@lobehub/chat 1.75.4 → 1.76.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CHANGELOG.md +52 -0
  2. package/README.md +1 -1
  3. package/README.zh-CN.md +1 -1
  4. package/changelog/v1.json +18 -0
  5. package/docs/developer/database-schema.dbml +1 -0
  6. package/docs/self-hosting/advanced/model-list.mdx +5 -3
  7. package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
  8. package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
  9. package/locales/ar/hotkey.json +46 -0
  10. package/locales/ar/models.json +51 -54
  11. package/locales/ar/providers.json +3 -0
  12. package/locales/ar/setting.json +12 -0
  13. package/locales/bg-BG/hotkey.json +46 -0
  14. package/locales/bg-BG/models.json +51 -54
  15. package/locales/bg-BG/providers.json +3 -0
  16. package/locales/bg-BG/setting.json +12 -0
  17. package/locales/de-DE/hotkey.json +46 -0
  18. package/locales/de-DE/models.json +51 -54
  19. package/locales/de-DE/providers.json +3 -0
  20. package/locales/de-DE/setting.json +12 -0
  21. package/locales/en-US/hotkey.json +46 -0
  22. package/locales/en-US/models.json +51 -54
  23. package/locales/en-US/providers.json +3 -0
  24. package/locales/en-US/setting.json +12 -0
  25. package/locales/es-ES/hotkey.json +46 -0
  26. package/locales/es-ES/models.json +51 -54
  27. package/locales/es-ES/providers.json +3 -0
  28. package/locales/es-ES/setting.json +12 -0
  29. package/locales/fa-IR/hotkey.json +46 -0
  30. package/locales/fa-IR/models.json +51 -54
  31. package/locales/fa-IR/providers.json +3 -0
  32. package/locales/fa-IR/setting.json +12 -0
  33. package/locales/fr-FR/hotkey.json +46 -0
  34. package/locales/fr-FR/models.json +51 -54
  35. package/locales/fr-FR/providers.json +3 -0
  36. package/locales/fr-FR/setting.json +12 -0
  37. package/locales/it-IT/hotkey.json +46 -0
  38. package/locales/it-IT/models.json +51 -54
  39. package/locales/it-IT/providers.json +3 -0
  40. package/locales/it-IT/setting.json +12 -0
  41. package/locales/ja-JP/hotkey.json +46 -0
  42. package/locales/ja-JP/models.json +51 -54
  43. package/locales/ja-JP/providers.json +3 -0
  44. package/locales/ja-JP/setting.json +12 -0
  45. package/locales/ko-KR/hotkey.json +46 -0
  46. package/locales/ko-KR/models.json +51 -54
  47. package/locales/ko-KR/providers.json +3 -0
  48. package/locales/ko-KR/setting.json +12 -0
  49. package/locales/nl-NL/hotkey.json +46 -0
  50. package/locales/nl-NL/models.json +51 -54
  51. package/locales/nl-NL/providers.json +3 -0
  52. package/locales/nl-NL/setting.json +12 -0
  53. package/locales/pl-PL/hotkey.json +46 -0
  54. package/locales/pl-PL/models.json +51 -54
  55. package/locales/pl-PL/providers.json +3 -0
  56. package/locales/pl-PL/setting.json +12 -0
  57. package/locales/pt-BR/hotkey.json +46 -0
  58. package/locales/pt-BR/models.json +51 -54
  59. package/locales/pt-BR/providers.json +3 -0
  60. package/locales/pt-BR/setting.json +12 -0
  61. package/locales/ru-RU/hotkey.json +46 -0
  62. package/locales/ru-RU/models.json +51 -54
  63. package/locales/ru-RU/providers.json +3 -0
  64. package/locales/ru-RU/setting.json +12 -0
  65. package/locales/tr-TR/hotkey.json +46 -0
  66. package/locales/tr-TR/models.json +51 -54
  67. package/locales/tr-TR/providers.json +3 -0
  68. package/locales/tr-TR/setting.json +12 -0
  69. package/locales/vi-VN/hotkey.json +46 -0
  70. package/locales/vi-VN/models.json +51 -54
  71. package/locales/vi-VN/providers.json +3 -0
  72. package/locales/vi-VN/setting.json +12 -0
  73. package/locales/zh-CN/hotkey.json +46 -0
  74. package/locales/zh-CN/models.json +55 -58
