@lobehub/chat 1.75.4 → 1.76.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CHANGELOG.md +52 -0
  2. package/README.md +1 -1
  3. package/README.zh-CN.md +1 -1
  4. package/changelog/v1.json +18 -0
  5. package/docs/developer/database-schema.dbml +1 -0
  6. package/docs/self-hosting/advanced/model-list.mdx +5 -3
  7. package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
  8. package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
  9. package/locales/ar/hotkey.json +46 -0
  10. package/locales/ar/models.json +51 -54
  11. package/locales/ar/providers.json +3 -0
  12. package/locales/ar/setting.json +12 -0
  13. package/locales/bg-BG/hotkey.json +46 -0
  14. package/locales/bg-BG/models.json +51 -54
  15. package/locales/bg-BG/providers.json +3 -0
  16. package/locales/bg-BG/setting.json +12 -0
  17. package/locales/de-DE/hotkey.json +46 -0
  18. package/locales/de-DE/models.json +51 -54
  19. package/locales/de-DE/providers.json +3 -0
  20. package/locales/de-DE/setting.json +12 -0
  21. package/locales/en-US/hotkey.json +46 -0
  22. package/locales/en-US/models.json +51 -54
  23. package/locales/en-US/providers.json +3 -0
  24. package/locales/en-US/setting.json +12 -0
  25. package/locales/es-ES/hotkey.json +46 -0
  26. package/locales/es-ES/models.json +51 -54
  27. package/locales/es-ES/providers.json +3 -0
  28. package/locales/es-ES/setting.json +12 -0
  29. package/locales/fa-IR/hotkey.json +46 -0
  30. package/locales/fa-IR/models.json +51 -54
  31. package/locales/fa-IR/providers.json +3 -0
  32. package/locales/fa-IR/setting.json +12 -0
  33. package/locales/fr-FR/hotkey.json +46 -0
  34. package/locales/fr-FR/models.json +51 -54
  35. package/locales/fr-FR/providers.json +3 -0
  36. package/locales/fr-FR/setting.json +12 -0
  37. package/locales/it-IT/hotkey.json +46 -0
  38. package/locales/it-IT/models.json +51 -54
  39. package/locales/it-IT/providers.json +3 -0
  40. package/locales/it-IT/setting.json +12 -0
  41. package/locales/ja-JP/hotkey.json +46 -0
  42. package/locales/ja-JP/models.json +51 -54
  43. package/locales/ja-JP/providers.json +3 -0
  44. package/locales/ja-JP/setting.json +12 -0
  45. package/locales/ko-KR/hotkey.json +46 -0
  46. package/locales/ko-KR/models.json +51 -54
  47. package/locales/ko-KR/providers.json +3 -0
  48. package/locales/ko-KR/setting.json +12 -0
  49. package/locales/nl-NL/hotkey.json +46 -0
  50. package/locales/nl-NL/models.json +51 -54
  51. package/locales/nl-NL/providers.json +3 -0
  52. package/locales/nl-NL/setting.json +12 -0
  53. package/locales/pl-PL/hotkey.json +46 -0
  54. package/locales/pl-PL/models.json +51 -54
  55. package/locales/pl-PL/providers.json +3 -0
  56. package/locales/pl-PL/setting.json +12 -0
  57. package/locales/pt-BR/hotkey.json +46 -0
  58. package/locales/pt-BR/models.json +51 -54
  59. package/locales/pt-BR/providers.json +3 -0
  60. package/locales/pt-BR/setting.json +12 -0
  61. package/locales/ru-RU/hotkey.json +46 -0
  62. package/locales/ru-RU/models.json +51 -54
  63. package/locales/ru-RU/providers.json +3 -0
  64. package/locales/ru-RU/setting.json +12 -0
  65. package/locales/tr-TR/hotkey.json +46 -0
  66. package/locales/tr-TR/models.json +51 -54
  67. package/locales/tr-TR/providers.json +3 -0
  68. package/locales/tr-TR/setting.json +12 -0
  69. package/locales/vi-VN/hotkey.json +46 -0
  70. package/locales/vi-VN/models.json +51 -54
  71. package/locales/vi-VN/providers.json +3 -0
  72. package/locales/vi-VN/setting.json +12 -0
  73. package/locales/zh-CN/hotkey.json +46 -0
  74. package/locales/zh-CN/models.json +55 -58
  75. package/locales/zh-CN/providers.json +3 -0
  76. package/locales/zh-CN/setting.json +12 -0
  77. package/locales/zh-TW/hotkey.json +46 -0
  78. package/locales/zh-TW/models.json +51 -54
  79. package/locales/zh-TW/providers.json +3 -0
  80. package/locales/zh-TW/setting.json +12 -0
  81. package/package.json +3 -3
  82. package/src/app/[variants]/(main)/(mobile)/me/(home)/features/Category.tsx +1 -1
  83. package/src/app/[variants]/(main)/(mobile)/me/(home)/layout.tsx +3 -2
  84. package/src/app/[variants]/(main)/(mobile)/me/data/features/Category.tsx +1 -1
  85. package/src/app/[variants]/(main)/(mobile)/me/profile/features/Category.tsx +1 -1
  86. package/src/app/[variants]/(main)/(mobile)/me/settings/features/Category.tsx +1 -1
  87. package/src/app/[variants]/(main)/_layout/Desktop/RegisterHotkeys.tsx +11 -0
  88. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/PinList/index.tsx +6 -23
  89. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.test.tsx +2 -0
  90. package/src/app/[variants]/(main)/_layout/Desktop/index.tsx +11 -4
  91. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/SendMore.tsx +6 -21
  92. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/ShortcutHint.tsx +13 -34
  93. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/index.tsx +1 -1
  94. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ZenModeToast/Toast.tsx +7 -4
  95. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/HeaderAction.tsx +12 -8
  96. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/Main.tsx +24 -30
  97. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/index.tsx +0 -2
  98. package/src/app/[variants]/(main)/chat/(workspace)/features/SettingButton.tsx +12 -7
  99. package/src/app/[variants]/(main)/chat/@session/features/SessionSearchBar.tsx +5 -1
  100. package/src/app/[variants]/(main)/chat/_layout/Desktop/RegisterHotkeys.tsx +10 -0
  101. package/src/app/[variants]/(main)/chat/_layout/Desktop/index.tsx +5 -0
  102. package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +1 -1
  103. package/src/app/[variants]/(main)/discover/features/StoreSearchBar.tsx +5 -1
