@lobehub/chat 1.75.4 → 1.76.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +52 -0
- package/README.md +1 -1
- package/README.zh-CN.md +1 -1
- package/changelog/v1.json +18 -0
- package/docs/developer/database-schema.dbml +1 -0
- package/docs/self-hosting/advanced/model-list.mdx +5 -3
- package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
- package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
- package/locales/ar/hotkey.json +46 -0
- package/locales/ar/models.json +51 -54
- package/locales/ar/providers.json +3 -0
- package/locales/ar/setting.json +12 -0
- package/locales/bg-BG/hotkey.json +46 -0
- package/locales/bg-BG/models.json +51 -54
- package/locales/bg-BG/providers.json +3 -0
- package/locales/bg-BG/setting.json +12 -0
- package/locales/de-DE/hotkey.json +46 -0
- package/locales/de-DE/models.json +51 -54
- package/locales/de-DE/providers.json +3 -0
- package/locales/de-DE/setting.json +12 -0
- package/locales/en-US/hotkey.json +46 -0
- package/locales/en-US/models.json +51 -54
- package/locales/en-US/providers.json +3 -0
- package/locales/en-US/setting.json +12 -0
- package/locales/es-ES/hotkey.json +46 -0
- package/locales/es-ES/models.json +51 -54
- package/locales/es-ES/providers.json +3 -0
- package/locales/es-ES/setting.json +12 -0
- package/locales/fa-IR/hotkey.json +46 -0
- package/locales/fa-IR/models.json +51 -54
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fa-IR/setting.json +12 -0
- package/locales/fr-FR/hotkey.json +46 -0
- package/locales/fr-FR/models.json +51 -54
- package/locales/fr-FR/providers.json +3 -0
- package/locales/fr-FR/setting.json +12 -0
- package/locales/it-IT/hotkey.json +46 -0
- package/locales/it-IT/models.json +51 -54
- package/locales/it-IT/providers.json +3 -0
- package/locales/it-IT/setting.json +12 -0
- package/locales/ja-JP/hotkey.json +46 -0
- package/locales/ja-JP/models.json +51 -54
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ja-JP/setting.json +12 -0
- package/locales/ko-KR/hotkey.json +46 -0
- package/locales/ko-KR/models.json +51 -54
- package/locales/ko-KR/providers.json +3 -0
- package/locales/ko-KR/setting.json +12 -0
- package/locales/nl-NL/hotkey.json +46 -0
- package/locales/nl-NL/models.json +51 -54
- package/locales/nl-NL/providers.json +3 -0
- package/locales/nl-NL/setting.json +12 -0
- package/locales/pl-PL/hotkey.json +46 -0
- package/locales/pl-PL/models.json +51 -54
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pl-PL/setting.json +12 -0
- package/locales/pt-BR/hotkey.json +46 -0
- package/locales/pt-BR/models.json +51 -54
- package/locales/pt-BR/providers.json +3 -0
- package/locales/pt-BR/setting.json +12 -0
- package/locales/ru-RU/hotkey.json +46 -0
- package/locales/ru-RU/models.json +51 -54
- package/locales/ru-RU/providers.json +3 -0
- package/locales/ru-RU/setting.json +12 -0
- package/locales/tr-TR/hotkey.json +46 -0
- package/locales/tr-TR/models.json +51 -54
- package/locales/tr-TR/providers.json +3 -0
- package/locales/tr-TR/setting.json +12 -0
- package/locales/vi-VN/hotkey.json +46 -0
- package/locales/vi-VN/models.json +51 -54
- package/locales/vi-VN/providers.json +3 -0
- package/locales/vi-VN/setting.json +12 -0
- package/locales/zh-CN/hotkey.json +46 -0
- package/locales/zh-CN/models.json +55 -58
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-CN/setting.json +12 -0
- package/locales/zh-TW/hotkey.json +46 -0
- package/locales/zh-TW/models.json +51 -54
- package/locales/zh-TW/providers.json +3 -0
- package/locales/zh-TW/setting.json +12 -0
- package/package.json +3 -3
- package/src/app/[variants]/(main)/(mobile)/me/(home)/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/(mobile)/me/(home)/layout.tsx +3 -2
- package/src/app/[variants]/(main)/(mobile)/me/data/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/(mobile)/me/profile/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/(mobile)/me/settings/features/Category.tsx +1 -1
- package/src/app/[variants]/(main)/_layout/Desktop/RegisterHotkeys.tsx +11 -0
