@lobehub/chat 1.75.4 → 1.76.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +52 -0
- package/README.md +1 -1
- package/README.zh-CN.md +1 -1
- package/changelog/v1.json +18 -0
- package/docs/developer/database-schema.dbml +1 -0
- package/docs/self-hosting/advanced/model-list.mdx +5 -3
- package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
- package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
- package/locales/ar/hotkey.json +46 -0
- package/locales/ar/models.json +51 -54
- package/locales/ar/providers.json +3 -0
- package/locales/ar/setting.json +12 -0
- package/locales/bg-BG/hotkey.json +46 -0
- package/locales/bg-BG/models.json +51 -54
- package/locales/bg-BG/providers.json +3 -0
- package/locales/bg-BG/setting.json +12 -0
- package/locales/de-DE/hotkey.json +46 -0
- package/locales/de-DE/models.json +51 -54
- package/locales/de-DE/providers.json +3 -0
- package/locales/de-DE/setting.json +12 -0
- package/locales/en-US/hotkey.json +46 -0
- package/locales/en-US/models.json +51 -54
- package/locales/en-US/providers.json +3 -0
- package/locales/en-US/setting.json +12 -0
- package/locales/es-ES/hotkey.json +46 -0
- package/locales/es-ES/models.json +51 -54
- package/locales/es-ES/providers.json +3 -0
- package/locales/es-ES/setting.json +12 -0
- package/locales/fa-IR/hotkey.json +46 -0
- package/locales/fa-IR/models.json +51 -54
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fa-IR/setting.json +12 -0
- package/locales/fr-FR/hotkey.json +46 -0
- package/locales/fr-FR/models.json +51 -54
- package/locales/fr-FR/providers.json +3 -0
- package/locales/fr-FR/setting.json +12 -0
- package/locales/it-IT/hotkey.json +46 -0
- package/locales/it-IT/models.json +51 -54
- package/locales/it-IT/providers.json +3 -0
- package/locales/it-IT/setting.json +12 -0
- package/locales/ja-JP/hotkey.json +46 -0
- package/locales/ja-JP/models.json +51 -54
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ja-JP/setting.json +12 -0
- package/locales/ko-KR/hotkey.json +46 -0
- package/locales/ko-KR/models.json +51 -54
- package/locales/ko-KR/providers.json +3 -0
- package/locales/ko-KR/setting.json +12 -0
- package/locales/nl-NL/hotkey.json +46 -0
- package/locales/nl-NL/models.json +51 -54
- package/locales/nl-NL/providers.json +3 -0
- package/locales/nl-NL/setting.json +12 -0
- package/locales/pl-PL/hotkey.json +46 -0
- package/locales/pl-PL/models.json +51 -54
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pl-PL/setting.json +12 -0
- package/locales/pt-BR/hotkey.json +46 -0
- package/locales/pt-BR/models.json +51 -54
- package/locales/pt-BR/providers.json +3 -0
- package/locales/pt-BR/setting.json +12 -0
- package/locales/ru-RU/hotkey.json +46 -0
- package/locales/ru-RU/models.json +51 -54
- package/locales/ru-RU/providers.json +3 -0
- package/locales/ru-RU/setting.json +12 -0
- package/locales/tr-TR/hotkey.json +46 -0
- package/locales/tr-TR/models.json +51 -54
- package/locales/tr-TR/providers.json +3 -0
- package/locales/tr-TR/setting.json +12 -0
- package/locales/vi-VN/hotkey.json +46 -0
- package/locales/vi-VN/models.json +51 -54
- package/locales/vi-VN/providers.json +3 -0
- package/locales/vi-VN/setting.json +12 -0
- package/locales/zh-CN/hotkey.json +46 -0
- package/locales/zh-CN/models.json +55 -58
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-CN/setting.json +12 -0
- package/locales/zh-TW/hotkey.json +46 -0
- package/locales/zh-TW/models.json +51 -54
- package/locales/zh-TW/providers.json +3 -0
- package/locales/zh-TW/setting.json +12 -0
- package/package.json +3 -3
- package/src/app/[variants]/(main)/(mobile)/me/(home)/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/(mobile)/me/(home)/layout.tsx +3 -2
- package/src/app/[variants]/(main)/(mobile)/me/data/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/(mobile)/me/profile/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/(mobile)/me/settings/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/_layout/Desktop/RegisterHotkeys.tsx +11 -0
- package/src/app/[variants]/(main)/_layout/Desktop/SideBar/PinList/index.tsx +6 -23
- package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.test.tsx +2 -0
- package/src/app/[variants]/(main)/_layout/Desktop/index.tsx +11 -4
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/SendMore.tsx +6 -21
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/ShortcutHint.tsx +13 -34
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/index.tsx +1 -1
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ZenModeToast/Toast.tsx +7 -4
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/HeaderAction.tsx +12 -8
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/Main.tsx +24 -30
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/index.tsx +0 -2
- package/src/app/[variants]/(main)/chat/(workspace)/features/SettingButton.tsx +12 -7
- package/src/app/[variants]/(main)/chat/@session/features/SessionSearchBar.tsx +5 -1
- package/src/app/[variants]/(main)/chat/_layout/Desktop/RegisterHotkeys.tsx +10 -0
- package/src/app/[variants]/(main)/chat/_layout/Desktop/index.tsx +5 -0
- package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +1 -1
- package/src/app/[variants]/(main)/discover/features/StoreSearchBar.tsx +5 -1
- package/src/app/[variants]/(main)/settings/hooks/useCategory.tsx +31 -21
- package/src/app/[variants]/(main)/settings/hotkey/features/HotkeySetting.tsx +80 -0
- package/src/app/[variants]/(main)/settings/hotkey/index.tsx +9 -0
- package/src/app/[variants]/(main)/settings/hotkey/page.tsx +15 -0
- package/src/app/[variants]/layout.tsx +16 -13
- package/src/config/aiModels/infiniai.ts +52 -55
