eyeling 1.6.4 → 1.6.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,12 +1,13 @@
1
1
  @prefix : <http://example.org/spectral-week#> .
2
+ @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
2
3
 
3
4
  # ----------------------------------------------------------------------
4
5
  # Proof for derived triple:
5
- # :Shade :redEnergy 180 .
6
+ # :Shade :redEnergy "180"^^xsd:decimal .
6
7
  # It holds because the following instance of the rule body is provable:
7
8
  # :Shade :redIntensity 60.0 .
8
9
  # :Shade :redHours 3.0 .
9
- # (60.0 3.0) math:product 180 .
10
+ # (60.0 3.0) math:product "180"^^xsd:decimal .
10
11
  # via the schematic forward rule:
11
12
  # {
12
13
  # ?Loc :redIntensity ?RI .
@@ -16,22 +17,22 @@
16
17
  # ?Loc :redEnergy ?Ered .
17
18
  # } .
18
19
  # with substitution (on rule variables):
19
- # ?Ered = 180
20
+ # ?Ered = "180"^^xsd:decimal
20
21
  # ?Loc = :Shade
21
22
  # ?RH = 3.0
22
23
  # ?RI = 60.0
23
24
  # Therefore the derived triple above is entailed by the rules and facts.
24
25
  # ----------------------------------------------------------------------
25
26
 
26
- :Shade :redEnergy 180 .
27
+ :Shade :redEnergy "180"^^xsd:decimal .
27
28
 
28
29
  # ----------------------------------------------------------------------
29
30
  # Proof for derived triple:
30
- # :Greenhouse :redEnergy 960 .
31
+ # :Greenhouse :redEnergy "960"^^xsd:decimal .
31
32
  # It holds because the following instance of the rule body is provable:
32
33
  # :Greenhouse :redIntensity 120.0 .
33
34
  # :Greenhouse :redHours 8.0 .
34
- # (120.0 8.0) math:product 960 .
35
+ # (120.0 8.0) math:product "960"^^xsd:decimal .
35
36
  # via the schematic forward rule:
36
37
  # {
37
38
  # ?Loc :redIntensity ?RI .
@@ -41,22 +42,22 @@
41
42
  # ?Loc :redEnergy ?Ered .
42
43
  # } .
43
44
  # with substitution (on rule variables):
44
- # ?Ered = 960
45
+ # ?Ered = "960"^^xsd:decimal
45
46
  # ?Loc = :Greenhouse
46
47
  # ?RH = 8.0
47
48
  # ?RI = 120.0
48
49
  # Therefore the derived triple above is entailed by the rules and facts.
49
50
  # ----------------------------------------------------------------------
50
51
 
51
- :Greenhouse :redEnergy 960 .
52
+ :Greenhouse :redEnergy "960"^^xsd:decimal .
52
53
 
53
54
  # ----------------------------------------------------------------------
54
55
  # Proof for derived triple:
55
- # :Shade :blueEnergy 80 .
56
+ # :Shade :blueEnergy "80"^^xsd:decimal .
56
57
  # It holds because the following instance of the rule body is provable:
57
58
  # :Shade :blueIntensity 80.0 .
58
59
  # :Shade :blueHours 1.0 .
59
- # (80.0 1.0) math:product 80 .
60
+ # (80.0 1.0) math:product "80"^^xsd:decimal .
60
61
  # via the schematic forward rule:
61
62
  # {
62
63
  # ?Loc :blueIntensity ?BI .
@@ -68,20 +69,20 @@
68
69
  # with substitution (on rule variables):
69
70
  # ?BH = 1.0
70
71
  # ?BI = 80.0
71
- # ?Eblue = 80
72
+ # ?Eblue = "80"^^xsd:decimal
72
73
  # ?Loc = :Shade
73
74
  # Therefore the derived triple above is entailed by the rules and facts.
74
75
  # ----------------------------------------------------------------------
75
76
 
