111111111111107"^^xsd:decimal
|
|
4008
|
+
# ?dc = "-0.2333333333333333"^^xsd:decimal
|
|
4009
|
+
# ?dc2 = "0.054444444444444434"^^xsd:decimal
|
|
4010
|
+
# ?effN = "2.173913043478261"^^xsd:decimal
|
|
4011
|
+
# ?gini = "0.54"^^xsd:decimal
|
|
4012
|
+
# ?l2 = "0.3559026084010437"^^xsd:decimal
|
|
4012
4013
|
# ?m = _:sk_4
|
|
4013
4014
|
# ?pi = _:b4
|
|
4014
|
-
# ?s1 = 0.3
|
|
4015
|
-
# ?s2 = 0.07222222222222222
|
|
4016
|
-
# ?s3 = 0.12666666666666665
|
|
4017
|
-
# ?sAbs = 0.5333333333333333
|
|
4018
|
-
# ?sumSq = 0.45999999999999996
|
|
4019
|
-
# ?tv = 0.26666666666666666
|
|
4020
|
-
# ?u = 0.3333333333333333
|
|
4015
|
+
# ?s1 = "0.3"^^xsd:decimal
|
|
4016
|
+
# ?s2 = "0.07222222222222222"^^xsd:decimal
|
|
4017
|
+
# ?s3 = "0.12666666666666665"^^xsd:decimal
|
|
4018
|
+
# ?sAbs = "0.5333333333333333"^^xsd:decimal
|
|
4019
|
+
# ?sumSq = "0.45999999999999996"^^xsd:decimal
|
|
4020
|
+
# ?tv = "0.26666666666666666"^^xsd:decimal
|
|
4021
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
4021
4022
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
4022
4023
|
# ----------------------------------------------------------------------
|
|
4023
4024
|
|
|
4024
|
-
_:sk_4 :effectiveStates 2.173913043478261 .
|
|
4025
|
+
_:sk_4 :effectiveStates "2.173913043478261"^^xsd:decimal .
|
|
4025
4026
|
|
|
4026
4027
|
# ----------------------------------------------------------------------
|
|
4027
4028
|
# Proof for derived triple:
|
|
4028
|
-
# _:sk_4 :tvToUniform 0.26666666666666666 .
|
|
4029
|
+
# _:sk_4 :tvToUniform "0.26666666666666666"^^xsd:decimal .
|
|
4029
4030
|
# It holds because the following instance of the rule body is provable:
|
|
4030
4031
|
# :MC1 :metrics _:sk_4 .
|
|
4031
4032
|
# _:sk_4 :pi _:b4 .
|
|
4032
4033
|
# _:b4 :pA 0.60 .
|
|
4033
4034
|
# _:b4 :pB 0.30 .
|
|
4034
4035
|
# _:b4 :pC 0.10 .
|
|
4035
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
4036
|
-
# (0.60 2.0) math:exponentiation 0.36 .
|
|
4037
|
-
# (0.30 2.0) math:exponentiation 0.09 .
|
|
4038
|
-
# (0.10 2.0) math:exponentiation 0.010000000000000002 .
|
|
4039
|
-
# (0.36 0.09) math:sum 0.44999999999999996 .
|
|
4040
|
-
# (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
|
|
4041
|
-
# (1.0 0.45999999999999996) math:difference 0.54 .
|
|
4042
|
-
# (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
|
|
4043
|
-
# (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
|
|
4044
|
-
# 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
|
|
4045
|
-
# (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
|
|
4046
|
-
# -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
|
|
4047
|
-
# (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
|
|
4048
|
-
# -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
|
|
4049
|
-
# (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
|
|
4050
|
-
# (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
|
|
4051
|
-
# (0.5 0.5333333333333333) math:product 0.26666666666666666 .
|
|
4052
|
-
# (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
|
|
4053
|
-
# (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
|
|
4054
|
-
# (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
|
|
4055
|
-
# (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
|
|
4056
|
-
# (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
|
|
4057
|
-
# (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
|
|
4036
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
4037
|
+
# (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
|
|
4038
|
+
# (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
|
|
4039
|
+
# (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
|
|
4040
|
+
# ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
|
|
4041
|
+
# ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
|
|
4042
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
|
|
4043
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
|
|
4044
|
+
# (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
|
|
4045
|
+
# "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
|
|
4046
|
+
# (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
|
|
4047
|
+
# "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
|
|
4048
|
+
# (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
|
|
4049
|
+
# "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
|
|
4050
|
+
# ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
4051
|
+
# ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
|
|
4052
|
+
# (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
|
|
4053
|
+
# ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
|
|
4054
|
+
# ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
|
|
4055
|
+
# ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
|
|
4056
|
+
# ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
|
|
4057
|
+
# ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
|
|
4058
|
+
# ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
|
|
4058
4059
|
# via the schematic forward rule:
|
|
4059
4060
|
# {
|
|
4060
4061
|
# :MC1 :metrics ?m .
|
|
@@ -4094,70 +4095,70 @@ _:sk_4 :effectiveStates 2.173913043478261 .