  75. package/locales/zh-CN/providers.json +3 -0
  76. package/locales/zh-CN/setting.json +12 -0
  77. package/locales/zh-TW/hotkey.json +46 -0
  78. package/locales/zh-TW/models.json +51 -54
  79. package/locales/zh-TW/providers.json +3 -0
  80. package/locales/zh-TW/setting.json +12 -0
  81. package/package.json +3 -3
  82. package/src/app/[variants]/(main)/(mobile)/me/(home)/features/Category.tsx +1 -1
  83. package/src/app/[variants]/(main)/(mobile)/me/(home)/layout.tsx +3 -2
  84. package/src/app/[variants]/(main)/(mobile)/me/data/features/Category.tsx +1 -1
  85. package/src/app/[variants]/(main)/(mobile)/me/profile/features/Category.tsx +1 -1
  86. package/src/app/[variants]/(main)/(mobile)/me/settings/features/Category.tsx +1 -1
  87. package/src/app/[variants]/(main)/_layout/Desktop/RegisterHotkeys.tsx +11 -0
  88. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/PinList/index.tsx +6 -23
  89. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.test.tsx +2 -0
  90. package/src/app/[variants]/(main)/_layout/Desktop/index.tsx +11 -4
  91. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/SendMore.tsx +6 -21
  92. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/ShortcutHint.tsx +13 -34
  93. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/index.tsx +1 -1
  94. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ZenModeToast/Toast.tsx +7 -4
  95. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/HeaderAction.tsx +12 -8
  96. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/Main.tsx +24 -30
  97. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/index.tsx +0 -2
  98. package/src/app/[variants]/(main)/chat/(workspace)/features/SettingButton.tsx +12 -7
  99. package/src/app/[variants]/(main)/chat/@session/features/SessionSearchBar.tsx +5 -1
  100. package/src/app/[variants]/(main)/chat/_layout/Desktop/RegisterHotkeys.tsx +10 -0
  101. package/src/app/[variants]/(main)/chat/_layout/Desktop/index.tsx +5 -0
  102. package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +1 -1
  103. package/src/app/[variants]/(main)/discover/features/StoreSearchBar.tsx +5 -1
  104. package/src/app/[variants]/(main)/settings/hooks/useCategory.tsx +31 -21
  105. package/src/app/[variants]/(main)/settings/hotkey/features/HotkeySetting.tsx +80 -0
  106. package/src/app/[variants]/(main)/settings/hotkey/index.tsx +9 -0
  107. package/src/app/[variants]/(main)/settings/hotkey/page.tsx +15 -0
  108. package/src/app/[variants]/layout.tsx +16 -13
  109. package/src/config/aiModels/infiniai.ts +52 -55
  110. package/src/config/aiModels/siliconcloud.ts +17 -1
  111. package/src/config/aiModels/tencentcloud.ts +17 -0
  112. package/src/const/hotkeys.ts +80 -10
  113. package/src/const/settings/hotkey.ts +10 -0
  114. package/src/const/settings/index.ts +3 -0
  115. package/src/database/client/migrations.json +46 -32
  116. package/src/database/migrations/0019_add_hotkey_user_settings.sql +2 -0
  117. package/src/database/migrations/meta/0019_snapshot.json +4218 -0
  118. package/src/database/migrations/meta/_journal.json +7 -0
  119. package/src/database/schemas/user.ts +1 -0
  120. package/src/database/server/models/user.ts +2 -0
  121. package/src/features/ChatInput/Desktop/InputArea/index.tsx +8 -0
  122. package/src/features/ChatInput/Desktop/index.tsx +0 -1
  123. package/src/features/ChatInput/Topic/index.tsx +10 -15
  124. package/src/features/FileManager/Header/FilesSearchBar.tsx +6 -2
  125. package/src/features/HotkeyHelperPanel/HotkeyContent.tsx +62 -0
  126. package/src/features/HotkeyHelperPanel/index.tsx +59 -0
