@lobehub/chat 1.75.4 → 1.76.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CHANGELOG.md +52 -0
  2. package/README.md +1 -1
  3. package/README.zh-CN.md +1 -1
  4. package/changelog/v1.json +18 -0
  5. package/docs/developer/database-schema.dbml +1 -0
  6. package/docs/self-hosting/advanced/model-list.mdx +5 -3
  7. package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
  8. package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
  9. package/locales/ar/hotkey.json +46 -0
  10. package/locales/ar/models.json +51 -54
  11. package/locales/ar/providers.json +3 -0
  12. package/locales/ar/setting.json +12 -0
  13. package/locales/bg-BG/hotkey.json +46 -0
  14. package/locales/bg-BG/models.json +51 -54
  15. package/locales/bg-BG/providers.json +3 -0
  16. package/locales/bg-BG/setting.json +12 -0
  17. package/locales/de-DE/hotkey.json +46 -0
  18. package/locales/de-DE/models.json +51 -54
  19. package/locales/de-DE/providers.json +3 -0
  20. package/locales/de-DE/setting.json +12 -0
  21. package/locales/en-US/hotkey.json +46 -0
  22. package/locales/en-US/models.json +51 -54
  23. package/locales/en-US/providers.json +3 -0
  24. package/locales/en-US/setting.json +12 -0
  25. package/locales/es-ES/hotkey.json +46 -0
  26. package/locales/es-ES/models.json +51 -54
  27. package/locales/es-ES/providers.json +3 -0
  28. package/locales/es-ES/setting.json +12 -0
  29. package/locales/fa-IR/hotkey.json +46 -0
  30. package/locales/fa-IR/models.json +51 -54
  31. package/locales/fa-IR/providers.json +3 -0
  32. package/locales/fa-IR/setting.json +12 -0
  33. package/locales/fr-FR/hotkey.json +46 -0
  34. package/locales/fr-FR/models.json +51 -54
  35. package/locales/fr-FR/providers.json +3 -0
  36. package/locales/fr-FR/setting.json +12 -0
  37. package/locales/it-IT/hotkey.json +46 -0
  38. package/locales/it-IT/models.json +51 -54
  39. package/locales/it-IT/providers.json +3 -0
  40. package/locales/it-IT/setting.json +12 -0
  41. package/locales/ja-JP/hotkey.json +46 -0
  42. package/locales/ja-JP/models.json +51 -54
  43. package/locales/ja-JP/providers.json +3 -0
  44. package/locales/ja-JP/setting.json +12 -0
  45. package/locales/ko-KR/hotkey.json +46 -0
  46. package/locales/ko-KR/models.json +51 -54
  47. package/locales/ko-KR/providers.json +3 -0
  48. package/locales/ko-KR/setting.json +12 -0
  49. package/locales/nl-NL/hotkey.json +46 -0
  50. package/locales/nl-NL/models.json +51 -54
  51. package/locales/nl-NL/providers.json +3 -0
  52. package/locales/nl-NL/setting.json +12 -0
  53. package/locales/pl-PL/hotkey.json +46 -0
  54. package/locales/pl-PL/models.json +51 -54
  55. package/locales/pl-PL/providers.json +3 -0
  56. package/locales/pl-PL/setting.json +12 -0
  57. package/locales/pt-BR/hotkey.json +46 -0
  58. package/locales/pt-BR/models.json +51 -54
  59. package/locales/pt-BR/providers.json +3 -0
  60. package/locales/pt-BR/setting.json +12 -0
  61. package/locales/ru-RU/hotkey.json +46 -0
  62. package/locales/ru-RU/models.json +51 -54
  63. package/locales/ru-RU/providers.json +3 -0
  64. package/locales/ru-RU/setting.json +12 -0
  65. package/locales/tr-TR/hotkey.json +46 -0
  66. package/locales/tr-TR/models.json +51 -54
  67. package/locales/tr-TR/providers.json +3 -0
  68. package/locales/tr-TR/setting.json +12 -0
  69. package/locales/vi-VN/hotkey.json +46 -0
  70. package/locales/vi-VN/models.json +51 -54
  71. package/locales/vi-VN/providers.json +3 -0
  72. package/locales/vi-VN/setting.json +12 -0
  73. package/locales/zh-CN/hotkey.json +46 -0
  74. package/locales/zh-CN/models.json +55 -58
  75. package/locales/zh-CN/providers.json +3 -0
  76. package/locales/zh-CN/setting.json +12 -0
  77. package/locales/zh-TW/hotkey.json +46 -0
  78. package/locales/zh-TW/models.json +51 -54
  79. package/locales/zh-TW/providers.json +3 -0
  80. package/locales/zh-TW/setting.json +12 -0
  81. package/package.json +3 -3
  82. package/src/app/[variants]/(main)/(mobile)/me/(home)/features/Category.tsx +1 -1
  83. package/src/app/[variants]/(main)/(mobile)/me/(home)/layout.tsx +3 -2
  84. package/src/app/[variants]/(main)/(mobile)/me/data/features/Category.tsx +1 -1
  85. package/src/app/[variants]/(main)/(mobile)/me/profile/features/Category.tsx +1 -1
  86. package/src/app/[variants]/(main)/(mobile)/me/settings/features/Category.tsx +1 -1
  87. package/src/app/[variants]/(main)/_layout/Desktop/RegisterHotkeys.tsx +11 -0
  88. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/PinList/index.tsx +6 -23
  89. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.test.tsx +2 -0
  90. package/src/app/[variants]/(main)/_layout/Desktop/index.tsx +11 -4
  91. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/SendMore.tsx +6 -21
  92. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/ShortcutHint.tsx +13 -34
  93. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/index.tsx +1 -1
  94. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ZenModeToast/Toast.tsx +7 -4
  95. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/HeaderAction.tsx +12 -8
  96. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/Main.tsx +24 -30