  104. package/src/app/[variants]/(main)/settings/hooks/useCategory.tsx +31 -21
  105. package/src/app/[variants]/(main)/settings/hotkey/features/HotkeySetting.tsx +80 -0
  106. package/src/app/[variants]/(main)/settings/hotkey/index.tsx +9 -0
  107. package/src/app/[variants]/(main)/settings/hotkey/page.tsx +15 -0
  108. package/src/app/[variants]/layout.tsx +16 -13
  109. package/src/config/aiModels/infiniai.ts +52 -55
  110. package/src/config/aiModels/siliconcloud.ts +17 -1
  111. package/src/config/aiModels/tencentcloud.ts +17 -0
  112. package/src/const/hotkeys.ts +80 -10
  113. package/src/const/settings/hotkey.ts +10 -0
  114. package/src/const/settings/index.ts +3 -0
  115. package/src/database/client/migrations.json +46 -32
  116. package/src/database/migrations/0019_add_hotkey_user_settings.sql +2 -0
  117. package/src/database/migrations/meta/0019_snapshot.json +4218 -0
  118. package/src/database/migrations/meta/_journal.json +7 -0
  119. package/src/database/schemas/user.ts +1 -0
  120. package/src/database/server/models/user.ts +2 -0
  121. package/src/features/ChatInput/Desktop/InputArea/index.tsx +8 -0
  122. package/src/features/ChatInput/Desktop/index.tsx +0 -1
  123. package/src/features/ChatInput/Topic/index.tsx +10 -15
  124. package/src/features/FileManager/Header/FilesSearchBar.tsx +6 -2
  125. package/src/features/HotkeyHelperPanel/HotkeyContent.tsx +62 -0
  126. package/src/features/HotkeyHelperPanel/index.tsx +59 -0
  127. package/src/hooks/useHotkeys/chatScope.ts +105 -0
  128. package/src/hooks/useHotkeys/globalScope.ts +69 -0
  129. package/src/hooks/useHotkeys/index.ts +2 -0
  130. package/src/hooks/useHotkeys/useHotkeyById.test.ts +194 -0
  131. package/src/hooks/useHotkeys/useHotkeyById.ts +57 -0
  132. package/src/libs/agent-runtime/infiniai/index.ts +38 -3
  133. package/src/locales/default/hotkey.ts +50 -0
  134. package/src/locales/default/index.ts +2 -0
  135. package/src/locales/default/setting.ts +12 -0
  136. package/src/store/global/initialState.ts +3 -0
  137. package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +79 -0
  138. package/src/store/user/slices/settings/selectors/settings.test.ts +131 -0
  139. package/src/store/user/slices/settings/selectors/settings.ts +6 -0
  140. package/src/types/hotkey.ts +59 -0
  141. package/src/types/user/settings/hotkey.ts +3 -0
  142. package/src/types/user/settings/index.ts +3 -0
  143. package/src/utils/format.ts +1 -1
  144. package/src/utils/parseModels.test.ts +14 -0
  145. package/src/utils/parseModels.ts +4 -0
  146. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +0 -44
  147. package/src/components/HotKeys/index.tsx +0 -77
@@ -1,13 +1,4 @@
1
1
  {
2
- "01-ai/Yi-1.5-34B-Chat-16K": {
3
- "description": "Yi-1.5 34B, với mẫu huấn luyện phong phú, cung cấp hiệu suất vượt trội trong ứng dụng ngành."
4
- },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5-6B-Chat là một biến thể trong loạt Yi-1.5, thuộc về mô hình trò chuyện mã nguồn mở. Yi-1.5 là phiên bản nâng cấp của Yi, đã được tiền huấn luyện trên 500B dữ liệu chất lượng cao và tinh chỉnh trên 3 triệu mẫu đa dạng. So với Yi, Yi-1.5 thể hiện khả năng mạnh mẽ hơn trong mã hóa, toán học, suy luận và tuân theo chỉ dẫn, đồng thời duy trì khả năng hiểu ngôn ngữ, suy luận thông thường và hiểu đọc xuất sắc. Mô hình có các phiên bản độ dài ngữ cảnh 4K, 16K và 32K, với tổng số lượng tiền huấn luyện đạt 3.6T tokens."
7
- },
8
- "01-ai/Yi-1.5-9B-Chat-16K": {
9
- "description": "Yi-1.5 9B hỗ trợ 16K Tokens, cung cấp khả năng tạo ngôn ngữ hiệu quả và mượt mà."
10
- },
11
2
  "01-ai/yi-1.5-34b-chat": {
12
3
  "description": "Zero One Vạn Vật, mô hình tinh chỉnh mã nguồn mở mới nhất với 34 tỷ tham số, hỗ trợ nhiều tình huống đối thoại, dữ liệu đào tạo chất lượng cao, phù hợp với sở thích của con người."
13
4
  },
@@ -149,12 +140,6 @@
149
140
  "Llama-3.2-90B-Vision-Instruct\t": {
150
141
  "description": "Khả năng suy luận hình ảnh cao cấp cho các ứng dụng đại lý hiểu biết thị giác."
151
142
  },
152
- "LoRA/Qwen/Qwen2.5-72B-Instruct": {
153
- "description": "Qwen2.5-72B-Instruct là một trong những mô hình ngôn ngữ lớn mới nhất do Alibaba Cloud phát hành. Mô hình 72B này có khả năng cải thiện đáng kể trong các lĩnh vực mã hóa và toán học. Mô hình cũng cung cấp hỗ trợ đa ngôn ngữ, bao gồm hơn 29 ngôn ngữ, bao gồm tiếng Trung, tiếng Anh, v.v. Mô hình đã có sự cải thiện đáng kể trong việc tuân theo chỉ dẫn, hiểu dữ liệu có cấu trúc và tạo ra đầu ra có cấu trúc (đặc biệt là JSON)."
154
- },
155
- "LoRA/Qwen/Qwen2.5-7B-Instruct": {
156
- "description": "Qwen2.5-7B-Instruct là một trong những mô hình ngôn ngữ lớn mới nhất do Alibaba Cloud phát hành. Mô hình 7B này có khả năng cải thiện đáng kể trong các lĩnh vực mã hóa và toán học. Mô hình cũng cung cấp hỗ trợ đa ngôn ngữ, bao gồm hơn 29 ngôn ngữ, bao gồm tiếng Trung, tiếng Anh, v.v. Mô hình đã có sự cải thiện đáng kể trong việc tuân theo chỉ dẫn, hiểu dữ liệu có cấu trúc và tạo ra đầu ra có cấu trúc (đặc biệt là JSON)."
157
- },
158
143
  "Meta-Llama-3.1-405B-Instruct": {
159
144
  "description": "Mô hình văn bản được tinh chỉnh theo chỉ dẫn Llama 3.1, được tối ưu hóa cho các trường hợp sử dụng đối thoại đa ngôn ngữ, thể hiện xuất sắc trong nhiều mô hình trò chuyện mã nguồn mở và đóng có sẵn trên nhiều tiêu chuẩn ngành."
160
145
  },
@@ -179,9 +164,6 @@
179
164
  "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
180
165
  "description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) là mô hình chỉ dẫn chính xác cao, phù hợp cho tính toán phức tạp."
181
166
  },
182
- "OpenGVLab/InternVL2-26B": {
183
- "description": "InternVL2 đã thể hiện hiệu suất xuất sắc trong nhiều tác vụ ngôn ngữ hình ảnh, bao gồm hiểu tài liệu và biểu đồ, hiểu văn bản trong cảnh, OCR, giải quyết vấn đề khoa học và toán học."