- package/src/app/[variants]/(main)/_layout/Desktop/SideBar/PinList/index.tsx +6 -23
- package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.test.tsx +2 -0
- package/src/app/[variants]/(main)/_layout/Desktop/index.tsx +11 -4
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/SendMore.tsx +6 -21
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/ShortcutHint.tsx +13 -34
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/index.tsx +1 -1
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ZenModeToast/Toast.tsx +7 -4
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/HeaderAction.tsx +12 -8
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/Main.tsx +24 -30
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/index.tsx +0 -2
- package/src/app/[variants]/(main)/chat/(workspace)/features/SettingButton.tsx +12 -7
- package/src/app/[variants]/(main)/chat/@session/features/SessionSearchBar.tsx +5 -1
- package/src/app/[variants]/(main)/chat/_layout/Desktop/RegisterHotkeys.tsx +10 -0
- package/src/app/[variants]/(main)/chat/_layout/Desktop/index.tsx +5 -0
- package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +1 -1
- package/src/app/[variants]/(main)/discover/features/StoreSearchBar.tsx +5 -1
- package/src/app/[variants]/(main)/settings/hooks/useCategory.tsx +31 -21
- package/src/app/[variants]/(main)/settings/hotkey/features/HotkeySetting.tsx +80 -0
- package/src/app/[variants]/(main)/settings/hotkey/index.tsx +9 -0
- package/src/app/[variants]/(main)/settings/hotkey/page.tsx +15 -0
- package/src/app/[variants]/layout.tsx +16 -13
- package/src/config/aiModels/infiniai.ts +52 -55
- package/src/config/aiModels/siliconcloud.ts +17 -1
- package/src/config/aiModels/tencentcloud.ts +17 -0
- package/src/const/hotkeys.ts +80 -10
- package/src/const/settings/hotkey.ts +10 -0
- package/src/const/settings/index.ts +3 -0
- package/src/database/client/migrations.json +46 -32
- package/src/database/migrations/0019_add_hotkey_user_settings.sql +2 -0
- package/src/database/migrations/meta/0019_snapshot.json +4218 -0
- package/src/database/migrations/meta/_journal.json +7 -0
- package/src/database/schemas/user.ts +1 -0
- package/src/database/server/models/user.ts +2 -0
- package/src/features/ChatInput/Desktop/InputArea/index.tsx +8 -0
- package/src/features/ChatInput/Desktop/index.tsx +0 -1
- package/src/features/ChatInput/Topic/index.tsx +10 -15
- package/src/features/FileManager/Header/FilesSearchBar.tsx +6 -2
- package/src/features/HotkeyHelperPanel/HotkeyContent.tsx +62 -0
- package/src/features/HotkeyHelperPanel/index.tsx +59 -0
- package/src/hooks/useHotkeys/chatScope.ts +105 -0
- package/src/hooks/useHotkeys/globalScope.ts +69 -0
- package/src/hooks/useHotkeys/index.ts +2 -0
- package/src/hooks/useHotkeys/useHotkeyById.test.ts +194 -0
- package/src/hooks/useHotkeys/useHotkeyById.ts +57 -0
- package/src/libs/agent-runtime/infiniai/index.ts +38 -3
- package/src/locales/default/hotkey.ts +50 -0
- package/src/locales/default/index.ts +2 -0
- package/src/locales/default/setting.ts +12 -0
- package/src/store/global/initialState.ts +3 -0
- package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +79 -0
- package/src/store/user/slices/settings/selectors/settings.test.ts +131 -0
- package/src/store/user/slices/settings/selectors/settings.ts +6 -0
- package/src/types/hotkey.ts +59 -0
- package/src/types/user/settings/hotkey.ts +3 -0
- package/src/types/user/settings/index.ts +3 -0
- package/src/utils/format.ts +1 -1
- package/src/utils/parseModels.test.ts +14 -0
- package/src/utils/parseModels.ts +4 -0
- package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +0 -44
- package/src/components/HotKeys/index.tsx +0 -77
@@ -1,13 +1,4 @@
|
|
1
1
|
{
|
2
|
-
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
|
-
"description": "Yi-1.5 34B, avec un ensemble d'échantillons d'entraînement riche, offre des performances supérieures dans les applications sectorielles."