76
- :Shade :blueEnergy 80 .
77
+ :Shade :blueEnergy "80"^^xsd:decimal .
77
78
 
78
79
  # ----------------------------------------------------------------------
79
80
  # Proof for derived triple:
80
- # :Greenhouse :blueEnergy 400 .
81
+ # :Greenhouse :blueEnergy "400"^^xsd:decimal .
81
82
  # It holds because the following instance of the rule body is provable:
82
83
  # :Greenhouse :blueIntensity 200.0 .
83
84
  # :Greenhouse :blueHours 2.0 .
84
- # (200.0 2.0) math:product 400 .
85
+ # (200.0 2.0) math:product "400"^^xsd:decimal .
85
86
  # via the schematic forward rule:
86
87
  # {
87
88
  # ?Loc :blueIntensity ?BI .
@@ -93,22 +94,22 @@
93
94
  # with substitution (on rule variables):
94
95
  # ?BH = 2.0
95
96
  # ?BI = 200.0
96
- # ?Eblue = 400
97
+ # ?Eblue = "400"^^xsd:decimal
97
98
  # ?Loc = :Greenhouse
98
99
  # Therefore the derived triple above is entailed by the rules and facts.
99
100
  # ----------------------------------------------------------------------
100
101
 
101
- :Greenhouse :blueEnergy 400 .
102
+ :Greenhouse :blueEnergy "400"^^xsd:decimal .
102
103
 
103
104
  # ----------------------------------------------------------------------
104
105
  # Proof for derived triple:
105
- # :Fern :absorbedRed 72 .
106
+ # :Fern :absorbedRed "72"^^xsd:decimal .
106
107
  # It holds because the following instance of the rule body is provable:
107
108
  # :Fern a :Plant .
108
109
  # :Fern :location :Shade .
109
110
  # :Fern :absorbRed 0.40 .
110
- # :Shade :redEnergy 180 .
111
- # (180 0.40) math:product 72 .
111
+ # :Shade :redEnergy "180"^^xsd:decimal .
112
+ # ("180"^^xsd:decimal 0.40) math:product "72"^^xsd:decimal .
112
113
  # via the schematic forward rule:
113
114
  # {
114
115
  # ?P a :Plant .
@@ -121,24 +122,24 @@
121
122
  # } .
122
123
  # with substitution (on rule variables):
123
124
  # ?AR = 0.40
124
- # ?Ared = 72
125
- # ?Ered = 180
125
+ # ?Ared = "72"^^xsd:decimal
126
+ # ?Ered = "180"^^xsd:decimal
126
127
  # ?Loc = :Shade
127
128
  # ?P = :Fern
128
129
  # Therefore the derived triple above is entailed by the rules and facts.
129
130
  # ----------------------------------------------------------------------
130
131
 
131
- :Fern :absorbedRed 72 .
132
+ :Fern :absorbedRed "72"^^xsd:decimal .
132
133
 
133
134
  # ----------------------------------------------------------------------
134
135
  # Proof for derived triple:
135
- # :Sunflower :absorbedRed 816 .
136
+ # :Sunflower :absorbedRed "816"^^xsd:decimal .
136
137
  # It holds because the following instance of the rule body is provable:
137
138
  # :Sunflower a :Plant .
138
139
  # :Sunflower :location :Greenhouse .
139
140
  # :Sunflower :absorbRed 0.85 .
140
- # :Greenhouse :redEnergy 960 .
141
- # (960 0.85) math:product 816 .
141
+ # :Greenhouse :redEnergy "960"^^xsd:decimal .
142
+ # ("960"^^xsd:decimal 0.85) math:product "816"^^xsd:decimal .
142
143
  # via the schematic forward rule:
143
144
  # {
144
145
  # ?P a :Plant .
@@ -151,24 +152,24 @@
151
152
  # } .
152
153
  # with substitution (on rule variables):
153
154
  # ?AR = 0.85
154
- # ?Ared = 816
155
- # ?Ered = 960
155
+ # ?Ared = "816"^^xsd:decimal
156
+ # ?Ered = "960"^^xsd:decimal
156
157
  # ?Loc = :Greenhouse
157
158
  # ?P = :Sunflower
158
159
  # Therefore the derived triple above is entailed by the rules and facts.
159
160
  # ----------------------------------------------------------------------
160
161
 
