eyeling 1.6.4 → 1.6.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,28 +1,29 @@
1
1
  @prefix : <http://example.org/cranberry-calculus#> .
2
+ @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
2
3
 
3
4
  # ----------------------------------------------------------------------
4
5
  # Proof for derived triple:
5
- # :VecA :dotWithVecB 12 .
6
+ # :VecA :dotWithVecB "12"^^xsd:decimal .
6
7
  # It holds because the following instance of the rule body is provable:
7
8
  # :VecA :x 3.0 .
8
9
  # :VecA :y 4.0 .
9
10
  # :VecB :x 4.0 .
10
11
  # :VecB :y 0.0 .
11
- # (3.0 4.0) math:product 12 .
12
- # (4.0 0.0) math:product 0 .
13
- # (12 0) math:sum 12 .
14
- # (3.0 2.0) math:exponentiation 9 .
15
- # (4.0 2.0) math:exponentiation 16 .
16
- # (9 16) math:sum 25 .
17
- # (25 0.5) math:exponentiation 5 .
18
- # (4.0 2.0) math:exponentiation 16 .
19
- # (0.0 2.0) math:exponentiation 0 .
20
- # (16 0) math:sum 16 .
21
- # (16 0.5) math:exponentiation 4 .
22
- # (5 4) math:product 20 .
23
- # (12 20) math:quotient 0.6 .
24
- # 0.6 math:acos 0.9272952180016123 .
25
- # 0.9272952180016123 math:degrees 53.13010235415598 .
12
+ # (3.0 4.0) math:product "12"^^xsd:decimal .
13
+ # (4.0 0.0) math:product "0"^^xsd:decimal .
14
+ # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
15
+ # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
16
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
17
+ # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
18
+ # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
19
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
20
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
21
+ # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
22
+ # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
23
+ # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
24
+ # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
25
+ # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
26
+ # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
26
27
  # via the schematic forward rule:
27
28
  # {
28
29
  # :VecA :x ?ax .
@@ -51,53 +52,53 @@
51
52
  # :VecA :angleToVecB _:b2 .
52
53
  # } .
53
54
  # with substitution (on rule variables):
54
- # ?a2 = 25
55
- # ?aNorm = 5
55
+ # ?a2 = "25"^^xsd:decimal
56
+ # ?aNorm = "5"^^xsd:decimal
56
57
  # ?ax = 3.0
57
- # ?ax2 = 9
58
- # ?axbx = 12
58
+ # ?ax2 = "9"^^xsd:decimal
59
+ # ?axbx = "12"^^xsd:decimal
59
60
  # ?ay = 4.0
60
- # ?ay2 = 16
61
- # ?ayby = 0
62
- # ?b2 = 16
63
- # ?bNorm = 4
61
+ # ?ay2 = "16"^^xsd:decimal
62
+ # ?ayby = "0"^^xsd:decimal
63
+ # ?b2 = "16"^^xsd:decimal
64
+ # ?bNorm = "4"^^xsd:decimal
64
65
  # ?bx = 4.0
65
- # ?bx2 = 16
66
+ # ?bx2 = "16"^^xsd:decimal
66
67
  # ?by = 0.0
67
- # ?by2 = 0
68
- # ?cosTheta = 0.6
69
- # ?den = 20
70
- # ?dot = 12
71
- # ?thetaDeg = 53.13010235415598
72
- # ?thetaRad = 0.9272952180016123
68
+ # ?by2 = "0"^^xsd:decimal
69
+ # ?cosTheta = "0.6"^^xsd:decimal
70
+ # ?den = "20"^^xsd:decimal
71
+ # ?dot = "12"^^xsd:decimal
72
+ # ?thetaDeg = "53.13010235415598"^^xsd:decimal
73
+ # ?thetaRad = "0.9272952180016123"^^xsd:decimal
73
74
  # Therefore the derived triple above is entailed by the rules and facts.
74
75
  # ----------------------------------------------------------------------
75
76
 
76
- :VecA :dotWithVecB 12 .
77
+ :VecA :dotWithVecB "12"^^xsd:decimal .
77
78
 
78
79
  # ----------------------------------------------------------------------
79
80
  # Proof for derived triple:
80
- # _:sk_0 :radians 0.9272952180016123 .
81
+ # _:sk_0 :radians "0.9272952180016123"^^xsd:decimal .
81
82
  # It holds because the following instance of the rule body is provable:
82
83
  # :VecA :x 3.0 .
83
84
  # :VecA :y 4.0 .
84
85
  # :VecB :x 4.0 .
85
86
  # :VecB :y 0.0 .
86
- # (3.0 4.0) math:product 12 .
87
- # (4.0 0.0) math:product 0 .
88
- # (12 0) math:sum 12 .
89
- # (3.0 2.0) math:exponentiation 9 .
90
- # (4.0 2.0) math:exponentiation 16 .
91
- # (9 16) math:sum 25 .
92
- # (25 0.5) math:exponentiation 5 .
93
- # (4.0 2.0) math:exponentiation 16 .
94
- # (0.0 2.0) math:exponentiation 0 .
95
- # (16 0) math:sum 16 .
96
- # (16 0.5) math:exponentiation 4 .
97
- # (5 4) math:product 20 .
98
- # (12 20) math:quotient 0.6 .
99
- # 0.6 math:acos 0.9272952180016123 .
100
- # 0.9272952180016123 math:degrees 53.13010235415598 .
87
+ # (3.0 4.0) math:product "12"^^xsd:decimal .
88
+ # (4.0 0.0) math:product "0"^^xsd:decimal .
89
+ # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
90
+ # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
91
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
92
+ # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
93
+ # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
94
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
95
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
96
+ # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
97
+ # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
98
+ # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
99
+ # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
100
+ # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
101
+ # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
101
102
  # via the schematic forward rule:
102
103
  # {
103
104
  # :VecA :x ?ax .
@@ -126,53 +127,53 @@
126
127
  # :VecA :angleToVecB _:b2 .
127
128
  # } .
128
129
  # with substitution (on rule variables):
129
- # ?a2 = 25
130
- # ?aNorm = 5
130
+ # ?a2 = "25"^^xsd:decimal
131
+ # ?aNorm = "5"^^xsd:decimal
131
132
  # ?ax = 3.0
132
- # ?ax2 = 9
133
- # ?axbx = 12
133
+ # ?ax2 = "9"^^xsd:decimal
134
+ # ?axbx = "12"^^xsd:decimal
134
135
  # ?ay = 4.0
135
- # ?ay2 = 16
136
- # ?ayby = 0
137
- # ?b2 = 16
138
- # ?bNorm = 4
136
+ # ?ay2 = "16"^^xsd:decimal
137
+ # ?ayby = "0"^^xsd:decimal
138
+ # ?b2 = "16"^^xsd:decimal
139
+ # ?bNorm = "4"^^xsd:decimal
139
140
  # ?bx = 4.0
140
- # ?bx2 = 16
141
+ # ?bx2 = "16"^^xsd:decimal
141
142
  # ?by = 0.0
142
- # ?by2 = 0
143
- # ?cosTheta = 0.6
144
- # ?den = 20
145
- # ?dot = 12
146
- # ?thetaDeg = 53.13010235415598
147
- # ?thetaRad = 0.9272952180016123
143
+ # ?by2 = "0"^^xsd:decimal
144
+ # ?cosTheta = "0.6"^^xsd:decimal
145
+ # ?den = "20"^^xsd:decimal
146
+ # ?dot = "12"^^xsd:decimal
147
+ # ?thetaDeg = "53.13010235415598"^^xsd:decimal
148
+ # ?thetaRad = "0.9272952180016123"^^xsd:decimal
148
149
  # Therefore the derived triple above is entailed by the rules and facts.
149
150
  # ----------------------------------------------------------------------
150
151
 
