eyeling 1.6.4 → 1.6.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/cobalt-kepler-kitchen.n3 +3544 -3543
- package/examples/output/complex.n3 +25 -24
- package/examples/output/control-system.n3 +21 -20
- package/examples/output/cranberry-calculus.n3 +509 -508
- package/examples/output/drone-corridor-planner.n3 +154 -153
- package/examples/output/ev-roundtrip-planner.n3 +81 -80
- package/examples/output/gps.n3 +15 -14
- package/examples/output/jade-eigen-loom.n3 +2033 -2032
- package/examples/output/light-eaters.n3 +51 -50
- package/examples/output/lldm.n3 +244 -243
- package/examples/output/math-builtins-tests.n3 +40 -40
- package/examples/output/oslo-steps-library-scholarly.n3 +197 -196
- package/examples/output/oslo-steps-workflow-composition.n3 +29 -28
- package/examples/output/pi.n3 +5 -4
- package/examples/output/ruby-runge-workshop.n3 +106 -105
- package/examples/output/saffron-slopeworks.n3 +455 -454
- package/examples/output/spectral-week.n3 +81 -80
- package/examples/output/topaz-markov-mill.n3 +1618 -1617
- package/examples/output/ultramarine-simpson-forge.n3 +1213 -1212
- package/eyeling.js +315 -134
- package/package.json +1 -1
|
@@ -1,28 +1,29 @@
|
|
|
1
1
|
@prefix : <http://example.org/cranberry-calculus#> .
|
|
2
|
+
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
2
3
|
|
|
3
4
|
# ----------------------------------------------------------------------
|
|
4
5
|
# Proof for derived triple:
|
|
5
|
-
# :VecA :dotWithVecB 12 .
|
|
6
|
+
# :VecA :dotWithVecB "12"^^xsd:decimal .
|
|
6
7
|
# It holds because the following instance of the rule body is provable:
|
|
7
8
|
# :VecA :x 3.0 .
|
|
8
9
|
# :VecA :y 4.0 .
|
|
9
10
|
# :VecB :x 4.0 .
|
|
10
11
|
# :VecB :y 0.0 .
|
|
11
|
-
# (3.0 4.0) math:product 12 .
|
|
12
|
-
# (4.0 0.0) math:product 0 .
|
|
13
|
-
# (12 0) math:sum 12 .
|
|
14
|
-
# (3.0 2.0) math:exponentiation 9 .
|
|
15
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
16
|
-
# (9 16) math:sum 25 .
|
|
17
|
-
# (25 0.5) math:exponentiation 5 .
|
|
18
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
19
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
20
|
-
# (16 0) math:sum 16 .
|
|
21
|
-
# (16 0.5) math:exponentiation 4 .
|
|
22
|
-
# (5 4) math:product 20 .
|
|
23
|
-
# (12 20) math:quotient 0.6 .
|
|
24
|
-
# 0.6 math:acos 0.9272952180016123 .
|
|
25
|
-
# 0.9272952180016123 math:degrees 53.13010235415598 .
|
|
12
|
+
# (3.0 4.0) math:product "12"^^xsd:decimal .
|
|
13
|
+
# (4.0 0.0) math:product "0"^^xsd:decimal .
|
|
14
|
+
# ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
|
|
15
|
+
# (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
|
|
16
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
17
|
+
# ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
|
|
18
|
+
# ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
|
|
19
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
20
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
21
|
+
# ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
|
|
22
|
+
# ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
|
|
23
|
+
# ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
|
|
24
|
+
# ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
|
|
25
|
+
# "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
|
|
26
|
+
# "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
|
|
26
27
|
# via the schematic forward rule:
|
|
27
28
|
# {
|
|
28
29
|
# :VecA :x ?ax .
|
|
@@ -51,53 +52,53 @@
|
|
|
51
52
|
# :VecA :angleToVecB _:b2 .
|
|
52
53
|
# } .
|
|
53
54
|
# with substitution (on rule variables):
|
|
54
|
-
# ?a2 = 25
|
|
55
|
-
# ?aNorm = 5
|
|
55
|
+
# ?a2 = "25"^^xsd:decimal
|
|
56
|
+
# ?aNorm = "5"^^xsd:decimal
|
|
56
57
|
# ?ax = 3.0
|
|
57
|
-
# ?ax2 = 9
|
|
58
|
-
# ?axbx = 12
|
|
58
|
+
# ?ax2 = "9"^^xsd:decimal
|
|
59
|
+
# ?axbx = "12"^^xsd:decimal
|
|
59
60
|
# ?ay = 4.0
|
|
60
|
-
# ?ay2 = 16
|
|
61
|
-
# ?ayby = 0
|
|
62
|
-
# ?b2 = 16
|
|
63
|
-
# ?bNorm = 4
|
|
61
|
+
# ?ay2 = "16"^^xsd:decimal
|
|
62
|
+
# ?ayby = "0"^^xsd:decimal
|
|
63
|
+
# ?b2 = "16"^^xsd:decimal
|
|
64
|
+
# ?bNorm = "4"^^xsd:decimal
|
|
64
65
|
# ?bx = 4.0
|
|
65
|
-
# ?bx2 = 16
|
|
66
|
+
# ?bx2 = "16"^^xsd:decimal
|
|
66
67
|
# ?by = 0.0
|
|
67
|
-
# ?by2 = 0
|
|
68
|
-
# ?cosTheta = 0.6
|
|
69
|
-
# ?den = 20
|
|
70
|
-
# ?dot = 12
|
|
71
|
-
# ?thetaDeg = 53.13010235415598
|
|
72
|
-
# ?thetaRad = 0.9272952180016123
|
|
68
|
+
# ?by2 = "0"^^xsd:decimal
|
|
69
|
+
# ?cosTheta = "0.6"^^xsd:decimal
|
|
70
|
+
# ?den = "20"^^xsd:decimal
|
|
71
|
+
# ?dot = "12"^^xsd:decimal
|
|
72
|
+
# ?thetaDeg = "53.13010235415598"^^xsd:decimal
|
|
73
|
+
# ?thetaRad = "0.9272952180016123"^^xsd:decimal
|
|
73
74
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
74
75
|
# ----------------------------------------------------------------------
|
|
75
76
|
|
|
76
|
-
:VecA :dotWithVecB 12 .
|
|
77
|
+
:VecA :dotWithVecB "12"^^xsd:decimal .