  127. package/src/hooks/useHotkeys/chatScope.ts +105 -0
  128. package/src/hooks/useHotkeys/globalScope.ts +69 -0
  129. package/src/hooks/useHotkeys/index.ts +2 -0
  130. package/src/hooks/useHotkeys/useHotkeyById.test.ts +194 -0
  131. package/src/hooks/useHotkeys/useHotkeyById.ts +57 -0
  132. package/src/libs/agent-runtime/infiniai/index.ts +38 -3
  133. package/src/locales/default/hotkey.ts +50 -0
  134. package/src/locales/default/index.ts +2 -0
  135. package/src/locales/default/setting.ts +12 -0
  136. package/src/store/global/initialState.ts +3 -0
  137. package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +79 -0
  138. package/src/store/user/slices/settings/selectors/settings.test.ts +131 -0
  139. package/src/store/user/slices/settings/selectors/settings.ts +6 -0
  140. package/src/types/hotkey.ts +59 -0
  141. package/src/types/user/settings/hotkey.ts +3 -0
  142. package/src/types/user/settings/index.ts +3 -0
  143. package/src/utils/format.ts +1 -1
  144. package/src/utils/parseModels.test.ts +14 -0
  145. package/src/utils/parseModels.ts +4 -0
  146. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +0 -44
  147. package/src/components/HotKeys/index.tsx +0 -77
@@ -1,13 +1,4 @@
1
1
  {
2
- "01-ai/Yi-1.5-34B-Chat-16K": {
3
- "description": "Yi-1.5 34Bは豊富な訓練サンプルを用いて業界アプリケーションで優れたパフォーマンスを提供します。"
4
- },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5-6B-ChatはYi-1.5シリーズの変種で、オープンソースのチャットモデルに属します。Yi-1.5はYiのアップグレード版で、500Bの高品質コーパスで継続的に事前訓練され、3Mの多様な微調整サンプルで微調整されています。Yiと比較して、Yi-1.5はコーディング、数学、推論、指示遵守能力においてより強力な性能を示し、優れた言語理解、常識推論、読解能力を維持しています。このモデルは4K、16K、32Kのコンテキスト長バージョンを持ち、事前訓練の総量は3.6Tトークンに達します。"
7
- },
8
- "01-ai/Yi-1.5-9B-Chat-16K": {
9
- "description": "Yi-1.5 9Bは16Kトークンをサポートし、高効率でスムーズな言語生成能力を提供します。"
10
- },
11
2
  "01-ai/yi-1.5-34b-chat": {
12
3
  "description": "零一万物、最新のオープンソース微調整モデル、340億パラメータ、微調整は多様な対話シーンをサポートし、高品質なトレーニングデータで人間の好みに合わせています。"
13
4
  },
@@ -149,12 +140,6 @@
149
140
  "Llama-3.2-90B-Vision-Instruct\t": {
150
141
  "description": "視覚理解エージェントアプリケーションに適した高度な画像推論能力を備えています。"
151
142
  },
152
- "LoRA/Qwen/Qwen2.5-72B-Instruct": {
153
- "description": "Qwen2.5-72B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
154
- },
155
- "LoRA/Qwen/Qwen2.5-7B-Instruct": {
156
- "description": "Qwen2.5-7B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この7Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
157
- },
158
143
  "Meta-Llama-3.1-405B-Instruct": {
159
144
  "description": "Llama 3.1の指示調整されたテキストモデルで、多言語対話のユースケースに最適化されており、多くの利用可能なオープンソースおよびクローズドチャットモデルの中で、一般的な業界ベンチマークで優れた性能を発揮します。"
160
145
  },
@@ -179,9 +164,6 @@
179
164
  "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
180
165
  "description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B)は、高精度の指示モデルであり、複雑な計算に適しています。"
181
166
  },
182
- "OpenGVLab/InternVL2-26B": {
183
- "description": "InternVL2はさまざまな視覚と言語タスクで卓越した性能を発揮しており、文書や図表の理解、シーンテキストの理解、OCR、科学および数学の問題解決などを含みます。"
184
- },
185
167
  "Phi-3-medium-128k-instruct": {
186
168
  "description": "同じPhi-3-mediumモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
187
169
  },
@@ -206,9 +188,6 @@
206
188
  "Phi-3.5-vision-instrust": {
207
189
  "description": "Phi-3-visionモデルの更新版です。"
208
190
  },
209
- "Pro/OpenGVLab/InternVL2-8B": {
210
- "description": "InternVL2はさまざまな視覚と言語タスクで卓越した性能を発揮しており、文書や図表の理解、シーンテキストの理解、OCR、科学および数学の問題解決などを含みます。"
211
- },
212
191
  "Pro/Qwen/Qwen2-1.5B-Instruct": {
213
192
  "description": "Qwen2-1.5B-InstructはQwen2シリーズの指示微調整大規模言語モデルで、パラメータ規模は1.5Bです。このモデルはTransformerアーキテクチャに基づき、SwiGLU活性化関数、注意QKVバイアス、グループクエリ注意などの技術を採用しています。言語理解、生成、多言語能力、コーディング、数学、推論などの複数のベンチマークテストで優れたパフォーマンスを示し、ほとんどのオープンソースモデルを超えています。Qwen1.5-1.8B-Chatと比較して、Qwen2-1.5B-InstructはMMLU、HumanEval、GSM8K、C-Eval、IFEvalなどのテストで顕著な性能向上を示していますが、パラメータ数はわずかに少ないです。"