151
- _:sk_0 :radians 0.9272952180016123 .
152
+ _:sk_0 :radians "0.9272952180016123"^^xsd:decimal .
152
153
 
153
154
  # ----------------------------------------------------------------------
154
155
  # Proof for derived triple:
155
- # _:sk_0 :degrees 53.13010235415598 .
156
+ # _:sk_0 :degrees "53.13010235415598"^^xsd:decimal .
156
157
  # It holds because the following instance of the rule body is provable:
157
158
  # :VecA :x 3.0 .
158
159
  # :VecA :y 4.0 .
159
160
  # :VecB :x 4.0 .
160
161
  # :VecB :y 0.0 .
161
- # (3.0 4.0) math:product 12 .
162
- # (4.0 0.0) math:product 0 .
163
- # (12 0) math:sum 12 .
164
- # (3.0 2.0) math:exponentiation 9 .
165
- # (4.0 2.0) math:exponentiation 16 .
166
- # (9 16) math:sum 25 .
167
- # (25 0.5) math:exponentiation 5 .
168
- # (4.0 2.0) math:exponentiation 16 .
169
- # (0.0 2.0) math:exponentiation 0 .
170
- # (16 0) math:sum 16 .
171
- # (16 0.5) math:exponentiation 4 .
172
- # (5 4) math:product 20 .
173
- # (12 20) math:quotient 0.6 .
174
- # 0.6 math:acos 0.9272952180016123 .
175
- # 0.9272952180016123 math:degrees 53.13010235415598 .
162
+ # (3.0 4.0) math:product "12"^^xsd:decimal .
163
+ # (4.0 0.0) math:product "0"^^xsd:decimal .
164
+ # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
165
+ # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
166
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
167
+ # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
168
+ # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
169
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
170
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
171
+ # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
172
+ # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
173
+ # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
174
+ # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
175
+ # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
176
+ # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
176
177
  # via the schematic forward rule:
177
178
  # {
178
179
  # :VecA :x ?ax .
@@ -201,29 +202,29 @@ _:sk_0 :radians 0.9272952180016123 .
201
202
  # :VecA :angleToVecB _:b2 .
202
203
  # } .
203
204
  # with substitution (on rule variables):
204
- # ?a2 = 25
205
- # ?aNorm = 5
205
+ # ?a2 = "25"^^xsd:decimal
206
+ # ?aNorm = "5"^^xsd:decimal
206
207
  # ?ax = 3.0
207
- # ?ax2 = 9
208
- # ?axbx = 12
208
+ # ?ax2 = "9"^^xsd:decimal
209
+ # ?axbx = "12"^^xsd:decimal
209
210
  # ?ay = 4.0
210
- # ?ay2 = 16
211
- # ?ayby = 0
212
- # ?b2 = 16
213
- # ?bNorm = 4
211
+ # ?ay2 = "16"^^xsd:decimal
212
+ # ?ayby = "0"^^xsd:decimal
213
+ # ?b2 = "16"^^xsd:decimal
214
+ # ?bNorm = "4"^^xsd:decimal
214
215
  # ?bx = 4.0
215
- # ?bx2 = 16
216
+ # ?bx2 = "16"^^xsd:decimal
216
217
  # ?by = 0.0
217
- # ?by2 = 0
218
- # ?cosTheta = 0.6
219
- # ?den = 20
220
- # ?dot = 12
221
- # ?thetaDeg = 53.13010235415598
222
- # ?thetaRad = 0.9272952180016123
218
+ # ?by2 = "0"^^xsd:decimal
219
+ # ?cosTheta = "0.6"^^xsd:decimal
220
+ # ?den = "20"^^xsd:decimal
221
+ # ?dot = "12"^^xsd:decimal
222
+ # ?thetaDeg = "53.13010235415598"^^xsd:decimal
223
+ # ?thetaRad = "0.9272952180016123"^^xsd:decimal
223
224
  # Therefore the derived triple above is entailed by the rules and facts.
224
225
  # ----------------------------------------------------------------------
225
226
 
226
- _:sk_0 :degrees 53.13010235415598 .
227
+ _:sk_0 :degrees "53.13010235415598"^^xsd:decimal .
227
228
 
228
229
  # ----------------------------------------------------------------------
229
230
  # Proof for derived triple:
@@ -233,21 +234,21 @@ _:sk_0 :degrees 53.13010235415598 .
233
234
  # :VecA :y 4.0 .
234
235
  # :VecB :x 4.0 .
235
236
  # :VecB :y 0.0 .
236
- # (3.0 4.0) math:product 12 .
237
- # (4.0 0.0) math:product 0 .
238
- # (12 0) math:sum 12 .
239
- # (3.0 2.0) math:exponentiation 9 .
240
- # (4.0 2.0) math:exponentiation 16 .
241
- # (9 16) math:sum 25 .
242
- # (25 0.5) math:exponentiation 5 .
243
- # (4.0 2.0) math:exponentiation 16 .
244
- # (0.0 2.0) math:exponentiation 0 .
245
- # (16 0) math:sum 16 .
246
- # (16 0.5) math:exponentiation 4 .
247
- # (5 4) math:product 20 .
248
- # (12 20) math:quotient 0.6 .
249
- # 0.6 math:acos 0.9272952180016123 .
250
- # 0.9272952180016123 math:degrees 53.13010235415598 .
237
+ # (3.0 4.0) math:product "12"^^xsd:decimal .
238
+ # (4.0 0.0) math:product "0"^^xsd:decimal .
239
+ # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
240
+ # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
241
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
242
+ # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
243
+ # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
244
+ # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
245
+ # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
246
+ # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
247
+ # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
248
+ # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
249
+ # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
250
+ # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
251
+ # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
251
252
  # via the schematic forward rule:
252
253
  # {
253
254
  # :VecA :x ?ax .
@@ -276,25 +277,25 @@ _:sk_0 :degrees 53.13010235415598 .
276
277
  # :VecA :angleToVecB _:b2 .
277
278
  # } .
278
279
  # with substitution (on rule variables):
279
- # ?a2 = 25
280
- # ?aNorm = 5
280
+ # ?a2 = "25"^^xsd:decimal
281
+ # ?aNorm = "5"^^xsd:decimal
281
282
  # ?ax = 3.0
282
- # ?ax2 = 9
283
- # ?axbx = 12
283
+ # ?ax2 = "9"^^xsd:decimal
284
+ # ?axbx = "12"^^xsd:decimal
284
285
  # ?ay = 4.0
285
- # ?ay2 = 16
286
- # ?ayby = 0
287
- # ?b2 = 16
288
- # ?bNorm = 4
286
+ # ?ay2 = "16"^^xsd:decimal
287
+ # ?ayby = "0"^^xsd:decimal
288
+ # ?b2 = "16"^^xsd:decimal
289
+ # ?bNorm = "4"^^xsd:decimal
289
290
  # ?bx = 4.0
290
- # ?bx2 = 16
291
+ # ?bx2 = "16"^^xsd:decimal
291
292
  # ?by = 0.0
292
- # ?by2 = 0
293
- # ?cosTheta = 0.6
294
- # ?den = 20
295
- # ?dot = 12
296
- # ?thetaDeg = 53.13010235415598
297
- # ?thetaRad = 0.9272952180016123
293
+ # ?by2 = "0"^^xsd:decimal
294
+ # ?cosTheta = "0.6"^^xsd:decimal
295
+ # ?den = "20"^^xsd:decimal
296
+ # ?dot = "12"^^xsd:decimal
297
+ # ?thetaDeg = "53.13010235415598"^^xsd:decimal
298
+ # ?thetaRad = "0.9272952180016123"^^xsd:decimal
298
299
  # Therefore the derived triple above is entailed by the rules and facts.
299
300
  # ----------------------------------------------------------------------
300
301
 