|
|
77
78
|
|
|
78
79
|
# ----------------------------------------------------------------------
|
|
79
80
|
# Proof for derived triple:
|
|
80
|
-
# _:sk_0 :radians 0.9272952180016123 .
|
|
81
|
+
# _:sk_0 :radians "0.9272952180016123"^^xsd:decimal .
|
|
81
82
|
# It holds because the following instance of the rule body is provable:
|
|
82
83
|
# :VecA :x 3.0 .
|
|
83
84
|
# :VecA :y 4.0 .
|
|
84
85
|
# :VecB :x 4.0 .
|
|
85
86
|
# :VecB :y 0.0 .
|
|
86
|
-
# (3.0 4.0) math:product 12 .
|
|
87
|
-
# (4.0 0.0) math:product 0 .
|
|
88
|
-
# (12 0) math:sum 12 .
|
|
89
|
-
# (3.0 2.0) math:exponentiation 9 .
|
|
90
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
91
|
-
# (9 16) math:sum 25 .
|
|
92
|
-
# (25 0.5) math:exponentiation 5 .
|
|
93
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
94
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
95
|
-
# (16 0) math:sum 16 .
|
|
96
|
-
# (16 0.5) math:exponentiation 4 .
|
|
97
|
-
# (5 4) math:product 20 .
|
|
98
|
-
# (12 20) math:quotient 0.6 .
|
|
99
|
-
# 0.6 math:acos 0.9272952180016123 .
|
|
100
|
-
# 0.9272952180016123 math:degrees 53.13010235415598 .
|
|
87
|
+
# (3.0 4.0) math:product "12"^^xsd:decimal .
|
|
88
|
+
# (4.0 0.0) math:product "0"^^xsd:decimal .
|
|
89
|
+
# ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
|
|
90
|
+
# (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
|
|
91
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
92
|
+
# ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
|
|
93
|
+
# ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
|
|
94
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
95
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
96
|
+
# ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
|
|
97
|
+
# ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
|
|
98
|
+
# ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
|
|
99
|
+
# ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
|
|
100
|
+
# "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
|
|
101
|
+
# "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
|
|
101
102
|
# via the schematic forward rule:
|
|
102
103
|
# {
|
|
103
104
|
# :VecA :x ?ax .
|
|
@@ -126,53 +127,53 @@
|
|
|
126
127
|
# :VecA :angleToVecB _:b2 .
|
|
127
128
|
# } .
|
|
128
129
|
# with substitution (on rule variables):
|
|
129
|
-
# ?a2 = 25
|
|
130
|
-
# ?aNorm = 5
|
|
130
|
+
# ?a2 = "25"^^xsd:decimal
|
|
131
|
+
# ?aNorm = "5"^^xsd:decimal
|
|
131
132
|
# ?ax = 3.0
|
|
132
|
-
# ?ax2 = 9
|
|
133
|
-
# ?axbx = 12
|
|
133
|
+
# ?ax2 = "9"^^xsd:decimal
|
|
134
|
+
# ?axbx = "12"^^xsd:decimal
|
|
134
135
|
# ?ay = 4.0
|
|
135
|
-
# ?ay2 = 16
|
|
136
|
-
# ?ayby = 0
|
|
137
|
-
# ?b2 = 16
|
|
138
|
-
# ?bNorm = 4
|
|
136
|
+
# ?ay2 = "16"^^xsd:decimal
|
|
137
|
+
# ?ayby = "0"^^xsd:decimal
|
|
138
|
+
# ?b2 = "16"^^xsd:decimal
|
|
139
|
+
# ?bNorm = "4"^^xsd:decimal
|
|
139
140
|
# ?bx = 4.0
|
|
140
|
-
# ?bx2 = 16
|
|
141
|
+
# ?bx2 = "16"^^xsd:decimal
|
|
141
142
|
# ?by = 0.0
|
|
142
|
-
# ?by2 = 0
|
|
143
|
-
# ?cosTheta = 0.6
|
|
144
|
-
# ?den = 20
|
|
145
|
-
# ?dot = 12
|
|
146
|
-
# ?thetaDeg = 53.13010235415598
|
|
147
|
-
# ?thetaRad = 0.9272952180016123
|
|
143
|
+
# ?by2 = "0"^^xsd:decimal
|
|
144
|
+
# ?cosTheta = "0.6"^^xsd:decimal
|
|
145
|
+
# ?den = "20"^^xsd:decimal
|
|
146
|
+
# ?dot = "12"^^xsd:decimal
|
|
147
|
+
# ?thetaDeg = "53.13010235415598"^^xsd:decimal
|
|
148
|
+
# ?thetaRad = "0.9272952180016123"^^xsd:decimal
|
|
148
149
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
149
150
|
# ----------------------------------------------------------------------
|
|
150
151
|
|
|
151
|
-
_:sk_0 :radians 0.9272952180016123 .
|
|
152
|
+
_:sk_0 :radians "0.9272952180016123"^^xsd:decimal .
|
|
152
153
|
|
|
153
154
|
# ----------------------------------------------------------------------
|
|
154
155
|
# Proof for derived triple:
|
|
155
|
-
# _:sk_0 :degrees 53.13010235415598 .
|
|
156
|
+
# _:sk_0 :degrees "53.13010235415598"^^xsd:decimal .
|
|
156
157
|
# It holds because the following instance of the rule body is provable:
|
|
157
158
|
# :VecA :x 3.0 .
|
|
158
159
|
# :VecA :y 4.0 .
|
|
159
160
|
# :VecB :x 4.0 .
|
|
160
161
|
# :VecB :y 0.0 .
|
|
161
|
-
# (3.0 4.0) math:product 12 .
|
|
162
|
-
# (4.0 0.0) math:product 0 .
|
|
163
|
-
# (12 0) math:sum 12 .
|
|
164
|
-
# (3.0 2.0) math:exponentiation 9 .
|
|
165
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
166
|
-
# (9 16) math:sum 25 .
|
|
167
|
-
# (25 0.5) math:exponentiation 5 .
|
|
168
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
169
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
170
|
-
# (16 0) math:sum 16 .
|
|
171
|
-
# (16 0.5) math:exponentiation 4 .
|
|
172
|
-
# (5 4) math:product 20 .
|
|
173
|
-
# (12 20) math:quotient 0.6 .
|
|
174
|
-
# 0.6 math:acos 0.9272952180016123 .
|
|
175
|
-
# 0.9272952180016123 math:degrees 53.13010235415598 .
|
|
162
|
+
# (3.0 4.0) math:product "12"^^xsd:decimal .
|
|
163
|
+
# (4.0 0.0) math:product "0"^^xsd:decimal .
|
|
164
|
+
# ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
|
|
165
|
+
# (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
|
|
166
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
167
|
+
# ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
|
|
168
|
+
# ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
|
|
169
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
170
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
171
|
+
# ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
|
|
172
|
+
# ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
|
|
173
|
+
# ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
|
|
174
|
+
# ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
|
|
175
|
+
# "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
|
|
176
|
+
# "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
|
|
176
177
|
# via the schematic forward rule:
|
|
177
178
|
# {
|
|
178
179
|
# :VecA :x ?ax .
|
|
@@ -201,29 +202,29 @@ _:sk_0 :radians 0.9272952180016123 .
|
|
|
201
202
|
# :VecA :angleToVecB _:b2 .
|
|
202
203
|
# } .
|
|
203
204
|
# with substitution (on rule variables):
|
|
204
|
-
# ?a2 = 25
|
|
205
|
-
# ?aNorm = 5
|
|
205
|
+
# ?a2 = "25"^^xsd:decimal
|
|
206
|
+
# ?aNorm = "5"^^xsd:decimal
|
|
206
207
|
# ?ax = 3.0
|
|
207
|
-
# ?ax2 = 9
|
|
208
|
-
# ?axbx = 12
|
|
208
|
+
# ?ax2 = "9"^^xsd:decimal
|
|
209
|
+
# ?axbx = "12"^^xsd:decimal
|
|
209
210
|
# ?ay = 4.0
|
|
210
|
-
# ?ay2 = 16
|
|
211
|
-
# ?ayby = 0
|
|
212
|
-
# ?b2 = 16
|
|
213
|
-
# ?bNorm = 4
|
|
211
|
+
# ?ay2 = "16"^^xsd:decimal
|
|
212
|
+
# ?ayby = "0"^^xsd:decimal
|
|
213
|
+
# ?b2 = "16"^^xsd:decimal
|
|
214
|
+
# ?bNorm = "4"^^xsd:decimal
|
|
214
215
|
# ?bx = 4.0
|
|
215
|
-
# ?bx2 = 16
|
|
216
|
+
# ?bx2 = "16"^^xsd:decimal
|
|
216
217
|
# ?by = 0.0
|
|
217
|
-
# ?by2 = 0
|
|
218
|
-
# ?cosTheta = 0.6
|
|
219
|
-
# ?den = 20
|
|
220
|
-
# ?dot = 12
|
|
221
|
-
# ?thetaDeg = 53.13010235415598
|
|
222
|
-
# ?thetaRad = 0.9272952180016123
|
|
218
|
+
# ?by2 = "0"^^xsd:decimal
|
|
219
|
+
# ?cosTheta = "0.6"^^xsd:decimal
|
|
220
|
+
# ?den = "20"^^xsd:decimal
|
|
221
|
+
# ?dot = "12"^^xsd:decimal
|
|
222
|
+
# ?thetaDeg = "53.13010235415598"^^xsd:decimal
|
|
223
|
+
# ?thetaRad = "0.9272952180016123"^^xsd:decimal
|
|
223
224
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
224
225
|
# ----------------------------------------------------------------------
|
|
225
226
|
|
|
226
|
-
_:sk_0 :degrees 53.13010235415598 .
|
|
227
|
+
_:sk_0 :degrees "53.13010235415598"^^xsd:decimal .