- package/src/config/aiModels/siliconcloud.ts +17 -1
- package/src/config/aiModels/tencentcloud.ts +17 -0
- package/src/const/hotkeys.ts +80 -10
- package/src/const/settings/hotkey.ts +10 -0
- package/src/const/settings/index.ts +3 -0
- package/src/database/client/migrations.json +46 -32
- package/src/database/migrations/0019_add_hotkey_user_settings.sql +2 -0
- package/src/database/migrations/meta/0019_snapshot.json +4218 -0
- package/src/database/migrations/meta/_journal.json +7 -0
- package/src/database/schemas/user.ts +1 -0
- package/src/database/server/models/user.ts +2 -0
- package/src/features/ChatInput/Desktop/InputArea/index.tsx +8 -0
- package/src/features/ChatInput/Desktop/index.tsx +0 -1
- package/src/features/ChatInput/Topic/index.tsx +10 -15
- package/src/features/FileManager/Header/FilesSearchBar.tsx +6 -2
- package/src/features/HotkeyHelperPanel/HotkeyContent.tsx +62 -0
- package/src/features/HotkeyHelperPanel/index.tsx +59 -0
- package/src/hooks/useHotkeys/chatScope.ts +105 -0
- package/src/hooks/useHotkeys/globalScope.ts +69 -0
- package/src/hooks/useHotkeys/index.ts +2 -0
- package/src/hooks/useHotkeys/useHotkeyById.test.ts +194 -0
- package/src/hooks/useHotkeys/useHotkeyById.ts +57 -0
- package/src/libs/agent-runtime/infiniai/index.ts +38 -3
- package/src/locales/default/hotkey.ts +50 -0
- package/src/locales/default/index.ts +2 -0
- package/src/locales/default/setting.ts +12 -0
- package/src/store/global/initialState.ts +3 -0
- package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +79 -0
- package/src/store/user/slices/settings/selectors/settings.test.ts +131 -0
- package/src/store/user/slices/settings/selectors/settings.ts +6 -0
- package/src/types/hotkey.ts +59 -0
- package/src/types/user/settings/hotkey.ts +3 -0
- package/src/types/user/settings/index.ts +3 -0
- package/src/utils/format.ts +1 -1
- package/src/utils/parseModels.test.ts +14 -0
- package/src/utils/parseModels.ts +4 -0
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +0 -44
- package/src/components/HotKeys/index.tsx +0 -77
@@ -1,13 +1,4 @@
|
|
1
1
|
{
|
2
|
-
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
|
-
"description": "Yi-1.5 34B bietet mit umfangreichen Trainingsbeispielen überlegene Leistungen in der Branchenanwendung."
|
4
|
-
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5-6B-Chat ist eine Variante der Yi-1.5-Serie und gehört zu den Open-Source-Chatmodellen. Yi-1.5 ist die verbesserte Version von Yi, die auf 500B hochwertigen Korpora kontinuierlich vortrainiert wurde und auf 3M diversifizierten Feinabstimmungsbeispielen feinabgestimmt wurde. Im Vergleich zu Yi zeigt Yi-1.5 stärkere Fähigkeiten in Codierung, Mathematik, Inferenz und Befolgung von Anweisungen, während es hervorragende Sprachverständnis-, Alltagswissen- und Leseverständnisfähigkeiten bewahrt. Das Modell bietet Versionen mit Kontextlängen von 4K, 16K und 32K, mit einer Gesamtanzahl von 3,6T Tokens im Vortraining."
|
7
|
-
},
|
8
|
-
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
|
-
"description": "Yi-1.5 9B unterstützt 16K Tokens und bietet effiziente, flüssige Sprachgenerierungsfähigkeiten."
|
10
|
-
},
|
11
2
|
"01-ai/yi-1.5-34b-chat": {
|
12
3
|
"description": "Yi 1.5, das neueste Open-Source-Fine-Tuning-Modell mit 34 Milliarden Parametern, unterstützt verschiedene Dialogszenarien mit hochwertigen Trainingsdaten, die auf menschliche Präferenzen abgestimmt sind."
|
13
4
|
},
|
@@ -149,12 +140,6 @@
|
|
149
140
|
"Llama-3.2-90B-Vision-Instruct\t": {
|
150
141
|
"description": "Fortgeschrittene Bildschlussfolgerungsfähigkeiten für Anwendungen im Bereich der visuellen Verständigung."
|
151
142
|
},
|
152
|
-
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
153
|
-
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
154
|
-
},
|
155
|
-
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
156
|
-
"description": "Qwen2.5-7B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 7B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
157
|
-
},
|
158
143
|
"Meta-Llama-3.1-405B-Instruct": {
|
159
144
|
"description": "Das auf Anweisungen optimierte Textmodell Llama 3.1 wurde für mehrsprachige Dialoganwendungen optimiert und zeigt in vielen verfügbaren Open-Source- und geschlossenen Chat-Modellen in gängigen Branchenbenchmarks hervorragende Leistungen."
|
160
145
|
},
|
@@ -179,9 +164,6 @@
|
|
179
164
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
180
165
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) ist ein hochpräzises Anweisungsmodell, das für komplexe Berechnungen geeignet ist."
|
181
166
|
},
|
182
|
-
"OpenGVLab/InternVL2-26B": {
|
183
|
-
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
184
|
-
},
|
185
167
|
"Phi-3-medium-128k-instruct": {
|
186
168
|
"description": "Das gleiche Phi-3-medium-Modell, jedoch mit einer größeren Kontextgröße für RAG oder Few-Shot-Prompting."
|
187
169
|
},
|
@@ -206,9 +188,6 @@
|
|
206
188
|
"Phi-3.5-vision-instrust": {
|
207
189
|
"description": "Aktualisierte Version des Phi-3-vision-Modells."
|
208
190
|
},
|
209
|
-
"Pro/OpenGVLab/InternVL2-8B": {
|
210
|
-
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
211
|
-
},
|
212
191
|
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
213
192
|
"description": "Qwen2-1.5B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 1,5B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle. Im Vergleich zu Qwen1.5-1.8B-Chat zeigt Qwen2-1.5B-Instruct in Tests wie MMLU, HumanEval, GSM8K, C-Eval und IFEval signifikante Leistungsverbesserungen, obwohl die Parameteranzahl etwas geringer ist."
