eyeling 1.6.4 → 1.6.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,8 +1,9 @@
1
1
  @prefix : <http://example.org/ruby-runge#> .
2
+ @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
2
3
 
3
4
  # ----------------------------------------------------------------------
4
5
  # Proof for derived triple:
5
- # :Interp1 :yAtX0 -0.27999999999999986 .
6
+ # :Interp1 :yAtX0 "-0.27999999999999986"^^xsd:decimal .
6
7
  # It holds because the following instance of the rule body is provable:
7
8
  # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
8
9
  # :Interp1 :x0 0.6 .
@@ -20,8 +21,8 @@
20
21
  # } ?factors) log:collectAllIn ?_b1 .
21
22
  # ?factors math:product ?basis .
22
23
  # (?yi ?basis) math:product ?term .
23
- # } (-0.2912 0.5824 -0.5823999999999999 -0.14559999999999998 0.1568)) log:collectAllIn ?_b2 .
24
- # (-0.2912 0.5824 -0.5823999999999999 -0.14559999999999998 0.1568) math:sum -0.27999999999999986 .
24
+ # } ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal)) log:collectAllIn ?_b2 .
25
+ # ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal) math:sum "-0.27999999999999986"^^xsd:decimal .
25
26
  # via the schematic forward rule:
26
27
  # {
27
28
  # :Interp1 :points ?pts .
@@ -47,22 +48,22 @@
47
48
  # } .
48
49
  # with substitution (on rule variables):
49
50
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
50
- # ?terms = (-0.2912 0.5824 -0.5823999999999999 -0.14559999999999998 0.1568)
51
+ # ?terms = ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal)
51
52
  # ?x0 = 0.6
52
- # ?y0 = -0.27999999999999986
53
+ # ?y0 = "-0.27999999999999986"^^xsd:decimal
53
54
  # Therefore the derived triple above is entailed by the rules and facts.
54
55
  # ----------------------------------------------------------------------
55
56
 
56
- :Interp1 :yAtX0 -0.27999999999999986 .
57
+ :Interp1 :yAtX0 "-0.27999999999999986"^^xsd:decimal .
57
58
 
58
59
  # ----------------------------------------------------------------------
59
60
  # Proof for derived triple:
60
- # :Interp1 :yAtXPlus -0.2775980000000001 .
61
+ # :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
61
62
  # It holds because the following instance of the rule body is provable:
62
63
  # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
63
64
  # :Interp1 :x0 0.6 .
64
65
  # :Interp1 :h 0.001 .
65
- # (0.6 0.001) math:sum 0.601 .
66
+ # (0.6 0.001) math:sum "0.601"^^xsd:decimal .
66
67
  # (?term {
67
68
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
68
69
  # ?pi :x ?xi .
@@ -71,14 +72,14 @@
71
72
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
72
73
  # ?pj :x ?xj .
73
74
  # ?xj math:notEqualTo ?xi .
74
- # (0.601 ?xj) math:difference ?num .
75
+ # ("0.601"^^xsd:decimal ?xj) math:difference ?num .
75
76
  # (?xi ?xj) math:difference ?den .
76
77
  # (?num ?den) math:quotient ?f .
77
78
  # } ?factors) log:collectAllIn ?_b1 .
78
79
  # ?factors math:product ?basis .
79
80
  # (?yi ?basis) math:product ?term .
80
- # } (-0.291249943716375 0.5835426727665 -0.58111529060025 -0.1454300602335 0.15665462178362502)) log:collectAllIn ?_b2 .
81
- # (-0.291249943716375 0.5835426727665 -0.58111529060025 -0.1454300602335 0.15665462178362502) math:sum -0.2775980000000001 .
81
+ # } ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)) log:collectAllIn ?_b2 .
82
+ # ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal) math:sum "-0.2775980000000001"^^xsd:decimal .
82
83
  # via the schematic forward rule:
83
84
  # {
84
85
  # :Interp1 :points ?pts .
@@ -108,23 +109,23 @@
108
109
  # with substitution (on rule variables):
109
110
  # ?h = 0.001
110
111
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
111
- # ?terms = (-0.291249943716375 0.5835426727665 -0.58111529060025 -0.1454300602335 0.15665462178362502)
112
+ # ?terms = ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)
112
113
  # ?x0 = 0.6
113
- # ?xPlus = 0.601
114
- # ?yPlus = -0.2775980000000001
114
+ # ?xPlus = "0.601"^^xsd:decimal
115
+ # ?yPlus = "-0.2775980000000001"^^xsd:decimal
115
116
  # Therefore the derived triple above is entailed by the rules and facts.
116
117
  # ----------------------------------------------------------------------
117
118
 