|
|
227
228
|
|
|
228
229
|
# ----------------------------------------------------------------------
|
|
229
230
|
# Proof for derived triple:
|
|
@@ -233,21 +234,21 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
233
234
|
# :VecA :y 4.0 .
|
|
234
235
|
# :VecB :x 4.0 .
|
|
235
236
|
# :VecB :y 0.0 .
|
|
236
|
-
# (3.0 4.0) math:product 12 .
|
|
237
|
-
# (4.0 0.0) math:product 0 .
|
|
238
|
-
# (12 0) math:sum 12 .
|
|
239
|
-
# (3.0 2.0) math:exponentiation 9 .
|
|
240
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
241
|
-
# (9 16) math:sum 25 .
|
|
242
|
-
# (25 0.5) math:exponentiation 5 .
|
|
243
|
-
# (4.0 2.0) math:exponentiation 16 .
|
|
244
|
-
# (0.0 2.0) math:exponentiation 0 .
|
|
245
|
-
# (16 0) math:sum 16 .
|
|
246
|
-
# (16 0.5) math:exponentiation 4 .
|
|
247
|
-
# (5 4) math:product 20 .
|
|
248
|
-
# (12 20) math:quotient 0.6 .
|
|
249
|
-
# 0.6 math:acos 0.9272952180016123 .
|
|
250
|
-
# 0.9272952180016123 math:degrees 53.13010235415598 .
|
|
237
|
+
# (3.0 4.0) math:product "12"^^xsd:decimal .
|
|
238
|
+
# (4.0 0.0) math:product "0"^^xsd:decimal .
|
|
239
|
+
# ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
|
|
240
|
+
# (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
|
|
241
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
242
|
+
# ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
|
|
243
|
+
# ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
|
|
244
|
+
# (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
|
|
245
|
+
# (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
|
|
246
|
+
# ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
|
|
247
|
+
# ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
|
|
248
|
+
# ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
|
|
249
|
+
# ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
|
|
250
|
+
# "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
|
|
251
|
+
# "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
|
|
251
252
|
# via the schematic forward rule:
|
|
252
253
|
# {
|
|
253
254
|
# :VecA :x ?ax .
|
|
@@ -276,25 +277,25 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
276
277
|
# :VecA :angleToVecB _:b2 .
|
|
277
278
|
# } .
|
|
278
279
|
# with substitution (on rule variables):
|
|
279
|
-
# ?a2 = 25
|
|
280
|
-
# ?aNorm = 5
|
|
280
|
+
# ?a2 = "25"^^xsd:decimal
|
|
281
|
+
# ?aNorm = "5"^^xsd:decimal
|
|
281
282
|
# ?ax = 3.0
|
|
282
|
-
# ?ax2 = 9
|
|
283
|
-
# ?axbx = 12
|
|
283
|
+
# ?ax2 = "9"^^xsd:decimal
|
|
284
|
+
# ?axbx = "12"^^xsd:decimal
|
|
284
285
|
# ?ay = 4.0
|
|
285
|
-
# ?ay2 = 16
|
|
286
|
-
# ?ayby = 0
|
|
287
|
-
# ?b2 = 16
|
|
288
|
-
# ?bNorm = 4
|
|
286
|
+
# ?ay2 = "16"^^xsd:decimal
|
|
287
|
+
# ?ayby = "0"^^xsd:decimal
|
|
288
|
+
# ?b2 = "16"^^xsd:decimal
|
|
289
|
+
# ?bNorm = "4"^^xsd:decimal
|
|
289
290
|
# ?bx = 4.0
|
|
290
|
-
# ?bx2 = 16
|
|
291
|
+
# ?bx2 = "16"^^xsd:decimal
|
|
291
292
|
# ?by = 0.0
|
|
292
|
-
# ?by2 = 0
|
|
293
|
-
# ?cosTheta = 0.6
|
|
294
|
-
# ?den = 20
|
|
295
|
-
# ?dot = 12
|
|
296
|
-
# ?thetaDeg = 53.13010235415598
|
|
297
|
-
# ?thetaRad = 0.9272952180016123
|
|
293
|
+
# ?by2 = "0"^^xsd:decimal
|
|
294
|
+
# ?cosTheta = "0.6"^^xsd:decimal
|
|
295
|
+
# ?den = "20"^^xsd:decimal
|
|
296
|
+
# ?dot = "12"^^xsd:decimal
|
|
297
|
+
# ?thetaDeg = "53.13010235415598"^^xsd:decimal
|
|
298
|
+
# ?thetaRad = "0.9272952180016123"^^xsd:decimal
|
|
298
299
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
299
300
|
# ----------------------------------------------------------------------
|
|
300
301
|
|
|
@@ -302,28 +303,28 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
302
303
|
|
|
303
304
|
# ----------------------------------------------------------------------
|
|
304
305
|
# Proof for derived triple:
|
|
305
|
-
# :Shot1 :vx 21.213203435596427 .
|
|
306
|
+
# :Shot1 :vx "21.213203435596427"^^xsd:decimal .
|
|
306
307
|
# It holds because the following instance of the rule body is provable:
|
|
307
308
|
# :Shot1 :speed 30.0 .
|
|
308
309
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
309
310
|
# :Shot1 :g 9.81 .
|
|
310
311
|
# :Shot1 :tSample 2.5 .
|
|
311
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
312
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
313
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
314
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
315
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
316
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
317
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
318
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
319
|
-
# (2.0 9.81) math:product 19.62 .
|
|
320
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
321
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
322
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
323
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
324
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
325
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
326
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
312
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
313
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
314
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
315
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
316
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
317
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
318
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
319
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
320
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
321
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
322
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
323
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
324
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
325
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
326
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
327
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
327
328
|
# via the schematic forward rule:
|
|
328
329
|
# {
|
|
329
330
|
# :Shot1 :speed ?v .
|
|
@@ -358,55 +359,55 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
358
359
|
# :Shot1 :positionAtSample _:b3 .
|
|
359
360
|
# } .
|
|
360
361
|
# with substitution (on rule variables):
|
|
361
|
-
# ?cosT = 0.7071067811865476
|
|
362
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
362
363
|
# ?g = 9.81
|
|
363
|
-
# ?g_t2 = 61.3125
|
|
364
|
-
# ?hMax = 22.935779816513755
|
|
365
|
-
# ?half_g_t2 = 30.65625
|
|
366
|
-
# ?range = 91.74311926605502
|
|
367
|
-
# ?sinT = 0.7071067811865475
|
|
364
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
365
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
366
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
367
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
368
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
368
369
|
# ?t = 2.5
|
|
369
|
-
# ?t2 = 6.25
|
|
370
|
-
# ?tFlight = 4.324812117348913
|
|
370
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
371
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
371
372
|
# ?theta = 0.7853981633974483
|
|
372
|
-
# ?twoG = 19.62
|
|
373
|
-
# ?twoVy = 42.426406871192846
|
|
373
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
374
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
374
375
|
# ?v = 30.0
|
|
375
|
-
# ?vx = 21.213203435596427
|
|
376
|
-
# ?vy = 21.213203435596423
|
|
377
|
-
# ?vy2 = 449.9999999999999
|
|
378
|
-
# ?vy_t = 53.03300858899106
|
|
379
|
-
# ?xAtT = 53.033008588991066
|
|
380
|
-
# ?yAtT = 22.37675858899106
|
|
376
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
377
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
378
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
379
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
380
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
381
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
381
382
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
382
383
|
# ----------------------------------------------------------------------
|
|
383
384
|
|
|
384
|
-
:Shot1 :vx 21.213203435596427 .
|
|
385
|
+
:Shot1 :vx "21.213203435596427"^^xsd:decimal .