|
214
193
|
},
|
@@ -224,20 +203,23 @@
|
|
224
203
|
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
225
204
|
"description": "Qwen2.5-Coder-7B-Instruct ist die neueste Version der von Alibaba Cloud veröffentlichten Reihe von code-spezifischen großen Sprachmodellen. Dieses Modell basiert auf Qwen2.5 und wurde mit 55 Billionen Tokens trainiert, um die Fähigkeiten zur Codegenerierung, Inferenz und Fehlerbehebung erheblich zu verbessern. Es verbessert nicht nur die Codierungsfähigkeiten, sondern bewahrt auch die Vorteile in Mathematik und allgemeinen Fähigkeiten. Das Modell bietet eine umfassendere Grundlage für praktische Anwendungen wie Code-Agenten."
|
226
205
|
},
|
206
|
+
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-VL ist ein neues Mitglied der Qwen-Serie und verfügt über leistungsstarke visuelle Wahrnehmungsfähigkeiten. Es kann Text, Diagramme und Layouts in Bildern analysieren, längere Videos verstehen und Ereignisse erfassen. Zudem kann es Schlussfolgerungen ziehen, Werkzeuge bedienen, mehrere Formate für Objektlokalisation unterstützen und strukturierte Ausgaben generieren. Die Videoverarbeitung wurde durch dynamische Auflösungs- und Frameratetraining optimiert, und die Effizienz des visuellen Encoders wurde verbessert."
|
208
|
+
},
|
227
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
228
210
|
"description": "GLM-4-9B-Chat ist die Open-Source-Version des GLM-4-Modells, das von Zhizhu AI eingeführt wurde. Dieses Modell zeigt hervorragende Leistungen in den Bereichen Semantik, Mathematik, Inferenz, Code und Wissen. Neben der Unterstützung für mehrstufige Dialoge bietet GLM-4-9B-Chat auch fortgeschrittene Funktionen wie Web-Browsing, Code-Ausführung, benutzerdefinierte Tool-Aufrufe (Function Call) und langes Textverständnis. Das Modell unterstützt 26 Sprachen, darunter Chinesisch, Englisch, Japanisch, Koreanisch und Deutsch. In mehreren Benchmark-Tests zeigt GLM-4-9B-Chat hervorragende Leistungen, wie AlignBench-v2, MT-Bench, MMLU und C-Eval. Das Modell unterstützt eine maximale Kontextlänge von 128K und ist für akademische Forschung und kommerzielle Anwendungen geeignet."
|
229
211
|
},
|
230
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
213
|
"description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das Probleme mit Wiederholungen und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert die Gesamtleistung durch sorgfältig gestaltete Trainingsmethoden."
|
232
214
|
},
|
233
|
-
"Pro/deepseek-ai/DeepSeek-
|
234
|
-
"description": "DeepSeek-
|
215
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
216
|
+
"description": "DeepSeek-R1-Distill-Qwen-1.5B ist ein Modell, das durch Wissensdistillierung auf Basis von Qwen2.5-Math-1.5B erstellt wurde. Dieses Modell wurde mit 800.000 sorgfältig ausgewählten Beispielen, die von DeepSeek-R1 generiert wurden, feinjustiert und zeigt in mehreren Benchmarks gute Leistungen. Als leichtgewichtiges Modell erreicht es eine Genauigkeit von 83,9 % auf MATH-500, einen Durchgangsrate von 28,9 % auf AIME 2024 und eine Bewertung von 954 auf CodeForces, was seine inferenziellen Fähigkeiten über seine Parametergröße hinaus zeigt."
|
235
217
|
},
|
236
|
-
"Pro/
|
237
|
-
"description": "
|
218
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
219
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B ist ein Modell, das durch Wissensdistillierung auf Basis von Qwen2.5-Math-7B erstellt wurde. Dieses Modell wurde mit 800.000 sorgfältig ausgewählten Beispielen, die von DeepSeek-R1 generiert wurden, feinjustiert und zeigt ausgezeichnete Inferenzfähigkeiten. Es erzielte in mehreren Benchmarks hervorragende Ergebnisse, darunter eine Genauigkeit von 92,8 % im MATH-500, einen Durchgangsrate von 55,5 % im AIME 2024 und eine Bewertung von 1189 auf CodeForces, was seine starken mathematischen und programmierischen Fähigkeiten als Modell mit 7B Parametern unterstreicht."
|
238
220
|
},
|
239
|
-
"Pro/
|
240
|
-
"description": "
|
221
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
222
|
+
"description": "DeepSeek-V3 ist ein hybrides Experten (MoE) Sprachmodell mit 6710 Milliarden Parametern, das eine Multi-Head-Latente-Attention (MLA) und DeepSeekMoE-Architektur verwendet, kombiniert mit einer Lastenausgleichsstrategie ohne Hilfskosten, um die Inferenz- und Trainingseffizienz zu optimieren. Durch das Pre-Training auf 14,8 Billionen hochwertigen Tokens und anschließende überwachte Feinabstimmung und verstärktes Lernen übertrifft DeepSeek-V3 in der Leistung andere Open-Source-Modelle und nähert sich führenden geschlossenen Modellen."
|
241
223
|
},
|
242
224
|
"QwQ-32B-Preview": {
|
243
225
|
"description": "QwQ-32B-Preview ist ein innovatives Modell für die Verarbeitung natürlicher Sprache, das komplexe Aufgaben der Dialoggenerierung und des Kontextverständnisses effizient bewältigen kann."
|
@@ -290,6 +272,12 @@
|
|
290
272
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
291
273
|
"description": "Qwen2.5-Coder-7B-Instruct ist die neueste Version der von Alibaba Cloud veröffentlichten Reihe von code-spezifischen großen Sprachmodellen. Dieses Modell basiert auf Qwen2.5 und wurde mit 55 Billionen Tokens trainiert, um die Fähigkeiten zur Codegenerierung, Inferenz und Fehlerbehebung erheblich zu verbessern. Es verbessert nicht nur die Codierungsfähigkeiten, sondern bewahrt auch die Vorteile in Mathematik und allgemeinen Fähigkeiten. Das Modell bietet eine umfassendere Grundlage für praktische Anwendungen wie Code-Agenten."