118
- :Interp1 :yAtXPlus -0.2775980000000001 .
119
+ :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
119
120
 
120
121
  # ----------------------------------------------------------------------
121
122
  # Proof for derived triple:
122
- # :Interp1 :xPlus 0.601 .
123
+ # :Interp1 :xPlus "0.601"^^xsd:decimal .
123
124
  # It holds because the following instance of the rule body is provable:
124
125
  # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
125
126
  # :Interp1 :x0 0.6 .
126
127
  # :Interp1 :h 0.001 .
127
- # (0.6 0.001) math:sum 0.601 .
128
+ # (0.6 0.001) math:sum "0.601"^^xsd:decimal .
128
129
  # (?term {
129
130
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
130
131
  # ?pi :x ?xi .
@@ -133,14 +134,14 @@
133
134
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
134
135
  # ?pj :x ?xj .
135
136
  # ?xj math:notEqualTo ?xi .
136
- # (0.601 ?xj) math:difference ?num .
137
+ # ("0.601"^^xsd:decimal ?xj) math:difference ?num .
137
138
  # (?xi ?xj) math:difference ?den .
138
139
  # (?num ?den) math:quotient ?f .
139
140
  # } ?factors) log:collectAllIn ?_b1 .
140
141
  # ?factors math:product ?basis .
141
142
  # (?yi ?basis) math:product ?term .
142
- # } (-0.291249943716375 0.5835426727665 -0.58111529060025 -0.1454300602335 0.15665462178362502)) log:collectAllIn ?_b2 .
143
- # (-0.291249943716375 0.5835426727665 -0.58111529060025 -0.1454300602335 0.15665462178362502) math:sum -0.2775980000000001 .
143
+ # } ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)) log:collectAllIn ?_b2 .
144
+ # ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal) math:sum "-0.2775980000000001"^^xsd:decimal .
144
145
  # via the schematic forward rule:
145
146
  # {
146
147
  # :Interp1 :points ?pts .
@@ -170,23 +171,23 @@
170
171
  # with substitution (on rule variables):
171
172
  # ?h = 0.001
172
173
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
173
- # ?terms = (-0.291249943716375 0.5835426727665 -0.58111529060025 -0.1454300602335 0.15665462178362502)
174
+ # ?terms = ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)
174
175
  # ?x0 = 0.6
175
- # ?xPlus = 0.601
176
- # ?yPlus = -0.2775980000000001
176
+ # ?xPlus = "0.601"^^xsd:decimal
177
+ # ?yPlus = "-0.2775980000000001"^^xsd:decimal
177
178
  # Therefore the derived triple above is entailed by the rules and facts.
178
179
  # ----------------------------------------------------------------------
179
180
 
180
- :Interp1 :xPlus 0.601 .
181
+ :Interp1 :xPlus "0.601"^^xsd:decimal .
181
182
 
182
183
  # ----------------------------------------------------------------------
183
184
  # Proof for derived triple:
184
- # :Interp1 :yAtXMinus -0.28239800000000004 .
185
+ # :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
185
186
  # It holds because the following instance of the rule body is provable:
186
187
  # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
187
188
  # :Interp1 :x0 0.6 .
188
189
  # :Interp1 :h 0.001 .
189
- # (0.6 0.001) math:difference 0.599 .
190
+ # (0.6 0.001) math:difference "0.599"^^xsd:decimal .
190
191
  # (?term {
191
192
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
192
193
  # ?pi :x ?xi .
@@ -195,14 +196,14 @@
195
196
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
196
197
  # ?pj :x ?xj .
197
198
  # ?xj math:notEqualTo ?xi .
198
- # (0.599 ?xj) math:difference ?num .
199
+ # ("0.599"^^xsd:decimal ?xj) math:difference ?num .
199
200
  # (?xi ?xj) math:difference ?den .
200
201
  # (?num ?den) math:quotient ?f .
201
202
  # } ?factors) log:collectAllIn ?_b1 .
202
203
  # ?factors math:product ?basis .
203
204
  # (?yi ?basis) math:product ?term .
204
- # } (-0.291147279616375 0.5812573405665 -0.58368328940025 -0.1457687264335 0.156943954883625)) log:collectAllIn ?_b2 .
205
- # (-0.291147279616375 0.5812573405665 -0.58368328940025 -0.1457687264335 0.156943954883625) math:sum -0.28239800000000004 .
205
+ # } ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)) log:collectAllIn ?_b2 .
206
+ # ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal) math:sum "-0.28239800000000004"^^xsd:decimal .
206
207
  # via the schematic forward rule:
207
208
  # {
208
209
  # :Interp1 :points ?pts .
@@ -232,23 +233,23 @@
232
233
  # with substitution (on rule variables):
233
234
  # ?h = 0.001
234
235
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
235
- # ?terms = (-0.291147279616375 0.5812573405665 -0.58368328940025 -0.1457687264335 0.156943954883625)
236
+ # ?terms = ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)
236
237
  # ?x0 = 0.6
237
- # ?xMinus = 0.599
238
- # ?yMinus = -0.28239800000000004
238
+ # ?xMinus = "0.599"^^xsd:decimal
239
+ # ?yMinus = "-0.28239800000000004"^^xsd:decimal
239
240
  # Therefore the derived triple above is entailed by the rules and facts.
240
241
  # ----------------------------------------------------------------------
241
242
 