214
193
  },
@@ -224,20 +203,23 @@
224
203
  "Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
225
204
  "description": "Qwen2.5-Coder-7B-InstructはAlibaba Cloudが発表したコード特化型大規模言語モデルシリーズの最新バージョンです。このモデルはQwen2.5を基に、55兆トークンの訓練を通じて、コード生成、推論、修正能力を大幅に向上させました。コーディング能力を強化するだけでなく、数学および一般的な能力の利点も維持しています。このモデルはコードエージェントなどの実際のアプリケーションに対して、より包括的な基盤を提供します。"
226
205
  },
206
+ "Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
207
+ "description": "Qwen2.5-VLはQwenシリーズの新メンバーで、強力な視覚理解能力を備えています。画像内のテキスト、チャート、レイアウトを分析でき、長い動画の理解やイベントの捕捉が可能です。推論やツール操作が行え、多様な形式の物体位置特定や構造化された出力生成をサポートします。動画理解のための動的解像度とフレームレートのトレーニングが最適化され、視覚エンコーダーの効率も向上しています。"
208
+ },
227
209
  "Pro/THUDM/glm-4-9b-chat": {
228
210
  "description": "GLM-4-9B-Chatは智譜AIが提供するGLM-4シリーズの事前訓練モデルのオープンバージョンです。このモデルは意味、数学、推論、コード、知識などの複数の側面で優れたパフォーマンスを示します。多輪対話をサポートするだけでなく、GLM-4-9B-Chatはウェブブラウジング、コード実行、カスタムツール呼び出し(Function Call)、長文推論などの高度な機能も備えています。モデルは中国語、英語、日本語、韓国語、ドイツ語など26の言語をサポートしています。多くのベンチマークテストで、GLM-4-9B-Chatは優れた性能を示し、AlignBench-v2、MT-Bench、MMLU、C-Evalなどでの評価が行われています。このモデルは最大128Kのコンテキスト長をサポートし、学術研究や商業アプリケーションに適しています。"
229
211
  },
230
212
  "Pro/deepseek-ai/DeepSeek-R1": {
231
213
  "description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルで、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等の性能を発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させています。"
232
214
  },
233
- "Pro/deepseek-ai/DeepSeek-V3": {
234
- "description": "DeepSeek-V3は、6710億パラメータを持つ混合専門家(MoE)言語モデルで、多頭潜在注意力(MLA)とDeepSeekMoEアーキテクチャを採用し、無補助損失の負荷バランス戦略を組み合わせて推論とトレーニングの効率を最適化しています。14.8兆の高品質トークンで事前トレーニングを行い、監視付き微調整と強化学習を経て、DeepSeek-V3は他のオープンソースモデルを超え、先進的なクローズドモデルに近づいています。"
215
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
216
+ "description": "DeepSeek-R1-Distill-Qwen-1.5Bは、Qwen2.5-Math-1.5Bを基に知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1によって生成された80万の精選されたサンプルを使用して微調整されており、複数のベンチマークテストで良好な性能を示しています。軽量モデルでありながら、MATH-500では83.9%の精度、AIME 2024では28.9%の合格率、CodeForcesでは954のスコアを達成し、そのパラメータ規模を超える推論能力を発揮しています。"
235
217
  },
236
- "Pro/google/gemma-2-9b-it": {
237
- "description": "GemmaはGoogleが開発した軽量で最先端のオープンモデルシリーズの一つです。これはデコーダーのみの大規模言語モデルで、英語をサポートし、オープンウェイト、事前訓練バリアント、指示微調整バリアントを提供します。Gemmaモデルは質問応答、要約、推論などのさまざまなテキスト生成タスクに適しています。この9Bモデルは8兆トークンで訓練されました。その比較的小さな規模により、リソースが限られた環境(ノートパソコン、デスクトップ、または自分のクラウドインフラストラクチャなど)でのデプロイが可能になり、より多くの人々が最先端のAIモデルにアクセスできるようになり、革新を促進します。"
218
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
219
+ "description": "DeepSeek-R1-Distill-Qwen-7B は、Qwen2.5-Math-7B を基に知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1 によって生成された80万の精選されたサンプルを使用して微調整されており、優れた推論能力を発揮します。複数のベンチマークテストで優れた性能を示し、MATH-500では92.8%の精度、AIME 2024では55.5%の合格率、CodeForcesでは1189のスコアを達成し、7B規模のモデルとして強力な数学およびプログラミング能力を実証しています。"
238
220
  },
239
- "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
240
- "description": "Meta Llama 3.1はMetaが開発した多言語大規模言語モデルファミリーで、8B、70B、405Bの3つのパラメータ規模の事前訓練および指示微調整バリアントを含みます。この8B指示微調整モデルは多言語対話シーンに最適化されており、複数の業界ベンチマークテストで優れたパフォーマンスを示しています。モデルの訓練には150兆トークン以上の公開データが使用され、監視微調整や人間のフィードバック強化学習などの技術が採用され、モデルの有用性と安全性が向上しています。Llama 3.1はテキスト生成とコード生成をサポートし、知識のカットオフ日は2023年12月です。"
221
+ "Pro/deepseek-ai/DeepSeek-V3": {
222
+ "description": "DeepSeek-V3は、6710億パラメータを持つ混合専門家(MoE)言語モデルで、多頭潜在注意力(MLA)とDeepSeekMoEアーキテクチャを採用し、無補助損失の負荷バランス戦略を組み合わせて推論とトレーニングの効率を最適化しています。14.8兆の高品質トークンで事前トレーニングを行い、監視付き微調整と強化学習を経て、DeepSeek-V3は他のオープンソースモデルを超え、先進的なクローズドモデルに近づいています。"
241
223
  },
242
224
  "QwQ-32B-Preview": {
243
225
  "description": "QwQ-32B-Previewは、複雑な対話生成と文脈理解タスクを効率的に処理できる革新的な自然言語処理モデルです。"