|
4
|
-
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5-6B-Chat est une variante de la série Yi-1.5, appartenant aux modèles de chat open source. Yi-1.5 est une version améliorée de Yi, pré-entraînée sur 500B de corpus de haute qualité et ajustée sur plus de 3M d'échantillons diversifiés. Comparé à Yi, Yi-1.5 montre de meilleures performances en codage, mathématiques, raisonnement et suivi des instructions, tout en maintenant d'excellentes capacités de compréhension du langage, de raisonnement de bon sens et de compréhension de lecture. Ce modèle propose des versions avec des longueurs de contexte de 4K, 16K et 32K, avec un total de pré-entraînement atteignant 3.6T de tokens."
|
7
|
-
},
|
8
|
-
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
|
-
"description": "Yi-1.5 9B supporte 16K Tokens, offrant une capacité de génération de langage efficace et fluide."
|
10
|
-
},
|
11
2
|
"01-ai/yi-1.5-34b-chat": {
|
12
3
|
"description": "Zero One Everything, le dernier modèle de fine-tuning open source, avec 34 milliards de paramètres, prend en charge divers scénarios de dialogue, avec des données d'entraînement de haute qualité, alignées sur les préférences humaines."
|
13
4
|
},
|
@@ -149,12 +140,6 @@
|
|
149
140
|
"Llama-3.2-90B-Vision-Instruct\t": {
|
150
141
|
"description": "Capacités avancées de raisonnement d'image adaptées aux applications d'agents de compréhension visuelle."
|
151
142
|
},
|
152
|
-
"LoRA/Qwen/Qwen2.5-72B-Instruct": {
|
153
|
-
"description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 72B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
154
|
-
},
|
155
|
-
"LoRA/Qwen/Qwen2.5-7B-Instruct": {
|
156
|
-
"description": "Qwen2.5-7B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 7B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
157
|
-
},
|
158
143
|
"Meta-Llama-3.1-405B-Instruct": {
|
159
144
|
"description": "Modèle de texte optimisé pour les instructions de Llama 3.1, conçu pour des cas d'utilisation de dialogue multilingue, qui se distingue dans de nombreux modèles de chat open source et fermés sur des benchmarks industriels courants."
|
160
145
|
},
|
@@ -179,9 +164,6 @@
|
|
179
164
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
|
180
165
|
"description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) est un modèle d'instructions de haute précision, adapté aux calculs complexes."
|
181
166
|
},
|
182
|
-
"OpenGVLab/InternVL2-26B": {
|
183
|
-
"description": "InternVL2 a démontré des performances exceptionnelles sur diverses tâches de langage visuel, y compris la compréhension de documents et de graphiques, la compréhension de texte de scène, l'OCR, ainsi que la résolution de problèmes scientifiques et mathématiques."
|
184
|
-
},
|
185
167
|
"Phi-3-medium-128k-instruct": {
|
186
168
|
"description": "Même modèle Phi-3-medium, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
187
169
|
},
|
@@ -206,9 +188,6 @@
|
|
206
188
|
"Phi-3.5-vision-instrust": {
|
207
189
|
"description": "Version améliorée du modèle Phi-3-vision."
|
208
190
|
},
|
209
|
-
"Pro/OpenGVLab/InternVL2-8B": {
|
210
|
-
"description": "InternVL2 a démontré des performances exceptionnelles sur diverses tâches de langage visuel, y compris la compréhension de documents et de graphiques, la compréhension de texte de scène, l'OCR, ainsi que la résolution de problèmes scientifiques et mathématiques."
|
211
|
-
},
|
212
191
|
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
213
192
|
"description": "Qwen2-1.5B-Instruct est un modèle de langage à grande échelle de la série Qwen2, avec une taille de paramètre de 1.5B. Ce modèle est basé sur l'architecture Transformer, utilisant des fonctions d'activation SwiGLU, des biais d'attention QKV et des techniques d'attention par groupe. Il excelle dans la compréhension du langage, la génération, les capacités multilingues, le codage, les mathématiques et le raisonnement dans plusieurs tests de référence, surpassant la plupart des modèles open source. Comparé à Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct montre des améliorations de performance significatives dans des tests tels que MMLU, HumanEval, GSM8K, C-Eval et IFEval, bien que le nombre de paramètres soit légèrement inférieur."