184
- },
185
167
  "Phi-3-medium-128k-instruct": {
186
168
  "description": "Mô hình Phi-3-medium giống nhau, nhưng với kích thước ngữ cảnh lớn hơn cho RAG hoặc gợi ý ít."
187
169
  },
@@ -206,9 +188,6 @@
206
188
  "Phi-3.5-vision-instrust": {
207
189
  "description": "Phi-3-vision là phiên bản cập nhật của mô hình."
208
190
  },
209
- "Pro/OpenGVLab/InternVL2-8B": {
210
- "description": "InternVL2 đã thể hiện hiệu suất xuất sắc trong nhiều tác vụ ngôn ngữ hình ảnh, bao gồm hiểu tài liệu và biểu đồ, hiểu văn bản trong cảnh, OCR, giải quyết vấn đề khoa học và toán học."
211
- },
212
191
  "Pro/Qwen/Qwen2-1.5B-Instruct": {
213
192
  "description": "Qwen2-1.5B-Instruct là mô hình ngôn ngữ lớn được tinh chỉnh theo chỉ dẫn trong loạt Qwen2, với quy mô tham số là 1.5B. Mô hình này dựa trên kiến trúc Transformer, sử dụng hàm kích hoạt SwiGLU, độ lệch QKV trong chú ý và chú ý theo nhóm. Nó thể hiện xuất sắc trong nhiều bài kiểm tra chuẩn về hiểu ngôn ngữ, sinh ngôn ngữ, khả năng đa ngôn ngữ, mã hóa, toán học và suy luận, vượt qua hầu hết các mô hình mã nguồn mở. So với Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct cho thấy sự cải thiện đáng kể về hiệu suất trong các bài kiểm tra MMLU, HumanEval, GSM8K, C-Eval và IFEval, mặc dù số lượng tham số hơi ít hơn."
214
193
  },
@@ -224,20 +203,23 @@
224
203
  "Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
225
204
  "description": "Qwen2.5-Coder-7B-Instruct là phiên bản mới nhất trong loạt mô hình ngôn ngữ lớn chuyên biệt cho mã do Alibaba Cloud phát hành. Mô hình này được cải thiện đáng kể khả năng tạo mã, suy luận và sửa chữa thông qua việc đào tạo trên 5.5 triệu tỷ tokens, không chỉ nâng cao khả năng lập trình mà còn duy trì lợi thế về khả năng toán học và tổng quát. Mô hình cung cấp nền tảng toàn diện hơn cho các ứng dụng thực tế như tác nhân mã."
226
205
  },
206
+ "Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
207
+ "description": "Qwen2.5-VL là thành viên mới của series Qwen, sở hữu khả năng hiểu thị giác mạnh mẽ, có thể phân tích văn bản, biểu đồ và bố cục trong hình ảnh, cũng như hiểu video dài và bắt các sự kiện, có thể suy luận, thao tác công cụ, hỗ trợ định vị vật thể đa định dạng và tạo ra đầu ra có cấu trúc, tối ưu hóa việc huấn luyện độ phân giải và tốc độ khung hình động cho việc hiểu video, đồng thời cải thiện hiệu suất của bộ mã hóa thị giác."
208
+ },
227
209
  "Pro/THUDM/glm-4-9b-chat": {
228
210
  "description": "GLM-4-9B-Chat là phiên bản mã nguồn mở trong loạt mô hình tiền huấn luyện GLM-4 do Zhizhu AI phát hành. Mô hình này thể hiện xuất sắc trong nhiều lĩnh vực như ngữ nghĩa, toán học, suy luận, mã và kiến thức. Ngoài việc hỗ trợ đối thoại nhiều vòng, GLM-4-9B-Chat còn có các tính năng nâng cao như duyệt web, thực thi mã, gọi công cụ tùy chỉnh (Function Call) và suy luận văn bản dài. Mô hình hỗ trợ 26 ngôn ngữ, bao gồm tiếng Trung, tiếng Anh, tiếng Nhật, tiếng Hàn và tiếng Đức. Trong nhiều bài kiểm tra chuẩn, GLM-4-9B-Chat đã thể hiện hiệu suất xuất sắc, như AlignBench-v2, MT-Bench, MMLU và C-Eval. Mô hình hỗ trợ độ dài ngữ cảnh tối đa 128K, phù hợp cho nghiên cứu học thuật và ứng dụng thương mại."
229
211
  },
230
212
  "Pro/deepseek-ai/DeepSeek-R1": {
231
213
  "description": "DeepSeek-R1 là một mô hình suy diễn được điều khiển bởi học tăng cường (RL), giải quyết các vấn đề về tính lặp lại và khả năng đọc trong mô hình. Trước khi áp dụng RL, DeepSeek-R1 đã giới thiệu dữ liệu khởi động lạnh, tối ưu hóa thêm hiệu suất suy diễn. Nó thể hiện hiệu suất tương đương với OpenAI-o1 trong các nhiệm vụ toán học, mã và suy diễn, và thông qua phương pháp đào tạo được thiết kế cẩn thận, nâng cao hiệu quả tổng thể."
232
214
  },
233
- "Pro/deepseek-ai/DeepSeek-V3": {
234
- "description": "DeepSeek-V3một mô hình ngôn ngữ hỗn hợp chuyên gia (MoE) với 6710 tỷ tham số, sử dụng chú ý tiềm ẩn đa đầu (MLA) và kiến trúc DeepSeekMoE, kết hợp chiến lược cân bằng tải không tổn thất phụ trợ, tối ưu hóa hiệu suất suy diễn đào tạo. Thông qua việc được tiền huấn luyện trên 14.8 triệu tỷ token chất lượng cao, thực hiện tinh chỉnh giám sát học tăng cường, DeepSeek-V3 vượt trội hơn các hình nguồn mở khác, gần với cáchình đóng kín hàng đầu."
215
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
216
+ "description": "DeepSeek-R1-Distill-Qwen-1.5B là mô hình được tạo ra từ Qwen2.5-Math-1.5B thông qua quá trình chưng cất kiến thức. hình này được tinh chỉnh bằng 800.000 mẫu được chọn lọc từ DeepSeek-R1, thể hiện hiệu suất tốt trong nhiều bài kiểm tra chuẩn. một hình nhẹ, đạt được độ chính xác 83,9% trên MATH-500, tỷ lệ vượt qua 28,9% trên AIME 2024, đạt điểm 954 trên CodeForces, cho thấy khả năng suy luận vượt quá quy tham số của nó."