|
|
385
386
|
|
|
386
387
|
# ----------------------------------------------------------------------
|
|
387
388
|
# Proof for derived triple:
|
|
388
|
-
# :Shot1 :vy 21.213203435596423 .
|
|
389
|
+
# :Shot1 :vy "21.213203435596423"^^xsd:decimal .
|
|
389
390
|
# It holds because the following instance of the rule body is provable:
|
|
390
391
|
# :Shot1 :speed 30.0 .
|
|
391
392
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
392
393
|
# :Shot1 :g 9.81 .
|
|
393
394
|
# :Shot1 :tSample 2.5 .
|
|
394
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
395
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
396
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
397
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
398
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
399
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
400
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
401
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
402
|
-
# (2.0 9.81) math:product 19.62 .
|
|
403
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
404
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
405
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
406
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
407
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
408
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
409
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
395
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
396
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
397
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
398
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
399
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
400
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
401
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
402
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
403
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
404
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
405
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
406
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
407
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
408
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
409
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
410
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
410
411
|
# via the schematic forward rule:
|
|
411
412
|
# {
|
|
412
413
|
# :Shot1 :speed ?v .
|
|
@@ -441,55 +442,55 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
441
442
|
# :Shot1 :positionAtSample _:b3 .
|
|
442
443
|
# } .
|
|
443
444
|
# with substitution (on rule variables):
|
|
444
|
-
# ?cosT = 0.7071067811865476
|
|
445
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
445
446
|
# ?g = 9.81
|
|
446
|
-
# ?g_t2 = 61.3125
|
|
447
|
-
# ?hMax = 22.935779816513755
|
|
448
|
-
# ?half_g_t2 = 30.65625
|
|
449
|
-
# ?range = 91.74311926605502
|
|
450
|
-
# ?sinT = 0.7071067811865475
|
|
447
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
448
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
449
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
450
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
451
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
451
452
|
# ?t = 2.5
|
|
452
|
-
# ?t2 = 6.25
|
|
453
|
-
# ?tFlight = 4.324812117348913
|
|
453
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
454
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
454
455
|
# ?theta = 0.7853981633974483
|
|
455
|
-
# ?twoG = 19.62
|
|
456
|
-
# ?twoVy = 42.426406871192846
|
|
456
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
457
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
457
458
|
# ?v = 30.0
|
|
458
|
-
# ?vx = 21.213203435596427
|
|
459
|
-
# ?vy = 21.213203435596423
|
|
460
|
-
# ?vy2 = 449.9999999999999
|
|
461
|
-
# ?vy_t = 53.03300858899106
|
|
462
|
-
# ?xAtT = 53.033008588991066
|
|
463
|
-
# ?yAtT = 22.37675858899106
|
|
459
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
460
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
461
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
462
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
463
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
464
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
464
465
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
465
466
|
# ----------------------------------------------------------------------
|
|
466
467
|
|
|
467
|
-
:Shot1 :vy 21.213203435596423 .
|
|
468
|
+
:Shot1 :vy "21.213203435596423"^^xsd:decimal .
|
|
468
469
|
|
|
469
470
|
# ----------------------------------------------------------------------
|
|
470
471
|
# Proof for derived triple:
|
|
471
|
-
# :Shot1 :timeOfFlight 4.324812117348913 .
|
|
472
|
+
# :Shot1 :timeOfFlight "4.324812117348913"^^xsd:decimal .
|
|
472
473
|
# It holds because the following instance of the rule body is provable:
|
|
473
474
|
# :Shot1 :speed 30.0 .
|
|
474
475
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
475
476
|
# :Shot1 :g 9.81 .
|
|
476
477
|
# :Shot1 :tSample 2.5 .
|
|
477
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
478
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
479
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
480
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
481
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
482
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
483
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
484
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
485
|
-
# (2.0 9.81) math:product 19.62 .
|
|
486
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
487
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
488
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
489
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
490
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
491
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
492
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
478
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
479
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
480
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
481
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
482
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
483
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
484
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
485
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
486
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
487
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
488
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
489
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
490
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
491
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
492
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
493
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
493
494
|
# via the schematic forward rule:
|
|
494
495
|
# {
|
|
495
496
|
# :Shot1 :speed ?v .
|
|
@@ -524,55 +525,55 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
524
525
|
# :Shot1 :positionAtSample _:b3 .
|
|
525
526
|
# } .
|
|
526
527
|
# with substitution (on rule variables):
|
|
527
|
-
# ?cosT = 0.7071067811865476
|
|
528
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
528
529
|
# ?g = 9.81
|
|
529
|
-
# ?g_t2 = 61.3125
|
|
530
|
-
# ?hMax = 22.935779816513755
|
|
531
|
-
# ?half_g_t2 = 30.65625
|
|
532
|
-
# ?range = 91.74311926605502
|
|
533
|
-
# ?sinT = 0.7071067811865475
|
|
530
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
531
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
532
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
533
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
534
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
534
535
|
# ?t = 2.5
|
|
535
|
-
# ?t2 = 6.25
|
|
536
|
-
# ?tFlight = 4.324812117348913
|
|
536
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
537
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
537
538
|
# ?theta = 0.7853981633974483
|
|
538
|
-
# ?twoG = 19.62
|
|
539
|
-
# ?twoVy = 42.426406871192846
|
|
539
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
540
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
540
541
|
# ?v = 30.0
|
|
541
|
-
# ?vx = 21.213203435596427
|
|
542
|
-
# ?vy = 21.213203435596423
|
|
543
|
-
# ?vy2 = 449.9999999999999
|
|
544
|
-
# ?vy_t = 53.03300858899106
|
|
545
|
-
# ?xAtT = 53.033008588991066
|
|
546
|
-
# ?yAtT = 22.37675858899106
|
|
542
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
543
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
544
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
545
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
546
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
547
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
547
548
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
548
549
|
# ----------------------------------------------------------------------
|
|
549
550
|
|
|
550
|
-
:Shot1 :timeOfFlight 4.324812117348913 .
|
|
551
|
+
:Shot1 :timeOfFlight "4.324812117348913"^^xsd:decimal .
|
|
551
552
|
|
|
552
553
|
# ----------------------------------------------------------------------
|
|
553
554
|
# Proof for derived triple:
|
|
554
|
-
# :Shot1 :range 91.74311926605502 .
|
|
555
|
+
# :Shot1 :range "91.74311926605502"^^xsd:decimal .
|
|
555
556
|
# It holds because the following instance of the rule body is provable:
|
|
556
557
|
# :Shot1 :speed 30.0 .
|
|
557
558
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
558
559
|
# :Shot1 :g 9.81 .
|
|
559
560
|
# :Shot1 :tSample 2.5 .
|
|
560
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
561
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
562
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
563
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
564
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
565
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
566
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
567
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
568
|
-
# (2.0 9.81) math:product 19.62 .
|
|
569
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
570
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
571
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
572
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
573
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
574
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
575
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
561
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
562
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
563
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
564
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
565
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
566
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
567
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
568
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
569
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
570
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
571
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
572
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
573
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
574
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
575
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
576
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
576
577
|
# via the schematic forward rule:
|
|
577
578
|
# {
|
|
578
579
|
# :Shot1 :speed ?v .
|
|
@@ -607,55 +608,55 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
607
608
|
# :Shot1 :positionAtSample _:b3 .
|
|
608
609
|
# } .
|
|
609
610
|
# with substitution (on rule variables):
|
|
610
|
-
# ?cosT = 0.7071067811865476
|
|
611
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
611
612
|
# ?g = 9.81
|
|
612
|
-
# ?g_t2 = 61.3125
|
|
613
|
-
# ?hMax = 22.935779816513755
|
|
614
|
-
# ?half_g_t2 = 30.65625
|
|
615
|
-
# ?range = 91.74311926605502
|
|
616
|
-
# ?sinT = 0.7071067811865475
|
|
613
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
614
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
615
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
616
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
617
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
617
618
|
# ?t = 2.5
|
|
618
|
-
# ?t2 = 6.25
|
|
619
|
-
# ?tFlight = 4.324812117348913
|
|
619
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
620
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
620
621
|
# ?theta = 0.7853981633974483
|
|
621
|
-
# ?twoG = 19.62
|
|
622
|
-
# ?twoVy = 42.426406871192846
|
|
622
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
623
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
623
624
|
# ?v = 30.0
|
|
624
|
-
# ?vx = 21.213203435596427
|
|
625
|
-
# ?vy = 21.213203435596423
|
|
626
|
-
# ?vy2 = 449.9999999999999
|
|
627
|
-
# ?vy_t = 53.03300858899106
|
|
628
|
-
# ?xAtT = 53.033008588991066
|
|
629
|
-
# ?yAtT = 22.37675858899106
|
|
625
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
626
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
627
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
628
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
629
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
630
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
630
631
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
631
632
|
# ----------------------------------------------------------------------
|
|
632
633
|
|
|
633
|
-
:Shot1 :range 91.74311926605502 .