|
292
274
|
},
|
275
|
+
"Qwen/Qwen2.5-VL-32B-Instruct": {
|
276
|
+
"description": "Qwen2.5-VL-32B-Instruct ist ein multimodales Großmodell, das vom Qwen-Team entwickelt wurde und Teil der Qwen2.5-VL-Reihe ist. Dieses Modell ist nicht nur in der Lage, übliche Objekte zu erkennen, sondern kann auch Text, Diagramme, Symbole, Grafiken und Layouts in Bildern analysieren. Es kann als visueller Agent dienen, der in der Lage ist, zu schließen und Werkzeuge dynamisch zu steuern, wobei es Fähigkeiten im Umgang mit Computern und Smartphones besitzt. Darüber hinaus kann dieses Modell Objekte in Bildern präzise lokalisieren und strukturierte Ausgaben für Rechnungen, Tabellen usw. generieren. Im Vergleich zum Vorgängermodell Qwen2-VL wurde diese Version durch verstärktes Lernen in Mathematik und Problemlösungsfähigkeiten weiter verbessert, und ihr Antwortstil entspricht stärker den menschlichen Vorlieben."
|
277
|
+
},
|
278
|
+
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
279
|
+
"description": "Qwen2.5-VL ist ein visueller Sprachmodell der Qwen2.5-Serie. Dieses Modell zeichnet sich durch erhebliche Verbesserungen aus: Es verfügt über eine stärkere visuelle Wahrnehmungsfähigkeit, kann übliche Objekte erkennen, Texte, Diagramme und Layouts analysieren; als visueller Agent kann es Schlussfolgerungen ziehen und die dynamische Nutzung von Werkzeugen leiten; es unterstützt das Verstehen von Videos mit einer Länge von über einer Stunde und kann wichtige Ereignisse erfassen; es kann durch die Generierung von Begrenzungsrahmen oder Punkten Objekte in Bildern präzise lokalisieren; es unterstützt die Erstellung strukturierter Ausgaben, insbesondere für gescannte Daten wie Rechnungen und Tabellen."
|
280
|
+
},
|
293
281
|
"Qwen2-72B-Instruct": {
|
294
282
|
"description": "Qwen2 ist die neueste Reihe des Qwen-Modells, das 128k Kontext unterstützt. Im Vergleich zu den derzeit besten Open-Source-Modellen übertrifft Qwen2-72B in den Bereichen natürliche Sprachverständnis, Wissen, Code, Mathematik und Mehrsprachigkeit deutlich die führenden Modelle."
|
295
283
|
},
|
@@ -374,9 +362,6 @@
|
|
374
362
|
"TeleAI/TeleChat2": {
|
375
363
|
"description": "Das TeleChat2-Modell ist ein generatives semantisches Großmodell, das von China Telecom von Grund auf neu entwickelt wurde und Funktionen wie Enzyklopädiefragen, Codegenerierung und lange Textgenerierung unterstützt. Es bietet Benutzern Beratungsdienste, ermöglicht Dialoginteraktionen mit Benutzern, beantwortet Fragen, unterstützt bei der Erstellung und hilft Benutzern effizient und bequem, Informationen, Wissen und Inspiration zu erhalten. Das Modell zeigt hervorragende Leistungen in den Bereichen Halluzinationsprobleme, lange Textgenerierung und logisches Verständnis."
|
376
364
|
},
|
377
|
-
"TeleAI/TeleMM": {
|
378
|
-
"description": "Das TeleMM-Modell ist ein multimodales Großmodell, das von China Telecom entwickelt wurde und in der Lage ist, Texte, Bilder und andere Modalitäten zu verarbeiten. Es unterstützt Funktionen wie Bildverständnis und Diagrammanalyse und bietet Benutzern multimodale Verständnisdienste. Das Modell kann mit Benutzern multimodal interagieren, den Eingabeinhalt genau verstehen, Fragen beantworten, bei der Erstellung helfen und effizient multimodale Informationen und Inspirationsunterstützung bereitstellen. Es zeigt hervorragende Leistungen in multimodalen Aufgaben wie feinkörniger Wahrnehmung und logischem Schlussfolgern."
|
379
|
-
},
|
380
365
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
381
366
|
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
382
367
|
},
|
@@ -662,9 +647,6 @@
|
|
662
647
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
663
648
|
"description": "Das DeepSeek-R1-Distill-Modell optimiert die Inferenzleistung durch verstärkendes Lernen und Kaltstartdaten. Das Open-Source-Modell setzt neue Maßstäbe für Multitasking."
|
664
649
|
},
|
665
|
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
666
|
-
"description": "DeepSeek-R1-Distill-Llama-8B ist ein destilliertes Modell, das auf Llama-3.1-8B basiert. Dieses Modell wurde mit Beispielen, die von DeepSeek-R1 generiert wurden, feinabgestimmt und zeigt hervorragende Inferenzfähigkeiten. Es hat in mehreren Benchmark-Tests gut abgeschnitten, darunter eine Genauigkeit von 89,1 % in MATH-500, eine Bestehensquote von 50,4 % in AIME 2024 und eine Bewertung von 1205 in CodeForces, was starke mathematische und Programmierfähigkeiten für ein 8B-Modell demonstriert."
|
667
|
-
},
|
668
650
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
669
651
|
"description": "Das DeepSeek-R1-Distill-Modell optimiert die Inferenzleistung durch verstärkendes Lernen und Kaltstartdaten. Das Open-Source-Modell setzt neue Maßstäbe für Multitasking."
|
670
652
|
},
|
@@ -713,6 +695,9 @@
|
|
713
695
|
"deepseek-r1-70b-online": {
|
714
696
|
"description": "DeepSeek R1 70B Standardversion, die Echtzeit-Online-Suche unterstützt und sich für Dialoge und Textverarbeitungsaufgaben eignet, die aktuelle Informationen benötigen."
|
715
697
|
},
|
698
|
+
"deepseek-r1-distill-llama": {
|
699
|
+
"description": "deepseek-r1-distill-llama ist ein Modell, das auf der Grundlage von Llama aus DeepSeek-R1 destilliert wurde."
|
700
|
+
},
|
716
701
|
"deepseek-r1-distill-llama-70b": {
|
717
702
|
"description": "DeepSeek R1 – das größere und intelligentere Modell im DeepSeek-Paket – wurde in die Llama 70B-Architektur destilliert. Basierend auf Benchmark-Tests und menschlicher Bewertung ist dieses Modell intelligenter als das ursprüngliche Llama 70B, insbesondere bei Aufgaben, die mathematische und faktische Genauigkeit erfordern."