235
217
  },
236
- "Pro/google/gemma-2-9b-it": {
237
- "description": "Gemmamột trong những loạt mô hình mở tiên tiến nhẹ của Google. Đây một hình ngôn ngữ quy lớn chỉ bộ giải mã, hỗ trợ tiếng Anh, cung cấp trọng số mở, biến thể tiền huấn luyện và biến thể tinh chỉnh theo chỉ dẫn. hình Gemma phù hợp cho nhiều nhiệm vụ sinh văn bản, bao gồm hỏi đáp, tóm tắt suy luận. hình 9B này được đào tạo trên 8 triệu tỷ tokens. Quy tương đối nhỏ của cho phép triển khai trong các môi trường hạn chế tài nguyên, như máy tính xách tay, máy tính để bàn hoặc sở hạ tầng đám mây của riêng bạn, giúp nhiều người hơn thể tiếp cận các mô hình AI tiên tiến và thúc đẩy đổi mới."
218
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
219
+ "description": "DeepSeek-R1-Distill-Qwen-7B là mô hình được tạo ra từ Qwen2.5-Math-7B thông qua quá trình chưng cất kiến thức. hình này được tinh chỉnh bằng 800.000 mẫu được chọn lọc từ DeepSeek-R1, thể hiện khả năng suy luận xuất sắc. đã đạt được hiệu suất tốt trong nhiều bài kiểm tra chuẩn, trong đó độ chính xác 92,8% trên MATH-500, tỷ lệ vượt qua 55,5% trên AIME 2024, điểm số 1189 trên CodeForces, thể hiện khả năng toán học lập trình mạnh mẽ cho một mô hình quy 7B."
238
220
  },
239
- "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
240
- "description": "Meta Llama 3.1 là một phần của gia đình mô hình ngôn ngữ lớn đa ngôn ngữ do Meta phát triển, bao gồm các biến thể tiền huấn luyện tinh chỉnh theo chỉ dẫn với quy tham số 8B, 70B 405B. hình 8B này được tối ưu hóa cho các tình huống đối thoại đa ngôn ngữ, thể hiện xuất sắc trong nhiều bài kiểm tra chuẩn ngành. Mô hình được đào tạo bằng hơn 15 triệu tỷ tokens từ dữ liệu công khai sử dụng các kỹ thuật như tinh chỉnh giám sát và học tăng cường phản hồi của con người để nâng cao tính hữu ích và an toàn của mô hình. Llama 3.1 hỗ trợ sinh văn bản và sinh mã, với thời điểm cắt kiến thức tháng 12 năm 2023."
221
+ "Pro/deepseek-ai/DeepSeek-V3": {
222
+ "description": "DeepSeek-V3 là một mô hình ngôn ngữ hỗn hợp chuyên gia (MoE) với 6710 tỷ tham số, sử dụng chú ý tiềm ẩn đa đầu (MLA) kiến trúc DeepSeekMoE, kết hợp chiến lược cân bằng tải không tổn thất phụ trợ, tối ưu hóa hiệu suất suy diễn đào tạo. Thông qua việc được tiền huấn luyện trên 14.8 triệu tỷ token chất lượng cao,thực hiện tinh chỉnh giám sát và học tăng cường, DeepSeek-V3 vượt trội hơn các mô hình nguồn mở khác, gần với các hình đóng kín hàng đầu."
241
223
  },
242
224
  "QwQ-32B-Preview": {
243
225
  "description": "QwQ-32B-Preview là một mô hình xử lý ngôn ngữ tự nhiên độc đáo, có khả năng xử lý hiệu quả các nhiệm vụ tạo đối thoại phức tạp và hiểu ngữ cảnh."
@@ -290,6 +272,12 @@
290
272
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
291
273
  "description": "Qwen2.5-Coder-7B-Instruct là phiên bản mới nhất trong loạt mô hình ngôn ngữ lớn chuyên biệt cho mã do Alibaba Cloud phát hành. Mô hình này được cải thiện đáng kể khả năng tạo mã, suy luận và sửa chữa thông qua việc đào tạo trên 5.5 triệu tỷ tokens, không chỉ nâng cao khả năng lập trình mà còn duy trì lợi thế về khả năng toán học và tổng quát. Mô hình cung cấp nền tảng toàn diện hơn cho các ứng dụng thực tế như tác nhân mã."
292
274
  },
275
+ "Qwen/Qwen2.5-VL-32B-Instruct": {
276
+ "description": "Qwen2.5-VL-32B-Instruct là mô hình đa phương thức do đội ngũ Qwen2.5-VL phát triển, là một phần của loạt Qwen2.5-VL. Mô hình này không chỉ giỏi nhận diện các vật thể thông thường, mà còn có thể phân tích văn bản, biểu đồ, biểu tượng, hình vẽ và bố cục trong hình ảnh. Nó có thể hoạt động như một đại lý thị giác, có khả năng suy luận và điều khiển công cụ một cách động, bao gồm cả việc sử dụng máy tính và điện thoại. Ngoài ra, mô hình này có thể xác định chính xác vị trí của các đối tượng trong hình ảnh và tạo ra đầu ra có cấu trúc cho hóa đơn, bảng biểu, v.v. So với mô hình tiền nhiệm Qwen2-VL, phiên bản này đã được cải thiện đáng kể về khả năng giải toán và giải quyết vấn đề thông qua học tăng cường, và phong cách phản hồi cũng phù hợp hơn với sở thích của con người."
277
+ },
278
+ "Qwen/Qwen2.5-VL-72B-Instruct": {
279
+ "description": "Qwen2.5-VL là mô hình ngôn ngữ thị giác trong loạt Qwen2.5. Mô hình này có những cải tiến đáng kể: có khả năng hiểu thị giác mạnh hơn, có thể nhận diện các vật thể thông thường, phân tích văn bản, biểu đồ và bố cục; hoạt động như một đại lý thị giác có thể suy luận và hướng dẫn sử dụng công cụ một cách động; hỗ trợ hiểu các video dài hơn 1 giờ và bắt các sự kiện quan trọng; có thể định vị chính xác các vật thể trong hình ảnh thông qua việc tạo khung giới hạn hoặc điểm; hỗ trợ tạo ra đầu ra có cấu trúc, đặc biệt phù hợp với dữ liệu quét như hóa đơn, bảng biểu."
280
+ },
293
281
  "Qwen2-72B-Instruct": {
294
282
  "description": "Qwen2 là dòng mô hình mới nhất của Qwen, hỗ trợ ngữ cảnh 128k, so với các mô hình mã nguồn mở tốt nhất hiện tại, Qwen2-72B vượt trội hơn hẳn trong nhiều khả năng như hiểu ngôn ngữ tự nhiên, kiến thức, mã, toán học và đa ngôn ngữ."
295
283
  },
@@ -374,9 +362,6 @@
374
362
  "TeleAI/TeleChat2": {
375
363
  "description": "Mô hình lớn TeleChat2 được phát triển độc lập từ 0 đến 1 bởi China Telecom, là một mô hình ngữ nghĩa sinh sinh, hỗ trợ các chức năng như hỏi đáp bách khoa, tạo mã, sinh văn bản dài, cung cấp dịch vụ tư vấn đối thoại cho người dùng, có khả năng tương tác đối thoại với người dùng, trả lời câu hỏi, hỗ trợ sáng tạo, giúp người dùng nhanh chóng và hiệu quả trong việc thu thập thông tin, kiến thức và cảm hứng. Mô hình thể hiện xuất sắc trong các vấn đề ảo giác, sinh văn bản dài và hiểu logic."