|
214
193
|
},
|
@@ -224,20 +203,23 @@
|
|
224
203
|
"Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
|
225
204
|
"description": "Qwen2.5-Coder-7B-Instruct est la dernière version de la série de modèles de langage à grande échelle spécifique au code publiée par Alibaba Cloud. Ce modèle, basé sur Qwen2.5, a été formé avec 55 trillions de tokens, améliorant considérablement les capacités de génération, de raisonnement et de correction de code. Il renforce non seulement les capacités de codage, mais maintient également des avantages en mathématiques et en compétences générales. Le modèle fournit une base plus complète pour des applications pratiques telles que les agents de code."
|
226
205
|
},
|
206
|
+
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
207
|
+
"description": "Qwen2.5-VL est le nouveau membre de la série Qwen, doté de puissantes capacités de compréhension visuelle. Il peut analyser le texte, les graphiques et la mise en page dans les images, comprendre les vidéos longues et capturer des événements. Il est capable de raisonner, d'utiliser des outils, de prendre en charge le positionnement d'objets multiformats et de générer des sorties structurées. Il optimise la résolution dynamique et la fréquence d'images pour la compréhension vidéo, et améliore l'efficacité de l'encodeur visuel."
|
208
|
+
},
|
227
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
228
210
|
"description": "GLM-4-9B-Chat est la version open source de la série de modèles pré-entraînés GLM-4 lancée par Zhipu AI. Ce modèle excelle dans plusieurs domaines tels que la sémantique, les mathématiques, le raisonnement, le code et les connaissances. En plus de prendre en charge des dialogues multi-tours, GLM-4-9B-Chat dispose également de fonctionnalités avancées telles que la navigation sur le web, l'exécution de code, l'appel d'outils personnalisés (Function Call) et le raisonnement sur de longs textes. Le modèle prend en charge 26 langues, y compris le chinois, l'anglais, le japonais, le coréen et l'allemand. Dans plusieurs tests de référence, GLM-4-9B-Chat a montré d'excellentes performances, comme AlignBench-v2, MT-Bench, MMLU et C-Eval. Ce modèle prend en charge une longueur de contexte maximale de 128K, adapté à la recherche académique et aux applications commerciales."
|
229
211
|
},
|
230
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
213
|
"description": "DeepSeek-R1 est un modèle d'inférence piloté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétition et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant encore les performances d'inférence. Il se compare à OpenAI-o1 dans les tâches mathématiques, de code et d'inférence, et améliore l'ensemble des performances grâce à des méthodes d'entraînement soigneusement conçues."
|
232
214
|
},
|
233
|
-
"Pro/deepseek-ai/DeepSeek-
|
234
|
-
"description": "DeepSeek-
|
215
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
216
|
+
"description": "DeepSeek-R1-Distill-Qwen-1.5B est un modèle obtenu par distillation de connaissances à partir de Qwen2.5-Math-1.5B. Ce modèle a été affiné à l'aide de 800 000 échantillons sélectionnés générés par DeepSeek-R1, démontrant des performances remarquables sur plusieurs benchmarks. En tant que modèle léger, il atteint une précision de 83,9 % sur MATH-500, un taux de réussite de 28,9 % sur AIME 2024 et un score de 954 sur CodeForces, révélant des capacités de raisonnement dépassant sa taille paramétrique."
|
235
217
|
},
|
236
|
-
"Pro/
|
237
|
-
"description": "
|
218
|
+
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
219
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B est un modèle obtenu par distillation de connaissances à partir de Qwen2.5-Math-7B. Ce modèle a été affiné à l'aide de 800 000 échantillons sélectionnés générés par DeepSeek-R1, démontrant d'excellentes capacités de raisonnement. Il obtient des performances remarquables dans plusieurs benchmarks, atteignant une précision de 92,8 % sur MATH-500, un taux de réussite de 55,5 % sur AIME 2024 et un score de 1189 sur CodeForces, montrant ainsi de solides compétences en mathématiques et en programmation pour un modèle de taille 7B."