  97. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/index.tsx +0 -2
  98. package/src/app/[variants]/(main)/chat/(workspace)/features/SettingButton.tsx +12 -7
  99. package/src/app/[variants]/(main)/chat/@session/features/SessionSearchBar.tsx +5 -1
  100. package/src/app/[variants]/(main)/chat/_layout/Desktop/RegisterHotkeys.tsx +10 -0
  101. package/src/app/[variants]/(main)/chat/_layout/Desktop/index.tsx +5 -0
  102. package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +1 -1
  103. package/src/app/[variants]/(main)/discover/features/StoreSearchBar.tsx +5 -1
  104. package/src/app/[variants]/(main)/settings/hooks/useCategory.tsx +31 -21
  105. package/src/app/[variants]/(main)/settings/hotkey/features/HotkeySetting.tsx +80 -0
  106. package/src/app/[variants]/(main)/settings/hotkey/index.tsx +9 -0
  107. package/src/app/[variants]/(main)/settings/hotkey/page.tsx +15 -0
  108. package/src/app/[variants]/layout.tsx +16 -13
  109. package/src/config/aiModels/infiniai.ts +52 -55
  110. package/src/config/aiModels/siliconcloud.ts +17 -1
  111. package/src/config/aiModels/tencentcloud.ts +17 -0
  112. package/src/const/hotkeys.ts +80 -10
  113. package/src/const/settings/hotkey.ts +10 -0
  114. package/src/const/settings/index.ts +3 -0
  115. package/src/database/client/migrations.json +46 -32
  116. package/src/database/migrations/0019_add_hotkey_user_settings.sql +2 -0
  117. package/src/database/migrations/meta/0019_snapshot.json +4218 -0
  118. package/src/database/migrations/meta/_journal.json +7 -0
  119. package/src/database/schemas/user.ts +1 -0
  120. package/src/database/server/models/user.ts +2 -0
  121. package/src/features/ChatInput/Desktop/InputArea/index.tsx +8 -0
  122. package/src/features/ChatInput/Desktop/index.tsx +0 -1
  123. package/src/features/ChatInput/Topic/index.tsx +10 -15
  124. package/src/features/FileManager/Header/FilesSearchBar.tsx +6 -2
  125. package/src/features/HotkeyHelperPanel/HotkeyContent.tsx +62 -0
  126. package/src/features/HotkeyHelperPanel/index.tsx +59 -0
  127. package/src/hooks/useHotkeys/chatScope.ts +105 -0
  128. package/src/hooks/useHotkeys/globalScope.ts +69 -0
  129. package/src/hooks/useHotkeys/index.ts +2 -0
  130. package/src/hooks/useHotkeys/useHotkeyById.test.ts +194 -0
  131. package/src/hooks/useHotkeys/useHotkeyById.ts +57 -0
  132. package/src/libs/agent-runtime/infiniai/index.ts +38 -3
  133. package/src/locales/default/hotkey.ts +50 -0
  134. package/src/locales/default/index.ts +2 -0
  135. package/src/locales/default/setting.ts +12 -0
  136. package/src/store/global/initialState.ts +3 -0
  137. package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +79 -0
  138. package/src/store/user/slices/settings/selectors/settings.test.ts +131 -0
  139. package/src/store/user/slices/settings/selectors/settings.ts +6 -0
  140. package/src/types/hotkey.ts +59 -0
  141. package/src/types/user/settings/hotkey.ts +3 -0
  142. package/src/types/user/settings/index.ts +3 -0
  143. package/src/utils/format.ts +1 -1
  144. package/src/utils/parseModels.test.ts +14 -0
  145. package/src/utils/parseModels.ts +4 -0
  146. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +0 -44
  147. package/src/components/HotKeys/index.tsx +0 -77
@@ -0,0 +1,46 @@
1
+ {
2
+ "addUserMessage": {
3
+ "desc": "Добавете текущото съдържание като съобщение от потребителя, без да задействате генерирането",
4
+ "title": "Добавяне на съобщение от потребителя"
5
+ },
6
+ "editMessage": {
7
+ "desc": "Влезте в режим на редактиране, като задържите Alt и два пъти кликнете върху съобщението",
8
+ "title": "Редактиране на съобщение"
9
+ },
10
+ "openChatSettings": {
11
+ "desc": "Прегледайте и променете настройките на текущия разговор",
12
+ "title": "Отворете настройките на чата"
13
+ },
14
+ "openHotkeyHelper": {
15
+ "desc": "Прегледайте инструкциите за използване на всички клавишни комбинации",
16
+ "title": "Отворете помощта за клавишни комбинации"
17
+ },
18
+ "regenerateMessage": {
19
+ "desc": "Прегенерирайте последното съобщение",
20
+ "title": "Прегенериране на съобщение"
21
+ },
22
+ "saveTopic": {
23
+ "desc": "Запазете текущата тема и отворете нова",
24
+ "title": "Създаване на нова тема"
25
+ },
26
+ "search": {
27
+ "desc": "Активирайте основното поле за търсене на текущата страница",
28
+ "title": "Търсене"
29
+ },
30
+ "switchAgent": {
31
+ "desc": "Сменете помощника, фиксиран в страничната лента, като задържите Ctrl и натиснете число от 0 до 9",
32
+ "title": "Бърза смяна на помощника"
33
+ },
34
+ "toggleLeftPanel": {
35
+ "desc": "Показване или скриване на панела с помощ отляво",
36
+ "title": "Показване/скриване на панела с помощника"
37
+ },
38
+ "toggleRightPanel": {
39
+ "desc": "Показване или скриване на панела с теми отдясно",
40
+ "title": "Показване/скриване на панела с теми"
41
+ },
42
+ "toggleZenMode": {
43
+ "desc": "В режим на фокус, показвайте само текущия разговор, скривайки другия интерфейс",
44
+ "title": "Превключване на режим на фокус"
45
+ }
46
+ }
@@ -1,13 +1,4 @@
1
1
  {
2
- "01-ai/Yi-1.5-34B-Chat-16K": {
3
- "description": "Yi-1.5 34B предлага отлични резултати в индустриалните приложения с богат набор от обучителни примери."