376
364
  },
377
- "TeleAI/TeleMM": {
378
- "description": "Mô hình đa phương tiện TeleMM là một mô hình hiểu đa phương tiện do China Telecom phát triển, có khả năng xử lý nhiều loại đầu vào như văn bản và hình ảnh, hỗ trợ các chức năng như hiểu hình ảnh, phân tích biểu đồ, cung cấp dịch vụ hiểu đa phương tiện cho người dùng. Mô hình có khả năng tương tác đa phương tiện với người dùng, hiểu chính xác nội dung đầu vào, trả lời câu hỏi, hỗ trợ sáng tạo và cung cấp thông tin và cảm hứng đa phương tiện một cách hiệu quả. Mô hình thể hiện xuất sắc trong các nhiệm vụ đa phương tiện như nhận thức chi tiết và suy luận logic."
379
- },
380
365
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
381
366
  "description": "Qwen2.5-72B-Instruct là một trong những mô hình ngôn ngữ lớn mới nhất do Alibaba Cloud phát hành. Mô hình 72B này có khả năng cải thiện đáng kể trong các lĩnh vực mã hóa và toán học. Mô hình cũng cung cấp hỗ trợ đa ngôn ngữ, bao gồm hơn 29 ngôn ngữ, bao gồm tiếng Trung, tiếng Anh, v.v. Mô hình đã có sự cải thiện đáng kể trong việc tuân theo chỉ dẫn, hiểu dữ liệu có cấu trúc và tạo ra đầu ra có cấu trúc (đặc biệt là JSON)."
382
367
  },
@@ -662,9 +647,6 @@
662
647
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
663
648
  "description": "Mô hình chưng cất DeepSeek-R1, tối ưu hóa hiệu suất suy luận thông qua học tăng cường và dữ liệu khởi động lạnh, mô hình mã nguồn mở làm mới tiêu chuẩn đa nhiệm."
664
649
  },
665
- "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
666
- "description": "DeepSeek-R1-Distill-Llama-8B là mô hình chưng cất phát triển từ Llama-3.1-8B. Mô hình này sử dụng các mẫu được tạo ra từ DeepSeek-R1 để tinh chỉnh, thể hiện khả năng suy luận xuất sắc. Trong nhiều bài kiểm tra chuẩn, nó đã thể hiện tốt, trong đó đạt 89.1% độ chính xác trên MATH-500, đạt 50.4% tỷ lệ vượt qua trên AIME 2024, và đạt điểm 1205 trên CodeForces, thể hiện khả năng toán học và lập trình mạnh mẽ cho mô hình quy mô 8B."
667
- },
668
650
  "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
669
651
  "description": "Mô hình chưng cất DeepSeek-R1, tối ưu hóa hiệu suất suy luận thông qua học tăng cường và dữ liệu khởi động lạnh, mô hình mã nguồn mở làm mới tiêu chuẩn đa nhiệm."
670
652
  },
@@ -713,6 +695,9 @@
713
695
  "deepseek-r1-70b-online": {
714
696
  "description": "DeepSeek R1 70B phiên bản tiêu chuẩn, hỗ trợ tìm kiếm trực tuyến theo thời gian thực, phù hợp cho các nhiệm vụ đối thoại và xử lý văn bản cần thông tin mới nhất."
715
697
  },
698
+ "deepseek-r1-distill-llama": {
699
+ "description": "deepseek-r1-distill-llama là mô hình được chưng cất từ DeepSeek-R1 dựa trên Llama."
700
+ },
716
701
  "deepseek-r1-distill-llama-70b": {
717
702
  "description": "DeepSeek R1 - mô hình lớn hơn và thông minh hơn trong bộ công cụ DeepSeek - đã được chưng cất vào kiến trúc Llama 70B. Dựa trên các bài kiểm tra chuẩn và đánh giá của con người, mô hình này thông minh hơn so với Llama 70B gốc, đặc biệt xuất sắc trong các nhiệm vụ yêu cầu độ chính xác về toán học và sự thật."
718
703
  },
@@ -725,6 +710,9 @@
725
710
  "deepseek-r1-distill-qianfan-llama-8b": {
726
711
  "description": "Được phát hành lần đầu vào ngày 14 tháng 2 năm 2025, được chắt lọc từ mô hình cơ sở Llama3_8B (Xây dựng với Meta Llama) bởi đội ngũ phát triển mô hình Qianfan, dữ liệu chắt lọc cũng đồng thời bổ sung tài liệu của Qianfan."
727
712
  },
713
+ "deepseek-r1-distill-qwen": {
714
+ "description": "deepseek-r1-distill-qwen là mô hình được chưng cất từ DeepSeek-R1 dựa trên Qwen."
715
+ },
728
716
  "deepseek-r1-distill-qwen-1.5b": {
729
717
  "description": "Mô hình DeepSeek-R1-Distill được tinh chỉnh từ các mẫu do DeepSeek-R1 tạo ra cho các mô hình mã nguồn mở như Qwen, Llama thông qua công nghệ chưng cất kiến thức."
730
718
  },
@@ -872,6 +860,9 @@
872
860
  "gemini-1.5-flash-8b-exp-0924": {
873
861
  "description": "Gemini 1.5 Flash 8B 0924 là mô hình thử nghiệm mới nhất, có sự cải thiện đáng kể về hiệu suất trong các trường hợp sử dụng văn bản và đa phương thức."
874
862
  },
863
+ "gemini-1.5-flash-8b-latest": {
864
+ "description": "Gemini 1.5 Flash 8B là một mô hình đa chế độ hiệu quả, hỗ trợ mở rộng ứng dụng rộng rãi."
865
+ },
875
866
  "gemini-1.5-flash-exp-0827": {
876
867
  "description": "Gemini 1.5 Flash 0827 cung cấp khả năng xử lý đa phương tiện tối ưu, áp dụng cho nhiều tình huống tác vụ phức tạp."
877
868
  },
@@ -914,9 +905,6 @@
914
905
  "gemini-2.0-flash-lite-preview-02-05": {
915
906
  "description": "Một mô hình Gemini 2.0 Flash được tối ưu hóa cho hiệu quả chi phí và độ trễ thấp."
916
907
  },
917
- "gemini-2.0-flash-thinking-exp": {
918
- "description": "Gemini 2.0 Flash Exp là mô hình AI đa phương thức thử nghiệm mới nhất của Google, sở hữu các tính năng thế hệ tiếp theo, tốc độ vượt trội, gọi công cụ bản địa và sinh ra đa phương thức."
919
- },
920
908
  "gemini-2.0-flash-thinking-exp-01-21": {
921
909
  "description": "Gemini 2.0 Flash Exp là mô hình AI đa phương thức thử nghiệm mới nhất của Google, sở hữu các tính năng thế hệ tiếp theo, tốc độ vượt trội, gọi công cụ bản địa và sinh ra đa phương thức."