161
- :Sunflower :absorbedRed 816 .
162
+ :Sunflower :absorbedRed "816"^^xsd:decimal .
162
163
 
163
164
  # ----------------------------------------------------------------------
164
165
  # Proof for derived triple:
165
- # :Fern :absorbedBlue 60 .
166
+ # :Fern :absorbedBlue "60"^^xsd:decimal .
166
167
  # It holds because the following instance of the rule body is provable:
167
168
  # :Fern a :Plant .
168
169
  # :Fern :location :Shade .
169
170
  # :Fern :absorbBlue 0.75 .
170
- # :Shade :blueEnergy 80 .
171
- # (80 0.75) math:product 60 .
171
+ # :Shade :blueEnergy "80"^^xsd:decimal .
172
+ # ("80"^^xsd:decimal 0.75) math:product "60"^^xsd:decimal .
172
173
  # via the schematic forward rule:
173
174
  # {
174
175
  # ?P a :Plant .
@@ -181,24 +182,24 @@
181
182
  # } .
182
183
  # with substitution (on rule variables):
183
184
  # ?AB = 0.75
184
- # ?Ablue = 60
185
- # ?Eblue = 80
185
+ # ?Ablue = "60"^^xsd:decimal
186
+ # ?Eblue = "80"^^xsd:decimal
186
187
  # ?Loc = :Shade
187
188
  # ?P = :Fern
188
189
  # Therefore the derived triple above is entailed by the rules and facts.
189
190
  # ----------------------------------------------------------------------
190
191
 
191
- :Fern :absorbedBlue 60 .
192
+ :Fern :absorbedBlue "60"^^xsd:decimal .
192
193
 
193
194
  # ----------------------------------------------------------------------
194
195
  # Proof for derived triple:
195
- # :Sunflower :absorbedBlue 220.00000000000003 .
196
+ # :Sunflower :absorbedBlue "220.00000000000003"^^xsd:decimal .
196
197
  # It holds because the following instance of the rule body is provable:
197
198
  # :Sunflower a :Plant .
198
199
  # :Sunflower :location :Greenhouse .
199
200
  # :Sunflower :absorbBlue 0.55 .
200
- # :Greenhouse :blueEnergy 400 .
201
- # (400 0.55) math:product 220.00000000000003 .
201
+ # :Greenhouse :blueEnergy "400"^^xsd:decimal .
202
+ # ("400"^^xsd:decimal 0.55) math:product "220.00000000000003"^^xsd:decimal .
202
203
  # via the schematic forward rule:
203
204
  # {
204
205
  # ?P a :Plant .
@@ -211,22 +212,22 @@
211
212
  # } .
212
213
  # with substitution (on rule variables):
213
214
  # ?AB = 0.55
214
- # ?Ablue = 220.00000000000003
215
- # ?Eblue = 400
215
+ # ?Ablue = "220.00000000000003"^^xsd:decimal
216
+ # ?Eblue = "400"^^xsd:decimal
216
217
  # ?Loc = :Greenhouse
217
218
  # ?P = :Sunflower
218
219
  # Therefore the derived triple above is entailed by the rules and facts.
219
220
  # ----------------------------------------------------------------------
220
221
 
221
- :Sunflower :absorbedBlue 220.00000000000003 .
222
+ :Sunflower :absorbedBlue "220.00000000000003"^^xsd:decimal .
222
223
 