|
|
634
|
+
:Shot1 :range "91.74311926605502"^^xsd:decimal .
|
|
634
635
|
|
|
635
636
|
# ----------------------------------------------------------------------
|
|
636
637
|
# Proof for derived triple:
|
|
637
|
-
# :Shot1 :maxHeight 22.935779816513755 .
|
|
638
|
+
# :Shot1 :maxHeight "22.935779816513755"^^xsd:decimal .
|
|
638
639
|
# It holds because the following instance of the rule body is provable:
|
|
639
640
|
# :Shot1 :speed 30.0 .
|
|
640
641
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
641
642
|
# :Shot1 :g 9.81 .
|
|
642
643
|
# :Shot1 :tSample 2.5 .
|
|
643
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
644
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
645
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
646
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
647
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
648
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
649
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
650
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
651
|
-
# (2.0 9.81) math:product 19.62 .
|
|
652
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
653
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
654
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
655
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
656
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
657
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
658
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
644
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
645
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
646
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
647
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
648
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
649
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
650
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
651
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
652
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
653
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
654
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
655
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
656
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
657
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
658
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
659
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
659
660
|
# via the schematic forward rule:
|
|
660
661
|
# {
|
|
661
662
|
# :Shot1 :speed ?v .
|
|
@@ -690,30 +691,30 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
690
691
|
# :Shot1 :positionAtSample _:b3 .
|
|
691
692
|
# } .
|
|
692
693
|
# with substitution (on rule variables):
|
|
693
|
-
# ?cosT = 0.7071067811865476
|
|
694
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
694
695
|
# ?g = 9.81
|
|
695
|
-
# ?g_t2 = 61.3125
|
|
696
|
-
# ?hMax = 22.935779816513755
|
|
697
|
-
# ?half_g_t2 = 30.65625
|
|
698
|
-
# ?range = 91.74311926605502
|
|
699
|
-
# ?sinT = 0.7071067811865475
|
|
696
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
697
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
698
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
699
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
700
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
700
701
|
# ?t = 2.5
|
|
701
|
-
# ?t2 = 6.25
|
|
702
|
-
# ?tFlight = 4.324812117348913
|
|
702
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
703
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
703
704
|
# ?theta = 0.7853981633974483
|
|
704
|
-
# ?twoG = 19.62
|
|
705
|
-
# ?twoVy = 42.426406871192846
|
|
705
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
706
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
706
707
|
# ?v = 30.0
|
|
707
|
-
# ?vx = 21.213203435596427
|
|
708
|
-
# ?vy = 21.213203435596423
|
|
709
|
-
# ?vy2 = 449.9999999999999
|
|
710
|
-
# ?vy_t = 53.03300858899106
|
|
711
|
-
# ?xAtT = 53.033008588991066
|
|
712
|
-
# ?yAtT = 22.37675858899106
|
|
708
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
709
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
710
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
711
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
712
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
713
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
713
714
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
714
715
|
# ----------------------------------------------------------------------
|
|
715
716
|
|
|
716
|
-
:Shot1 :maxHeight 22.935779816513755 .
|
|
717
|
+
:Shot1 :maxHeight "22.935779816513755"^^xsd:decimal .
|
|
717
718
|
|
|
718
719
|
# ----------------------------------------------------------------------
|
|
719
720
|
# Proof for derived triple:
|
|
@@ -723,22 +724,22 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
723
724
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
724
725
|
# :Shot1 :g 9.81 .
|
|
725
726
|
# :Shot1 :tSample 2.5 .
|
|
726
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
727
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
728
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
729
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
730
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
731
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
732
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
733
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
734
|
-
# (2.0 9.81) math:product 19.62 .
|
|
735
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
736
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
737
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
738
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
739
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
740
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
741
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
727
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
728
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
729
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
730
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
731
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
732
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
733
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
734
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
735
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
736
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
737
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
738
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
739
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
740
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
741
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
742
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
742
743
|
# via the schematic forward rule:
|
|
743
744
|
# {
|
|
744
745
|
# :Shot1 :speed ?v .
|
|
@@ -773,26 +774,26 @@ _:sk_0 :degrees 53.13010235415598 .
|
|
|
773
774
|
# :Shot1 :positionAtSample _:b3 .
|
|
774
775
|
# } .
|
|
775
776
|
# with substitution (on rule variables):
|
|
776
|
-
# ?cosT = 0.7071067811865476
|
|
777
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
777
778
|
# ?g = 9.81
|
|
778
|
-
# ?g_t2 = 61.3125
|
|
779
|
-
# ?hMax = 22.935779816513755
|
|
780
|
-
# ?half_g_t2 = 30.65625
|
|
781
|
-
# ?range = 91.74311926605502
|
|
782
|
-
# ?sinT = 0.7071067811865475
|
|
779
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
780
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
781
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
782
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
783
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
783
784
|
# ?t = 2.5
|
|
784
|
-
# ?t2 = 6.25
|
|
785
|
-
# ?tFlight = 4.324812117348913
|
|
785
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
786
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
786
787
|
# ?theta = 0.7853981633974483
|
|
787
|
-
# ?twoG = 19.62
|
|
788
|
-
# ?twoVy = 42.426406871192846
|
|
788
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
789
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
789
790
|
# ?v = 30.0
|
|
790
|
-
# ?vx = 21.213203435596427
|
|
791
|
-
# ?vy = 21.213203435596423
|
|
792
|
-
# ?vy2 = 449.9999999999999
|
|
793
|
-
# ?vy_t = 53.03300858899106
|
|
794
|
-
# ?xAtT = 53.033008588991066
|
|
795
|
-
# ?yAtT = 22.37675858899106
|
|
791
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
792
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
793
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
794
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
795
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
796
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
796
797
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
797
798
|
# ----------------------------------------------------------------------
|
|
798
799
|
|
|
@@ -800,28 +801,28 @@ _:sk_1 :t 2.5 .
|
|
|
800
801
|
|
|
801
802
|
# ----------------------------------------------------------------------
|
|
802
803
|
# Proof for derived triple:
|
|
803
|
-
# _:sk_1 :x 53.033008588991066 .
|
|
804
|
+
# _:sk_1 :x "53.033008588991066"^^xsd:decimal .
|
|
804
805
|
# It holds because the following instance of the rule body is provable:
|
|
805
806
|
# :Shot1 :speed 30.0 .
|
|
806
807
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
807
808
|
# :Shot1 :g 9.81 .
|
|
808
809
|
# :Shot1 :tSample 2.5 .
|
|
809
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
810
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
811
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
812
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
813
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
814
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
815
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
816
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
817
|
-
# (2.0 9.81) math:product 19.62 .
|
|
818
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
819
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
820
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
821
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
822
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
823
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
824
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
810
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
811
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
812
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
813
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
814
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
815
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
816
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
817
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
818
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
819
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
820
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
821
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
822
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
823
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
824
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
825
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
825
826
|
# via the schematic forward rule:
|
|
826
827
|
# {
|
|
827
828
|
# :Shot1 :speed ?v .
|
|
@@ -856,55 +857,55 @@ _:sk_1 :t 2.5 .