|
718
703
|
},
|
@@ -725,6 +710,9 @@
|
|
725
710
|
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
711
|
"description": "Erstmals veröffentlicht am 14. Februar 2025, destilliert vom Qianfan-Modellteam auf Basis des Llama3_8B Modells (gebaut mit Meta Llama), wobei auch die Qianfan-Korpora in die Destillationsdaten aufgenommen wurden."
|
727
712
|
},
|
713
|
+
"deepseek-r1-distill-qwen": {
|
714
|
+
"description": "deepseek-r1-distill-qwen ist ein Modell, das auf der Grundlage von Qwen durch Distillierung aus DeepSeek-R1 erstellt wurde."
|
715
|
+
},
|
728
716
|
"deepseek-r1-distill-qwen-1.5b": {
|
729
717
|
"description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
|
730
718
|
},
|
@@ -872,6 +860,9 @@
|
|
872
860
|
"gemini-1.5-flash-8b-exp-0924": {
|
873
861
|
"description": "Gemini 1.5 Flash 8B 0924 ist das neueste experimentelle Modell, das in Text- und multimodalen Anwendungsfällen erhebliche Leistungsverbesserungen aufweist."
|
874
862
|
},
|
863
|
+
"gemini-1.5-flash-8b-latest": {
|
864
|
+
"description": "Gemini 1.5 Flash 8B ist ein effizientes multimodales Modell, das eine breite Palette von Anwendungen unterstützt."
|
865
|
+
},
|
875
866
|
"gemini-1.5-flash-exp-0827": {
|
876
867
|
"description": "Gemini 1.5 Flash 0827 bietet optimierte multimodale Verarbeitungskapazitäten, die für verschiedene komplexe Aufgaben geeignet sind."
|
877
868
|
},
|
@@ -914,9 +905,6 @@
|
|
914
905
|
"gemini-2.0-flash-lite-preview-02-05": {
|
915
906
|
"description": "Ein Gemini 2.0 Flash Modell, das auf Kosteneffizienz und niedrige Latenz optimiert wurde."
|
916
907
|
},
|
917
|
-
"gemini-2.0-flash-thinking-exp": {
|
918
|
-
"description": "Gemini 2.0 Flash Exp ist Googles neuestes experimentelles multimodales KI-Modell mit der nächsten Generation von Funktionen, außergewöhnlicher Geschwindigkeit, nativer Tool-Nutzung und multimodaler Generierung."
|
919
|
-
},
|
920
908
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
921
909
|
"description": "Gemini 2.0 Flash Exp ist Googles neuestes experimentelles multimodales KI-Modell mit der nächsten Generation von Funktionen, außergewöhnlicher Geschwindigkeit, nativer Tool-Nutzung und multimodaler Generierung."
|
922
910
|
},
|
@@ -1223,6 +1211,9 @@
|
|
1223
1211
|
"llama-3.1-8b-instant": {
|
1224
1212
|
"description": "Llama 3.1 8B ist ein leistungsstarkes Modell, das schnelle Textgenerierungsfähigkeiten bietet und sich hervorragend für Anwendungen eignet, die große Effizienz und Kosteneffektivität erfordern."
|
1225
1213
|
},
|
1214
|
+
"llama-3.1-instruct": {
|
1215
|
+
"description": "Das Llama 3.1 Instruktionstuning-Modell ist für Dialogszenarien optimiert und übertrifft in gängigen Branchenbenchmarks viele bestehende Open-Source-Chatmodelle."
|
1216
|
+
},
|
1226
1217
|
"llama-3.2-11b-vision-instruct": {
|
1227
1218
|
"description": "Überlegene Bildverarbeitungsfähigkeiten auf hochauflösenden Bildern, geeignet für visuelle Verständnisanwendungen."
|
1228
1219
|
},
|
@@ -1235,12 +1226,18 @@
|
|
1235
1226
|
"llama-3.2-90b-vision-preview": {
|
1236
1227
|
"description": "Llama 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellen Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
1237
1228
|
},
|
1229
|
+
"llama-3.2-vision-instruct": {
|
1230
|
+
"description": "Das Llama 3.2-Vision-Instruct-Modell ist optimiert für visuelle Erkennung, Bildschlussfolgerungen, Bildbeschreibungen und das Beantworten von allgemeinen Fragen, die mit Bildern zusammenhängen."
|
1231
|
+
},
|
1238
1232
|
"llama-3.3-70b-instruct": {
|
1239
1233
|
"description": "Llama 3.3 ist das fortschrittlichste mehrsprachige Open-Source-Sprachmodell der Llama-Serie, das eine Leistung bietet, die mit einem 405B-Modell vergleichbar ist, und das zu extrem niedrigen Kosten. Es basiert auf der Transformer-Architektur und verbessert die Nützlichkeit und Sicherheit durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF). Die auf Anweisungen optimierte Version ist speziell für mehrsprachige Dialoge optimiert und übertrifft in mehreren Branchenbenchmarks viele Open-Source- und geschlossene Chat-Modelle. Das Wissensdatum endet im Dezember 2023."
|
1240
1234
|
},
|
1241
1235
|
"llama-3.3-70b-versatile": {
|
1242
1236
|
"description": "Das Meta Llama 3.3 ist ein mehrsprachiges, großes Sprachmodell (LLM), das aus einem vortrainierten und anweisungsorientierten generativen Modell mit 70B (Text-Eingabe/Text-Ausgabe) besteht. Das anweisungsorientierte Modell von Llama 3.3 ist für mehrsprachige Dialoganwendungen optimiert und übertrifft viele verfügbare Open-Source- und Closed-Source-Chat-Modelle bei gängigen Branchenbenchmarks."
|
1243
1237
|
},
|
1238
|
+
"llama-3.3-instruct": {
|
1239
|
+
"description": "Das Llama 3.3 Instruct-Modell ist für Dialogszenarien optimiert und übertrifft in gängigen Branchenbenchmarks viele bestehende Open-Source-Chatmodelle."