922
910
  },
@@ -1223,6 +1211,9 @@
1223
1211
  "llama-3.1-8b-instant": {
1224
1212
  "description": "Llama 3.1 8B là một mô hình hiệu suất cao, cung cấp khả năng sinh văn bản nhanh chóng, rất phù hợp cho các tình huống ứng dụng cần hiệu quả quy mô lớn và tiết kiệm chi phí."
1225
1213
  },
1214
+ "llama-3.1-instruct": {
1215
+ "description": "Mô hình Llama 3.1 được tối ưu hóa cho các tình huống đối thoại, vượt trội hơn nhiều mô hình trò chuyện nguồn mở hiện có trong các bài kiểm tra chuẩn ngành phổ biến."
1216
+ },
1226
1217
  "llama-3.2-11b-vision-instruct": {
1227
1218
  "description": "Khả năng suy luận hình ảnh xuất sắc trên hình ảnh độ phân giải cao, phù hợp cho các ứng dụng hiểu biết hình ảnh."
1228
1219
  },
@@ -1235,12 +1226,18 @@
1235
1226
  "llama-3.2-90b-vision-preview": {
1236
1227
  "description": "Llama 3.2 được thiết kế để xử lý các nhiệm vụ kết hợp dữ liệu hình ảnh và văn bản. Nó thể hiện xuất sắc trong các nhiệm vụ mô tả hình ảnh và hỏi đáp hình ảnh, vượt qua rào cản giữa tạo ngôn ngữ và suy luận hình ảnh."
1237
1228
  },
1229
+ "llama-3.2-vision-instruct": {
1230
+ "description": "Mô hình Llama 3.2-Vision đã được tối ưu hóa để nhận dạng hình ảnh, suy luận hình ảnh, mô tả hình ảnh và trả lời các câu hỏi thông thường liên quan đến hình ảnh."
1231
+ },
1238
1232
  "llama-3.3-70b-instruct": {
1239
1233
  "description": "Llama 3.3 là mô hình ngôn ngữ lớn mã nguồn mở đa ngôn ngữ tiên tiến nhất trong dòng Llama, mang đến trải nghiệm hiệu suất tương đương với mô hình 405B với chi phí cực thấp. Dựa trên cấu trúc Transformer, và được cải thiện tính hữu ích và an toàn thông qua tinh chỉnh giám sát (SFT) và học tăng cường từ phản hồi của con người (RLHF). Phiên bản tinh chỉnh theo chỉ dẫn của nó được tối ưu hóa cho đối thoại đa ngôn ngữ, thể hiện tốt hơn nhiều mô hình trò chuyện mã nguồn mở và đóng kín trong nhiều tiêu chuẩn ngành. Ngày cắt đứt kiến thức là tháng 12 năm 2023."
1240
1234
  },
1241
1235
  "llama-3.3-70b-versatile": {
1242
1236
  "description": "Mô hình ngôn ngữ lớn Meta Llama 3.3 (LLM) đa ngôn ngữ là mô hình tạo ra dựa trên 70B (đầu vào/đầu ra văn bản) đã được huấn luyện và điều chỉnh theo chỉ dẫn. Mô hình thuần văn bản Llama 3.3 được tối ưu hóa cho các trường hợp hội thoại đa ngôn ngữ và vượt trội hơn nhiều mô hình trò chuyện mã nguồn mở và đóng khác trên các tiêu chuẩn ngành thông thường."
1243
1237
  },
1238
+ "llama-3.3-instruct": {
1239
+ "description": "Mô hình Llama 3.3 được tối ưu hóa cho các tình huống đối thoại, và đã vượt qua nhiều mô hình trò chuyện nguồn mở hiện có trong các bài kiểm tra chuẩn ngành phổ biến."
1240
+ },
1244
1241
  "llama3-70b-8192": {
1245
1242
  "description": "Meta Llama 3 70B cung cấp khả năng xử lý phức tạp vô song, được thiết kế riêng cho các dự án yêu cầu cao."
1246
1243
  },
@@ -1319,9 +1316,6 @@
1319
1316
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
1320
1317
  "description": "LLaMA 3.2 được thiết kế để xử lý các tác vụ kết hợp dữ liệu hình ảnh và văn bản. Nó có khả năng xuất sắc trong các tác vụ mô tả hình ảnh và trả lời câu hỏi hình ảnh, vượt qua khoảng cách giữa tạo ngôn ngữ và suy luận hình ảnh."
1321
1318
  },
1322
- "meta-llama/Llama-3.3-70B-Instruct": {
1323
- "description": "Llama 3.3 là mô hình ngôn ngữ lớn mã nguồn mở đa ngôn ngữ tiên tiến nhất trong dòng Llama, mang đến trải nghiệm hiệu suất tương đương mô hình 405B với chi phí cực thấp. Dựa trên cấu trúc Transformer, và được cải thiện tính hữu ích và an toàn thông qua tinh chỉnh giám sát (SFT) và học tăng cường phản hồi từ con người (RLHF). Phiên bản tinh chỉnh theo chỉ dẫn được tối ưu hóa cho đối thoại đa ngôn ngữ, thể hiện tốt hơn nhiều mô hình trò chuyện mã nguồn mở và đóng trong nhiều tiêu chuẩn ngành. Ngày cắt kiến thức là tháng 12 năm 2023."
1324
- },
1325
1319
  "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1326
1320
  "description": "Mô hình ngôn ngữ lớn đa ngôn ngữ Meta Llama 3.3 (LLM) là mô hình sinh ra từ 70B (đầu vào văn bản/đầu ra văn bản) với việc điều chỉnh trước và điều chỉnh theo lệnh. Mô hình điều chỉnh theo lệnh Llama 3.3 được tối ưu hóa cho các trường hợp sử dụng đối thoại đa ngôn ngữ và vượt trội hơn nhiều mô hình trò chuyện mã nguồn mở và đóng khác trên các bài kiểm tra chuẩn ngành phổ biến."
1327
1321
  },
@@ -1349,15 +1343,9 @@
1349
1343
  "meta-llama/Meta-Llama-3.1-70B": {
1350
1344
  "description": "Llama 3.1 là mô hình hàng đầu do Meta phát hành, hỗ trợ lên đến 405B tham số, có thể áp dụng cho cuộc đối thoại phức tạp, dịch đa ngôn ngữ và phân tích dữ liệu."
1351
1345
  },
1352
- "meta-llama/Meta-Llama-3.1-70B-Instruct": {
1353
- "description": "LLaMA 3.1 70B cung cấp hỗ trợ đối thoại hiệu quả đa ngôn ngữ."
1354
- },
1355
1346
  "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
1356
1347
  "description": "Mô hình Llama 3.1 70B được tinh chỉnh để phù hợp với các ứng dụng tải cao, định lượng đến FP8 cung cấp khả năng tính toán và độ chính xác hiệu quả hơn, đảm bảo hiệu suất xuất sắc trong các tình huống phức tạp."