|
238
220
|
},
|
239
|
-
"Pro/
|
240
|
-
"description": "
|
221
|
+
"Pro/deepseek-ai/DeepSeek-V3": {
|
222
|
+
"description": "DeepSeek-V3 est un modèle de langage à experts mixtes (MoE) avec 671 milliards de paramètres, utilisant une attention potentielle multi-tête (MLA) et une architecture DeepSeekMoE, combinant une stratégie d'équilibrage de charge sans perte auxiliaire pour optimiser l'efficacité d'inférence et d'entraînement. Pré-entraîné sur 14,8 billions de tokens de haute qualité, et affiné par supervision et apprentissage par renforcement, DeepSeek-V3 surpasse d'autres modèles open source et se rapproche des modèles fermés de premier plan."
|
241
223
|
},
|
242
224
|
"QwQ-32B-Preview": {
|
243
225
|
"description": "QwQ-32B-Preview est un modèle de traitement du langage naturel innovant, capable de gérer efficacement des tâches complexes de génération de dialogues et de compréhension contextuelle."
|
@@ -290,6 +272,12 @@
|
|
290
272
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
291
273
|
"description": "Qwen2.5-Coder-7B-Instruct est la dernière version de la série de modèles de langage à grande échelle spécifique au code publiée par Alibaba Cloud. Ce modèle, basé sur Qwen2.5, a été formé avec 55 trillions de tokens, améliorant considérablement les capacités de génération, de raisonnement et de correction de code. Il renforce non seulement les capacités de codage, mais maintient également des avantages en mathématiques et en compétences générales. Le modèle fournit une base plus complète pour des applications pratiques telles que les agents de code."
|
292
274
|
},
|
275
|
+
"Qwen/Qwen2.5-VL-32B-Instruct": {
|
276
|
+
"description": "Qwen2.5-VL-32B-Instruct est un modèle multimodal avancé développé par l'équipe Tongyi Qianwen, faisant partie de la série Qwen2.5-VL. Ce modèle excelle non seulement dans la reconnaissance d'objets courants, mais aussi dans l'analyse de textes, diagrammes, icônes, graphiques et mises en page contenus dans des images. Il peut fonctionner comme un agent visuel intelligent capable de raisonner et de manipuler dynamiquement des outils, avec des compétences d'utilisation d'ordinateurs et de smartphones. De plus, ce modèle peut localiser avec précision des objets dans des images et produire des sorties structurées pour des documents tels que des factures ou des tableaux. Par rapport à son prédécesseur Qwen2-VL, cette version présente des améliorations significatives en mathématiques et en résolution de problèmes grâce à l'apprentissage par renforcement, tout en adoptant un style de réponse plus conforme aux préférences humaines."
|
277
|
+
},
|
278
|
+
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
279
|
+
"description": "Qwen2.5-VL est le modèle de langage visuel de la série Qwen2.5. Ce modèle présente des améliorations significatives à plusieurs égards : il possède une meilleure compréhension visuelle, capable de reconnaître des objets courants, d'analyser du texte, des graphiques et des mises en page ; en tant qu'agent visuel, il peut raisonner et guider dynamiquement l'utilisation d'outils ; il prend en charge la compréhension de vidéos longues de plus d'une heure et capture les événements clés ; il peut localiser avec précision des objets dans une image en générant des cadres de délimitation ou des points ; il prend en charge la génération de sorties structurées, particulièrement adaptée aux données scannées comme les factures et les tableaux."
|
280
|
+
},
|
293
281
|
"Qwen2-72B-Instruct": {
|
294
282
|
"description": "Qwen2 est la dernière série du modèle Qwen, prenant en charge un contexte de 128k. Comparé aux meilleurs modèles open source actuels, Qwen2-72B surpasse de manière significative les modèles leaders dans des domaines tels que la compréhension du langage naturel, les connaissances, le code, les mathématiques et le multilinguisme."
|
295
283
|
},
|
@@ -374,9 +362,6 @@
|
|
374
362
|
"TeleAI/TeleChat2": {
|
375
363
|
"description": "Le grand modèle TeleChat2 est un modèle sémantique génératif développé de manière autonome par China Telecom, prenant en charge des fonctionnalités telles que les questions-réponses encyclopédiques, la génération de code et la génération de longs textes, fournissant des services de consultation par dialogue aux utilisateurs, capable d'interagir avec les utilisateurs, de répondre à des questions, d'assister à la création, et d'aider efficacement et commodément les utilisateurs à obtenir des informations, des connaissances et de l'inspiration. Le modèle montre de bonnes performances sur des problèmes d'hallucination, la génération de longs textes et la compréhension logique."