|
|
|
4094
4095
|
# } .
|
|
4095
4096
|
# with substitution (on rule variables):
|
|
4096
4097
|
# ?a = 0.60
|
|
4097
|
-
# ?a2 = 0.36
|
|
4098
|
-
# ?ab2 = 0.44999999999999996
|
|
4099
|
-
# ?ada = 0.26666666666666666
|
|
4100
|
-
# ?adb = 0.033333333333333326
|
|
4101
|
-
# ?adc = 0.2333333333333333
|
|
4098
|
+
# ?a2 = "0.36"^^xsd:decimal
|
|
4099
|
+
# ?ab2 = "0.44999999999999996"^^xsd:decimal
|
|
4100
|
+
# ?ada = "0.26666666666666666"^^xsd:decimal
|
|
4101
|
+
# ?adb = "0.033333333333333326"^^xsd:decimal
|
|
4102
|
+
# ?adc = "0.2333333333333333"^^xsd:decimal
|
|
4102
4103
|
# ?b = 0.30
|
|
4103
|
-
# ?b2 = 0.09
|
|
4104
|
+
# ?b2 = "0.09"^^xsd:decimal
|
|
4104
4105
|
# ?c = 0.10
|
|
4105
|
-
# ?c2 = 0.010000000000000002
|
|
4106
|
-
# ?da = 0.26666666666666666
|
|
4107
|
-
# ?da2 = 0.07111111111111111
|
|
4108
|
-
# ?db = -0.033333333333333326
|
|
4109
|
-
# ?db2 = 0.0011111111111111107
|
|
4110
|
-
# ?dc = -0.2333333333333333
|
|
4111
|
-
# ?dc2 = 0.054444444444444434
|
|
4112
|
-
# ?effN = 2.173913043478261
|
|
4113
|
-
# ?gini = 0.54
|
|
4114
|
-
# ?l2 = 0.3559026084010437
|
|
4106
|
+
# ?c2 = "0.010000000000000002"^^xsd:decimal
|
|
4107
|
+
# ?da = "0.26666666666666666"^^xsd:decimal
|
|
4108
|
+
# ?da2 = "0.07111111111111111"^^xsd:decimal
|
|
4109
|
+
# ?db = "-0.033333333333333326"^^xsd:decimal
|
|
4110
|
+
# ?db2 = "0.0011111111111111107"^^xsd:decimal
|
|
4111
|
+
# ?dc = "-0.2333333333333333"^^xsd:decimal
|
|
4112
|
+
# ?dc2 = "0.054444444444444434"^^xsd:decimal
|
|
4113
|
+
# ?effN = "2.173913043478261"^^xsd:decimal
|
|
4114
|
+
# ?gini = "0.54"^^xsd:decimal
|
|
4115
|
+
# ?l2 = "0.3559026084010437"^^xsd:decimal
|
|
4115
4116
|
# ?m = _:sk_4
|
|
4116
4117
|
# ?pi = _:b4
|
|
4117
|
-
# ?s1 = 0.3
|
|
4118
|
-
# ?s2 = 0.07222222222222222
|
|
4119
|
-
# ?s3 = 0.12666666666666665
|
|
4120
|
-
# ?sAbs = 0.5333333333333333
|
|
4121
|
-
# ?sumSq = 0.45999999999999996
|
|
4122
|
-
# ?tv = 0.26666666666666666
|
|
4123
|
-
# ?u = 0.3333333333333333
|
|
4118
|
+
# ?s1 = "0.3"^^xsd:decimal
|
|
4119
|
+
# ?s2 = "0.07222222222222222"^^xsd:decimal
|
|
4120
|
+
# ?s3 = "0.12666666666666665"^^xsd:decimal
|
|
4121
|
+
# ?sAbs = "0.5333333333333333"^^xsd:decimal
|
|
4122
|
+
# ?sumSq = "0.45999999999999996"^^xsd:decimal
|
|
4123
|
+
# ?tv = "0.26666666666666666"^^xsd:decimal
|
|
4124
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
4124
4125
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
4125
4126
|
# ----------------------------------------------------------------------
|
|
4126
4127
|
|
|
4127
|
-
_:sk_4 :tvToUniform 0.26666666666666666 .