242
- :Interp1 :yAtXMinus -0.28239800000000004 .
243
+ :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
243
244
 
244
245
  # ----------------------------------------------------------------------
245
246
  # Proof for derived triple:
246
- # :Interp1 :xMinus 0.599 .
247
+ # :Interp1 :xMinus "0.599"^^xsd:decimal .
247
248
  # It holds because the following instance of the rule body is provable:
248
249
  # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
249
250
  # :Interp1 :x0 0.6 .
250
251
  # :Interp1 :h 0.001 .
251
- # (0.6 0.001) math:difference 0.599 .
252
+ # (0.6 0.001) math:difference "0.599"^^xsd:decimal .
252
253
  # (?term {
253
254
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
254
255
  # ?pi :x ?xi .
@@ -257,14 +258,14 @@
257
258
  # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
258
259
  # ?pj :x ?xj .
259
260
  # ?xj math:notEqualTo ?xi .
260
- # (0.599 ?xj) math:difference ?num .
261
+ # ("0.599"^^xsd:decimal ?xj) math:difference ?num .
261
262
  # (?xi ?xj) math:difference ?den .
262
263
  # (?num ?den) math:quotient ?f .
263
264
  # } ?factors) log:collectAllIn ?_b1 .
264
265
  # ?factors math:product ?basis .
265
266
  # (?yi ?basis) math:product ?term .
266
- # } (-0.291147279616375 0.5812573405665 -0.58368328940025 -0.1457687264335 0.156943954883625)) log:collectAllIn ?_b2 .
267
- # (-0.291147279616375 0.5812573405665 -0.58368328940025 -0.1457687264335 0.156943954883625) math:sum -0.28239800000000004 .
267
+ # } ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)) log:collectAllIn ?_b2 .
268
+ # ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal) math:sum "-0.28239800000000004"^^xsd:decimal .
268
269
  # via the schematic forward rule:
269
270
  # {
270
271
  # :Interp1 :points ?pts .
@@ -294,25 +295,25 @@
294
295
  # with substitution (on rule variables):
295
296
  # ?h = 0.001
296
297
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
297
- # ?terms = (-0.291147279616375 0.5812573405665 -0.58368328940025 -0.1457687264335 0.156943954883625)
298
+ # ?terms = ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)
298
299
  # ?x0 = 0.6
299
- # ?xMinus = 0.599
300
- # ?yMinus = -0.28239800000000004
300
+ # ?xMinus = "0.599"^^xsd:decimal
301
+ # ?yMinus = "-0.28239800000000004"^^xsd:decimal
301
302
  # Therefore the derived triple above is entailed by the rules and facts.
302
303
  # ----------------------------------------------------------------------
303
304
 
304
- :Interp1 :xMinus 0.599 .
305
+ :Interp1 :xMinus "0.599"^^xsd:decimal .
305
306
 