@@ -302,28 +303,28 @@ _:sk_0 :degrees 53.13010235415598 .
302
303
 
303
304
  # ----------------------------------------------------------------------
304
305
  # Proof for derived triple:
305
- # :Shot1 :vx 21.213203435596427 .
306
+ # :Shot1 :vx "21.213203435596427"^^xsd:decimal .
306
307
  # It holds because the following instance of the rule body is provable:
307
308
  # :Shot1 :speed 30.0 .
308
309
  # :Shot1 :angleRad 0.7853981633974483 .
309
310
  # :Shot1 :g 9.81 .
310
311
  # :Shot1 :tSample 2.5 .
311
- # 0.7853981633974483 math:sin 0.7071067811865475 .
312
- # 0.7853981633974483 math:cos 0.7071067811865476 .
313
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
314
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
315
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
316
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
317
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
318
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
319
- # (2.0 9.81) math:product 19.62 .
320
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
321
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
322
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
323
- # (2.5 2.0) math:exponentiation 6.25 .
324
- # (9.81 6.25) math:product 61.3125 .
325
- # (0.5 61.3125) math:product 30.65625 .
326
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
312
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
313
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
314
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
315
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
316
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
317
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
318
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
319
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
320
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
321
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
322
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
323
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
324
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
325
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
326
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
327
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
327
328
  # via the schematic forward rule:
328
329
  # {
329
330
  # :Shot1 :speed ?v .
@@ -358,55 +359,55 @@ _:sk_0 :degrees 53.13010235415598 .
358
359
  # :Shot1 :positionAtSample _:b3 .
359
360
  # } .
360
361
  # with substitution (on rule variables):
361
- # ?cosT = 0.7071067811865476
362
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
362
363
  # ?g = 9.81
363
- # ?g_t2 = 61.3125
364
- # ?hMax = 22.935779816513755
365
- # ?half_g_t2 = 30.65625
366
- # ?range = 91.74311926605502
367
- # ?sinT = 0.7071067811865475
364
+ # ?g_t2 = "61.3125"^^xsd:decimal
365
+ # ?hMax = "22.935779816513755"^^xsd:decimal
366
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
367
+ # ?range = "91.74311926605502"^^xsd:decimal
368
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
368
369
  # ?t = 2.5
369
- # ?t2 = 6.25
370
- # ?tFlight = 4.324812117348913
370
+ # ?t2 = "6.25"^^xsd:decimal
371
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
371
372
  # ?theta = 0.7853981633974483
372
- # ?twoG = 19.62
373
- # ?twoVy = 42.426406871192846
373
+ # ?twoG = "19.62"^^xsd:decimal
374
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
374
375
  # ?v = 30.0
375
- # ?vx = 21.213203435596427
376
- # ?vy = 21.213203435596423
377
- # ?vy2 = 449.9999999999999
378
- # ?vy_t = 53.03300858899106
379
- # ?xAtT = 53.033008588991066
380
- # ?yAtT = 22.37675858899106
376
+ # ?vx = "21.213203435596427"^^xsd:decimal
377
+ # ?vy = "21.213203435596423"^^xsd:decimal
378
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
379
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
380
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
381
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
381
382
  # Therefore the derived triple above is entailed by the rules and facts.
382
383
  # ----------------------------------------------------------------------
383
384
 
384
- :Shot1 :vx 21.213203435596427 .
385
+ :Shot1 :vx "21.213203435596427"^^xsd:decimal .
385
386
 
386
387
  # ----------------------------------------------------------------------
387
388
  # Proof for derived triple:
388
- # :Shot1 :vy 21.213203435596423 .
389
+ # :Shot1 :vy "21.213203435596423"^^xsd:decimal .
389
390
  # It holds because the following instance of the rule body is provable:
390
391
  # :Shot1 :speed 30.0 .
391
392
  # :Shot1 :angleRad 0.7853981633974483 .
392
393
  # :Shot1 :g 9.81 .
393
394
  # :Shot1 :tSample 2.5 .
394
- # 0.7853981633974483 math:sin 0.7071067811865475 .
395
- # 0.7853981633974483 math:cos 0.7071067811865476 .
396
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
397
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
398
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
399
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
400
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
401
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
402
- # (2.0 9.81) math:product 19.62 .
403
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
404
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
405
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
406
- # (2.5 2.0) math:exponentiation 6.25 .
407
- # (9.81 6.25) math:product 61.3125 .
408
- # (0.5 61.3125) math:product 30.65625 .
409
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
395
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
396
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
397
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
398
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
399
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
400
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
401
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
402
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
403
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
404
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
405
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
406
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
407
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
408
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
409
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
410
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
410
411
  # via the schematic forward rule:
411
412
  # {
412
413
  # :Shot1 :speed ?v .
@@ -441,55 +442,55 @@ _:sk_0 :degrees 53.13010235415598 .
441
442
  # :Shot1 :positionAtSample _:b3 .
442
443
  # } .
443
444
  # with substitution (on rule variables):
444
- # ?cosT = 0.7071067811865476
445
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
445
446
  # ?g = 9.81
446
- # ?g_t2 = 61.3125
447
- # ?hMax = 22.935779816513755
448
- # ?half_g_t2 = 30.65625
449
- # ?range = 91.74311926605502
450
- # ?sinT = 0.7071067811865475
447
+ # ?g_t2 = "61.3125"^^xsd:decimal
448
+ # ?hMax = "22.935779816513755"^^xsd:decimal
449
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
450
+ # ?range = "91.74311926605502"^^xsd:decimal
451
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
451
452
  # ?t = 2.5
452
- # ?t2 = 6.25
453
- # ?tFlight = 4.324812117348913
453
+ # ?t2 = "6.25"^^xsd:decimal
454
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
454
455
  # ?theta = 0.7853981633974483
455
- # ?twoG = 19.62
456
- # ?twoVy = 42.426406871192846
456
+ # ?twoG = "19.62"^^xsd:decimal
457
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
457
458
  # ?v = 30.0
458
- # ?vx = 21.213203435596427
459
- # ?vy = 21.213203435596423
460
- # ?vy2 = 449.9999999999999
461
- # ?vy_t = 53.03300858899106
462
- # ?xAtT = 53.033008588991066
463
- # ?yAtT = 22.37675858899106
459
+ # ?vx = "21.213203435596427"^^xsd:decimal
460
+ # ?vy = "21.213203435596423"^^xsd:decimal
461
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
462
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
463
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
464
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
464
465
  # Therefore the derived triple above is entailed by the rules and facts.
465
466
  # ----------------------------------------------------------------------
466
467
 
467
- :Shot1 :vy 21.213203435596423 .
468
+ :Shot1 :vy "21.213203435596423"^^xsd:decimal .
468
469
 