@@ -290,6 +272,12 @@
290
272
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
291
273
  "description": "Qwen2.5-Coder-7B-InstructはAlibaba Cloudが発表したコード特化型大規模言語モデルシリーズの最新バージョンです。このモデルはQwen2.5を基に、55兆トークンの訓練を通じて、コード生成、推論、修正能力を大幅に向上させました。コーディング能力を強化するだけでなく、数学および一般的な能力の利点も維持しています。このモデルはコードエージェントなどの実際のアプリケーションに対して、より包括的な基盤を提供します。"
292
274
  },
275
+ "Qwen/Qwen2.5-VL-32B-Instruct": {
276
+ "description": "Qwen2.5-VL-32B-Instructは、通義千問チームが開発したマルチモーダル大規模言語モデルで、Qwen2.5-VLシリーズの一部です。このモデルは一般的な物体認識に優れるだけでなく、画像内のテキスト、チャート、アイコン、グラフィック、レイアウトの分析も可能です。視覚エージェントとして機能し、推論と動的なツール操作が可能で、コンピュータやスマートフォンの操作能力を備えています。さらに、画像内のオブジェクトを正確に位置特定でき、請求書や表などの構造化された出力を生成します。前世代モデルであるQwen2-VLと比較して、強化学習による数学的思考力と問題解決能力が向上し、応答スタイルも人間の嗜好により適合しています。"
277
+ },
278
+ "Qwen/Qwen2.5-VL-72B-Instruct": {
279
+ "description": "Qwen2.5-VLはQwen2.5シリーズの視覚言語モデルです。このモデルは複数の面で大幅な改善が見られます:一般的な物体の認識、テキスト・図表・レイアウトの分析能力が強化された視覚理解能力を備えています;視覚エージェントとして推論を行い、ツール使用を動的に指導できます;1時間以上の長い動画を理解し、重要なイベントを捕捉することが可能です;境界ボックスやポイントを生成することで画像内の物体を正確に位置特定できます;特に請求書や表などのスキャンデータに適した構造化出力の生成をサポートしています。"
280
+ },
293
281
  "Qwen2-72B-Instruct": {
294
282
  "description": "Qwen2はQwenモデルの最新シリーズで、128kのコンテキストをサポートしています。現在の最適なオープンソースモデルと比較して、Qwen2-72Bは自然言語理解、知識、コード、数学、そして多言語などの能力において、現在のリーディングモデルを大幅に上回っています。"
295
283
  },
@@ -374,9 +362,6 @@
374
362
  "TeleAI/TeleChat2": {
375
363
  "description": "TeleChat2大モデルは中国電信が0から1まで自主開発した生成的意味大モデルで、百科問答、コード生成、長文生成などの機能をサポートし、ユーザーに対話相談サービスを提供します。ユーザーと対話し、質問に答え、創作を支援し、効率的かつ便利に情報、知識、インスピレーションを取得する手助けをします。モデルは幻覚問題、長文生成、論理理解などの面で優れたパフォーマンスを示しています。"
376
364
  },
377
- "TeleAI/TeleMM": {
378
- "description": "TeleMM多モーダル大モデルは中国電信が自主開発した多モーダル理解大モデルで、テキスト、画像などの多様なモーダル入力を処理し、画像理解、グラフ分析などの機能をサポートし、ユーザーにクロスモーダルの理解サービスを提供します。モデルはユーザーと多モーダルでインタラクションし、入力内容を正確に理解し、質問に答え、創作を支援し、効率的に多モーダル情報とインスピレーションのサポートを提供します。細粒度の認識、論理推論などの多モーダルタスクで優れたパフォーマンスを示しています。"
379
- },
380
365
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
381
366
  "description": "Qwen2.5-72B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
382
367
  },
@@ -662,9 +647,6 @@
662
647
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
663
648
  "description": "DeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
664
649
  },
665
- "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
666
- "description": "DeepSeek-R1-Distill-Llama-8Bは、Llama-3.1-8Bに基づいて開発された蒸留モデルです。このモデルは、DeepSeek-R1が生成したサンプルを使用して微調整され、優れた推論能力を示しています。複数のベンチマークテストで良好なパフォーマンスを示し、特にMATH-500では89.1%の正確性を達成し、AIME 2024では50.4%の合格率を達成し、CodeForcesでは1205のスコアを獲得し、8B規模のモデルとして強力な数学とプログラミング能力を示しています。"
667
- },
668
650
  "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
669
651
  "description": "DeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
670
652
  },
@@ -713,6 +695,9 @@
713
695
  "deepseek-r1-70b-online": {
714
696
  "description": "DeepSeek R1 70Bスタンダード版で、リアルタイムのオンライン検索をサポートし、最新情報が必要な対話やテキスト処理タスクに適しています。"
715
697
  },
698
+ "deepseek-r1-distill-llama": {
699
+ "description": "deepseek-r1-distill-llama は、DeepSeek-R1 から Llama を蒸留したモデルです。"
700
+ },
716
701
  "deepseek-r1-distill-llama-70b": {
717
702
  "description": "DeepSeek R1——DeepSeekスイートの中でより大きく、より賢いモデル——がLlama 70Bアーキテクチャに蒸留されました。ベンチマークテストと人間評価に基づき、このモデルは元のLlama 70Bよりも賢く、特に数学と事実の正確性が求められるタスクで優れたパフォーマンスを示します。"
718
703
  },
@@ -725,6 +710,9 @@
725
710
  "deepseek-r1-distill-qianfan-llama-8b": {
726
711
  "description": "2025年2月14日に初めてリリースされ、千帆大モデル開発チームがLlama3_8Bをベースモデル(Built with Meta Llama)として蒸留したもので、蒸留データには千帆のコーパスも追加されています。"
727
712
  },
713
+ "deepseek-r1-distill-qwen": {
714
+ "description": "deepseek-r1-distill-qwen は、Qwen をベースに DeepSeek-R1 から蒸留されたモデルです。"
715
+ },
728
716
  "deepseek-r1-distill-qwen-1.5b": {