|
1240
|
+
},
|
1244
1241
|
"llama3-70b-8192": {
|
1245
1242
|
"description": "Meta Llama 3 70B bietet unvergleichliche Fähigkeiten zur Verarbeitung von Komplexität und ist maßgeschneidert für Projekte mit hohen Anforderungen."
|
1246
1243
|
},
|
@@ -1319,9 +1316,6 @@
|
|
1319
1316
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
1320
1317
|
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bewältigen, die sowohl visuelle als auch Textdaten kombinieren. Es erzielt hervorragende Ergebnisse bei Aufgaben wie Bildbeschreibung und visueller Fragebeantwortung und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
1321
1318
|
},
|
1322
|
-
"meta-llama/Llama-3.3-70B-Instruct": {
|
1323
|
-
"description": "Llama 3.3 ist das fortschrittlichste mehrsprachige Open-Source-Sprachmodell der Llama-Serie, das zu extrem niedrigen Kosten eine Leistung bietet, die mit der eines 405B-Modells vergleichbar ist. Basierend auf der Transformer-Architektur und verbessert durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF) für Nützlichkeit und Sicherheit. Die optimierte Version für Anweisungen ist speziell für mehrsprachige Dialoge optimiert und übertrifft in mehreren Branchenbenchmarks viele Open-Source- und geschlossene Chat-Modelle. Wissensstichtag ist der 31. Dezember 2023."
|
1324
|
-
},
|
1325
1319
|
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1326
1320
|
"description": "Das Meta Llama 3.3 mehrsprachige große Sprachmodell (LLM) ist ein vortrainiertes und anweisungsoptimiertes Generierungsmodell mit 70B (Textinput/Textoutput). Das anweisungsoptimierte reine Textmodell von Llama 3.3 wurde für mehrsprachige Dialoganwendungen optimiert und übertrifft viele verfügbare Open-Source- und geschlossene Chat-Modelle in gängigen Branchenbenchmarks."
|
1327
1321
|
},
|
@@ -1349,15 +1343,9 @@
|
|
1349
1343
|
"meta-llama/Meta-Llama-3.1-70B": {
|
1350
1344
|
"description": "Llama 3.1 ist das führende Modell von Meta, das bis zu 405B Parameter unterstützt und in komplexen Gesprächen, mehrsprachiger Übersetzung und Datenanalyse eingesetzt werden kann."
|
1351
1345
|
},
|
1352
|
-
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
1353
|
-
"description": "LLaMA 3.1 70B bietet effiziente Dialogunterstützung in mehreren Sprachen."
|
1354
|
-
},
|
1355
1346
|
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
|
1356
1347
|
"description": "Das Llama 3.1 70B-Modell wurde feinabgestimmt und eignet sich für hochbelastete Anwendungen, die auf FP8 quantisiert wurden, um eine effizientere Rechenleistung und Genauigkeit zu bieten und in komplexen Szenarien hervorragende Leistungen zu gewährleisten."
|
1357
1348
|
},
|
1358
|
-
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
1359
|
-
"description": "LLaMA 3.1 bietet Unterstützung für mehrere Sprachen und ist eines der führenden Generierungsmodelle der Branche."
|
1360
|
-
},
|
1361
1349
|
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
|
1362
1350
|
"description": "Das Llama 3.1 8B-Modell verwendet FP8-Quantisierung und unterstützt bis zu 131.072 Kontextmarkierungen, es ist eines der besten Open-Source-Modelle, das sich für komplexe Aufgaben eignet und in vielen Branchenbenchmarks übertrifft."
|
1363
1351
|
},
|
@@ -1451,12 +1439,18 @@
|
|
1451
1439
|
"mistral-large": {
|
1452
1440
|
"description": "Mixtral Large ist das Flaggschiff-Modell von Mistral, das die Fähigkeiten zur Codegenerierung, Mathematik und Schlussfolgerungen kombiniert und ein Kontextfenster von 128k unterstützt."
|
1453
1441
|
},
|
1442
|
+
"mistral-large-instruct": {
|
1443
|
+
"description": "Mistral-Large-Instruct-2407 ist ein fortschrittliches dichtes großes Sprachmodell (LLM) mit 123 Milliarden Parametern und verfügt über state-of-the-art-Schließen, Wissen und Codierungsfähigkeiten."
|
1444
|
+
},
|
1454
1445
|
"mistral-large-latest": {
|
1455
1446
|
"description": "Mistral Large ist das Flaggschiff-Modell, das sich gut für mehrsprachige Aufgaben, komplexe Schlussfolgerungen und Codegenerierung eignet und die ideale Wahl für hochentwickelte Anwendungen ist."
|
1456
1447
|
},
|
1457
1448
|
"mistral-nemo": {
|
1458
1449
|
"description": "Mistral Nemo wurde in Zusammenarbeit mit Mistral AI und NVIDIA entwickelt und ist ein leistungsstarkes 12B-Modell."
|
1459
1450
|
},
|
1451
|
+
"mistral-nemo-instruct": {
|
1452
|
+
"description": "Das große Sprachmodell (LLM) Mistral-Nemo-Instruct-2407 ist eine auf Befehle angepasste Version von Mistral-Nemo-Base-2407."
|
1453
|
+
},
|
1460
1454
|
"mistral-small": {
|
1461
1455
|
"description": "Mistral Small kann für jede sprachbasierte Aufgabe verwendet werden, die hohe Effizienz und geringe Latenz erfordert."
|
1462
1456
|
},
|
@@ -1670,15 +1664,6 @@
|
|
1670
1664
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1671
1665
|
"description": "Leistungsstarkes, mittelgroßes Codierungsmodell, das 32K Kontextlängen unterstützt und in der mehrsprachigen Programmierung versiert ist."
|
1672
1666
|
},
|
1673
|
-
"qwen1.5-14b-chat": {
|
1674
|
-
"description": "Die Qwen1.5-Serie ist die Beta-Version von Qwen2 und basiert auf einem Transformer-basierten dekodierenden Sprachmodell, das auf umfangreichen Daten vorab trainiert wurde. Im Vergleich zu früheren Versionen der Qwen-Serie können sowohl das Base-Modell als auch das Chat-Modell der Qwen1.5-Serie mehrere Sprachen unterstützen und bieten Verbesserungen in der gesamten Chat-Funktionalität und den grundlegenden Fähigkeiten. Qwen1.5-14b-chat ist ein 14-Milliarden-Parameter-Modell, das speziell für Chat-Szenarien entwickelt wurde."