469
470
  # ----------------------------------------------------------------------
470
471
  # Proof for derived triple:
471
- # :Shot1 :timeOfFlight 4.324812117348913 .
472
+ # :Shot1 :timeOfFlight "4.324812117348913"^^xsd:decimal .
472
473
  # It holds because the following instance of the rule body is provable:
473
474
  # :Shot1 :speed 30.0 .
474
475
  # :Shot1 :angleRad 0.7853981633974483 .
475
476
  # :Shot1 :g 9.81 .
476
477
  # :Shot1 :tSample 2.5 .
477
- # 0.7853981633974483 math:sin 0.7071067811865475 .
478
- # 0.7853981633974483 math:cos 0.7071067811865476 .
479
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
480
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
481
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
482
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
483
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
484
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
485
- # (2.0 9.81) math:product 19.62 .
486
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
487
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
488
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
489
- # (2.5 2.0) math:exponentiation 6.25 .
490
- # (9.81 6.25) math:product 61.3125 .
491
- # (0.5 61.3125) math:product 30.65625 .
492
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
478
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
479
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
480
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
481
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
482
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
483
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
484
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
485
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
486
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
487
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
488
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
489
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
490
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
491
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
492
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
493
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
493
494
  # via the schematic forward rule:
494
495
  # {
495
496
  # :Shot1 :speed ?v .
@@ -524,55 +525,55 @@ _:sk_0 :degrees 53.13010235415598 .
524
525
  # :Shot1 :positionAtSample _:b3 .
525
526
  # } .
526
527
  # with substitution (on rule variables):
527
- # ?cosT = 0.7071067811865476
528
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
528
529
  # ?g = 9.81
529
- # ?g_t2 = 61.3125
530
- # ?hMax = 22.935779816513755
531
- # ?half_g_t2 = 30.65625
532
- # ?range = 91.74311926605502
533
- # ?sinT = 0.7071067811865475
530
+ # ?g_t2 = "61.3125"^^xsd:decimal
531
+ # ?hMax = "22.935779816513755"^^xsd:decimal
532
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
533
+ # ?range = "91.74311926605502"^^xsd:decimal
534
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
534
535
  # ?t = 2.5
535
- # ?t2 = 6.25
536
- # ?tFlight = 4.324812117348913
536
+ # ?t2 = "6.25"^^xsd:decimal
537
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
537
538
  # ?theta = 0.7853981633974483
538
- # ?twoG = 19.62
539
- # ?twoVy = 42.426406871192846
539
+ # ?twoG = "19.62"^^xsd:decimal
540
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
540
541
  # ?v = 30.0
541
- # ?vx = 21.213203435596427
542
- # ?vy = 21.213203435596423
543
- # ?vy2 = 449.9999999999999
544
- # ?vy_t = 53.03300858899106
545
- # ?xAtT = 53.033008588991066
546
- # ?yAtT = 22.37675858899106
542
+ # ?vx = "21.213203435596427"^^xsd:decimal
543
+ # ?vy = "21.213203435596423"^^xsd:decimal
544
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
545
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
546
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
547
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
547
548
  # Therefore the derived triple above is entailed by the rules and facts.
548
549
  # ----------------------------------------------------------------------
549
550
 
550
- :Shot1 :timeOfFlight 4.324812117348913 .
551
+ :Shot1 :timeOfFlight "4.324812117348913"^^xsd:decimal .
551
552
 
552
553
  # ----------------------------------------------------------------------
553
554
  # Proof for derived triple:
554
- # :Shot1 :range 91.74311926605502 .
555
+ # :Shot1 :range "91.74311926605502"^^xsd:decimal .
555
556
  # It holds because the following instance of the rule body is provable:
556
557
  # :Shot1 :speed 30.0 .
557
558
  # :Shot1 :angleRad 0.7853981633974483 .
558
559
  # :Shot1 :g 9.81 .
559
560
  # :Shot1 :tSample 2.5 .
560
- # 0.7853981633974483 math:sin 0.7071067811865475 .
561
- # 0.7853981633974483 math:cos 0.7071067811865476 .
562
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
563
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
564
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
565
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
566
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
567
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
568
- # (2.0 9.81) math:product 19.62 .
569
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
570
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
571
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
572
- # (2.5 2.0) math:exponentiation 6.25 .
573
- # (9.81 6.25) math:product 61.3125 .
574
- # (0.5 61.3125) math:product 30.65625 .
575
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
561
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
562
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
563
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
564
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
565
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
566
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
567
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
568
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
569
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
570
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
571
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
572
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
573
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
574
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
575
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
576
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
576
577
  # via the schematic forward rule:
577
578
  # {
578
579
  # :Shot1 :speed ?v .
@@ -607,55 +608,55 @@ _:sk_0 :degrees 53.13010235415598 .
607
608
  # :Shot1 :positionAtSample _:b3 .
608
609
  # } .
609
610
  # with substitution (on rule variables):
610
- # ?cosT = 0.7071067811865476
611
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
611
612
  # ?g = 9.81
612
- # ?g_t2 = 61.3125
613
- # ?hMax = 22.935779816513755
614
- # ?half_g_t2 = 30.65625
615
- # ?range = 91.74311926605502
616
- # ?sinT = 0.7071067811865475
613
+ # ?g_t2 = "61.3125"^^xsd:decimal
614
+ # ?hMax = "22.935779816513755"^^xsd:decimal
615
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
616
+ # ?range = "91.74311926605502"^^xsd:decimal
617
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
617
618
  # ?t = 2.5
618
- # ?t2 = 6.25
619
- # ?tFlight = 4.324812117348913
619
+ # ?t2 = "6.25"^^xsd:decimal
620
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
620
621
  # ?theta = 0.7853981633974483
621
- # ?twoG = 19.62
622
- # ?twoVy = 42.426406871192846
622
+ # ?twoG = "19.62"^^xsd:decimal
623
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
623
624
  # ?v = 30.0
624
- # ?vx = 21.213203435596427
625
- # ?vy = 21.213203435596423
626
- # ?vy2 = 449.9999999999999
627
- # ?vy_t = 53.03300858899106
628
- # ?xAtT = 53.033008588991066
629
- # ?yAtT = 22.37675858899106
625
+ # ?vx = "21.213203435596427"^^xsd:decimal
626
+ # ?vy = "21.213203435596423"^^xsd:decimal
627
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
628
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
629
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
630
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
630
631
  # Therefore the derived triple above is entailed by the rules and facts.
631
632
  # ----------------------------------------------------------------------
632
633
 
633
- :Shot1 :range 91.74311926605502 .
634
+ :Shot1 :range "91.74311926605502"^^xsd:decimal .
634
635
 