729
717
  "description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
730
718
  },
@@ -872,6 +860,9 @@
872
860
  "gemini-1.5-flash-8b-exp-0924": {
873
861
  "description": "Gemini 1.5 Flash 8B 0924は最新の実験モデルで、テキストおよびマルチモーダルのユースケースにおいて顕著な性能向上を実現しています。"
874
862
  },
863
+ "gemini-1.5-flash-8b-latest": {
864
+ "description": "Gemini 1.5 Flash 8Bは、効率的なマルチモーダルモデルで、幅広いアプリケーションの拡張をサポートしています。"
865
+ },
875
866
  "gemini-1.5-flash-exp-0827": {
876
867
  "description": "Gemini 1.5 Flash 0827は、最適化されたマルチモーダル処理能力を提供し、多様な複雑なタスクシナリオに適用可能です。"
877
868
  },
@@ -914,9 +905,6 @@
914
905
  "gemini-2.0-flash-lite-preview-02-05": {
915
906
  "description": "コスト効率と低遅延を目指して最適化されたGemini 2.0 Flashモデルです。"
916
907
  },
917
- "gemini-2.0-flash-thinking-exp": {
918
- "description": "Gemini 2.0 Flash Expは、Googleの最新の実験的なマルチモーダルAIモデルであり、次世代の機能、卓越した速度、ネイティブツールの呼び出し、マルチモーダル生成を備えています。"
919
- },
920
908
  "gemini-2.0-flash-thinking-exp-01-21": {
921
909
  "description": "Gemini 2.0 Flash Expは、Googleの最新の実験的なマルチモーダルAIモデルであり、次世代の機能、卓越した速度、ネイティブツールの呼び出し、マルチモーダル生成を備えています。"
922
910
  },
@@ -1223,6 +1211,9 @@
1223
1211
  "llama-3.1-8b-instant": {
1224
1212
  "description": "Llama 3.1 8Bは、高効率モデルであり、迅速なテキスト生成能力を提供し、大規模な効率とコスト効果が求められるアプリケーションシナリオに非常に適しています。"
1225
1213
  },
1214
+ "llama-3.1-instruct": {
1215
+ "description": "Llama 3.1 命令チューニングモデルは対話シナリオ向けに最適化されており、一般的な業界ベンチマークテストにおいて、多くの既存のオープンソースチャットモデルを凌駕しています。"
1216
+ },
1226
1217
  "llama-3.2-11b-vision-instruct": {
1227
1218
  "description": "高解像度画像で優れた画像推論能力を発揮し、視覚理解アプリケーションに適しています。"
1228
1219
  },
@@ -1235,12 +1226,18 @@
1235
1226
  "llama-3.2-90b-vision-preview": {
1236
1227
  "description": "Llama 3.2は、視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを埋めます。"
1237
1228
  },
1229
+ "llama-3.2-vision-instruct": {
1230
+ "description": "Llama 3.2-Vision 命令ファインチューニングモデルは、視覚認識、画像推論、画像説明、および画像に関連する一般的な質問への回答に最適化されています。"
1231
+ },
1238
1232
  "llama-3.3-70b-instruct": {
1239
1233
  "description": "Llama 3.3は、Llamaシリーズの最先端の多言語オープンソース大規模言語モデルで、非常に低コストで405Bモデルに匹敵する性能を体験できます。Transformer構造に基づき、監視付き微調整(SFT)と人間のフィードバックによる強化学習(RLHF)を通じて有用性と安全性を向上させています。その指示調整バージョンは多言語対話に最適化されており、複数の業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回る性能を発揮します。知識のカットオフ日は2023年12月です。"
1240
1234
  },
1241
1235
  "llama-3.3-70b-versatile": {
1242
1236
  "description": "Meta Llama 3.3は、70B(テキスト入力/テキスト出力)の事前学習と指示調整による生成モデルを持つ多言語大規模言語モデル(LLM)です。Llama 3.3の指示調整済みのプレーンテキストモデルは、多言語の対話ユースケースに最適化されており、一般的な業界ベンチマークで多くの利用可能なオープンソースおよびクローズドチャットモデルを上回っています。"
1243
1237
  },
1238
+ "llama-3.3-instruct": {
1239
+ "description": "Llama 3.3 命令チューニングモデルは対話シナリオ向けに最適化されており、一般的な業界ベンチマークテストにおいて、多くの既存のオープンソースチャットモデルを凌駕しています。"
1240
+ },
1244
1241
  "llama3-70b-8192": {
1245
1242
  "description": "Meta Llama 3 70Bは、比類のない複雑性処理能力を提供し、高要求プロジェクトに特化しています。"
1246
1243
  },
@@ -1319,9 +1316,6 @@
1319
1316
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
1320
1317
  "description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
1321
1318
  },
1322
- "meta-llama/Llama-3.3-70B-Instruct": {
1323
- "description": "Llama 3.3はLlamaシリーズの最先端の多言語オープンソース大規模言語モデルで、非常に低コストで405Bモデルに匹敵する性能を体験できます。Transformer構造に基づき、監視付き微調整(SFT)と人間のフィードバック強化学習(RLHF)を通じて有用性と安全性を向上させています。その指示調整バージョンは多言語対話に最適化されており、複数の業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回る性能を発揮します。知識のカットオフ日は2023年12月です"
1324
- },
1325
1319
  "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1326
1320
  "description": "Meta Llama 3.3の多言語大規模言語モデル(LLM)は、70B(テキスト入力/テキスト出力)の事前訓練と指示調整生成モデルです。Llama 3.3の指示調整された純粋なテキストモデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くの利用可能なオープンソースおよびクローズドチャットモデルを上回っています。"
1327
1321
  },