1357
1348
  },
1358
- "meta-llama/Meta-Llama-3.1-8B-Instruct": {
1359
- "description": "LLaMA 3.1 cung cấp hỗ trợ đa ngôn ngữ, là một trong những mô hình sinh nổi bật trong ngành."
1360
- },
1361
1349
  "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
1362
1350
  "description": "Mô hình Llama 3.1 8B sử dụng định lượng FP8, hỗ trợ lên đến 131,072 mã ngữ cảnh, là một trong những mô hình mã nguồn mở hàng đầu, phù hợp cho các nhiệm vụ phức tạp, vượt trội hơn nhiều tiêu chuẩn ngành."
1363
1351
  },
@@ -1451,12 +1439,18 @@
1451
1439
  "mistral-large": {
1452
1440
  "description": "Mixtral Large là mô hình hàng đầu của Mistral, kết hợp khả năng sinh mã, toán học và suy luận, hỗ trợ cửa sổ ngữ cảnh 128k."
1453
1441
  },
1442
+ "mistral-large-instruct": {
1443
+ "description": "Mistral-Large-Instruct-2407 là một mô hình ngôn ngữ lớn (LLM) tiên tiến, có 123 tỷ tham số, với khả năng suy luận, kiến thức và lập trình hàng đầu."
1444
+ },
1454
1445
  "mistral-large-latest": {
1455
1446
  "description": "Mistral Large là mô hình lớn hàng đầu, chuyên về các nhiệm vụ đa ngôn ngữ, suy luận phức tạp và sinh mã, là lựa chọn lý tưởng cho các ứng dụng cao cấp."
1456
1447
  },
1457
1448
  "mistral-nemo": {
1458
1449
  "description": "Mistral Nemo được phát triển hợp tác giữa Mistral AI và NVIDIA, là mô hình 12B hiệu suất cao."
1459
1450
  },
1451
+ "mistral-nemo-instruct": {
1452
+ "description": "Mô hình ngôn ngữ lớn Mistral-Nemo-Instruct-2407 (LLM) là phiên bản điều chỉnh lệnh của Mistral-Nemo-Base-2407."
1453
+ },
1460
1454
  "mistral-small": {
1461
1455
  "description": "Mistral Small có thể được sử dụng cho bất kỳ nhiệm vụ nào dựa trên ngôn ngữ yêu cầu hiệu suất cao và độ trễ thấp."
1462
1456
  },
@@ -1670,15 +1664,6 @@
1670
1664
  "qwen/qwen2.5-coder-7b-instruct": {
1671
1665
  "description": "Mô hình mã mạnh mẽ cỡ trung, hỗ trợ độ dài ngữ cảnh 32K, xuất sắc trong lập trình đa ngôn ngữ."
1672
1666
  },
1673
- "qwen1.5-14b-chat": {
1674
- "description": "Qwen1.5 là phiên bản Beta của Qwen2, là mô hình ngôn ngữ chỉ giải mã dựa trên Transformer, được tiền huấn luyện trên dữ liệu lớn. So với các phiên bản Qwen đã phát hành trước đây, cả mô hình base và chat của Qwen1.5 đều hỗ trợ nhiều ngôn ngữ và có sự cải thiện đáng kể về khả năng trò chuyện tổng thể và các kỹ năng cơ bản. Qwen1.5-14b-chat là mô hình có 14 tỷ tham số, được thiết kế đặc biệt cho các tình huống trò chuyện."
1675
- },
1676
- "qwen1.5-32b-chat": {
1677
- "description": "Qwen1.5 series là phiên bản Beta của Qwen2, là mô hình ngôn ngữ chỉ giải mã dựa trên Transformer, được tiền huấn luyện trên dữ liệu lớn. So với các phiên bản Qwen series được phát hành trước đó, cả mô hình base và chat của Qwen1.5 series đều hỗ trợ nhiều ngôn ngữ, và có sự cải thiện đáng kể về khả năng trò chuyện tổng thể và các kỹ năng cơ bản. Qwen1.5-32b-chat là mô hình lớn 32 tỷ tham số chuyên dụng cho các tình huống trò chuyện, mạnh hơn mô hình 14 tỷ tham số trong các tình huống thực thể thông minh, và có chi phí suy luận thấp hơn mô hình 72 tỷ tham số."
1678
- },
1679
- "qwen1.5-72b-chat": {
1680
- "description": "Qwen1.5 là phiên bản Beta của Qwen2, là mô hình ngôn ngữ chỉ giải mã dựa trên Transformer, được tiền huấn luyện trên dữ liệu lớn. So với các phiên bản Qwen đã phát hành trước đó, cả mô hình base và chat của Qwen1.5 đều hỗ trợ nhiều ngôn ngữ, và có sự cải thiện đáng kể về khả năng trò chuyện tổng thể và các kỹ năng cơ bản. Qwen1.5-72b-chat là mô hình lớn có 72 tỷ tham số, chuyên dùng cho các tình huống trò chuyện."
1681
- },
1682
1667
  "qwen2": {
1683
1668
  "description": "Qwen2 là mô hình ngôn ngữ quy mô lớn thế hệ mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
1684
1669
  },
@@ -1715,6 +1700,12 @@
1715
1700
  "qwen2.5-coder-7b-instruct": {
1716
1701
  "description": "Phiên bản mã nguồn mở của mô hình mã Qwen."
1717
1702
  },
1703
+ "qwen2.5-coder-instruct": {
1704
+ "description": "Qwen2.5-Coder là mô hình ngôn ngữ lớn mới nhất trong series Qwen, chuyên dụng cho lập trình (trước đây được gọi là CodeQwen)."
1705
+ },
1706
+ "qwen2.5-instruct": {
1707
+ "description": "Qwen2.5 là phiên bản mới nhất của mô hình ngôn ngữ lớn Qwen. Đối với Qwen2.5, chúng tôi đã phát hành nhiều mô hình ngôn ngữ cơ sở và mô hình ngôn ngữ điều chỉnh theo lệnh, với phạm vi tham số từ 500 triệu đến 7,2 tỷ."
1708
+ },
1718
1709
  "qwen2.5-math-1.5b-instruct": {
1719
1710
  "description": "Mô hình Qwen-Math có khả năng giải toán mạnh mẽ."
1720
1711
  },
@@ -1724,12 +1715,18 @@
1724
1715
  "qwen2.5-math-7b-instruct": {
1725
1716
  "description": "Mô hình Qwen-Math có khả năng giải quyết bài toán toán học mạnh mẽ."
1726
1717
  },
1718
+ "qwen2.5-vl-32b-instruct": {
1719
+ "description": "Dòng mô hình Qwen2.5-VL đã nâng cao mức độ thông minh, tính thực tế và khả năng áp dụng, giúp mô hình hoạt động hiệu quả hơn trong các tình huống như đối thoại tự nhiên, sáng tạo nội dung, cung cấp dịch vụ kiến thức chuyên môn và phát triển mã. Phiên bản 32B đã sử dụng công nghệ học tăng cường để tối ưu hóa mô hình, so với các mô hình khác trong dòng Qwen2.5 VL, cung cấp phong cách đầu ra phù hợp hơn với sở thích của con người, khả năng suy luận các vấn đề toán học phức tạp, cũng như khả năng hiểu và suy luận chi tiết về hình ảnh."