4
- },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5-6B-Chat е вариант на Yi-1.5, който принадлежи към отворените модели за разговори. Yi-1.5 е подобрена версия на Yi, която е била предварително обучена на 500B висококачествени корпуси и е била фино настроена на 3M разнообразни примери. В сравнение с Yi, Yi-1.5 показва по-силни способности в кодирането, математиката, разсъжденията и следването на инструкции, като същевременно запазва отлични способности за разбиране на езика, разсъждения на общи познания и разбиране на текст. Моделът предлага версии с контекстна дължина от 4K, 16K и 32K, с общо количество предварително обучение от 3.6T токена."
7
- },
8
- "01-ai/Yi-1.5-9B-Chat-16K": {
9
- "description": "Yi-1.5 9B поддържа 16K токена, предоставяйки ефективни и плавни способности за генериране на език."
10
- },
11
2
  "01-ai/yi-1.5-34b-chat": {
12
3
  "description": "零一万物, най-новият отворен модел с фина настройка, с 34 милиарда параметри, който поддържа множество диалогови сценарии, с висококачествени обучителни данни, съобразени с човешките предпочитания."
13
4
  },
@@ -149,12 +140,6 @@
149
140
  "Llama-3.2-90B-Vision-Instruct\t": {
150
141
  "description": "Напреднали способности за визуално разсъждение, подходящи за приложения на агенти за визуално разбиране."
151
142
  },
152
- "LoRA/Qwen/Qwen2.5-72B-Instruct": {
153
- "description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
154
- },
155
- "LoRA/Qwen/Qwen2.5-7B-Instruct": {
156
- "description": "Qwen2.5-7B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 7B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
157
- },
158
143
  "Meta-Llama-3.1-405B-Instruct": {
159
144
  "description": "Текстов модел с оптимизация за инструкции на Llama 3.1, проектиран за многоезични диалогови случаи, който показва отлични резултати на много налични отворени и затворени чат модели на общи индустриални бенчмаркове."
160
145
  },
@@ -179,9 +164,6 @@
179
164
  "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
180
165
  "description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) е модел с висока точност за инструкции, подходящ за сложни изчисления."
181
166
  },
182
- "OpenGVLab/InternVL2-26B": {
183
- "description": "InternVL2 демонстрира изключителни резултати в различни визуално-языкови задачи, включително разбиране на документи и графики, разбиране на текст в сцени, OCR, решаване на научни и математически проблеми."
184
- },
185
167
  "Phi-3-medium-128k-instruct": {
186
168
  "description": "Същият модел Phi-3-medium, но с по-голям размер на контекста за RAG или малко подканване."
187
169
  },
@@ -206,9 +188,6 @@
206
188
  "Phi-3.5-vision-instrust": {
207
189
  "description": "Актуализирана версия на модела Phi-3-vision."
208
190
  },
209
- "Pro/OpenGVLab/InternVL2-8B": {
210
- "description": "InternVL2 демонстрира изключителни резултати в различни визуално-языкови задачи, включително разбиране на документи и графики, разбиране на текст в сцени, OCR, решаване на научни и математически проблеми."
211
- },
212
191
  "Pro/Qwen/Qwen2-1.5B-Instruct": {
213
192
  "description": "Qwen2-1.5B-Instruct е голям езиков модел с параметри 1.5B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели. В сравнение с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct показва значителни подобрения в тестовете MMLU, HumanEval, GSM8K, C-Eval и IFEval, въпреки че параметрите са малко по-малко."
214
193
  },
@@ -224,20 +203,23 @@
224
203
  "Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
225
204
  "description": "Qwen2.5-Coder-7B-Instruct е най-новата версия на серията големи езикови модели, специфични за код, публикувана от Alibaba Cloud. Моделът значително подобрява способностите за генериране на код, разсъждения и корекции, след като е обучен с 55 трилиона токена на базата на Qwen2.5. Той не само подобрява кодовите умения, но и запазва предимствата в математиката и общите способности. Моделът предоставя по-пълна основа за практическите приложения като кодови интелигентни агенти."
226
205
  },
206
+ "Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
207
+ "description": "Qwen2.5-VL е нов член от серията Qwen, който разполага с мощни възможности за визуално разбиране. Той може да анализира текст, диаграми и оформление в изображения, да разбира дълги видеоклипове и да улавя събития. Може да извършва логически изводи, да работи с инструменти, поддържа локализиране на обекти в различни формати и генериране на структуриран изход. Оптимизиран е с динамична резолюция и честота на кадрите за разбиране на видео и подобрена ефективност на визуалния кодиращ модул."
208
+ },
227
209
  "Pro/THUDM/glm-4-9b-chat": {
228
210
  "description": "GLM-4-9B-Chat е отворената версия на предварително обучен модел от серията GLM-4, пусната от Zhizhu AI. Моделът показва отлични резултати в семантика, математика, разсъждения, код и знания. Освен че поддържа многократни разговори, GLM-4-9B-Chat предлага и напреднали функции като уеб браузинг, изпълнение на код, извикване на персонализирани инструменти (Function Call) и разсъждения с дълги текстове. Моделът поддържа 26 езика, включително китайски, английски, японски, корейски и немски. В множество бенчмаркове, GLM-4-9B-Chat показва отлична производителност, като AlignBench-v2, MT-Bench, MMLU и C-Eval. Моделът поддържа максимална контекстна дължина от 128K, подходящ за академични изследвания и търговски приложения."