223
224
  # ----------------------------------------------------------------------
224
225
  # Proof for derived triple:
225
- # :Sunflower :absorbedEnergy 1036 .
226
+ # :Sunflower :absorbedEnergy "1036"^^xsd:decimal .
226
227
  # It holds because the following instance of the rule body is provable:
227
- # :Sunflower :absorbedRed 816 .
228
- # :Sunflower :absorbedBlue 220.00000000000003 .
229
- # (816 220.00000000000003) math:sum 1036 .
228
+ # :Sunflower :absorbedRed "816"^^xsd:decimal .
229
+ # :Sunflower :absorbedBlue "220.00000000000003"^^xsd:decimal .
230
+ # ("816"^^xsd:decimal "220.00000000000003"^^xsd:decimal) math:sum "1036"^^xsd:decimal .
230
231
  # via the schematic forward rule:
231
232
  # {
232
233
  # ?P :absorbedRed ?Ared .
@@ -236,22 +237,22 @@
236
237
  # ?P :absorbedEnergy ?Abs .
237
238
  # } .
238
239
  # with substitution (on rule variables):
239
- # ?Ablue = 220.00000000000003
240
- # ?Abs = 1036
241
- # ?Ared = 816
240
+ # ?Ablue = "220.00000000000003"^^xsd:decimal
241
+ # ?Abs = "1036"^^xsd:decimal
242
+ # ?Ared = "816"^^xsd:decimal
242
243
  # ?P = :Sunflower
243
244
  # Therefore the derived triple above is entailed by the rules and facts.
244
245
  # ----------------------------------------------------------------------
245
246
 
246
- :Sunflower :absorbedEnergy 1036 .
247
+ :Sunflower :absorbedEnergy "1036"^^xsd:decimal .
247
248
 
248
249
  # ----------------------------------------------------------------------
249
250
  # Proof for derived triple:
250
- # :Fern :absorbedEnergy 132 .
251
+ # :Fern :absorbedEnergy "132"^^xsd:decimal .
251
252
  # It holds because the following instance of the rule body is provable:
252
- # :Fern :absorbedRed 72 .
253
- # :Fern :absorbedBlue 60 .
254
- # (72 60) math:sum 132 .
253
+ # :Fern :absorbedRed "72"^^xsd:decimal .
254
+ # :Fern :absorbedBlue "60"^^xsd:decimal .
255
+ # ("72"^^xsd:decimal "60"^^xsd:decimal) math:sum "132"^^xsd:decimal .
255
256
  # via the schematic forward rule:
256
257
  # {
257
258
  # ?P :absorbedRed ?Ared .
@@ -261,22 +262,22 @@
261
262
  # ?P :absorbedEnergy ?Abs .
262
263
  # } .
263
264
  # with substitution (on rule variables):
264
- # ?Ablue = 60
265
- # ?Abs = 132
266
- # ?Ared = 72
265
+ # ?Ablue = "60"^^xsd:decimal
266
+ # ?Abs = "132"^^xsd:decimal
267
+ # ?Ared = "72"^^xsd:decimal
267
268
  # ?P = :Fern
268
269
  # Therefore the derived triple above is entailed by the rules and facts.
269
270
  # ----------------------------------------------------------------------
270
271
 
271
- :Fern :absorbedEnergy 132 .
272
+ :Fern :absorbedEnergy "132"^^xsd:decimal .
272
273
 
273
274
  # ----------------------------------------------------------------------
274
275
  # Proof for derived triple:
275
- # :Fern :dailyStored 33 .
276
+ # :Fern :dailyStored "33"^^xsd:decimal .
276
277
  # It holds because the following instance of the rule body is provable:
277
- # :Fern :absorbedEnergy 132 .
278
+ # :Fern :absorbedEnergy "132"^^xsd:decimal .
278
279
  # :Fern :conversion 0.25 .
279
- # (132 0.25) math:product 33 .
280
+ # ("132"^^xsd:decimal 0.25) math:product "33"^^xsd:decimal .
280
281
  # via the schematic forward rule:
281
282
  # {
282
283
  # ?P :absorbedEnergy ?Abs .
@@ -286,22 +287,22 @@
286
287
  # ?P :dailyStored ?Stored .
287
288
  # } .
288
289
  # with substitution (on rule variables):
289
- # ?Abs = 132
290
+ # ?Abs = "132"^^xsd:decimal
290
291
  # ?C = 0.25
291
292
  # ?P = :Fern
292
- # ?Stored = 33
293
+ # ?Stored = "33"^^xsd:decimal
293
294
  # Therefore the derived triple above is entailed by the rules and facts.
294
295
  # ----------------------------------------------------------------------
295
296
 
296
- :Fern :dailyStored 33 .
297
+ :Fern :dailyStored "33"^^xsd:decimal .
297
298
 