|
|
|
856
857
|
# :Shot1 :positionAtSample _:b3 .
|
|
857
858
|
# } .
|
|
858
859
|
# with substitution (on rule variables):
|
|
859
|
-
# ?cosT = 0.7071067811865476
|
|
860
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
860
861
|
# ?g = 9.81
|
|
861
|
-
# ?g_t2 = 61.3125
|
|
862
|
-
# ?hMax = 22.935779816513755
|
|
863
|
-
# ?half_g_t2 = 30.65625
|
|
864
|
-
# ?range = 91.74311926605502
|
|
865
|
-
# ?sinT = 0.7071067811865475
|
|
862
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
863
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
864
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
865
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
866
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
866
867
|
# ?t = 2.5
|
|
867
|
-
# ?t2 = 6.25
|
|
868
|
-
# ?tFlight = 4.324812117348913
|
|
868
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
869
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
869
870
|
# ?theta = 0.7853981633974483
|
|
870
|
-
# ?twoG = 19.62
|
|
871
|
-
# ?twoVy = 42.426406871192846
|
|
871
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
872
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
872
873
|
# ?v = 30.0
|
|
873
|
-
# ?vx = 21.213203435596427
|
|
874
|
-
# ?vy = 21.213203435596423
|
|
875
|
-
# ?vy2 = 449.9999999999999
|
|
876
|
-
# ?vy_t = 53.03300858899106
|
|
877
|
-
# ?xAtT = 53.033008588991066
|
|
878
|
-
# ?yAtT = 22.37675858899106
|
|
874
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
875
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
876
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
877
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
878
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
879
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
879
880
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
880
881
|
# ----------------------------------------------------------------------
|
|
881
882
|
|
|
882
|
-
_:sk_1 :x 53.033008588991066 .
|
|
883
|
+
_:sk_1 :x "53.033008588991066"^^xsd:decimal .
|
|
883
884
|
|
|
884
885
|
# ----------------------------------------------------------------------
|
|
885
886
|
# Proof for derived triple:
|
|
886
|
-
# _:sk_1 :y 22.37675858899106 .
|
|
887
|
+
# _:sk_1 :y "22.37675858899106"^^xsd:decimal .
|
|
887
888
|
# It holds because the following instance of the rule body is provable:
|
|
888
889
|
# :Shot1 :speed 30.0 .
|
|
889
890
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
890
891
|
# :Shot1 :g 9.81 .
|
|
891
892
|
# :Shot1 :tSample 2.5 .
|
|
892
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
893
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
894
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
895
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
896
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
897
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
898
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
899
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
900
|
-
# (2.0 9.81) math:product 19.62 .
|
|
901
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
902
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
903
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
904
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
905
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
906
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
907
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
893
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
894
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
895
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
896
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
897
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
898
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
899
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
900
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
901
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
902
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
903
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
904
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
905
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
906
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
907
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
908
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
908
909
|
# via the schematic forward rule:
|
|
909
910
|
# {
|
|
910
911
|
# :Shot1 :speed ?v .
|
|
@@ -939,30 +940,30 @@ _:sk_1 :x 53.033008588991066 .
|
|
|
939
940
|
# :Shot1 :positionAtSample _:b3 .
|
|
940
941
|
# } .
|
|
941
942
|
# with substitution (on rule variables):
|
|
942
|
-
# ?cosT = 0.7071067811865476
|
|
943
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
943
944
|
# ?g = 9.81
|
|
944
|
-
# ?g_t2 = 61.3125
|
|
945
|
-
# ?hMax = 22.935779816513755
|
|
946
|
-
# ?half_g_t2 = 30.65625
|
|
947
|
-
# ?range = 91.74311926605502
|
|
948
|
-
# ?sinT = 0.7071067811865475
|
|
945
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
946
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
947
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
948
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
949
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
949
950
|
# ?t = 2.5
|
|
950
|
-
# ?t2 = 6.25
|
|
951
|
-
# ?tFlight = 4.324812117348913
|
|
951
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
952
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
952
953
|
# ?theta = 0.7853981633974483
|
|
953
|
-
# ?twoG = 19.62
|
|
954
|
-
# ?twoVy = 42.426406871192846
|
|
954
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
955
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
955
956
|
# ?v = 30.0
|
|
956
|
-
# ?vx = 21.213203435596427
|
|
957
|
-
# ?vy = 21.213203435596423
|
|
958
|
-
# ?vy2 = 449.9999999999999
|
|
959
|
-
# ?vy_t = 53.03300858899106
|
|
960
|
-
# ?xAtT = 53.033008588991066
|
|
961
|
-
# ?yAtT = 22.37675858899106
|
|
957
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
958
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
959
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
960
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
961
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
962
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
962
963
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
963
964
|
# ----------------------------------------------------------------------
|
|
964
965
|
|
|
965
|
-
_:sk_1 :y 22.37675858899106 .
|
|
966
|
+
_:sk_1 :y "22.37675858899106"^^xsd:decimal .
|
|
966
967
|
|
|
967
968
|
# ----------------------------------------------------------------------
|
|
968
969
|
# Proof for derived triple:
|
|
@@ -972,22 +973,22 @@ _:sk_1 :y 22.37675858899106 .
|
|
|
972
973
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
973
974
|
# :Shot1 :g 9.81 .
|
|
974
975
|
# :Shot1 :tSample 2.5 .
|
|
975
|
-
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
976
|
-
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
977
|
-
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
978
|
-
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
979
|
-
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
980
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
981
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
982
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
983
|
-
# (2.0 9.81) math:product 19.62 .
|
|
984
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
985
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
986
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
987
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
988
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
989
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
990
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
976
|
+
# 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
|
|
977
|
+
# 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
|
|
978
|
+
# (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
|
|
979
|
+
# (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
|
|
980
|
+
# (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
|
|
981
|
+
# ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
|
|
982
|
+
# ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
|
|
983
|
+
# ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
|
|
984
|
+
# (2.0 9.81) math:product "19.62"^^xsd:decimal .
|
|
985
|
+
# ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
|
|
986
|
+
# ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
|
|
987
|
+
# ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
|
|
988
|
+
# (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
|
|
989
|
+
# (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
|
|
990
|
+
# (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
|
|
991
|
+
# ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
|
|
991
992
|
# via the schematic forward rule:
|
|
992
993
|
# {
|
|
993
994
|
# :Shot1 :speed ?v .
|
|
@@ -1022,26 +1023,26 @@ _:sk_1 :y 22.37675858899106 .
|
|
|
1022
1023
|
# :Shot1 :positionAtSample _:b3 .
|
|
1023
1024
|
# } .
|
|
1024
1025
|
# with substitution (on rule variables):
|
|
1025
|
-
# ?cosT = 0.7071067811865476
|
|
1026
|
+
# ?cosT = "0.7071067811865476"^^xsd:decimal
|
|
1026
1027
|
# ?g = 9.81
|
|
1027
|
-
# ?g_t2 = 61.3125
|
|
1028
|
-
# ?hMax = 22.935779816513755
|
|
1029
|
-
# ?half_g_t2 = 30.65625
|
|
1030
|
-
# ?range = 91.74311926605502
|
|
1031
|
-
# ?sinT = 0.7071067811865475
|
|
1028
|
+
# ?g_t2 = "61.3125"^^xsd:decimal
|
|
1029
|
+
# ?hMax = "22.935779816513755"^^xsd:decimal
|
|
1030
|
+
# ?half_g_t2 = "30.65625"^^xsd:decimal
|
|
1031
|
+
# ?range = "91.74311926605502"^^xsd:decimal
|
|
1032
|
+
# ?sinT = "0.7071067811865475"^^xsd:decimal
|
|
1032
1033
|
# ?t = 2.5
|
|
1033
|
-
# ?t2 = 6.25
|
|
1034
|
-
# ?tFlight = 4.324812117348913
|
|
1034
|
+
# ?t2 = "6.25"^^xsd:decimal
|
|
1035
|
+
# ?tFlight = "4.324812117348913"^^xsd:decimal
|
|
1035
1036
|
# ?theta = 0.7853981633974483
|
|
1036
|
-
# ?twoG = 19.62
|
|
1037
|
-
# ?twoVy = 42.426406871192846
|
|
1037
|
+
# ?twoG = "19.62"^^xsd:decimal
|
|
1038
|
+
# ?twoVy = "42.426406871192846"^^xsd:decimal
|
|
1038
1039
|
# ?v = 30.0
|
|
1039
|
-
# ?vx = 21.213203435596427
|
|
1040
|
-
# ?vy = 21.213203435596423
|
|
1041
|
-
# ?vy2 = 449.9999999999999
|
|
1042
|
-
# ?vy_t = 53.03300858899106
|
|
1043
|
-
# ?xAtT = 53.033008588991066
|
|
1044
|
-
# ?yAtT = 22.37675858899106
|
|
1040
|
+
# ?vx = "21.213203435596427"^^xsd:decimal
|
|
1041
|
+
# ?vy = "21.213203435596423"^^xsd:decimal
|
|
1042
|
+
# ?vy2 = "449.9999999999999"^^xsd:decimal
|
|
1043
|
+
# ?vy_t = "53.03300858899106"^^xsd:decimal
|
|
1044
|
+
# ?xAtT = "53.033008588991066"^^xsd:decimal
|
|
1045
|
+
# ?yAtT = "22.37675858899106"^^xsd:decimal
|
|
1045
1046
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1046
1047
|
# ----------------------------------------------------------------------
|
|
1047
1048
|
|
|
@@ -1049,21 +1050,21 @@ _:sk_1 :y 22.37675858899106 .