|
|
4128
|
+
_:sk_4 :tvToUniform "0.26666666666666666"^^xsd:decimal .
|
|
4128
4129
|
|
|
4129
4130
|
# ----------------------------------------------------------------------
|
|
4130
4131
|
# Proof for derived triple:
|
|
4131
|
-
# _:sk_4 :l2ToUniform 0.3559026084010437 .
|
|
4132
|
+
# _:sk_4 :l2ToUniform "0.3559026084010437"^^xsd:decimal .
|
|
4132
4133
|
# It holds because the following instance of the rule body is provable:
|
|
4133
4134
|
# :MC1 :metrics _:sk_4 .
|
|
4134
4135
|
# _:sk_4 :pi _:b4 .
|
|
4135
4136
|
# _:b4 :pA 0.60 .
|
|
4136
4137
|
# _:b4 :pB 0.30 .
|
|
4137
4138
|
# _:b4 :pC 0.10 .
|
|
4138
|
-
# (1.0 3.0) math:quotient 0.3333333333333333 .
|
|
4139
|
-
# (0.60 2.0) math:exponentiation 0.36 .
|
|
4140
|
-
# (0.30 2.0) math:exponentiation 0.09 .
|
|
4141
|
-
# (0.10 2.0) math:exponentiation 0.010000000000000002 .
|
|
4142
|
-
# (0.36 0.09) math:sum 0.44999999999999996 .
|
|
4143
|
-
# (0.44999999999999996 0.010000000000000002) math:sum 0.45999999999999996 .
|
|
4144
|
-
# (1.0 0.45999999999999996) math:difference 0.54 .
|
|
4145
|
-
# (1.0 0.45999999999999996) math:quotient 2.173913043478261 .
|
|
4146
|
-
# (0.60 0.3333333333333333) math:difference 0.26666666666666666 .
|
|
4147
|
-
# 0.26666666666666666 math:absoluteValue 0.26666666666666666 .
|
|
4148
|
-
# (0.30 0.3333333333333333) math:difference -0.033333333333333326 .
|
|
4149
|
-
# -0.033333333333333326 math:absoluteValue 0.033333333333333326 .
|
|
4150
|
-
# (0.10 0.3333333333333333) math:difference -0.2333333333333333 .
|
|
4151
|
-
# -0.2333333333333333 math:absoluteValue 0.2333333333333333 .
|
|
4152
|
-
# (0.26666666666666666 0.033333333333333326) math:sum 0.3 .
|
|
4153
|
-
# (0.3 0.2333333333333333) math:sum 0.5333333333333333 .
|
|
4154
|
-
# (0.5 0.5333333333333333) math:product 0.26666666666666666 .
|
|
4155
|
-
# (0.26666666666666666 2.0) math:exponentiation 0.07111111111111111 .
|
|
4156
|
-
# (-0.033333333333333326 2.0) math:exponentiation 0.0011111111111111107 .
|
|
4157
|
-
# (-0.2333333333333333 2.0) math:exponentiation 0.054444444444444434 .
|
|
4158
|
-
# (0.07111111111111111 0.0011111111111111107) math:sum 0.07222222222222222 .
|
|
4159
|
-
# (0.07222222222222222 0.054444444444444434) math:sum 0.12666666666666665 .
|
|
4160
|
-
# (0.12666666666666665 0.5) math:exponentiation 0.3559026084010437 .
|
|
4139
|
+
# (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
|
|
4140
|
+
# (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
|
|
4141
|
+
# (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
|
|
4142
|
+
# (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
|
|
4143
|
+
# ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
|
|
4144
|
+
# ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
|
|
4145
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
|
|
4146
|
+
# (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
|
|
4147
|
+
# (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
|
|
4148
|
+
# "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
|
|
4149
|
+
# (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
|
|
4150
|
+
# "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
|
|
4151
|
+
# (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
|
|
4152
|
+
# "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
|
|
4153
|
+
# ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
|
|
4154
|
+
# ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
|
|
4155
|
+
# (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
|
|
4156
|
+
# ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
|
|
4157
|
+
# ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
|
|
4158
|
+
# ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
|
|
4159
|
+
# ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
|
|
4160
|
+
# ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
|
|
4161
|
+
# ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
|
|
4161
4162
|
# via the schematic forward rule:
|
|
4162
4163
|
# {
|
|
4163
4164
|
# :MC1 :metrics ?m .
|
|
@@ -4197,35 +4198,35 @@ _:sk_4 :tvToUniform 0.26666666666666666 .