@@ -1349,15 +1343,9 @@
1349
1343
  "meta-llama/Meta-Llama-3.1-70B": {
1350
1344
  "description": "Llama 3.1はMetaが提供する先進的なモデルで、最大405Bのパラメータをサポートし、複雑な対話、多言語翻訳、データ分析の分野で利用できます。"
1351
1345
  },
1352
- "meta-llama/Meta-Llama-3.1-70B-Instruct": {
1353
- "description": "LLaMA 3.1 70Bは多言語の高効率な対話サポートを提供します。"
1354
- },
1355
1346
  "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
1356
1347
  "description": "Llama 3.1 70Bモデルは微調整されており、高負荷アプリケーションに適しており、FP8に量子化されてより効率的な計算能力と精度を提供し、複雑なシナリオでの卓越したパフォーマンスを保証します。"
1357
1348
  },
1358
- "meta-llama/Meta-Llama-3.1-8B-Instruct": {
1359
- "description": "LLaMA 3.1は多言語サポートを提供し、業界をリードする生成モデルの一つです。"
1360
- },
1361
1349
  "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
1362
1350
  "description": "Llama 3.1 8BモデルはFP8量子化を採用し、最大131,072のコンテキストトークンをサポートし、オープンソースモデルの中で際立っており、複雑なタスクに適しており、多くの業界ベンチマークを上回る性能を発揮します。"
1363
1351
  },
@@ -1451,12 +1439,18 @@
1451
1439
  "mistral-large": {
1452
1440
  "description": "Mixtral Largeは、Mistralのフラッグシップモデルであり、コード生成、数学、推論の能力を組み合わせ、128kのコンテキストウィンドウをサポートします。"
1453
1441
  },
1442
+ "mistral-large-instruct": {
1443
+ "description": "Mistral-Large-Instruct-2407 は、1230億のパラメータを有する先進的な高密度大規模言語モデル(LLM)で、最先端の推論能力、知識処理能力、およびコーディング能力を備えています。"
1444
+ },
1454
1445
  "mistral-large-latest": {
1455
1446
  "description": "Mistral Largeは、フラッグシップの大モデルであり、多言語タスク、複雑な推論、コード生成に優れ、高端アプリケーションに理想的な選択肢です。"
1456
1447
  },
1457
1448
  "mistral-nemo": {
1458
1449
  "description": "Mistral Nemoは、Mistral AIとNVIDIAが共同で開発した高効率の12Bモデルです。"
1459
1450
  },
1451
+ "mistral-nemo-instruct": {
1452
+ "description": "Mistral-Nemo-Instruct-2407 大規模言語モデル(LLM)は、Mistral-Nemo-Base-2407の命令微調整バージョンです。"
1453
+ },
1460
1454
  "mistral-small": {
1461
1455
  "description": "Mistral Smallは、高効率と低遅延を必要とする言語ベースのタスクで使用できます。"
1462
1456
  },
@@ -1670,15 +1664,6 @@
1670
1664
  "qwen/qwen2.5-coder-7b-instruct": {
1671
1665
  "description": "強力な中型コードモデルで、32Kのコンテキスト長をサポートし、多言語プログラミングに優れています。"
1672
1666
  },
1673
- "qwen1.5-14b-chat": {
1674
- "description": "Qwen1.5 シリーズは Qwen2 のベータ版で、Transformer ベースのデコーダー専用言語モデルであり、大量のデータで事前学習されています。以前にリリースされた Qwen シリーズのバージョンと比較して、Qwen1.5 シリーズの base と chat モデルは複数の言語をサポートし、全体的なチャットと基本的な機能が向上しています。Qwen1.5-14b-chat は、チャット用途に特化した 140 億パラメータの主要なモデルです。"
1675
- },
1676
- "qwen1.5-32b-chat": {
1677
- "description": "Qwen1.5 シリーズは Qwen2 のベータ版で、Transformer ベースのデコーダー専用言語モデルであり、大量のデータで事前学習されています。以前にリリースされた Qwen シリーズのバージョンと比較して、Qwen1.5 シリーズの base と chat モデルは、複数の言語をサポートし、全体的なチャットと基本的な能力が向上しています。Qwen1.5-32b-chat は、チャット用途に特化した 320 億パラメータの大規模モデルで、14b モデルよりもエージェント用途で優れ、72b モデルよりも推論コストが低いです。"
1678
- },
1679
- "qwen1.5-72b-chat": {
1680
- "description": "Qwen1.5 シリーズは Qwen2 のベータ版で、Transformer ベースのデコーダー専用言語モデルであり、大量のデータで事前学習されています。以前にリリースされた Qwen シリーズのバージョンと比較して、Qwen1.5 シリーズの base と chat モデルは、複数の言語をサポートし、全体的なチャットと基本的な機能が向上しています。Qwen1.5-72b-chat は、チャット用途に特化した 720 億パラメータの大規模モデルです。"
1681
- },
1682
1667
  "qwen2": {
1683
1668
  "description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
1684
1669
  },
@@ -1715,6 +1700,12 @@
1715
1700
  "qwen2.5-coder-7b-instruct": {
1716
1701
  "description": "通義千問のコードモデルのオープンソース版です。"
1717
1702
  },
1703
+ "qwen2.5-coder-instruct": {
1704
+ "description": "Qwen2.5-Coderは、Qwenシリーズの最新のコード専用大規模言語モデルです(旧称:CodeQwen)。"
1705
+ },
1706
+ "qwen2.5-instruct": {
1707
+ "description": "Qwen2.5はQwen大規模言語モデルの最新シリーズです。Qwen2.5では、5億から72億までのパラメータ範囲を持つ複数のベース言語モデルと命令チューニング言語モデルをリリースしました。"
1708
+ },
1718
1709
  "qwen2.5-math-1.5b-instruct": {
1719
1710
  "description": "Qwen-Mathモデルは、強力な数学的問題解決能力を備えています。"
1720
1711
  },
@@ -1724,12 +1715,18 @@
1724
1715
  "qwen2.5-math-7b-instruct": {
1725
1716