635
636
  # ----------------------------------------------------------------------
636
637
  # Proof for derived triple:
637
- # :Shot1 :maxHeight 22.935779816513755 .
638
+ # :Shot1 :maxHeight "22.935779816513755"^^xsd:decimal .
638
639
  # It holds because the following instance of the rule body is provable:
639
640
  # :Shot1 :speed 30.0 .
640
641
  # :Shot1 :angleRad 0.7853981633974483 .
641
642
  # :Shot1 :g 9.81 .
642
643
  # :Shot1 :tSample 2.5 .
643
- # 0.7853981633974483 math:sin 0.7071067811865475 .
644
- # 0.7853981633974483 math:cos 0.7071067811865476 .
645
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
646
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
647
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
648
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
649
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
650
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
651
- # (2.0 9.81) math:product 19.62 .
652
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
653
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
654
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
655
- # (2.5 2.0) math:exponentiation 6.25 .
656
- # (9.81 6.25) math:product 61.3125 .
657
- # (0.5 61.3125) math:product 30.65625 .
658
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
644
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
645
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
646
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
647
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
648
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
649
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
650
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
651
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
652
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
653
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
654
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
655
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
656
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
657
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
658
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
659
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
659
660
  # via the schematic forward rule:
660
661
  # {
661
662
  # :Shot1 :speed ?v .
@@ -690,30 +691,30 @@ _:sk_0 :degrees 53.13010235415598 .
690
691
  # :Shot1 :positionAtSample _:b3 .
691
692
  # } .
692
693
  # with substitution (on rule variables):
693
- # ?cosT = 0.7071067811865476
694
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
694
695
  # ?g = 9.81
695
- # ?g_t2 = 61.3125
696
- # ?hMax = 22.935779816513755
697
- # ?half_g_t2 = 30.65625
698
- # ?range = 91.74311926605502
699
- # ?sinT = 0.7071067811865475
696
+ # ?g_t2 = "61.3125"^^xsd:decimal
697
+ # ?hMax = "22.935779816513755"^^xsd:decimal
698
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
699
+ # ?range = "91.74311926605502"^^xsd:decimal
700
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
700
701
  # ?t = 2.5
701
- # ?t2 = 6.25
702
- # ?tFlight = 4.324812117348913
702
+ # ?t2 = "6.25"^^xsd:decimal
703
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
703
704
  # ?theta = 0.7853981633974483
704
- # ?twoG = 19.62
705
- # ?twoVy = 42.426406871192846
705
+ # ?twoG = "19.62"^^xsd:decimal
706
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
706
707
  # ?v = 30.0
707
- # ?vx = 21.213203435596427
708
- # ?vy = 21.213203435596423
709
- # ?vy2 = 449.9999999999999
710
- # ?vy_t = 53.03300858899106
711
- # ?xAtT = 53.033008588991066
712
- # ?yAtT = 22.37675858899106
708
+ # ?vx = "21.213203435596427"^^xsd:decimal
709
+ # ?vy = "21.213203435596423"^^xsd:decimal
710
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
711
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
712
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
713
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
713
714
  # Therefore the derived triple above is entailed by the rules and facts.
714
715
  # ----------------------------------------------------------------------
715
716
 
716
- :Shot1 :maxHeight 22.935779816513755 .
717
+ :Shot1 :maxHeight "22.935779816513755"^^xsd:decimal .
717
718
 
718
719
  # ----------------------------------------------------------------------
719
720
  # Proof for derived triple:
@@ -723,22 +724,22 @@ _:sk_0 :degrees 53.13010235415598 .
723
724
  # :Shot1 :angleRad 0.7853981633974483 .
724
725
  # :Shot1 :g 9.81 .
725
726
  # :Shot1 :tSample 2.5 .
726
- # 0.7853981633974483 math:sin 0.7071067811865475 .
727
- # 0.7853981633974483 math:cos 0.7071067811865476 .
728
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
729
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
730
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
731
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
732
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
733
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
734
- # (2.0 9.81) math:product 19.62 .
735
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
736
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
737
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
738
- # (2.5 2.0) math:exponentiation 6.25 .
739
- # (9.81 6.25) math:product 61.3125 .
740
- # (0.5 61.3125) math:product 30.65625 .
741
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
727
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
728
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
729
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
730
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
731
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
732
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
733
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
734
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
735
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
736
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
737
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
738
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
739
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
740
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
741
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
742
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
742
743
  # via the schematic forward rule:
743
744
  # {
744
745
  # :Shot1 :speed ?v .
@@ -773,26 +774,26 @@ _:sk_0 :degrees 53.13010235415598 .
773
774
  # :Shot1 :positionAtSample _:b3 .
774
775
  # } .
775
776
  # with substitution (on rule variables):
776
- # ?cosT = 0.7071067811865476
777
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
777
778
  # ?g = 9.81
778
- # ?g_t2 = 61.3125
779
- # ?hMax = 22.935779816513755
780
- # ?half_g_t2 = 30.65625
781
- # ?range = 91.74311926605502
782
- # ?sinT = 0.7071067811865475
779
+ # ?g_t2 = "61.3125"^^xsd:decimal
780
+ # ?hMax = "22.935779816513755"^^xsd:decimal
781
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
782
+ # ?range = "91.74311926605502"^^xsd:decimal
783
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
783
784
  # ?t = 2.5
784
- # ?t2 = 6.25
785
- # ?tFlight = 4.324812117348913
785
+ # ?t2 = "6.25"^^xsd:decimal
786
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
786
787
  # ?theta = 0.7853981633974483
787
- # ?twoG = 19.62
788
- # ?twoVy = 42.426406871192846
788
+ # ?twoG = "19.62"^^xsd:decimal
789
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
789
790
  # ?v = 30.0
790
- # ?vx = 21.213203435596427
791
- # ?vy = 21.213203435596423
792
- # ?vy2 = 449.9999999999999
793
- # ?vy_t = 53.03300858899106
794
- # ?xAtT = 53.033008588991066
795
- # ?yAtT = 22.37675858899106
791
+ # ?vx = "21.213203435596427"^^xsd:decimal
792
+ # ?vy = "21.213203435596423"^^xsd:decimal
793
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
794
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
795
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
796
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
796
797
  # Therefore the derived triple above is entailed by the rules and facts.
797
798
  # ----------------------------------------------------------------------
798
799
 
@@ -800,28 +801,28 @@ _:sk_1 :t 2.5 .
800
801
 
801
802
  # ----------------------------------------------------------------------
802
803
  # Proof for derived triple:
803
- # _:sk_1 :x 53.033008588991066 .
804
+ # _:sk_1 :x "53.033008588991066"^^xsd:decimal .
804
805
  # It holds because the following instance of the rule body is provable:
805
806
  # :Shot1 :speed 30.0 .
806
807
  # :Shot1 :angleRad 0.7853981633974483 .
807
808
  # :Shot1 :g 9.81 .
808
809
  # :Shot1 :tSample 2.5 .
809
- # 0.7853981633974483 math:sin 0.7071067811865475 .
810
- # 0.7853981633974483 math:cos 0.7071067811865476 .
811
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
812
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
813
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
814
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
815
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
816
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
817
- # (2.0 9.81) math:product 19.62 .
818
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
819
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
820
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
821
- # (2.5 2.0) math:exponentiation 6.25 .
822
- # (9.81 6.25) math:product 61.3125 .
823
- # (0.5 61.3125) math:product 30.65625 .
824
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
810
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
811
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
812
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
813
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
814
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
815
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
816
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
817
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
818
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
819
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
820
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
821
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
822
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
823
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
824
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
825
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
825
826
  # via the schematic forward rule:
826
827
  # {
827
828
  # :Shot1 :speed ?v .
@@ -856,55 +857,55 @@ _:sk_1 :t 2.5 .
856
857
  # :Shot1 :positionAtSample _:b3 .
857
858
  # } .
858
859
  # with substitution (on rule variables):
859
- # ?cosT = 0.7071067811865476
860
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
860
861
  # ?g = 9.81
861
- # ?g_t2 = 61.3125
862
- # ?hMax = 22.935779816513755
863
- # ?half_g_t2 = 30.65625
864
- # ?range = 91.74311926605502
865
- # ?sinT = 0.7071067811865475
862
+ # ?g_t2 = "61.3125"^^xsd:decimal
863
+ # ?hMax = "22.935779816513755"^^xsd:decimal
864
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
865
+ # ?range = "91.74311926605502"^^xsd:decimal
866
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
866
867
  # ?t = 2.5
867
- # ?t2 = 6.25
868
- # ?tFlight = 4.324812117348913
868
+ # ?t2 = "6.25"^^xsd:decimal
869
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
869
870
  # ?theta = 0.7853981633974483
870
- # ?twoG = 19.62
871
- # ?twoVy = 42.426406871192846
871
+ # ?twoG = "19.62"^^xsd:decimal
872
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
872
873
  # ?v = 30.0
873
- # ?vx = 21.213203435596427
874
- # ?vy = 21.213203435596423
875
- # ?vy2 = 449.9999999999999
876
- # ?vy_t = 53.03300858899106
877
- # ?xAtT = 53.033008588991066
878
- # ?yAtT = 22.37675858899106
874
+ # ?vx = "21.213203435596427"^^xsd:decimal
875
+ # ?vy = "21.213203435596423"^^xsd:decimal
876
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
877
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
878
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
879
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
879
880
  # Therefore the derived triple above is entailed by the rules and facts.
880
881
  # ----------------------------------------------------------------------
881
882
 