|
|
|
4197
4198
|
# } .
|
|
4198
4199
|
# with substitution (on rule variables):
|
|
4199
4200
|
# ?a = 0.60
|
|
4200
|
-
# ?a2 = 0.36
|
|
4201
|
-
# ?ab2 = 0.44999999999999996
|
|
4202
|
-
# ?ada = 0.26666666666666666
|
|
4203
|
-
# ?adb = 0.033333333333333326
|
|
4204
|
-
# ?adc = 0.2333333333333333
|
|
4201
|
+
# ?a2 = "0.36"^^xsd:decimal
|
|
4202
|
+
# ?ab2 = "0.44999999999999996"^^xsd:decimal
|
|
4203
|
+
# ?ada = "0.26666666666666666"^^xsd:decimal
|
|
4204
|
+
# ?adb = "0.033333333333333326"^^xsd:decimal
|
|
4205
|
+
# ?adc = "0.2333333333333333"^^xsd:decimal
|
|
4205
4206
|
# ?b = 0.30
|
|
4206
|
-
# ?b2 = 0.09
|
|
4207
|
+
# ?b2 = "0.09"^^xsd:decimal
|
|
4207
4208
|
# ?c = 0.10
|
|
4208
|
-
# ?c2 = 0.010000000000000002
|
|
4209
|
-
# ?da = 0.26666666666666666
|
|
4210
|
-
# ?da2 = 0.07111111111111111
|
|
4211
|
-
# ?db = -0.033333333333333326
|
|
4212
|
-
# ?db2 = 0.0011111111111111107
|
|
4213
|
-
# ?dc = -0.2333333333333333
|
|
4214
|
-
# ?dc2 = 0.054444444444444434
|
|
4215
|
-
# ?effN = 2.173913043478261
|
|
4216
|
-
# ?gini = 0.54
|
|
4217
|
-
# ?l2 = 0.3559026084010437
|
|
4209
|
+
# ?c2 = "0.010000000000000002"^^xsd:decimal
|
|
4210
|
+
# ?da = "0.26666666666666666"^^xsd:decimal
|
|
4211
|
+
# ?da2 = "0.07111111111111111"^^xsd:decimal
|
|
4212
|
+
# ?db = "-0.033333333333333326"^^xsd:decimal
|
|
4213
|
+
# ?db2 = "0.0011111111111111107"^^xsd:decimal
|
|
4214
|
+
# ?dc = "-0.2333333333333333"^^xsd:decimal
|
|
4215
|
+
# ?dc2 = "0.054444444444444434"^^xsd:decimal
|
|
4216
|
+
# ?effN = "2.173913043478261"^^xsd:decimal
|
|
4217
|
+
# ?gini = "0.54"^^xsd:decimal
|
|
4218
|
+
# ?l2 = "0.3559026084010437"^^xsd:decimal
|
|
4218
4219
|
# ?m = _:sk_4
|
|
4219
4220
|
# ?pi = _:b4
|
|
4220
|
-
# ?s1 = 0.3
|
|
4221
|
-
# ?s2 = 0.07222222222222222
|
|
4222
|
-
# ?s3 = 0.12666666666666665
|
|
4223
|
-
# ?sAbs = 0.5333333333333333
|
|
4224
|
-
# ?sumSq = 0.45999999999999996
|
|
4225
|
-
# ?tv = 0.26666666666666666
|
|
4226
|
-
# ?u = 0.3333333333333333
|
|
4221
|
+
# ?s1 = "0.3"^^xsd:decimal
|
|
4222
|
+
# ?s2 = "0.07222222222222222"^^xsd:decimal
|
|
4223
|
+
# ?s3 = "0.12666666666666665"^^xsd:decimal
|
|
4224
|
+
# ?sAbs = "0.5333333333333333"^^xsd:decimal
|
|
4225
|
+
# ?sumSq = "0.45999999999999996"^^xsd:decimal
|
|
4226
|
+
# ?tv = "0.26666666666666666"^^xsd:decimal
|
|
4227
|
+
# ?u = "0.3333333333333333"^^xsd:decimal
|
|
4227
4228
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
4228
4229
|
# ----------------------------------------------------------------------
|
|
4229
4230
|
|
|
4230
|
-
_:sk_4 :l2ToUniform 0.3559026084010437 .
|
|
4231
|
+
_:sk_4 :l2ToUniform "0.3559026084010437"^^xsd:decimal .
|
|
4231
4232
|
|