|
1675
|
-
},
|
1676
|
-
"qwen1.5-32b-chat": {
|
1677
|
-
"description": "Die Qwen1.5-Serie ist die Beta-Version von Qwen2 und basiert auf einem Transformer-basierten dekodierenden Sprachmodell, das auf umfangreichen Daten vorab trainiert wurde. Im Vergleich zu früheren Versionen der Qwen-Serie können sowohl das Base-Modell als auch das Chat-Modell der Qwen1.5-Serie mehrere Sprachen unterstützen und bieten Verbesserungen in der allgemeinen Konversation und den grundlegenden Fähigkeiten. Qwen1.5-32b-chat ist ein 32-Milliarden-Parameter-Modell, das speziell für Chat-Szenarien entwickelt wurde. Im Vergleich zum 14-Milliarden-Parameter-Modell ist es leistungsfähiger in Agentenszenarien, während es im Vergleich zum 72-Milliarden-Parameter-Modell günstigere Inferenzkosten aufweist."
|
1678
|
-
},
|
1679
|
-
"qwen1.5-72b-chat": {
|
1680
|
-
"description": "Die Qwen1.5-Serie ist die Beta-Version von Qwen2 und basiert auf einem Transformer-basierten dekodierenden Sprachmodell, das auf umfangreichen Daten vorab trainiert wurde. Im Vergleich zu früheren Versionen der Qwen-Serie können sowohl das Base-Modell als auch das Chat-Modell der Qwen1.5-Serie mehrere Sprachen unterstützen und bieten Verbesserungen in der gesamten Chat-Funktionalität und den grundlegenden Fähigkeiten. Qwen1.5-72b-chat ist das 72-Milliarden-Parameter-Modell, das speziell für Chat-Szenarien entwickelt wurde."
|
1681
|
-
},
|
1682
1667
|
"qwen2": {
|
1683
1668
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
1684
1669
|
},
|
@@ -1715,6 +1700,12 @@
|
|
1715
1700
|
"qwen2.5-coder-7b-instruct": {
|
1716
1701
|
"description": "Die Open-Source-Version des Tongyi Qianwen Code-Modells."
|
1717
1702
|
},
|
1703
|
+
"qwen2.5-coder-instruct": {
|
1704
|
+
"description": "Qwen2.5-Coder ist das neueste Modell der Qwen-Serie, speziell für den Codeentwicklungsbereich entwickelt (früher bekannt als CodeQwen)."
|
1705
|
+
},
|
1706
|
+
"qwen2.5-instruct": {
|
1707
|
+
"description": "Qwen2.5 ist die neueste Serie des Qwen-Sprachmodells. Für Qwen2.5 haben wir mehrere Basis-Sprachmodelle und instruktionsfeinjustierte Sprachmodelle veröffentlicht, deren Parameter von 500 Millionen bis 7,2 Milliarden reichen."
|
1708
|
+
},
|
1718
1709
|
"qwen2.5-math-1.5b-instruct": {
|
1719
1710
|
"description": "Das Qwen-Math-Modell verfügt über starke Fähigkeiten zur Lösung mathematischer Probleme."
|
1720
1711
|
},
|
@@ -1724,12 +1715,18 @@
|
|
1724
1715
|
"qwen2.5-math-7b-instruct": {
|
1725
1716
|
"description": "Das Qwen-Math-Modell verfügt über starke Fähigkeiten zur Lösung mathematischer Probleme."
|
1726
1717
|
},
|
1718
|
+
"qwen2.5-vl-32b-instruct": {
|
1719
|
+
"description": "Die Qwen2.5-VL-Modellreihe verbessert die Intelligenz, Praktikabilität und Anwendbarkeit des Modells, sodass es in Szenarien wie natürlichen Dialogen, Inhaltserstellung, Fachwissensdiensten und Codeentwicklung besser abschneidet. Die 32B-Version verwendet Techniken des verstärkenden Lernens zur Optimierung des Modells. Im Vergleich zu anderen Modellen der Qwen2.5-VL-Reihe bietet sie einen für Menschen präferierten Ausgabe-Stil, Fähigkeiten zur Inferenz komplexer mathematischer Probleme sowie die Fähigkeit zur feingranularen Bildverarbeitung und -inferenz."
|
1720
|
+
},
|
1727
1721
|
"qwen2.5-vl-72b-instruct": {
|
1728
1722
|
"description": "Verbesserte Befolgung von Anweisungen, Mathematik, Problemlösung und Programmierung, gesteigerte Erkennungsfähigkeiten für alle Arten von visuellen Elementen, Unterstützung für die präzise Lokalisierung visueller Elemente in verschiedenen Formaten, Verständnis von langen Videodateien (maximal 10 Minuten) und sekundengenauer Ereigniszeitpunktlokalisierung, Fähigkeit zur zeitlichen Einordnung und Geschwindigkeitsverständnis, Unterstützung für die Steuerung von OS- oder Mobile-Agenten basierend auf Analyse- und Lokalisierungsfähigkeiten, starke Fähigkeit zur Extraktion von Schlüsselinformationen und JSON-Format-Ausgabe. Diese Version ist die leistungsstärkste Version der 72B-Serie."
|
1729
1723
|
},
|
1730
1724
|
"qwen2.5-vl-7b-instruct": {
|
1731
1725
|
"description": "Verbesserte Befolgung von Anweisungen, Mathematik, Problemlösung und Programmierung, gesteigerte Erkennungsfähigkeiten für alle Arten von visuellen Elementen, Unterstützung für die präzise Lokalisierung visueller Elemente in verschiedenen Formaten, Verständnis von langen Videodateien (maximal 10 Minuten) und sekundengenauer Ereigniszeitpunktlokalisierung, Fähigkeit zur zeitlichen Einordnung und Geschwindigkeitsverständnis, Unterstützung für die Steuerung von OS- oder Mobile-Agenten basierend auf Analyse- und Lokalisierungsfähigkeiten, starke Fähigkeit zur Extraktion von Schlüsselinformationen und JSON-Format-Ausgabe. Diese Version ist die leistungsstärkste Version der 72B-Serie."