306
307
  # ----------------------------------------------------------------------
307
308
  # Proof for derived triple:
308
- # :Interp1 :derivativeAtX0 2.3999999999999577 .
309
+ # :Interp1 :derivativeAtX0 "2.3999999999999577"^^xsd:decimal .
309
310
  # It holds because the following instance of the rule body is provable:
310
- # :Interp1 :yAtXPlus -0.2775980000000001 .
311
- # :Interp1 :yAtXMinus -0.28239800000000004 .
311
+ # :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
312
+ # :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
312
313
  # :Interp1 :h 0.001 .
313
- # (-0.2775980000000001 -0.28239800000000004) math:difference 0.0047999999999999154 .
314
- # (2.0 0.001) math:product 0.002 .
315
- # (0.0047999999999999154 0.002) math:quotient 2.3999999999999577 .
314
+ # ("-0.2775980000000001"^^xsd:decimal "-0.28239800000000004"^^xsd:decimal) math:difference "0.0047999999999999154"^^xsd:decimal .
315
+ # (2.0 0.001) math:product "0.002"^^xsd:decimal .
316
+ # ("0.0047999999999999154"^^xsd:decimal "0.002"^^xsd:decimal) math:quotient "2.3999999999999577"^^xsd:decimal .
316
317
  # via the schematic forward rule:
317
318
  # {
318
319
  # :Interp1 :yAtXPlus ?yP .
@@ -325,20 +326,20 @@
325
326
  # :Interp1 :derivativeAtX0 ?dydx .
326
327
  # } .
327
328
  # with substitution (on rule variables):
328
- # ?dy = 0.0047999999999999154
329
- # ?dydx = 2.3999999999999577
329
+ # ?dy = "0.0047999999999999154"^^xsd:decimal
330
+ # ?dydx = "2.3999999999999577"^^xsd:decimal
330
331
  # ?h = 0.001
331
- # ?twoH = 0.002
332
- # ?yM = -0.28239800000000004
333
- # ?yP = -0.2775980000000001
332
+ # ?twoH = "0.002"^^xsd:decimal
333
+ # ?yM = "-0.28239800000000004"^^xsd:decimal
334
+ # ?yP = "-0.2775980000000001"^^xsd:decimal
334
335
  # Therefore the derived triple above is entailed by the rules and facts.
335
336
  # ----------------------------------------------------------------------
336
337
 
337
- :Interp1 :derivativeAtX0 2.3999999999999577 .
338
+ :Interp1 :derivativeAtX0 "2.3999999999999577"^^xsd:decimal .
338
339
 
339
340
  # ----------------------------------------------------------------------
340
341
  # Proof for derived triple:
341
- # :Interp1 :yAtBracketA -1 .
342
+ # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
342
343
  # It holds because the following instance of the rule body is provable:
343
344
  # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
344
345
  # :Interp1 :bracketA 0.0 .
@@ -356,8 +357,8 @@
356
357
  # } ?factors) log:collectAllIn ?_b1 .
357
358
  # ?factors math:product ?basis .
358
359
  # (?yi ?basis) math:product ?term .
359
- # } (0 0 -1 0 0)) log:collectAllIn ?_b2 .
360
- # (0 0 -1 0 0) math:sum -1 .
360
+ # } ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
361
+ # ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal) math:sum "-1"^^xsd:decimal .
361
362
  # via the schematic forward rule:
362
363
  # {
363
364
  # :Interp1 :points ?pts .
@@ -383,17 +384,17 @@
383
384
  # } .
384
385
  # with substitution (on rule variables):
385
386
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
386
- # ?terms = (0 0 -1 0 0)
387
+ # ?terms = ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)
387
388
  # ?xa = 0.0
388
- # ?ya = -1
389
+ # ?ya = "-1"^^xsd:decimal
389
390
  # Therefore the derived triple above is entailed by the rules and facts.
390
391
  # ----------------------------------------------------------------------
391
392
 
392
- :Interp1 :yAtBracketA -1 .
393
+ :Interp1 :yAtBracketA "-1"^^xsd:decimal .
393
394
 
394
395
  # ----------------------------------------------------------------------
395
396
  # Proof for derived triple:
396
- # :Interp1 :yAtBracketB 1 .
397
+ # :Interp1 :yAtBracketB "1"^^xsd:decimal .
397
398
  # It holds because the following instance of the rule body is provable:
398
399
  # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
399
400
  # :Interp1 :bracketB 1.0 .
@@ -411,8 +412,8 @@
411
412
  # } ?factors) log:collectAllIn ?_b1 .
412
413
  # ?factors math:product ?basis .
413
414
  # (?yi ?basis) math:product ?term .
414
- # } (0 1 0 0 0)) log:collectAllIn ?_b2 .
415
- # (0 1 0 0 0) math:sum 1 .
415
+ # } ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
416
+ # ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
416
417
  # via the schematic forward rule:
417
418
  # {
418
419
  # :Interp1 :points ?pts .
@@ -438,13 +439,13 @@
438
439
  # } .
439
440
  # with substitution (on rule variables):
440
441
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
441
- # ?terms = (0 1 0 0 0)
442
+ # ?terms = ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)
442
443
  # ?xb = 1.0
443
- # ?yb = 1
444
+ # ?yb = "1"^^xsd:decimal
444
445
  # Therefore the derived triple above is entailed by the rules and facts.
445
446
  # ----------------------------------------------------------------------
446
447
 