|
376
364
|
},
|
377
|
-
"TeleAI/TeleMM": {
|
378
|
-
"description": "Le grand modèle multimodal TeleMM est un modèle de compréhension multimodale développé de manière autonome par China Telecom, capable de traiter des entrées multimodales telles que du texte et des images, prenant en charge des fonctionnalités telles que la compréhension d'images et l'analyse de graphiques, fournissant des services de compréhension intermodale aux utilisateurs. Le modèle peut interagir avec les utilisateurs de manière multimodale, comprendre avec précision le contenu d'entrée, répondre à des questions, assister à la création, et fournir efficacement des informations et un soutien d'inspiration multimodale. Il excelle dans des tâches multimodales telles que la perception fine et le raisonnement logique."
|
379
|
-
},
|
380
365
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
381
366
|
"description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 72B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
382
367
|
},
|
@@ -662,9 +647,6 @@
|
|
662
647
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
663
648
|
"description": "Le modèle distillé DeepSeek-R1 optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
664
649
|
},
|
665
|
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
666
|
-
"description": "DeepSeek-R1-Distill-Llama-8B est un modèle distillé basé sur Llama-3.1-8B. Ce modèle a été affiné avec des échantillons générés par DeepSeek-R1, montrant d'excellentes capacités d'inférence. Il a bien performé dans plusieurs tests de référence, atteignant 89,1 % de précision dans MATH-500, 50,4 % de taux de réussite dans AIME 2024, et un score de 1205 sur CodeForces, démontrant de fortes capacités en mathématiques et en programmation pour un modèle de 8B."
|
667
|
-
},
|
668
650
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
669
651
|
"description": "Le modèle distillé DeepSeek-R1 optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
670
652
|
},
|
@@ -713,6 +695,9 @@
|
|
713
695
|
"deepseek-r1-70b-online": {
|
714
696
|
"description": "DeepSeek R1 70B version standard, prenant en charge la recherche en ligne en temps réel, adaptée aux tâches de dialogue et de traitement de texte nécessitant des informations à jour."
|
715
697
|
},
|
698
|
+
"deepseek-r1-distill-llama": {
|
699
|
+
"description": "deepseek-r1-distill-llama est un modèle dérivé par distillation de DeepSeek-R1 à partir de Llama."
|
700
|
+
},
|
716
701
|
"deepseek-r1-distill-llama-70b": {
|
717
702
|
"description": "DeepSeek R1 — le modèle plus grand et plus intelligent de la suite DeepSeek — a été distillé dans l'architecture Llama 70B. Basé sur des tests de référence et des évaluations humaines, ce modèle est plus intelligent que le Llama 70B d'origine, en particulier dans les tâches nécessitant précision mathématique et factuelle."
|
718
703
|
},
|
@@ -725,6 +710,9 @@
|
|
725
710
|
"deepseek-r1-distill-qianfan-llama-8b": {
|
726
711
|
"description": "Publié pour la première fois le 14 février 2025, distillé par l'équipe de développement du modèle Qianfan à partir du modèle de base Llama3_8B (construit avec Meta Llama), avec des données de distillation ajoutées provenant des corpus de Qianfan."
|
727
712
|
},
|
713
|
+
"deepseek-r1-distill-qwen": {
|
714
|
+
"description": "deepseek-r1-distill-qwen est un modèle dérivé par distillation de Qwen à partir de DeepSeek-R1."
|
715
|
+
},
|
728
716
|
"deepseek-r1-distill-qwen-1.5b": {
|
729
717
|
"description": "Le modèle de la série DeepSeek-R1-Distill est obtenu par la technique de distillation des connaissances, en ajustant les échantillons générés par DeepSeek-R1 sur des modèles open source tels que Qwen et Llama."
|
730
718
|
},
|
@@ -872,6 +860,9 @@
|
|
872
860
|
"gemini-1.5-flash-8b-exp-0924": {
|
873
861
|
"description": "Gemini 1.5 Flash 8B 0924 est le dernier modèle expérimental, offrant des améliorations significatives en termes de performance dans les cas d'utilisation textuels et multimodaux."
|
874
862
|
},
|
863
|
+
"gemini-1.5-flash-8b-latest": {
|
864
|
+
"description": "Gemini 1.5 Flash 8B est un modèle multimodal efficace prenant en charge une large gamme d'applications extensibles."