229
211
  },
230
212
  "Pro/deepseek-ai/DeepSeek-R1": {
231
213
  "description": "DeepSeek-R1 е модел за инференция, управляван от обучение с подсилване (RL), който решава проблемите с повторяемостта и четимостта в моделите. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на инференцията. Той показва сравними резултати с OpenAI-o1 в математически, кодови и инференционни задачи и подобрява общата ефективност чрез внимателно проектирани методи на обучение."
232
214
  },
233
- "Pro/deepseek-ai/DeepSeek-V3": {
234
- "description": "DeepSeek-V3 е модел на езика с 6710 милиарда параметри, който използва архитектура на смесени експерти (MoE) с много глави на потенциално внимание (MLA) и стратегия за баланс на натоварването без помощни загуби, оптимизираща производителността на инференцията и обучението. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо супервизирано фино настройване и обучение с подсилване, DeepSeek-V3 надминава производителността на други отворени модели и е близо до водещите затворени модели."
215
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
216
+ "description": "DeepSeek-R1-Distill-Qwen-1.5B е модел, получен чрез дистилация на знания от Qwen2.5-Math-1.5B. Моделът е фино настроен с 800 000 избрани проби, генерирани от DeepSeek-R1, и демонстрира добро представяне в множество тестове. Като лек модел, той постига 83,9% точност в MATH-500, 28,9% успеваемост в AIME 2024 и рейтинг от 954 в CodeForces, показвайки способности за разсъждение, които надхвърлят неговия мащаб на параметри."
235
217
  },
236
- "Pro/google/gemma-2-9b-it": {
237
- "description": "Gemma е един от най-новите леки, авангардни отворени модели, разработени от Google. Това е голям езиков модел с един декодер, който поддържа английски и предлага отворени тегла, предварително обучени варианти и варианти с фино настройване на инструкции. Моделът Gemma е подходящ за различни задачи по генериране на текст, включително въпроси и отговори, резюмиране и разсъждения. Този 9B модел е обучен с 8 трилиона токена. Неговият относително малък размер позволява внедряване в среди с ограничени ресурси, като лаптопи, настолни компютри или собствена облачна инфраструктура, което позволява на повече хора да имат достъп до авангардни AI модели и да насърчават иновации."
218
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
219
+ "description": "DeepSeek-R1-Distill-Qwen-7B е модел, получен чрез дистилация на знания от Qwen2.5-Math-7B. Този модел е фино настроен с 800 000 избрани проби, генерирани от DeepSeek-R1, и демонстрира изключителни способности за разсъждение. Той се представя отлично в множество тестове, постигайки 92,8% точност в MATH-500, 55,5% успеваемост в AIME 2024 и рейтинг от 1189 в CodeForces, показвайки силни математически и програмистки способности за модел с мащаб 7B."
238
220
  },
239
- "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
240
- "description": "Meta Llama 3.1 е семейство от многоезични големи езикови модели, разработени от Meta, включващо предварително обучени и модели с фино настройване с параметри 8B, 70B и 405B. Този 8B модел с фино настройване на инструкции е оптимизиран за многоезични разговорни сценарии и показва отлични резултати в множество индустриални бенчмаркове. Моделът е обучен с над 15 трилиона токена от публични данни и използва технологии като наблюдавано фино настройване и обучение с човешка обратна връзка, за да подобри полезността и безопасността на модела. Llama 3.1 поддържа генериране на текст и генериране на код, с дата на прекратяване на знанията до декември 2023 г."
221
+ "Pro/deepseek-ai/DeepSeek-V3": {
222
+ "description": "DeepSeek-V3 е модел на езика с 6710 милиарда параметри, който използва архитектура на смесени експерти (MoE) с много глави на потенциално внимание (MLA) и стратегия за баланс на натоварването без помощни загуби, оптимизираща производителността на инференцията и обучението. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо супервизирано фино настройване и обучение с подсилване, DeepSeek-V3 надминава производителността на други отворени модели и е близо до водещите затворени модели."
241
223
  },
242
224
  "QwQ-32B-Preview": {
243
225
  "description": "QwQ-32B-Preview е иновативен модел за обработка на естествен език, способен да обработва ефективно сложни задачи за генериране на диалог и разбиране на контекста."
@@ -290,6 +272,12 @@
290
272
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
291
273
  "description": "Qwen2.5-Coder-7B-Instruct е най-новата версия на серията големи езикови модели, специфични за код, публикувана от Alibaba Cloud. Моделът значително подобрява способностите за генериране на код, разсъждения и корекции, след като е обучен с 55 трилиона токена на базата на Qwen2.5. Той не само подобрява кодовите умения, но и запазва предимствата в математиката и общите способности. Моделът предоставя по-пълна основа за практическите приложения като кодови интелигентни агенти."
292
274
  },
275
+ "Qwen/Qwen2.5-VL-32B-Instruct": {
276
+ "description": "Qwen2.5-VL-32B-Instruct е многомодален голям модел, разработен от екипа на Tongyi Qianwen, част от серията Qwen2.5-VL. Този модел не само разпознава отлично обичайни обекти, но също така анализира текст, диаграми, икони, графики и оформление в изображения. Той може да функционира като визуален агент, способен да разсъждава и динамично да управлява инструменти, с възможности за работа с компютри и мобилни устройства. Освен това, моделът може точно да локализира обекти в изображения и да генерира структурирани изходи за фактури, таблици и други. В сравнение с предходния модел Qwen2-VL, тази версия е подобрена чрез усилено обучение в областта на математиката и способностите за решаване на проблеми, като стилът на отговорите е по-съобразен с човешките предпочитания."