298
299
  # ----------------------------------------------------------------------
299
300
  # Proof for derived triple:
300
- # :Sunflower :dailyStored 259 .
301
+ # :Sunflower :dailyStored "259"^^xsd:decimal .
301
302
  # It holds because the following instance of the rule body is provable:
302
- # :Sunflower :absorbedEnergy 1036 .
303
+ # :Sunflower :absorbedEnergy "1036"^^xsd:decimal .
303
304
  # :Sunflower :conversion 0.25 .
304
- # (1036 0.25) math:product 259 .
305
+ # ("1036"^^xsd:decimal 0.25) math:product "259"^^xsd:decimal .
305
306
  # via the schematic forward rule:
306
307
  # {
307
308
  # ?P :absorbedEnergy ?Abs .
@@ -311,21 +312,21 @@
311
312
  # ?P :dailyStored ?Stored .
312
313
  # } .
313
314
  # with substitution (on rule variables):
314
- # ?Abs = 1036
315
+ # ?Abs = "1036"^^xsd:decimal
315
316
  # ?C = 0.25
316
317
  # ?P = :Sunflower
317
- # ?Stored = 259
318
+ # ?Stored = "259"^^xsd:decimal
318
319
  # Therefore the derived triple above is entailed by the rules and facts.
319
320
  # ----------------------------------------------------------------------
320
321
 
321
- :Sunflower :dailyStored 259 .
322
+ :Sunflower :dailyStored "259"^^xsd:decimal .
322
323
 
323
324
  # ----------------------------------------------------------------------
324
325
  # Proof for derived triple:
325
- # :Sunflower :weeklyStored 1813 .
326
+ # :Sunflower :weeklyStored "1813"^^xsd:decimal .
326
327
  # It holds because the following instance of the rule body is provable:
327
- # :Sunflower :dailyStored 259 .
328
- # (259 7) math:product 1813 .
328
+ # :Sunflower :dailyStored "259"^^xsd:decimal .
329
+ # ("259"^^xsd:decimal 7) math:product "1813"^^xsd:decimal .
329
330
  # via the schematic forward rule:
330
331
  # {
331
332
  # ?P :dailyStored ?D .
@@ -334,20 +335,20 @@
334
335
  # ?P :weeklyStored ?W .
335
336
  # } .
336
337
  # with substitution (on rule variables):
337
- # ?D = 259
338
+ # ?D = "259"^^xsd:decimal
338
339
  # ?P = :Sunflower
339
- # ?W = 1813
340
+ # ?W = "1813"^^xsd:decimal
340
341
  # Therefore the derived triple above is entailed by the rules and facts.
341
342
  # ----------------------------------------------------------------------
342
343
 
343
- :Sunflower :weeklyStored 1813 .
344
+ :Sunflower :weeklyStored "1813"^^xsd:decimal .
344
345
 
345
346
  # ----------------------------------------------------------------------
346
347
  # Proof for derived triple:
347
- # :Fern :weeklyStored 231 .
348
+ # :Fern :weeklyStored "231"^^xsd:decimal .
348
349
  # It holds because the following instance of the rule body is provable:
349
- # :Fern :dailyStored 33 .
350
- # (33 7) math:product 231 .
350
+ # :Fern :dailyStored "33"^^xsd:decimal .
351
+ # ("33"^^xsd:decimal 7) math:product "231"^^xsd:decimal .
351
352
  # via the schematic forward rule:
352
353
  # {
353
354
  # ?P :dailyStored ?D .
@@ -356,11 +357,11 @@
356
357
  # ?P :weeklyStored ?W .
357
358
  # } .
358
359
  # with substitution (on rule variables):
359
- # ?D = 33
360
+ # ?D = "33"^^xsd:decimal
360
361
  # ?P = :Fern
361
- # ?W = 231
362
+ # ?W = "231"^^xsd:decimal
362
363
  # Therefore the derived triple above is entailed by the rules and facts.
363
364
  # ----------------------------------------------------------------------
364
365
 
365
- :Fern :weeklyStored 231 .
366
+ :Fern :weeklyStored "231"^^xsd:decimal .
366
367