|
865
|
+
},
|
875
866
|
"gemini-1.5-flash-exp-0827": {
|
876
867
|
"description": "Gemini 1.5 Flash 0827 offre des capacités de traitement multimodal optimisées, adaptées à divers scénarios de tâches complexes."
|
877
868
|
},
|
@@ -914,9 +905,6 @@
|
|
914
905
|
"gemini-2.0-flash-lite-preview-02-05": {
|
915
906
|
"description": "Un modèle Gemini 2.0 Flash optimisé pour des objectifs de rentabilité et de faible latence."
|
916
907
|
},
|
917
|
-
"gemini-2.0-flash-thinking-exp": {
|
918
|
-
"description": "Gemini 2.0 Flash Exp est le dernier modèle d'IA multimodal expérimental de Google, doté de caractéristiques de nouvelle génération, d'une vitesse exceptionnelle, d'appels d'outils natifs et de génération multimodale."
|
919
|
-
},
|
920
908
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
921
909
|
"description": "Gemini 2.0 Flash Exp est le dernier modèle d'IA multimodal expérimental de Google, doté de caractéristiques de nouvelle génération, d'une vitesse exceptionnelle, d'appels d'outils natifs et de génération multimodale."
|
922
910
|
},
|
@@ -1223,6 +1211,9 @@
|
|
1223
1211
|
"llama-3.1-8b-instant": {
|
1224
1212
|
"description": "Llama 3.1 8B est un modèle à haute performance, offrant une capacité de génération de texte rapide, particulièrement adapté aux scénarios d'application nécessitant une efficacité à grande échelle et un rapport coût-efficacité."
|
1225
1213
|
},
|
1214
|
+
"llama-3.1-instruct": {
|
1215
|
+
"description": "Le modèle d'instructions affiné Llama 3.1 est optimisé pour les scénarios de dialogue, surpassant de nombreux modèles de chat open source existants dans les tests de référence courants de l'industrie."
|
1216
|
+
},
|
1226
1217
|
"llama-3.2-11b-vision-instruct": {
|
1227
1218
|
"description": "Capacités d'inférence d'image exceptionnelles sur des images haute résolution, adaptées aux applications de compréhension visuelle."
|
1228
1219
|
},
|
@@ -1235,12 +1226,18 @@
|
|
1235
1226
|
"llama-3.2-90b-vision-preview": {
|
1236
1227
|
"description": "Llama 3.2 est conçu pour traiter des tâches combinant des données visuelles et textuelles. Il excelle dans des tâches telles que la description d'images et les questions-réponses visuelles, comblant le fossé entre la génération de langage et le raisonnement visuel."
|
1237
1228
|
},
|
1229
|
+
"llama-3.2-vision-instruct": {
|
1230
|
+
"description": "Le modèle Llama 3.2-Vision optimisé pour les instructions est spécialisé dans la reconnaissance visuelle, le raisonnement sur images, la description d'images et la réponse aux questions générales liées aux images."
|
1231
|
+
},
|
1238
1232
|
"llama-3.3-70b-instruct": {
|
1239
1233
|
"description": "Llama 3.3 est le modèle de langage open source multilingue le plus avancé de la série Llama, offrant des performances comparables à celles du modèle 405B à un coût très bas. Basé sur une architecture Transformer, il améliore son utilité et sa sécurité grâce à un ajustement supervisé (SFT) et un apprentissage par renforcement avec retour humain (RLHF). Sa version optimisée pour les instructions est spécialement conçue pour les dialogues multilingues et surpasse de nombreux modèles de chat open source et fermés sur plusieurs benchmarks industriels. La date limite des connaissances est décembre 2023."
|
1240
1234
|
},
|
1241
1235
|
"llama-3.3-70b-versatile": {
|
1242
1236
|
"description": "Le modèle de langage multilingue Llama 3.3 de Meta (LLM) est un modèle génératif pré-entraîné et affiné par instructions avec 70B (entrée/sortie de texte). Le modèle Llama 3.3 affiné par instructions est optimisé pour les cas d'utilisation de dialogue multilingue et surpasse de nombreux modèles de chat open-source et fermés disponibles sur des benchmarks industriels courants."
|
1243
1237
|
},
|
1238
|
+
"llama-3.3-instruct": {
|
1239
|
+
"description": "Le modèle d'instructions affiné Llama 3.3 est optimisé pour les scénarios de dialogue, surpassant de nombreux modèles de chat open source existants dans les tests de référence courants de l'industrie."