277
+ },
278
+ "Qwen/Qwen2.5-VL-72B-Instruct": {
279
+ "description": "Qwen2.5-VL е визуален езиков модел от серията Qwen2.5. Този модел има значителни подобрения в различни аспекти: разполага с по-добри възможности за визуално разбиране, може да разпознава обикновени обекти, да анализира текст, диаграми и оформление; като визуален агент може да разсъждава и динамично да насочва използването на инструменти; поддържа разбиране на дълги видеоклипове с продължителност над 1 час и улавяне на ключови събития; може да локализира точно обекти в изображения чрез генериране на ограничителни кутии или точки; поддържа генериране на структуриран изход, особено подходящ за сканирани данни като фактури и таблици."
280
+ },
293
281
  "Qwen2-72B-Instruct": {
294
282
  "description": "Qwen2 е най-новата серия на модела Qwen, поддържаща 128k контекст. В сравнение с текущите най-добри отворени модели, Qwen2-72B значително надминава водещите модели в области като разбиране на естествен език, знания, код, математика и многоезичност."
295
283
  },
@@ -374,9 +362,6 @@
374
362
  "TeleAI/TeleChat2": {
375
363
  "description": "TeleChat2 е голям модел, разработен от China Telecom, който предлага генеративен семантичен модел, поддържащ функции като енциклопедични въпроси и отговори, генериране на код и генериране на дълги текстове, предоставяйки услуги за консултации на потребителите, способни да взаимодействат с потребителите, да отговарят на въпроси и да помагат в творчеството, ефективно и удобно помагайки на потребителите да получат информация, знания и вдъхновение. Моделът показва отлични резултати в проблеми с илюзии, генериране на дълги текстове и логическо разбиране."
376
364
  },
377
- "TeleAI/TeleMM": {
378
- "description": "TeleMM е многомодален голям модел, разработен от China Telecom, способен да обработва текст, изображения и други видове входни данни, поддържащ функции като разбиране на изображения и анализ на графики, предоставяйки услуги за разбиране на потребителите в различни модалности. Моделът може да взаимодейства с потребителите в многомодални сценарии, точно разбирайки входното съдържание, отговаряйки на въпроси, помагайки в творчеството и ефективно предоставяйки многомодална информация и вдъхновение. Моделът показва отлични резултати в задачи с фина перцепция и логическо разсъждение."
379
- },
380
365
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
381
366
  "description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
382
367
  },
@@ -662,9 +647,6 @@
662
647
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
663
648
  "description": "DeepSeek-R1 дестилиран модел, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
664
649
  },
665
- "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
666
- "description": "DeepSeek-R1-Distill-Llama-8B е дестилиран модел, базиран на Llama-3.1-8B. Този модел е финализиран с примери, генерирани от DeepSeek-R1, и показва отлична производителност на разсъжденията. Той постига добри резултати в множество бенчмаркове, включително 89.1% точност в MATH-500, 50.4% успеваемост в AIME 2024 и 1205 точки в CodeForces, демонстрирайки силни способности за математика и програмиране."
667
- },
668
650
  "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
669
651
  "description": "DeepSeek-R1 дестилиран модел, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
670
652
  },
@@ -713,6 +695,9 @@
713
695
  "deepseek-r1-70b-online": {
714
696
  "description": "DeepSeek R1 70B стандартна версия, поддържаща търсене в реално време, подходяща за диалози и текстови задачи, изискващи най-новата информация."
715
697
  },
698
+ "deepseek-r1-distill-llama": {
699
+ "description": "deepseek-r1-distill-llama е модел, дестилиран от DeepSeek-R1 на базата на Llama."
700
+ },
716
701
  "deepseek-r1-distill-llama-70b": {
717
702
  "description": "DeepSeek R1 - по-голям и по-интелигентен модел в комплекта DeepSeek - е дестилиран в архитектурата Llama 70B. На базата на бенчмаркове и човешка оценка, този модел е по-интелигентен от оригиналния Llama 70B, особено в задачи, изискващи математическа и фактическа точност."
718
703
  },
@@ -725,6 +710,9 @@
725
710
  "deepseek-r1-distill-qianfan-llama-8b": {
726
711
  "description": "Първоначално пуснат на 14 февруари 2025 г., дестилиран от екипа за разработка на модела Qianfan с базов модел Llama3_8B (създаден с Meta Llama), в дестилираните данни също е добавен корпус от Qianfan."
727
712
  },
713
+ "deepseek-r1-distill-qwen": {
714
+ "description": "deepseek-r1-distill-qwen е модел, базиран на Qwen, дестилиран от DeepSeek-R1."
715
+ },
728
716
  "deepseek-r1-distill-qwen-1.5b": {
729
717
  "description": "Моделите от серията DeepSeek-R1-Distill са получени чрез техника на знание дестилация, като се фино настройват образците, генерирани от DeepSeek-R1, спрямо отворени модели като Qwen и Llama."
730
718
  },
@@ -872,6 +860,9 @@
872
860
  "gemini-1.5-flash-8b-exp-0924": {
873
861
  "description": "Gemini 1.5 Flash 8B 0924 е най-новият експериментален модел, който показва значителни подобрения в производителността както в текстови, така и в мултимодални приложения."
874
862
  },
863
+ "gemini-1.5-flash-8b-latest": {
864
+ "description": "Gemini 1.5 Flash 8B е високоефективен мултимодален модел, който поддържа разширени приложения."
865
+ },
875
866
  "gemini-1.5-flash-exp-0827": {
876
867
  "description": "Gemini 1.5 Flash 0827 предлага оптимизирани мултимодални способности, подходящи за различни сложни задачи."
877
868
  },
@@ -914,9 +905,6 @@
914
905
  "gemini-2.0-flash-lite-preview-02-05": {
915
906
  "description": "Модел на Gemini 2.0 Flash, оптимизиран за икономичност и ниска латентност."