882
- _:sk_1 :x 53.033008588991066 .
883
+ _:sk_1 :x "53.033008588991066"^^xsd:decimal .
883
884
 
884
885
  # ----------------------------------------------------------------------
885
886
  # Proof for derived triple:
886
- # _:sk_1 :y 22.37675858899106 .
887
+ # _:sk_1 :y "22.37675858899106"^^xsd:decimal .
887
888
  # It holds because the following instance of the rule body is provable:
888
889
  # :Shot1 :speed 30.0 .
889
890
  # :Shot1 :angleRad 0.7853981633974483 .
890
891
  # :Shot1 :g 9.81 .
891
892
  # :Shot1 :tSample 2.5 .
892
- # 0.7853981633974483 math:sin 0.7071067811865475 .
893
- # 0.7853981633974483 math:cos 0.7071067811865476 .
894
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
895
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
896
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
897
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
898
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
899
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
900
- # (2.0 9.81) math:product 19.62 .
901
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
902
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
903
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
904
- # (2.5 2.0) math:exponentiation 6.25 .
905
- # (9.81 6.25) math:product 61.3125 .
906
- # (0.5 61.3125) math:product 30.65625 .
907
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
893
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
894
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
895
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
896
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
897
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
898
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
899
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
900
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
901
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
902
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
903
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
904
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
905
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
906
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
907
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
908
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
908
909
  # via the schematic forward rule:
909
910
  # {
910
911
  # :Shot1 :speed ?v .
@@ -939,30 +940,30 @@ _:sk_1 :x 53.033008588991066 .
939
940
  # :Shot1 :positionAtSample _:b3 .
940
941
  # } .
941
942
  # with substitution (on rule variables):
942
- # ?cosT = 0.7071067811865476
943
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
943
944
  # ?g = 9.81
944
- # ?g_t2 = 61.3125
945
- # ?hMax = 22.935779816513755
946
- # ?half_g_t2 = 30.65625
947
- # ?range = 91.74311926605502
948
- # ?sinT = 0.7071067811865475
945
+ # ?g_t2 = "61.3125"^^xsd:decimal
946
+ # ?hMax = "22.935779816513755"^^xsd:decimal
947
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
948
+ # ?range = "91.74311926605502"^^xsd:decimal
949
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
949
950
  # ?t = 2.5
950
- # ?t2 = 6.25
951
- # ?tFlight = 4.324812117348913
951
+ # ?t2 = "6.25"^^xsd:decimal
952
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
952
953
  # ?theta = 0.7853981633974483
953
- # ?twoG = 19.62
954
- # ?twoVy = 42.426406871192846
954
+ # ?twoG = "19.62"^^xsd:decimal
955
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
955
956
  # ?v = 30.0
956
- # ?vx = 21.213203435596427
957
- # ?vy = 21.213203435596423
958
- # ?vy2 = 449.9999999999999
959
- # ?vy_t = 53.03300858899106
960
- # ?xAtT = 53.033008588991066
961
- # ?yAtT = 22.37675858899106
957
+ # ?vx = "21.213203435596427"^^xsd:decimal
958
+ # ?vy = "21.213203435596423"^^xsd:decimal
959
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
960
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
961
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
962
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
962
963
  # Therefore the derived triple above is entailed by the rules and facts.
963
964
  # ----------------------------------------------------------------------
964
965
 
965
- _:sk_1 :y 22.37675858899106 .
966
+ _:sk_1 :y "22.37675858899106"^^xsd:decimal .
966
967
 
967
968
  # ----------------------------------------------------------------------
968
969
  # Proof for derived triple:
@@ -972,22 +973,22 @@ _:sk_1 :y 22.37675858899106 .
972
973
  # :Shot1 :angleRad 0.7853981633974483 .
973
974
  # :Shot1 :g 9.81 .
974
975
  # :Shot1 :tSample 2.5 .
975
- # 0.7853981633974483 math:sin 0.7071067811865475 .
976
- # 0.7853981633974483 math:cos 0.7071067811865476 .
977
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
978
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
979
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
980
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
981
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
982
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
983
- # (2.0 9.81) math:product 19.62 .
984
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
985
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
986
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
987
- # (2.5 2.0) math:exponentiation 6.25 .
988
- # (9.81 6.25) math:product 61.3125 .
989
- # (0.5 61.3125) math:product 30.65625 .
990
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
976
+ # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
977
+ # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
978
+ # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
979
+ # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
980
+ # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
981
+ # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
982
+ # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
983
+ # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
984
+ # (2.0 9.81) math:product "19.62"^^xsd:decimal .
985
+ # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
986
+ # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
987
+ # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
988
+ # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
989
+ # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
990
+ # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
991
+ # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
991
992
  # via the schematic forward rule:
992
993
  # {
993
994
  # :Shot1 :speed ?v .
@@ -1022,26 +1023,26 @@ _:sk_1 :y 22.37675858899106 .
1022
1023
  # :Shot1 :positionAtSample _:b3 .
1023
1024
  # } .
1024
1025
  # with substitution (on rule variables):
1025
- # ?cosT = 0.7071067811865476
1026
+ # ?cosT = "0.7071067811865476"^^xsd:decimal
1026
1027
  # ?g = 9.81
1027
- # ?g_t2 = 61.3125
1028
- # ?hMax = 22.935779816513755
1029
- # ?half_g_t2 = 30.65625
1030
- # ?range = 91.74311926605502
1031
- # ?sinT = 0.7071067811865475
1028
+ # ?g_t2 = "61.3125"^^xsd:decimal
1029
+ # ?hMax = "22.935779816513755"^^xsd:decimal
1030
+ # ?half_g_t2 = "30.65625"^^xsd:decimal
1031
+ # ?range = "91.74311926605502"^^xsd:decimal
1032
+ # ?sinT = "0.7071067811865475"^^xsd:decimal
1032
1033
  # ?t = 2.5
1033
- # ?t2 = 6.25
1034
- # ?tFlight = 4.324812117348913
1034
+ # ?t2 = "6.25"^^xsd:decimal
1035
+ # ?tFlight = "4.324812117348913"^^xsd:decimal
1035
1036
  # ?theta = 0.7853981633974483
1036
- # ?twoG = 19.62
1037
- # ?twoVy = 42.426406871192846
1037
+ # ?twoG = "19.62"^^xsd:decimal
1038
+ # ?twoVy = "42.426406871192846"^^xsd:decimal
1038
1039
  # ?v = 30.0
1039
- # ?vx = 21.213203435596427
1040
- # ?vy = 21.213203435596423
1041
- # ?vy2 = 449.9999999999999
1042
- # ?vy_t = 53.03300858899106
1043
- # ?xAtT = 53.033008588991066
1044
- # ?yAtT = 22.37675858899106
1040
+ # ?vx = "21.213203435596427"^^xsd:decimal
1041
+ # ?vy = "21.213203435596423"^^xsd:decimal
1042
+ # ?vy2 = "449.9999999999999"^^xsd:decimal
1043
+ # ?vy_t = "53.03300858899106"^^xsd:decimal
1044
+ # ?xAtT = "53.033008588991066"^^xsd:decimal
1045
+ # ?yAtT = "22.37675858899106"^^xsd:decimal
1045
1046
  # Therefore the derived triple above is entailed by the rules and facts.
1046
1047
  # ----------------------------------------------------------------------
1047
1048
 