  "description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
1726
1717
  },
1718
+ "qwen2.5-vl-32b-instruct": {
1719
+ "description": "Qwen2.5-VLシリーズモデルは、モデルの知能レベル、実用性、適応性を向上させ、自然な会話、コンテンツ作成、専門知識サービス、コード開発などのシナリオにおいてより優れたパフォーマンスを発揮します。32Bバージョンでは強化学習技術を用いてモデルを最適化しており、Qwen2.5 VLシリーズの他のモデルと比較して、人間の嗜好に合致した出力スタイル、複雑な数学問題の推論能力、および画像の細粒度理解と推論能力を提供します。"
1720
+ },
1727
1721
  "qwen2.5-vl-72b-instruct": {
1728
1722
  "description": "指示に従い、数学、問題解決、コード全体の向上、万物認識能力の向上を実現し、多様な形式で視覚要素を直接的に正確に特定し、長い動画ファイル(最大10分)を理解し、秒単位のイベント時刻を特定でき、時間の前後や速さを理解し、解析と特定能力に基づいてOSやモバイルのエージェントを操作し、重要な情報抽出能力とJson形式出力能力が強化されています。このバージョンは72Bバージョンで、本シリーズの中で最も強力なバージョンです。"
1729
1723
  },
1730
1724
  "qwen2.5-vl-7b-instruct": {
1731
1725
  "description": "指示に従い、数学、問題解決、コード全体の向上、万物認識能力の向上を実現し、多様な形式で視覚要素を直接的に正確に特定し、長い動画ファイル(最大10分)を理解し、秒単位のイベント時刻を特定でき、時間の前後や速さを理解し、解析と特定能力に基づいてOSやモバイルのエージェントを操作し、重要な情報抽出能力とJson形式出力能力が強化されています。このバージョンは72Bバージョンで、本シリーズの中で最も強力なバージョンです。"
1732
1726
  },
1727
+ "qwen2.5-vl-instruct": {
1728
+ "description": "Qwen2.5-VLは、Qwenモデルファミリーにおける最新の視覚言語モデルです。"
1729
+ },
1733
1730
  "qwen2.5:0.5b": {
1734
1731
  "description": "Qwen2.5はAlibabaの次世代大規模言語モデルで、優れた性能を持ち、多様なアプリケーションのニーズをサポートします。"
1735
1732
  },
@@ -146,6 +146,9 @@
146
146
  "xai": {
147
147
  "description": "xAIは、人類の科学的発見を加速するための人工知能を構築することに専念している企業です。私たちの使命は、宇宙に対する共通の理解を促進することです。"
148
148
  },
149
+ "xinference": {
150
+ "description": "Xorbits Inference(Xinference)は、様々なAIモデルの実行と統合を簡素化するためのオープンソースプラットフォームです。Xinferenceを利用することで、オープンソースのLLM、埋め込みモデル、マルチモーダルモデルをクラウドまたはオンプレミス環境で実行し、強力なAIアプリケーションを構築することができます。"
151
+ },
149
152
  "zeroone": {
150
153
  "description": "01.AIは、AI 2.0時代の人工知能技術に特化し、「人+人工知能」の革新と応用を推進し、超強力なモデルと先進的なAI技術を用いて人類の生産性を向上させ、技術の力を実現します。"
151
154
  },
@@ -42,6 +42,17 @@
42
42
  "sessionWithName": "セッション設定 · {{name}}",
43
43
  "title": "設定"
44
44
  },
45
+ "hotkey": {
46
+ "conflicts": "既存のショートカットキーと衝突しています",
47
+ "group": {
48
+ "conversation": "会話",
49
+ "essential": "基本"
50
+ },
51
+ "invalidCombination": "ショートカットキーには少なくとも1つの修飾キー(Ctrl、Alt、Shift)と1つの通常のキーが必要です",
52
+ "record": "ショートカットキーを録音するにはキーを押してください",
53
+ "reset": "デフォルトのショートカットキーにリセット",
54
+ "title": "ショートカットキー"
55
+ },
45
56
  "llm": {
46
57
  "aesGcm": "キーとプロキシアドレスなどは <1>AES-GCM</1> 暗号化アルゴリズムを使用して暗号化されます",
47
58
  "apiKey": {
@@ -425,6 +436,7 @@
425
436
  "agent": "デフォルトエージェント",
426
437
  "common": "一般設定",
427
438
  "experiment": "実験",
439
+ "hotkey": "ショートカットキー",
428
440
  "llm": "言語モデル",
429
441
  "provider": "AIサービスプロバイダー",
430
442
  "sync": "クラウド同期",
@@ -0,0 +1,46 @@
1
+ {
2
+ "addUserMessage": {
3
+ "desc": "현재 입력 내용을 사용자 메시지로 추가하되 생성은 트리거하지 않음",
4
+ "title": "사용자 메시지 추가"
5
+ },
6
+ "editMessage": {
7
+ "desc": "Alt 키를 누른 채로 메시지를 더블 클릭하여 편집 모드로 들어갑니다",
8
+ "title": "메시지 편집"
9
+ },
10
+ "openChatSettings": {
11
+ "desc": "현재 대화의 설정을 확인하고 수정합니다.",
12
+ "title": "채팅 설정 열기"
13
+ },
14
+ "openHotkeyHelper": {
15
+ "desc": "모든 단축키 사용 설명을 확인합니다.",
16
+ "title": "단축키 도움말 열기"
17
+ },
18
+ "regenerateMessage": {
19
+ "desc": "마지막 메시지를 다시 생성합니다",
20
+ "title": "메시지 다시 생성"
21
+ },
22
+ "saveTopic": {
23
+ "desc": "현재 주제를 저장하고 새 주제를 엽니다",
24
+ "title": "새 주제 시작"
25
+ },
26
+ "search": {
27
+ "desc": "현재 페이지의 주요 검색 상자를 호출합니다.",
28
+ "title": "검색"
29
+ },
30
+ "switchAgent": {
31
+ "desc": "Ctrl 키를 누른 채로 숫자 0~9를 눌러 사이드바에 고정된 도우미를 전환합니다",
32
+ "title": "도우미 빠른 전환"
33
+ },
34
+ "toggleLeftPanel": {
35
+ "desc": "왼쪽 도우미 패널을 표시하거나 숨깁니다.",
36
+ "title": "도우미 패널 표시/숨기기"
37
+ },
38
+ "toggleRightPanel": {
39
+ "desc": "오른쪽 주제 패널을 표시하거나 숨깁니다.",
40
+ "title": "주제 패널 표시/숨기기"
41
+ },
42
+ "toggleZenMode": {
43
+ "desc": "집중 모드에서는 현재 대화만 표시하고 다른 UI를 숨깁니다.",
44
+ "title": "집중 모드 전환"
45
+ }
46
+ }