916
907
  },
917
- "gemini-2.0-flash-thinking-exp": {
918
- "description": "Gemini 2.0 Flash Exp е най-новият експериментален многомодален AI модел на Google, с ново поколение функции, изключителна скорост, нативно извикване на инструменти и многомодално генериране."
919
- },
920
908
  "gemini-2.0-flash-thinking-exp-01-21": {
921
909
  "description": "Gemini 2.0 Flash Exp е най-новият експериментален многомодален AI модел на Google, с ново поколение функции, изключителна скорост, нативно извикване на инструменти и многомодално генериране."
922
910
  },
@@ -1223,6 +1211,9 @@
1223
1211
  "llama-3.1-8b-instant": {
1224
1212
  "description": "Llama 3.1 8B е модел с висока производителност, предлагащ бързи способности за генериране на текст, особено подходящ за приложения, изискващи мащабна ефективност и икономичност."
1225
1213
  },
1214
+ "llama-3.1-instruct": {
1215
+ "description": "Моделата Llama 3.1 с фина настройка за инструкции е оптимизирана за диалогови сценарии и надминава много съществуващи модели с отворен код в общи отраслови бенчмарк тестове."
1216
+ },
1226
1217
  "llama-3.2-11b-vision-instruct": {
1227
1218
  "description": "Изключителни способности за визуално разсъждение върху изображения с висока разделителна способност, подходящи за приложения за визуално разбиране."
1228
1219
  },
@@ -1235,12 +1226,18 @@
1235
1226
  "llama-3.2-90b-vision-preview": {
1236
1227
  "description": "Llama 3.2 е проектиран да обработва задачи, свързващи визуални и текстови данни. Той показва отлични резултати в задачи като описание на изображения и визуални въпроси и отговори, преодолявайки пропастта между генерирането на език и визуалното разсъждение."
1237
1228
  },
1229
+ "llama-3.2-vision-instruct": {
1230
+ "description": "Моделът Llama 3.2-Vision с инструкции е оптимизиран за визуално разпознаване, изводи от изображения, описание на изображения и отговаряне на общи въпроси, свързани с изображения."
1231
+ },
1238
1232
  "llama-3.3-70b-instruct": {
1239
1233
  "description": "Llama 3.3 е най-напредналият многоезичен отворен езиков модел от серията Llama, който предлага производителност, сравнима с 405B моделите, на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия, оптимизирана за инструкции, е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023."
1240
1234
  },
1241
1235
  "llama-3.3-70b-versatile": {
1242
1236
  "description": "Meta Llama 3.3 е многоезичен модел за генерация на език (LLM) с 70B (вход/изход на текст), който е предварително обучен и е пригоден за указания. Чистият текстов модел на Llama 3.3 е оптимизиран за многоезични диалогови случаи и надминава много налични отворени и затворени чат модели на стандартни индустриални тестове."
1243
1237
  },
1238
+ "llama-3.3-instruct": {
1239
+ "description": "Моделата Llama 3.3 с фина настройка за инструкции е оптимизирана за диалогови сценарии и надминава много съществуващи модели с отворен код в общи отраслови бенчмарк тестове."
1240
+ },
1244
1241
  "llama3-70b-8192": {
1245
1242
  "description": "Meta Llama 3 70B предлага ненадмината способност за обработка на сложност, проектирана за високи изисквания."
1246
1243
  },
@@ -1319,9 +1316,6 @@
1319
1316
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
1320
1317
  "description": "LLaMA 3.2 е проектирана да обработва задачи, комбиниращи визуални и текстови данни. Тя демонстрира отлични резултати в задачи като описание на изображения и визуални въпроси и отговори, преодолявайки пропастта между генерирането на езици и визуалното разсъждение."
1321
1318
  },
1322
- "meta-llama/Llama-3.3-70B-Instruct": {
1323
- "description": "Llama 3.3 е най-напредналият многоезичен отворен голям езиков модел от серията Llama, предлагащ производителност, сравнима с 405B моделите на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия за оптимизация на инструкции е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023 г."
1324
- },
1325
1319
  "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1326
1320
  "description": "Meta Llama 3.3 многоезичен голям езиков модел (LLM) е предварително обучен и коригиран за инструкции в 70B (текстов вход/текстов изход). Моделът Llama 3.3, коригиран за инструкции, е оптимизиран за многоезични диалогови случаи и превъзхожда много налични отворени и затворени чат модели на общи индустриални бенчмаркове."
1327
1321
  },
@@ -1349,15 +1343,9 @@
1349
1343
  "meta-llama/Meta-Llama-3.1-70B": {
1350
1344
  "description": "Llama 3.1 е водещ модел, представен от Meta, поддържащ до 405B параметри, подходящ за сложни разговори, многоезичен превод и анализ на данни."
1351
1345
  },
1352
- "meta-llama/Meta-Llama-3.1-70B-Instruct": {
1353
- "description": "LLaMA 3.1 70B предлага ефективна поддръжка за многоезични диалози."
1354
- },
1355
1346
  "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
1356
1347
  "description": "Llama 3.1 70B моделът е прецизно настроен за приложения с високо натоварване, квантован до FP8, осигурявайки по-ефективна изчислителна мощ и точност, гарантиращи изключителна производителност в сложни сценарии."
1357
1348
  },
1358
- "meta-llama/Meta-Llama-3.1-8B-Instruct": {
1359
- "description": "LLaMA 3.1 предлага многоезична поддръжка и е един от водещите генеративни модели в индустрията."
1360
- },
1361
1349
  "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
1362
1350
  "description": "Llama 3.1 8B моделът използва FP8 квантоване, поддържа до 131,072 контекстови маркера и е сред най-добрите отворени модели, подходящи за сложни задачи, с производителност, превъзхождаща много индустриални стандарти."