|
|
|
1049
1050
|
|
|
1050
1051
|
# ----------------------------------------------------------------------
|
|
1051
1052
|
# Proof for derived triple:
|
|
1052
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
1053
|
+
# :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
|
|
1053
1054
|
# It holds because the following instance of the rule body is provable:
|
|
1054
1055
|
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1055
1056
|
# :DataSet1 :zThreshold 2.0 .
|
|
1056
1057
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
1057
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
1058
|
-
# (18.5 7) math:quotient 2.642857142857143 .
|
|
1058
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
|
|
1059
|
+
# ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
|
|
1059
1060
|
# (?sq {
|
|
1060
1061
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
1061
|
-
# (?x 2.642857142857143) math:difference ?d .
|
|
1062
|
+
# (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
|
|
1062
1063
|
# (?d 2.0) math:exponentiation ?sq .
|
|
1063
|
-
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
1064
|
-
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
1065
|
-
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
1066
|
-
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
1064
|
+
# } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
|
|
1065
|
+
# ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
|
|
1066
|
+
# ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
|
|
1067
|
+
# ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
|
|
1067
1068
|
# via the schematic forward rule:
|
|
1068
1069
|
# {
|
|
1069
1070
|
# :DataSet1 :values ?xs .
|
|
@@ -1085,37 +1086,37 @@ _:sk_1 :y 22.37675858899106 .
|
|
|
1085
1086
|
# :DataSet1 :stddev ?std .
|
|
1086
1087
|
# } .
|
|
1087
1088
|
# with substitution (on rule variables):
|
|
1088
|
-
# ?mean = 2.642857142857143
|
|
1089
|
+
# ?mean = "2.642857142857143"^^xsd:decimal
|
|
1089
1090
|
# ?n = 7
|
|
1090
|
-
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
1091
|
-
# ?sse = 63.58214285714286
|
|
1092
|
-
# ?std = 3.0138286721886036
|
|
1093
|
-
# ?sum = 18.5
|
|
1091
|
+
# ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
|
|
1092
|
+
# ?sse = "63.58214285714286"^^xsd:decimal
|
|
1093
|
+
# ?std = "3.0138286721886036"^^xsd:decimal
|
|
1094
|
+
# ?sum = "18.5"^^xsd:decimal
|
|
1094
1095
|
# ?thr = 2.0
|
|
1095
|
-
# ?var = 9.083163265306123
|
|
1096
|
+
# ?var = "9.083163265306123"^^xsd:decimal
|
|
1096
1097
|
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1097
1098
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1098
1099
|
# ----------------------------------------------------------------------
|
|
1099
1100
|
|
|
1100
|
-
:DataSet1 :mean 2.642857142857143 .
|
|
1101
|
+
:DataSet1 :mean "2.642857142857143"^^xsd:decimal .
|
|
1101
1102
|
|
|
1102
1103
|
# ----------------------------------------------------------------------
|
|
1103
1104
|
# Proof for derived triple:
|
|
1104
|
-
# :DataSet1 :variance 9.083163265306123 .
|
|
1105
|
+
# :DataSet1 :variance "9.083163265306123"^^xsd:decimal .
|
|
1105
1106
|
# It holds because the following instance of the rule body is provable:
|
|
1106
1107
|
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1107
1108
|
# :DataSet1 :zThreshold 2.0 .
|
|
1108
1109
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
1109
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
1110
|
-
# (18.5 7) math:quotient 2.642857142857143 .
|
|
1110
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
|
|
1111
|
+
# ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
|
|
1111
1112
|
# (?sq {
|
|
1112
1113
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
1113
|
-
# (?x 2.642857142857143) math:difference ?d .
|
|
1114
|
+
# (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
|
|
1114
1115
|
# (?d 2.0) math:exponentiation ?sq .
|
|
1115
|
-
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
1116
|
-
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
1117
|
-
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
1118
|
-
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
1116
|
+
# } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
|
|
1117
|
+
# ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
|
|
1118
|
+
# ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
|
|
1119
|
+
# ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
|
|
1119
1120
|
# via the schematic forward rule:
|
|
1120
1121
|
# {
|
|
1121
1122
|
# :DataSet1 :values ?xs .
|
|
@@ -1137,37 +1138,37 @@ _:sk_1 :y 22.37675858899106 .
|
|
|
1137
1138
|
# :DataSet1 :stddev ?std .
|
|
1138
1139
|
# } .
|
|
1139
1140
|
# with substitution (on rule variables):
|
|
1140
|
-
# ?mean = 2.642857142857143
|
|
1141
|
+
# ?mean = "2.642857142857143"^^xsd:decimal
|
|
1141
1142
|
# ?n = 7
|
|
1142
|
-
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
1143
|
-
# ?sse = 63.58214285714286
|
|
1144
|
-
# ?std = 3.0138286721886036
|
|
1145
|
-
# ?sum = 18.5
|
|
1143
|
+
# ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
|
|
1144
|
+
# ?sse = "63.58214285714286"^^xsd:decimal
|
|
1145
|
+
# ?std = "3.0138286721886036"^^xsd:decimal
|
|
1146
|
+
# ?sum = "18.5"^^xsd:decimal
|
|
1146
1147
|
# ?thr = 2.0
|
|
1147
|
-
# ?var = 9.083163265306123
|
|
1148
|
+
# ?var = "9.083163265306123"^^xsd:decimal
|
|
1148
1149
|
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1149
1150
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1150
1151
|
# ----------------------------------------------------------------------
|
|
1151
1152
|
|
|
1152
|
-
:DataSet1 :variance 9.083163265306123 .
|
|
1153
|
+
:DataSet1 :variance "9.083163265306123"^^xsd:decimal .
|
|
1153
1154
|
|
|
1154
1155
|
# ----------------------------------------------------------------------
|
|
1155
1156
|
# Proof for derived triple:
|
|
1156
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1157
|
+
# :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
|
|
1157
1158
|
# It holds because the following instance of the rule body is provable:
|
|
1158
1159
|
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1159
1160
|
# :DataSet1 :zThreshold 2.0 .
|
|
1160
1161
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
1161
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
1162
|
-
# (18.5 7) math:quotient 2.642857142857143 .
|
|
1162
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
|
|
1163
|
+
# ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
|
|
1163
1164
|
# (?sq {
|
|
1164
1165
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
1165
|
-
# (?x 2.642857142857143) math:difference ?d .
|
|
1166
|
+
# (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
|
|
1166
1167
|
# (?d 2.0) math:exponentiation ?sq .
|
|
1167
|
-
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
1168
|
-
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
1169
|
-
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
1170
|
-
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
1168
|
+
# } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
|
|
1169
|
+
# ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
|
|
1170
|
+
# ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
|
|
1171
|
+
# ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
|
|
1171
1172
|
# via the schematic forward rule:
|
|
1172
1173
|
# {
|
|
1173
1174
|
# :DataSet1 :values ?xs .
|
|
@@ -1189,33 +1190,33 @@ _:sk_1 :y 22.37675858899106 .