447
- :Interp1 :yAtBracketB 1 .
448
+ :Interp1 :yAtBracketB "1"^^xsd:decimal .
448
449
 
449
450
  # ----------------------------------------------------------------------
450
451
  # Proof for derived triple:
@@ -452,10 +453,10 @@
452
453
  # It holds because the following instance of the rule body is provable:
453
454
  # :Interp1 :bracketA 0.0 .
454
455
  # :Interp1 :bracketB 1.0 .
455
- # :Interp1 :yAtBracketA -1 .
456
- # :Interp1 :yAtBracketB 1 .
457
- # (-1 1) math:product -1 .
458
- # -1 math:lessThan 0.0 .
456
+ # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
457
+ # :Interp1 :yAtBracketB "1"^^xsd:decimal .
458
+ # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
459
+ # "-1"^^xsd:decimal math:lessThan 0.0 .
459
460
  # via the schematic forward rule:
460
461
  # {
461
462
  # :Interp1 :bracketA ?xa .
@@ -472,11 +473,11 @@
472
473
  # :Interp1 :rootBracket _:b6 .
473
474
  # } .
474
475
  # with substitution (on rule variables):
475
- # ?prod = -1
476
+ # ?prod = "-1"^^xsd:decimal
476
477
  # ?xa = 0.0
477
478
  # ?xb = 1.0
478
- # ?ya = -1
479
- # ?yb = 1
479
+ # ?ya = "-1"^^xsd:decimal
480
+ # ?yb = "1"^^xsd:decimal
480
481
  # Therefore the derived triple above is entailed by the rules and facts.
481
482
  # ----------------------------------------------------------------------
482
483
 
@@ -488,10 +489,10 @@ _:sk_0 :a 0.0 .
488
489
  # It holds because the following instance of the rule body is provable:
489
490
  # :Interp1 :bracketA 0.0 .
490
491
  # :Interp1 :bracketB 1.0 .
491
- # :Interp1 :yAtBracketA -1 .
492
- # :Interp1 :yAtBracketB 1 .
493
- # (-1 1) math:product -1 .
494
- # -1 math:lessThan 0.0 .
492
+ # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
493
+ # :Interp1 :yAtBracketB "1"^^xsd:decimal .
494
+ # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
495
+ # "-1"^^xsd:decimal math:lessThan 0.0 .
495
496
  # via the schematic forward rule:
496
497
  # {
497
498
  # :Interp1 :bracketA ?xa .
@@ -508,11 +509,11 @@ _:sk_0 :a 0.0 .
508
509
  # :Interp1 :rootBracket _:b6 .
509
510
  # } .
510
511
  # with substitution (on rule variables):
511
- # ?prod = -1
512
+ # ?prod = "-1"^^xsd:decimal
512
513
  # ?xa = 0.0
513
514
  # ?xb = 1.0
514
- # ?ya = -1
515
- # ?yb = 1
515
+ # ?ya = "-1"^^xsd:decimal
516
+ # ?yb = "1"^^xsd:decimal
516
517
  # Therefore the derived triple above is entailed by the rules and facts.
517
518
  # ----------------------------------------------------------------------
518
519
 