@@ -1049,21 +1050,21 @@ _:sk_1 :y 22.37675858899106 .
1049
1050
 
1050
1051
  # ----------------------------------------------------------------------
1051
1052
  # Proof for derived triple:
1052
- # :DataSet1 :mean 2.642857142857143 .
1053
+ # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1053
1054
  # It holds because the following instance of the rule body is provable:
1054
1055
  # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1055
1056
  # :DataSet1 :zThreshold 2.0 .
1056
1057
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1057
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
1058
- # (18.5 7) math:quotient 2.642857142857143 .
1058
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
1059
+ # ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
1059
1060
  # (?sq {
1060
1061
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1061
- # (?x 2.642857142857143) math:difference ?d .
1062
+ # (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
1062
1063
  # (?d 2.0) math:exponentiation ?sq .
1063
- # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
1064
- # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
1065
- # (63.58214285714286 7) math:quotient 9.083163265306123 .
1066
- # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
1064
+ # } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
1065
+ # ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
1066
+ # ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
1067
+ # ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
1067
1068
  # via the schematic forward rule:
1068
1069
  # {
1069
1070
  # :DataSet1 :values ?xs .
@@ -1085,37 +1086,37 @@ _:sk_1 :y 22.37675858899106 .
1085
1086
  # :DataSet1 :stddev ?std .
1086
1087
  # } .
1087
1088
  # with substitution (on rule variables):
1088
- # ?mean = 2.642857142857143
1089
+ # ?mean = "2.642857142857143"^^xsd:decimal
1089
1090
  # ?n = 7
1090
- # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
1091
- # ?sse = 63.58214285714286
1092
- # ?std = 3.0138286721886036
1093
- # ?sum = 18.5
1091
+ # ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
1092
+ # ?sse = "63.58214285714286"^^xsd:decimal
1093
+ # ?std = "3.0138286721886036"^^xsd:decimal
1094
+ # ?sum = "18.5"^^xsd:decimal
1094
1095
  # ?thr = 2.0
1095
- # ?var = 9.083163265306123
1096
+ # ?var = "9.083163265306123"^^xsd:decimal
1096
1097
  # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1097
1098
  # Therefore the derived triple above is entailed by the rules and facts.
1098
1099
  # ----------------------------------------------------------------------
1099
1100
 
1100
- :DataSet1 :mean 2.642857142857143 .
1101
+ :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1101
1102
 
1102
1103
  # ----------------------------------------------------------------------
1103
1104
  # Proof for derived triple:
1104
- # :DataSet1 :variance 9.083163265306123 .
1105
+ # :DataSet1 :variance "9.083163265306123"^^xsd:decimal .
1105
1106
  # It holds because the following instance of the rule body is provable:
1106
1107
  # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1107
1108
  # :DataSet1 :zThreshold 2.0 .
1108
1109
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1109
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
1110
- # (18.5 7) math:quotient 2.642857142857143 .
1110
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
1111
+ # ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
1111
1112
  # (?sq {
1112
1113
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1113
- # (?x 2.642857142857143) math:difference ?d .
1114
+ # (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
1114
1115
  # (?d 2.0) math:exponentiation ?sq .
1115
- # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
1116
- # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
1117
- # (63.58214285714286 7) math:quotient 9.083163265306123 .
1118
- # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
1116
+ # } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
1117
+ # ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
1118
+ # ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
1119
+ # ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
1119
1120
  # via the schematic forward rule:
1120
1121
  # {
1121
1122
  # :DataSet1 :values ?xs .
@@ -1137,37 +1138,37 @@ _:sk_1 :y 22.37675858899106 .
1137
1138
  # :DataSet1 :stddev ?std .
1138
1139
  # } .
1139
1140
  # with substitution (on rule variables):
1140
- # ?mean = 2.642857142857143
1141
+ # ?mean = "2.642857142857143"^^xsd:decimal
1141
1142
  # ?n = 7
1142
- # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
1143
- # ?sse = 63.58214285714286
1144
- # ?std = 3.0138286721886036
1145
- # ?sum = 18.5
1143
+ # ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
1144
+ # ?sse = "63.58214285714286"^^xsd:decimal
1145
+ # ?std = "3.0138286721886036"^^xsd:decimal
1146
+ # ?sum = "18.5"^^xsd:decimal
1146
1147
  # ?thr = 2.0
1147
- # ?var = 9.083163265306123
1148
+ # ?var = "9.083163265306123"^^xsd:decimal
1148
1149
  # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1149
1150
  # Therefore the derived triple above is entailed by the rules and facts.
1150
1151
  # ----------------------------------------------------------------------
1151
1152
 
1152
- :DataSet1 :variance 9.083163265306123 .
1153
+ :DataSet1 :variance "9.083163265306123"^^xsd:decimal .
1153
1154
 
1154
1155
  # ----------------------------------------------------------------------
1155
1156
  # Proof for derived triple:
1156
- # :DataSet1 :stddev 3.0138286721886036 .
1157
+ # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1157
1158
  # It holds because the following instance of the rule body is provable:
1158
1159
  # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1159
1160
  # :DataSet1 :zThreshold 2.0 .
1160
1161
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1161
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
1162
- # (18.5 7) math:quotient 2.642857142857143 .
1162
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
1163
+ # ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
1163
1164
  # (?sq {
1164
1165
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1165
- # (?x 2.642857142857143) math:difference ?d .
1166
+ # (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
1166
1167
  # (?d 2.0) math:exponentiation ?sq .
1167
- # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
1168
- # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
1169
- # (63.58214285714286 7) math:quotient 9.083163265306123 .
1170
- # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
1168
+ # } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
1169
+ # ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
1170
+ # ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
1171
+ # ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
1171
1172
  # via the schematic forward rule:
1172
1173
  # {
1173
1174
  # :DataSet1 :values ?xs .
@@ -1189,33 +1190,33 @@ _:sk_1 :y 22.37675858899106 .
1189
1190
  # :DataSet1 :stddev ?std .
1190
1191
  # } .
1191
1192
  # with substitution (on rule variables):
1192
- # ?mean = 2.642857142857143
1193
+ # ?mean = "2.642857142857143"^^xsd:decimal
1193
1194
  # ?n = 7
1194
- # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
1195
- # ?sse = 63.58214285714286
1196
- # ?std = 3.0138286721886036
1197
- # ?sum = 18.5
1195
+ # ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
1196
+ # ?sse = "63.58214285714286"^^xsd:decimal
1197
+ # ?std = "3.0138286721886036"^^xsd:decimal
1198
+ # ?sum = "18.5"^^xsd:decimal
1198
1199
  # ?thr = 2.0
1199
- # ?var = 9.083163265306123
1200
+ # ?var = "9.083163265306123"^^xsd:decimal
1200
1201
  # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1201
1202
  # Therefore the derived triple above is entailed by the rules and facts.
1202
1203
  # ----------------------------------------------------------------------
1203
1204
 