|
|
|
1189
1190
|
# :DataSet1 :stddev ?std .
|
|
1190
1191
|
# } .
|
|
1191
1192
|
# with substitution (on rule variables):
|
|
1192
|
-
# ?mean = 2.642857142857143
|
|
1193
|
+
# ?mean = "2.642857142857143"^^xsd:decimal
|
|
1193
1194
|
# ?n = 7
|
|
1194
|
-
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
1195
|
-
# ?sse = 63.58214285714286
|
|
1196
|
-
# ?std = 3.0138286721886036
|
|
1197
|
-
# ?sum = 18.5
|
|
1195
|
+
# ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
|
|
1196
|
+
# ?sse = "63.58214285714286"^^xsd:decimal
|
|
1197
|
+
# ?std = "3.0138286721886036"^^xsd:decimal
|
|
1198
|
+
# ?sum = "18.5"^^xsd:decimal
|
|
1198
1199
|
# ?thr = 2.0
|
|
1199
|
-
# ?var = 9.083163265306123
|
|
1200
|
+
# ?var = "9.083163265306123"^^xsd:decimal
|
|
1200
1201
|
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1201
1202
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1202
1203
|
# ----------------------------------------------------------------------
|
|
1203
1204
|
|
|
1204
|
-
:DataSet1 :stddev 3.0138286721886036 .
|
|
1205
|
+
:DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
|
|
1205
1206
|
|
|
1206
1207
|
# ----------------------------------------------------------------------
|
|
1207
1208
|
# Proof for derived triple:
|
|
1208
1209
|
# _:sk_2 :value 10.0 .
|
|
1209
1210
|
# It holds because the following instance of the rule body is provable:
|
|
1210
1211
|
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1211
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
1212
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1212
|
+
# :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
|
|
1213
|
+
# :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
|
|
1213
1214
|
# :DataSet1 :zThreshold 2.0 .
|
|
1214
1215
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
1215
|
-
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
1216
|
-
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
1217
|
-
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
1218
|
-
# 2.44112843076783 math:greaterThan 2.0 .
|
|
1216
|
+
# (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
|
|
1217
|
+
# ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
|
|
1218
|
+
# "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
|
|
1219
|
+
# "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
|
|
1219
1220
|
# via the schematic forward rule:
|
|
1220
1221
|
# {
|
|
1221
1222
|
# :DataSet1 :values ?xs .
|
|
@@ -1233,14 +1234,14 @@ _:sk_1 :y 22.37675858899106 .
|
|
|
1233
1234
|
# :DataSet1 :outlier _:b1 .
|
|
1234
1235
|
# } .
|
|
1235
1236
|
# with substitution (on rule variables):
|
|
1236
|
-
# ?absz = 2.44112843076783
|
|
1237
|
-
# ?d = 7.357142857142858
|
|
1238
|
-
# ?mean = 2.642857142857143
|
|
1239
|
-
# ?std = 3.0138286721886036
|
|
1237
|
+
# ?absz = "2.44112843076783"^^xsd:decimal
|
|
1238
|
+
# ?d = "7.357142857142858"^^xsd:decimal
|
|
1239
|
+
# ?mean = "2.642857142857143"^^xsd:decimal
|
|
1240
|
+
# ?std = "3.0138286721886036"^^xsd:decimal
|
|
1240
1241
|
# ?thr = 2.0
|
|
1241
1242
|
# ?x = 10.0
|
|
1242
1243
|
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1243
|
-
# ?z = 2.44112843076783
|
|
1244
|
+
# ?z = "2.44112843076783"^^xsd:decimal
|
|
1244
1245
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1245
1246
|
# ----------------------------------------------------------------------
|
|
1246
1247
|
|
|
@@ -1248,17 +1249,17 @@ _:sk_2 :value 10.0 .
|
|
|
1248
1249
|
|
|
1249
1250
|
# ----------------------------------------------------------------------
|
|
1250
1251
|
# Proof for derived triple:
|
|
1251
|
-
# _:sk_2 :zScore 2.44112843076783 .
|
|
1252
|
+
# _:sk_2 :zScore "2.44112843076783"^^xsd:decimal .
|
|
1252
1253
|
# It holds because the following instance of the rule body is provable:
|
|
1253
1254
|
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1254
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
1255
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1255
|
+
# :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
|
|
1256
|
+
# :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
|
|
1256
1257
|
# :DataSet1 :zThreshold 2.0 .
|
|
1257
1258
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
1258
|
-
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
1259
|
-
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
1260
|
-
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
1261
|
-
# 2.44112843076783 math:greaterThan 2.0 .
|
|
1259
|
+
# (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
|
|
1260
|
+
# ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
|
|
1261
|
+
# "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
|
|
1262
|
+
# "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
|
|
1262
1263
|
# via the schematic forward rule:
|
|
1263
1264
|
# {
|
|
1264
1265
|
# :DataSet1 :values ?xs .
|
|
@@ -1276,32 +1277,32 @@ _:sk_2 :value 10.0 .
|
|
|
1276
1277
|
# :DataSet1 :outlier _:b1 .
|
|
1277
1278
|
# } .
|
|
1278
1279
|
# with substitution (on rule variables):
|
|
1279
|
-
# ?absz = 2.44112843076783
|
|
1280
|
-
# ?d = 7.357142857142858
|
|
1281
|
-
# ?mean = 2.642857142857143
|
|
1282
|
-
# ?std = 3.0138286721886036
|
|
1280
|
+
# ?absz = "2.44112843076783"^^xsd:decimal
|
|
1281
|
+
# ?d = "7.357142857142858"^^xsd:decimal
|
|
1282
|
+
# ?mean = "2.642857142857143"^^xsd:decimal
|
|
1283
|
+
# ?std = "3.0138286721886036"^^xsd:decimal
|
|
1283
1284
|
# ?thr = 2.0
|
|
1284
1285
|
# ?x = 10.0
|
|
1285
1286
|
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1286
|
-
# ?z = 2.44112843076783
|
|
1287
|
+
# ?z = "2.44112843076783"^^xsd:decimal
|
|
1287
1288
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1288
1289
|
# ----------------------------------------------------------------------
|
|
1289
1290
|
|
|
1290
|
-
_:sk_2 :zScore 2.44112843076783 .
|
|
1291
|
+
_:sk_2 :zScore "2.44112843076783"^^xsd:decimal .
|
|
1291
1292
|
|
|
1292
1293
|
# ----------------------------------------------------------------------
|
|
1293
1294
|
# Proof for derived triple:
|
|
1294
1295
|
# :DataSet1 :outlier _:sk_2 .
|
|
1295
1296
|
# It holds because the following instance of the rule body is provable:
|
|
1296
1297
|
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1297
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
1298
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1298
|
+
# :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
|
|
1299
|
+
# :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
|
|
1299
1300
|
# :DataSet1 :zThreshold 2.0 .
|
|
1300
1301
|
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
1301
|
-
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
1302
|
-
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
1303
|
-
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
1304
|
-
# 2.44112843076783 math:greaterThan 2.0 .
|
|
1302
|
+
# (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
|
|
1303
|
+
# ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
|
|
1304
|
+
# "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
|
|
1305
|
+
# "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
|
|
1305
1306
|
# via the schematic forward rule:
|
|
1306
1307
|
# {
|
|
1307
1308
|
# :DataSet1 :values ?xs .
|
|
@@ -1319,14 +1320,14 @@ _:sk_2 :zScore 2.44112843076783 .
|
|
|
1319
1320
|
# :DataSet1 :outlier _:b1 .
|
|
1320
1321
|
# } .
|
|
1321
1322
|
# with substitution (on rule variables):
|
|
1322
|
-
# ?absz = 2.44112843076783
|
|
1323
|
-
# ?d = 7.357142857142858
|
|
1324
|
-
# ?mean = 2.642857142857143
|
|
1325
|
-
# ?std = 3.0138286721886036
|
|
1323
|
+
# ?absz = "2.44112843076783"^^xsd:decimal
|
|
1324
|
+
# ?d = "7.357142857142858"^^xsd:decimal
|
|
1325
|
+
# ?mean = "2.642857142857143"^^xsd:decimal
|
|
1326
|
+
# ?std = "3.0138286721886036"^^xsd:decimal
|
|
1326
1327
|
# ?thr = 2.0
|
|
1327
1328
|
# ?x = 10.0
|
|
1328
1329
|
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1329
|
-
# ?z = 2.44112843076783
|
|
1330
|
+
# ?z = "2.44112843076783"^^xsd:decimal
|
|
1330
1331
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1331
1332
|
# ----------------------------------------------------------------------
|
|
1332
1333
|
|