1363
1351
  },
@@ -1451,12 +1439,18 @@
1451
1439
  "mistral-large": {
1452
1440
  "description": "Mixtral Large е флагманският модел на Mistral, комбиниращ способности за генериране на код, математика и разсъждение, поддържащ контекстен прозорец от 128k."
1453
1441
  },
1442
+ "mistral-large-instruct": {
1443
+ "description": "Mistral-Large-Instruct-2407 е усъвършенстван плътен голям езиков модел (LLM) с 123 милиарда параметъра, който притежава водещи във времето си способности за разсъждение, познания и кодиране."
1444
+ },
1454
1445
  "mistral-large-latest": {
1455
1446
  "description": "Mistral Large е флагманският модел, специализиран в многоезични задачи, сложни разсъждения и генериране на код, идеален за висококачествени приложения."
1456
1447
  },
1457
1448
  "mistral-nemo": {
1458
1449
  "description": "Mistral Nemo е 12B модел, разработен в сътрудничество между Mistral AI и NVIDIA, предлагащ ефективна производителност."
1459
1450
  },
1451
+ "mistral-nemo-instruct": {
1452
+ "description": "Mistral-Nemo-Instruct-2407 е голям езиков модел (LLM), който представлява фино настроена за инструкции версия на Mistral-Nemo-Base-2407."
1453
+ },
1460
1454
  "mistral-small": {
1461
1455
  "description": "Mistral Small може да се използва за всяка езикова задача, която изисква висока ефективност и ниска латентност."
1462
1456
  },
@@ -1670,15 +1664,6 @@
1670
1664
  "qwen/qwen2.5-coder-7b-instruct": {
1671
1665
  "description": "Мощен среден модел за код, поддържащ 32K дължина на контекста, специализиран в многоезично програмиране."
1672
1666
  },
1673
- "qwen1.5-14b-chat": {
1674
- "description": "Qwen1.5 серия е бета версия на Qwen2, която е декодиращ езиков модел, базиран на Transformer, предварително обучен на обемни данни. Сравнено с предходните версии на Qwen, моделите base и chat на Qwen1.5 серия поддържат множество езици и са подобрени както в общите разговори, така и в основните умения. Qwen1.5-14b-chat е модел с 14 милиарда параметри, специално предназначен за разговорни сценарии."
1675
- },
1676
- "qwen1.5-32b-chat": {
1677
- "description": "Qwen1.5 серия е бета версия на Qwen2, което е декодиращ езиков модел, базиран на Transformer, предварително обучен на обемни данни. Сравнено с предходните версии на Qwen, серията Qwen1.5 поддържа множество езици и е подобрена както в общите разговорни, така и в основните функции. Qwen1.5-32b-chat е специализиран модел за разговорни сценарии с 32 милиарда параметри, който е по-силен в сценарии с интелектуални агенти спрямо 14 милиардната версия и има по-нисък разход за извършване на изводи спрямо 72 милиардната версия."
1678
- },
1679
- "qwen1.5-72b-chat": {
1680
- "description": "Серия Qwen1.5 е бета версия на Qwen2 и представлява декодиращ езиков модел, базиран на Transformer, предварително обучен на обемни данни. Сравнено с предходните версии на Qwen, моделите base и chat от серията Qwen1.5 поддържат множество езици и са подобрени както в общите разговори, така и в основните умения. Qwen1.5-72b-chat е специално предназначен за разговорни сценарии и разполага с 72 милиарда параметри."
1681
- },
1682
1667
  "qwen2": {
1683
1668
  "description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
1684
1669
  },
@@ -1715,6 +1700,12 @@
1715
1700
  "qwen2.5-coder-7b-instruct": {
1716
1701
  "description": "Отворената версия на модела на кода Qwen."
1717
1702
  },
1703
+ "qwen2.5-coder-instruct": {
1704
+ "description": "Qwen2.5-Coder е най-новият специализиран голям езиков модел за код от серията Qwen (предишно име CodeQwen)."
1705
+ },
1706
+ "qwen2.5-instruct": {
1707
+ "description": "Qwen2.5 е най-новата серия от големи езикови модели на Qwen. За Qwen2.5 публикувахме няколко основни езикови модели и модели с фино настройване на инструкции, с параметри в диапазона от 500 милиона до 7,2 милиарда."
1708
+ },
1718
1709
  "qwen2.5-math-1.5b-instruct": {
1719
1710
  "description": "Qwen-Math моделът разполага със силни умения за решаване на математически задачи."
1720
1711
  },
@@ -1724,12 +1715,18 @@
1724
1715
  "qwen2.5-math-7b-instruct": {
1725
1716
  "description": "Моделът Qwen-Math притежава силни способности за решаване на математически задачи."
1726
1717
  },
1718
+ "qwen2.5-vl-32b-instruct": {
1719
+ "description": "Моделите от серията Qwen2.5-VL подобряват интелигентността, практичността и приложимостта на модела, като ги правят по-ефективни в сценарии като естествени разговори, създаване на съдържание, професионални услуги и разработка на код. Версията 32B използва технологии за обучение с подсилване за оптимизиране на модела, предлагайки в сравнение с другите модели от серията Qwen2.5 VL по-съответстващ на човешките предпочитания стил на изход, способност за разсъждение върху сложни математически проблеми, както и фино разбиране и разсъждение на изображения."
1720
+ },
1727
1721
  "qwen2.5-vl-72b-instruct": {
1728
1722
  "description": "Подобрение на следването на инструкции, математика, решаване на проблеми и код, повишаване на способността за разпознаване на обекти, поддържа директно точно локализиране на визуални елементи в различни формати, поддържа разбиране на дълги видео файлове (до 10 минути) и локализиране на събития в секунда, може да разбира времеви последователности и скорости, базирано на способности за анализ и локализация, поддържа управление на OS или Mobile агенти, силна способност за извличане на ключова информация и изход в JSON формат, тази версия е 72B, най-силната версия в серията."