1720
+ },
1727
1721
  "qwen2.5-vl-72b-instruct": {
1728
1722
  "description": "Nâng cao khả năng theo dõi lệnh, toán học, giải quyết vấn đề, mã hóa, nâng cao khả năng nhận diện mọi thứ, hỗ trợ định vị chính xác các yếu tố thị giác từ nhiều định dạng khác nhau, hỗ trợ hiểu và định vị thời gian sự kiện trong các tệp video dài (tối đa 10 phút), có khả năng hiểu thứ tự thời gian và tốc độ, hỗ trợ điều khiển Agent trên OS hoặc Mobile dựa trên khả năng phân tích và định vị, khả năng trích xuất thông tin quan trọng và xuất định dạng Json mạnh mẽ, phiên bản này là phiên bản 72B, phiên bản mạnh nhất trong dòng sản phẩm này."
1729
1723
  },
1730
1724
  "qwen2.5-vl-7b-instruct": {
1731
1725
  "description": "Nâng cao khả năng theo dõi lệnh, toán học, giải quyết vấn đề, mã hóa, nâng cao khả năng nhận diện mọi thứ, hỗ trợ định vị chính xác các yếu tố thị giác từ nhiều định dạng khác nhau, hỗ trợ hiểu và định vị thời gian sự kiện trong các tệp video dài (tối đa 10 phút), có khả năng hiểu thứ tự thời gian và tốc độ, hỗ trợ điều khiển Agent trên OS hoặc Mobile dựa trên khả năng phân tích và định vị, khả năng trích xuất thông tin quan trọng và xuất định dạng Json mạnh mẽ, phiên bản này là phiên bản 72B, phiên bản mạnh nhất trong dòng sản phẩm này."
1732
1726
  },
1727
+ "qwen2.5-vl-instruct": {
1728
+ "description": "Qwen2.5-VL là phiên bản mới nhất của mô hình ngôn ngữ và hình ảnh trong gia đình mô hình Qwen."
1729
+ },
1733
1730
  "qwen2.5:0.5b": {
1734
1731
  "description": "Qwen2.5 là thế hệ mô hình ngôn ngữ quy mô lớn mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
1735
1732
  },
@@ -146,6 +146,9 @@
146
146
  "xai": {
147
147
  "description": "xAI là một công ty cam kết xây dựng trí tuệ nhân tạo để tăng tốc khám phá khoa học của nhân loại. Sứ mệnh của chúng tôi là thúc đẩy sự hiểu biết chung của chúng ta về vũ trụ."
148
148
  },
149
+ "xinference": {
150
+ "description": "Xorbits Inference (Xinference) là một nền tảng mã nguồn mở, được thiết kế để đơn giản hóa việc chạy và tích hợp các mô hình AI khác nhau. Với Xinference, bạn có thể chạy suy luận trên bất kỳ mô hình LLM mã nguồn mở, mô hình nhúng và mô hình đa phương thức nào trong môi trường đám mây hoặc cục bộ, và tạo ra các ứng dụng AI mạnh mẽ."
151
+ },
149
152
  "zeroone": {
150
153
  "description": "01.AI tập trung vào công nghệ trí tuệ nhân tạo trong kỷ nguyên AI 2.0, thúc đẩy mạnh mẽ sự đổi mới và ứng dụng của \"người + trí tuệ nhân tạo\", sử dụng các mô hình mạnh mẽ và công nghệ AI tiên tiến để nâng cao năng suất của con người và thực hiện sự trao quyền công nghệ."
151
154
  },
@@ -42,6 +42,17 @@
42
42
  "sessionWithName": "Cài đặt cuộc trò chuyện · {{name}}",
43
43
  "title": "Cài đặt"
44
44
  },
45
+ "hotkey": {
46
+ "conflicts": "Xung đột với phím tắt hiện có",
47
+ "group": {
48
+ "conversation": "Cuộc trò chuyện",
49
+ "essential": "Cơ bản"
50
+ },
51
+ "invalidCombination": "Phím tắt cần ít nhất một phím sửa đổi (Ctrl, Alt, Shift) và một phím thông thường",
52
+ "record": "Nhấn phím để ghi lại phím tắt",
53
+ "reset": "Đặt lại thành phím tắt mặc định",
54
+ "title": "Phím tắt"
55
+ },
45
56
  "llm": {
46
57
  "aesGcm": "Khóa và địa chỉ proxy của bạn sẽ được mã hóa bằng thuật toán mã hóa <1>AES-GCM</1>",
47
58
  "apiKey": {
@@ -425,6 +436,7 @@
425
436
  "agent": "Trợ lý mặc định",
426
437
  "common": "Cài đặt chung",
427
438
  "experiment": "Thử nghiệm",
439
+ "hotkey": "Phím tắt",
428
440
  "llm": "Mô hình ngôn ngữ",
429
441
  "provider": "Nhà cung cấp AI",
430
442
  "sync": "Đồng bộ trên đám mây",
@@ -0,0 +1,46 @@
1
+ {
2
+ "addUserMessage": {
3
+ "desc": "将当前输入内容添加为用户消息,但不触发生成",
4
+ "title": "添加一条用户消息"
5
+ },
6
+ "editMessage": {
7
+ "desc": "通过按住 Alt 并双击消息进入编辑模式",
8
+ "title": "编辑消息"
9
+ },
10
+ "openChatSettings": {
11
+ "desc": "查看和修改当前会话的设置",
12
+ "title": "打开会话设置"
13
+ },
14
+ "openHotkeyHelper": {
15
+ "desc": "查看所有快捷键的使用说明",
16
+ "title": "打开快捷键帮助"
17
+ },
18
+ "regenerateMessage": {
19
+ "desc": "重新生成最后一条消息",
20
+ "title": "重新生成消息"
21
+ },
22
+ "saveTopic": {
23
+ "desc": "保存当前话题并打开新话题",
24
+ "title": "开启新话题"
25
+ },
26
+ "search": {
27
+ "desc": "唤起当前页面主要搜索框",
28
+ "title": "搜索"
29
+ },
30
+ "switchAgent": {
31
+ "desc": "通过按住 Ctrl 加数字 0~9 切换固定在侧边栏的助手",
32
+ "title": "快捷切换助手"
33
+ },
34
+ "toggleLeftPanel": {
35
+ "desc": "显示或隐藏左侧助手面板",
36
+ "title": "显示/隐藏助手面板"
37
+ },
38
+ "toggleRightPanel": {
39
+ "desc": "显示或隐藏右侧话题面板",
40
+ "title": "显示/隐藏话题面板"
41
+ },
42
+ "toggleZenMode": {
43
+ "desc": "专注模式下,只显示当前会话,隐藏其他 UI",
44
+ "title": "切换专注模式"
45
+ }
46
+ }