|
1732
1726
|
},
|
1727
|
+
"qwen2.5-vl-instruct": {
|
1728
|
+
"description": "Qwen2.5-VL ist die neueste Version des visuellen Sprachmodells in der Qwen-Modellfamilie."
|
1729
|
+
},
|
1733
1730
|
"qwen2.5:0.5b": {
|
1734
1731
|
"description": "Qwen2.5 ist das neue, groß angelegte Sprachmodell der Alibaba-Gruppe, das hervorragende Leistungen zur Unterstützung vielfältiger Anwendungsbedürfnisse bietet."
|
1735
1732
|
},
|
@@ -146,6 +146,9 @@
|
|
146
146
|
"xai": {
|
147
147
|
"description": "xAI ist ein Unternehmen, das sich der Entwicklung von Künstlicher Intelligenz widmet, um menschliche wissenschaftliche Entdeckungen zu beschleunigen. Unsere Mission ist es, unser gemeinsames Verständnis des Universums voranzutreiben."
|
148
148
|
},
|
149
|
+
"xinference": {
|
150
|
+
"description": "Xorbits Inference (Xinference) ist eine Open-Source-Plattform zur Vereinfachung der Ausführung und Integration verschiedener KI-Modelle. Mit Xinference können Sie beliebige Open-Source-LLMs, Embedding-Modelle und multimodale Modelle in der Cloud oder lokal ausführen, um leistungsstarke KI-Anwendungen zu erstellen."
|
151
|
+
},
|
149
152
|
"zeroone": {
|
150
153
|
"description": "01.AI konzentriert sich auf die künstliche Intelligenz-Technologie der AI 2.0-Ära und fördert aktiv die Innovation und Anwendung von 'Mensch + künstliche Intelligenz', indem sie leistungsstarke Modelle und fortschrittliche KI-Technologien einsetzt, um die Produktivität der Menschen zu steigern und technologische Befähigung zu erreichen."
|
151
154
|
},
|
@@ -42,6 +42,17 @@
|
|
42
42
|
"sessionWithName": "Sitzungseinstellungen · {{name}}",
|
43
43
|
"title": "Einstellungen"
|
44
44
|
},
|
45
|
+
"hotkey": {
|
46
|
+
"conflicts": "Konflikte mit bestehenden Tastenkombinationen",
|
47
|
+
"group": {
|
48
|
+
"conversation": "Gespräch",
|
49
|
+
"essential": "Grundlegend"
|
50
|
+
},
|
51
|
+
"invalidCombination": "Die Tastenkombination muss mindestens einen Modifikatortaste (Strg, Alt, Umschalt) und eine normale Taste enthalten",
|
52
|
+
"record": "Drücken Sie eine Taste, um die Tastenkombination aufzuzeichnen",
|
53
|
+
"reset": "Auf die Standard-Tastenkombination zurücksetzen",
|
54
|
+
"title": "Tastenkombinationen"
|
55
|
+
},
|
45
56
|
"llm": {
|
46
57
|
"aesGcm": "Ihr Schlüssel und Ihre Proxy-Adresse werden mit dem <1>AES-GCM</1> Verschlüsselungsalgorithmus verschlüsselt.",
|
47
58
|
"apiKey": {
|
@@ -425,6 +436,7 @@
|
|
425
436
|
"agent": "Standard-Assistent",
|
426
437
|
"common": "Allgemeine Einstellungen",
|
427
438
|
"experiment": "Experiment",
|
439
|
+
"hotkey": "Tastenkombinationen",
|
428
440
|
"llm": "Sprachmodell",
|
429
441
|
"provider": "KI-Dienstanbieter",
|
430
442
|
"sync": "Cloud-Synchronisierung",
|
@@ -0,0 +1,46 @@
|
|
1
|
+
{
|
2
|
+
"addUserMessage": {
|
3
|
+
"desc": "Add the current input as a user message without triggering generation",
|
4
|
+
"title": "Add a User Message"
|
5
|
+
},
|
6
|
+
"editMessage": {
|
7
|
+
"desc": "Enter edit mode by holding Alt and double-clicking the message",
|
8
|
+
"title": "Edit Message"
|
9
|
+
},
|
10
|
+
"openChatSettings": {
|
11
|
+
"desc": "View and modify the settings for the current conversation",
|
12
|
+
"title": "Open Chat Settings"
|
13
|
+
},
|
14
|
+
"openHotkeyHelper": {
|
15
|
+
"desc": "View instructions for all keyboard shortcuts",
|
16
|
+
"title": "Open Hotkey Help"
|
17
|
+
},
|
18
|
+
"regenerateMessage": {
|
19
|
+
"desc": "Regenerate the last message",
|
20
|
+
"title": "Regenerate Message"
|
21
|
+
},
|
22
|
+
"saveTopic": {
|
23
|
+
"desc": "Save the current topic and open a new one",
|
24
|
+
"title": "Start a New Topic"
|
25
|
+
},
|
26
|
+
"search": {
|
27
|
+
"desc": "Activate the main search box on the current page",
|
28
|
+
"title": "Search"
|
29
|
+
},
|
30
|
+
"switchAgent": {
|
31
|
+
"desc": "Switch between pinned assistants in the sidebar by holding Ctrl and pressing numbers 0-9",
|
32
|
+
"title": "Quick Switch Assistant"
|
33
|
+
},
|
34
|
+
"toggleLeftPanel": {
|
35
|
+
"desc": "Show or hide the left assistant panel",
|
36
|
+
"title": "Show/Hide Assistant Panel"
|
37
|
+
},
|
38
|
+
"toggleRightPanel": {
|
39
|
+
"desc": "Show or hide the right topics panel",
|
40
|
+
"title": "Show/Hide Topic Panel"
|
41
|
+
},
|
42
|
+
"toggleZenMode": {
|
43
|
+
"desc": "In focus mode, only display the current conversation and hide other UI elements",
|
44
|
+
"title": "Toggle Focus Mode"
|
45
|
+
}
|
46
|
+
}
|