1729
1723
  },
1730
1724
  "qwen2.5-vl-7b-instruct": {
1731
1725
  "description": "Подобрение на следването на инструкции, математика, решаване на проблеми и код, повишаване на способността за разпознаване на обекти, поддържа директно точно локализиране на визуални елементи в различни формати, поддържа разбиране на дълги видео файлове (до 10 минути) и локализиране на събития в секунда, може да разбира времеви последователности и скорости, базирано на способности за анализ и локализация, поддържа управление на OS или Mobile агенти, силна способност за извличане на ключова информация и изход в JSON формат, тази версия е 72B, най-силната версия в серията."
1732
1726
  },
1727
+ "qwen2.5-vl-instruct": {
1728
+ "description": "Qwen2.5-VL е най-новата версия на визуално-езиковия модел от семейството Qwen."
1729
+ },
1733
1730
  "qwen2.5:0.5b": {
1734
1731
  "description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
1735
1732
  },
@@ -146,6 +146,9 @@
146
146
  "xai": {
147
147
  "description": "xAI е компания, която се стреми да изгражда изкуствен интелект за ускоряване на човешките научни открития. Нашата мисия е да насърчаваме общото ни разбиране за вселената."
148
148
  },
149
+ "xinference": {
150
+ "description": "Xorbits Inference (Xinference) е платформа с отворен код, предназначена да опрости изпълнението и интегрирането на различни AI модели. С Xinference можете да използвате всякакви LLM с отворен код, модели за вграждане и мултимодални модели за извършване на изводи в облак или локална среда, както и да създавате мощни AI приложения."
151
+ },
149
152
  "zeroone": {
150
153
  "description": "01.AI се фокусира върху технологии за изкуствен интелект от ерата на AI 2.0, активно насърчавайки иновации и приложения на \"човек + изкуствен интелект\", използвайки мощни модели и напреднали AI технологии за повишаване на производителността на човека и реализиране на технологично овластяване."
151
154
  },
@@ -42,6 +42,17 @@
42
42
  "sessionWithName": "Настройки на сесията · {{name}}",
43
43
  "title": "Настройки"
44
44
  },
45
+ "hotkey": {
46
+ "conflicts": "Конфликт с текущите клавишни комбинации",
47
+ "group": {
48
+ "conversation": "Разговор",
49
+ "essential": "Основен"
50
+ },
51
+ "invalidCombination": "Клавишната комбинация трябва да съдържа поне един модификатор (Ctrl, Alt, Shift) и един обикновен клавиш",
52
+ "record": "Натиснете клавиш, за да запишете клавишна комбинация",
53
+ "reset": "Нулиране до подразбиращите се клавишни комбинации",
54
+ "title": "Бързи клавиши"
55
+ },
45
56
  "llm": {
46
57
  "aesGcm": "Вашият ключ и адрес на агента ще бъдат криптирани с алгоритъма за криптиране <1>AES-GCM</1>",
47
58
  "apiKey": {
@@ -425,6 +436,7 @@
425
436
  "agent": "Агент по подразбиране",
426
437
  "common": "Общи настройки",
427
438
  "experiment": "Експеримент",
439
+ "hotkey": "Бързи клавиши",
428
440
  "llm": "Езиков модел",
429
441
  "provider": "AI доставчик",
430
442
  "sync": "Синхронизиране в облака",
@@ -0,0 +1,46 @@
1
+ {
2
+ "addUserMessage": {
3
+ "desc": "Fügen Sie den aktuellen Eingabetext als Benutzernachricht hinzu, ohne die Generierung auszulösen",
4
+ "title": "Benutzernachricht hinzufügen"
5
+ },
6
+ "editMessage": {
7
+ "desc": "Treten Sie in den Bearbeitungsmodus, indem Sie die Alt-Taste gedrückt halten und auf die Nachricht doppelklicken",
8
+ "title": "Nachricht bearbeiten"
9
+ },
10
+ "openChatSettings": {
11
+ "desc": "Aktuelle Sitzungseinstellungen anzeigen und ändern",
12
+ "title": "Chat-Einstellungen öffnen"
13
+ },
14
+ "openHotkeyHelper": {
15
+ "desc": "Anleitung zur Verwendung aller Tastenkombinationen anzeigen",
16
+ "title": "Tastenkombinationshilfe öffnen"
17
+ },
18
+ "regenerateMessage": {
19
+ "desc": "Die letzte Nachricht neu generieren",
20
+ "title": "Nachricht neu generieren"
21
+ },
22
+ "saveTopic": {
23
+ "desc": "Das aktuelle Thema speichern und ein neues Thema öffnen",
24
+ "title": "Neues Thema beginnen"
25
+ },
26
+ "search": {
27
+ "desc": "Hauptsuchfeld der aktuellen Seite aufrufen",
28
+ "title": "Suche"
29
+ },
30
+ "switchAgent": {
31
+ "desc": "Wechseln Sie zwischen den im Seitenbereich fixierten Assistenten, indem Sie die Strg-Taste gedrückt halten und eine Zahl von 0 bis 9 drücken",
32
+ "title": "Schnell zwischen Assistenten wechseln"
33
+ },
34
+ "toggleLeftPanel": {
35
+ "desc": "Linkes Hilfepanel ein- oder ausblenden",
36
+ "title": "Assistentenpanel ein-/ausblenden"
37
+ },
38
+ "toggleRightPanel": {
39
+ "desc": "Rechtes Themenpanel ein- oder ausblenden",
40
+ "title": "Themenpanel ein-/ausblenden"
41
+ },
42
+ "toggleZenMode": {
43
+ "desc": "Im Fokusmodus nur die aktuelle Sitzung anzeigen, andere UI ausblenden",
44
+ "title": "Fokussierungsmodus umschalten"
45
+ }
46
+ }