@@ -520,14 +521,14 @@ _:sk_0 :b 1.0 .
520
521
 
521
522
  # ----------------------------------------------------------------------
522
523
  # Proof for derived triple:
523
- # _:sk_0 :ya -1 .
524
+ # _:sk_0 :ya "-1"^^xsd:decimal .
524
525
  # It holds because the following instance of the rule body is provable:
525
526
  # :Interp1 :bracketA 0.0 .
526
527
  # :Interp1 :bracketB 1.0 .
527
- # :Interp1 :yAtBracketA -1 .
528
- # :Interp1 :yAtBracketB 1 .
529
- # (-1 1) math:product -1 .
530
- # -1 math:lessThan 0.0 .
528
+ # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
529
+ # :Interp1 :yAtBracketB "1"^^xsd:decimal .
530
+ # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
531
+ # "-1"^^xsd:decimal math:lessThan 0.0 .
531
532
  # via the schematic forward rule:
532
533
  # {
533
534
  # :Interp1 :bracketA ?xa .
@@ -544,26 +545,26 @@ _:sk_0 :b 1.0 .
544
545
  # :Interp1 :rootBracket _:b6 .
545
546
  # } .
546
547
  # with substitution (on rule variables):
547
- # ?prod = -1
548
+ # ?prod = "-1"^^xsd:decimal
548
549
  # ?xa = 0.0
549
550
  # ?xb = 1.0
550
- # ?ya = -1
551
- # ?yb = 1
551
+ # ?ya = "-1"^^xsd:decimal
552
+ # ?yb = "1"^^xsd:decimal
552
553
  # Therefore the derived triple above is entailed by the rules and facts.
553
554
  # ----------------------------------------------------------------------
554
555
 
555
- _:sk_0 :ya -1 .
556
+ _:sk_0 :ya "-1"^^xsd:decimal .
556
557
 
557
558
  # ----------------------------------------------------------------------
558
559
  # Proof for derived triple:
559
- # _:sk_0 :yb 1 .
560
+ # _:sk_0 :yb "1"^^xsd:decimal .
560
561
  # It holds because the following instance of the rule body is provable:
561
562
  # :Interp1 :bracketA 0.0 .
562
563
  # :Interp1 :bracketB 1.0 .
563
- # :Interp1 :yAtBracketA -1 .
564
- # :Interp1 :yAtBracketB 1 .
565
- # (-1 1) math:product -1 .
566
- # -1 math:lessThan 0.0 .
564
+ # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
565
+ # :Interp1 :yAtBracketB "1"^^xsd:decimal .
566
+ # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
567
+ # "-1"^^xsd:decimal math:lessThan 0.0 .
567
568
  # via the schematic forward rule:
568
569
  # {
569
570
  # :Interp1 :bracketA ?xa .
@@ -580,15 +581,15 @@ _:sk_0 :ya -1 .
580
581
  # :Interp1 :rootBracket _:b6 .
581
582
  # } .
582
583
  # with substitution (on rule variables):
583
- # ?prod = -1
584
+ # ?prod = "-1"^^xsd:decimal
584
585
  # ?xa = 0.0
585
586
  # ?xb = 1.0
586
- # ?ya = -1
587
- # ?yb = 1
587
+ # ?ya = "-1"^^xsd:decimal
588
+ # ?yb = "1"^^xsd:decimal
588
589
  # Therefore the derived triple above is entailed by the rules and facts.
589
590
  # ----------------------------------------------------------------------
590
591
 
591
- _:sk_0 :yb 1 .
592
+ _:sk_0 :yb "1"^^xsd:decimal .
592
593
 
593
594
  # ----------------------------------------------------------------------
594
595
  # Proof for derived triple:
@@ -596,10 +597,10 @@ _:sk_0 :yb 1 .
596
597
  # It holds because the following instance of the rule body is provable:
597
598
  # :Interp1 :bracketA 0.0 .
598
599
  # :Interp1 :bracketB 1.0 .
599
- # :Interp1 :yAtBracketA -1 .
600
- # :Interp1 :yAtBracketB 1 .
601
- # (-1 1) math:product -1 .
602
- # -1 math:lessThan 0.0 .
600
+ # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
601
+ # :Interp1 :yAtBracketB "1"^^xsd:decimal .
602
+ # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
603
+ # "-1"^^xsd:decimal math:lessThan 0.0 .
603
604
  # via the schematic forward rule:
604
605
  # {
605
606
  # :Interp1 :bracketA ?xa .
@@ -616,11 +617,11 @@ _:sk_0 :yb 1 .
616
617
  # :Interp1 :rootBracket _:b6 .
617
618
  # } .
618
619
  # with substitution (on rule variables):
619
- # ?prod = -1
620
+ # ?prod = "-1"^^xsd:decimal
620
621
  # ?xa = 0.0
621
622
  # ?xb = 1.0
622
- # ?ya = -1
623
- # ?yb = 1
623
+ # ?ya = "-1"^^xsd:decimal
624
+ # ?yb = "1"^^xsd:decimal
624
625
  # Therefore the derived triple above is entailed by the rules and facts.
625
626
  # ----------------------------------------------------------------------
626
627