1204
- :DataSet1 :stddev 3.0138286721886036 .
1205
+ :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1205
1206
 
1206
1207
  # ----------------------------------------------------------------------
1207
1208
  # Proof for derived triple:
1208
1209
  # _:sk_2 :value 10.0 .
1209
1210
  # It holds because the following instance of the rule body is provable:
1210
1211
  # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1211
- # :DataSet1 :mean 2.642857142857143 .
1212
- # :DataSet1 :stddev 3.0138286721886036 .
1212
+ # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1213
+ # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1213
1214
  # :DataSet1 :zThreshold 2.0 .
1214
1215
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1215
- # (10.0 2.642857142857143) math:difference 7.357142857142858 .
1216
- # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
1217
- # 2.44112843076783 math:absoluteValue 2.44112843076783 .
1218
- # 2.44112843076783 math:greaterThan 2.0 .
1216
+ # (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
1217
+ # ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
1218
+ # "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
1219
+ # "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
1219
1220
  # via the schematic forward rule:
1220
1221
  # {
1221
1222
  # :DataSet1 :values ?xs .
@@ -1233,14 +1234,14 @@ _:sk_1 :y 22.37675858899106 .
1233
1234
  # :DataSet1 :outlier _:b1 .
1234
1235
  # } .
1235
1236
  # with substitution (on rule variables):
1236
- # ?absz = 2.44112843076783
1237
- # ?d = 7.357142857142858
1238
- # ?mean = 2.642857142857143
1239
- # ?std = 3.0138286721886036
1237
+ # ?absz = "2.44112843076783"^^xsd:decimal
1238
+ # ?d = "7.357142857142858"^^xsd:decimal
1239
+ # ?mean = "2.642857142857143"^^xsd:decimal
1240
+ # ?std = "3.0138286721886036"^^xsd:decimal
1240
1241
  # ?thr = 2.0
1241
1242
  # ?x = 10.0
1242
1243
  # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1243
- # ?z = 2.44112843076783
1244
+ # ?z = "2.44112843076783"^^xsd:decimal
1244
1245
  # Therefore the derived triple above is entailed by the rules and facts.
1245
1246
  # ----------------------------------------------------------------------
1246
1247
 
@@ -1248,17 +1249,17 @@ _:sk_2 :value 10.0 .
1248
1249
 
1249
1250
  # ----------------------------------------------------------------------
1250
1251
  # Proof for derived triple:
1251
- # _:sk_2 :zScore 2.44112843076783 .
1252
+ # _:sk_2 :zScore "2.44112843076783"^^xsd:decimal .
1252
1253
  # It holds because the following instance of the rule body is provable:
1253
1254
  # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1254
- # :DataSet1 :mean 2.642857142857143 .
1255
- # :DataSet1 :stddev 3.0138286721886036 .
1255
+ # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1256
+ # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1256
1257
  # :DataSet1 :zThreshold 2.0 .
1257
1258
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1258
- # (10.0 2.642857142857143) math:difference 7.357142857142858 .
1259
- # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
1260
- # 2.44112843076783 math:absoluteValue 2.44112843076783 .
1261
- # 2.44112843076783 math:greaterThan 2.0 .
1259
+ # (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
1260
+ # ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
1261
+ # "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
1262
+ # "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
1262
1263
  # via the schematic forward rule:
1263
1264
  # {
1264
1265
  # :DataSet1 :values ?xs .
@@ -1276,32 +1277,32 @@ _:sk_2 :value 10.0 .
1276
1277
  # :DataSet1 :outlier _:b1 .
1277
1278
  # } .
1278
1279
  # with substitution (on rule variables):
1279
- # ?absz = 2.44112843076783
1280
- # ?d = 7.357142857142858
1281
- # ?mean = 2.642857142857143
1282
- # ?std = 3.0138286721886036
1280
+ # ?absz = "2.44112843076783"^^xsd:decimal
1281
+ # ?d = "7.357142857142858"^^xsd:decimal
1282
+ # ?mean = "2.642857142857143"^^xsd:decimal
1283
+ # ?std = "3.0138286721886036"^^xsd:decimal
1283
1284
  # ?thr = 2.0
1284
1285
  # ?x = 10.0
1285
1286
  # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1286
- # ?z = 2.44112843076783
1287
+ # ?z = "2.44112843076783"^^xsd:decimal
1287
1288
  # Therefore the derived triple above is entailed by the rules and facts.
1288
1289
  # ----------------------------------------------------------------------
1289
1290
 
1290
- _:sk_2 :zScore 2.44112843076783 .
1291
+ _:sk_2 :zScore "2.44112843076783"^^xsd:decimal .
1291
1292
 
1292
1293
  # ----------------------------------------------------------------------
1293
1294
  # Proof for derived triple:
1294
1295
  # :DataSet1 :outlier _:sk_2 .
1295
1296
  # It holds because the following instance of the rule body is provable:
1296
1297
  # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1297
- # :DataSet1 :mean 2.642857142857143 .
1298
- # :DataSet1 :stddev 3.0138286721886036 .
1298
+ # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1299
+ # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1299
1300
  # :DataSet1 :zThreshold 2.0 .
1300
1301
  # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1301
- # (10.0 2.642857142857143) math:difference 7.357142857142858 .
1302
- # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
1303
- # 2.44112843076783 math:absoluteValue 2.44112843076783 .
1304
- # 2.44112843076783 math:greaterThan 2.0 .
1302
+ # (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
1303
+ # ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
1304
+ # "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
1305
+ # "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
1305
1306
  # via the schematic forward rule:
1306
1307
  # {
1307
1308
  # :DataSet1 :values ?xs .
@@ -1319,14 +1320,14 @@ _:sk_2 :zScore 2.44112843076783 .
1319
1320
  # :DataSet1 :outlier _:b1 .
1320
1321
  # } .
1321
1322
  # with substitution (on rule variables):
1322
- # ?absz = 2.44112843076783
1323
- # ?d = 7.357142857142858
1324
- # ?mean = 2.642857142857143
1325
- # ?std = 3.0138286721886036
1323
+ # ?absz = "2.44112843076783"^^xsd:decimal
1324
+ # ?d = "7.357142857142858"^^xsd:decimal
1325
+ # ?mean = "2.642857142857143"^^xsd:decimal
1326
+ # ?std = "3.0138286721886036"^^xsd:decimal
1326
1327
  # ?thr = 2.0
1327
1328
  # ?x = 10.0
1328
1329
  # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1329
- # ?z = 2.44112843076783
1330
+ # ?z = "2.44112843076783"^^xsd:decimal
1330
1331
  # Therefore the derived triple above is entailed by the rules and facts.
1331
1332
  # ----------------------------------------------------------------------
1332
1333