|
1240
|
+
},
|
1244
1241
|
"llama3-70b-8192": {
|
1245
1242
|
"description": "Meta Llama 3 70B offre une capacité de traitement de complexité inégalée, sur mesure pour des projets exigeants."
|
1246
1243
|
},
|
@@ -1319,9 +1316,6 @@
|
|
1319
1316
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
1320
1317
|
"description": "LLaMA 3.2 est conçu pour traiter des tâches qui combinent des données visuelles et textuelles. Il excelle dans des tâches comme la description d'image et le questionnement visuel, comblant le fossé entre génération de langage et raisonnement visuel."
|
1321
1318
|
},
|
1322
|
-
"meta-llama/Llama-3.3-70B-Instruct": {
|
1323
|
-
"description": "Llama 3.3 est le modèle de langage open source multilingue le plus avancé de la série Llama, offrant une expérience comparable aux performances du modèle 405B à un coût très bas. Basé sur une architecture Transformer, il améliore l'utilité et la sécurité grâce à un ajustement supervisé (SFT) et un apprentissage par renforcement avec retour humain (RLHF). Sa version optimisée pour les instructions est spécialement conçue pour les dialogues multilingues, surpassant de nombreux modèles de chat open source et fermés sur plusieurs benchmarks industriels. Date limite de connaissance : décembre 2023."
|
1324
|
-
},
|
1325
1319
|
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1326
1320
|
"description": "Le modèle de langage multilingue Meta Llama 3.3 (LLM) est un modèle génératif pré-entraîné et ajusté par instruction de 70B (entrée/sortie de texte). Le modèle de texte pur ajusté par instruction Llama 3.3 est optimisé pour les cas d'utilisation de dialogue multilingue et surpasse de nombreux modèles de chat open source et fermés sur des benchmarks industriels courants."
|
1327
1321
|
},
|
@@ -1349,15 +1343,9 @@
|
|
1349
1343
|
"meta-llama/Meta-Llama-3.1-70B": {
|
1350
1344
|
"description": "Llama 3.1 est le modèle de pointe lancé par Meta, prenant en charge jusqu'à 405B de paramètres, applicable aux dialogues complexes, à la traduction multilingue et à l'analyse de données."
|
1351
1345
|
},
|
1352
|
-
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
1353
|
-
"description": "LLaMA 3.1 70B offre un support de dialogue efficace en plusieurs langues."
|
1354
|
-
},
|
1355
1346
|
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
|
1356
1347
|
"description": "Le modèle Llama 3.1 70B est finement ajusté pour des applications à forte charge, quantifié en FP8 pour offrir une capacité de calcul et une précision plus efficaces, garantissant des performances exceptionnelles dans des scénarios complexes."
|
1357
1348
|
},
|
1358
|
-
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
1359
|
-
"description": "LLaMA 3.1 offre un support multilingue, étant l'un des modèles génératifs les plus avancés de l'industrie."
|
1360
|
-
},
|
1361
1349
|
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
|
1362
1350
|
"description": "Le modèle Llama 3.1 8B utilise la quantification FP8, prenant en charge jusqu'à 131 072 jetons de contexte, se distinguant parmi les modèles open source, adapté aux tâches complexes, surpassant de nombreux benchmarks industriels."
|
1363
1351
|
},
|
@@ -1451,12 +1439,18 @@
|
|
1451
1439
|
"mistral-large": {
|
1452
1440
|
"description": "Mixtral Large est le modèle phare de Mistral, combinant des capacités de génération de code, de mathématiques et de raisonnement, prenant en charge une fenêtre de contexte de 128k."
|
1453
1441
|
},
|
1442
|
+
"mistral-large-instruct": {
|
1443
|
+
"description": "Mistral-Large-Instruct-2407 est un modèle de langage avancé (LLM) dense de grande taille, doté de 123 milliards de paramètres, offrant des capacités de raisonnement, de connaissances et de codage à la pointe de la technologie."
|
1444
|
+
},
|
1454
1445
|
"mistral-large-latest": {
|
1455
1446
|
"description": "Mistral Large est le modèle phare, excellent pour les tâches multilingues, le raisonnement complexe et la génération de code, idéal pour des applications haut de gamme."
|
1456
1447
|
},
|
1457
1448
|
"mistral-nemo": {
|
1458
1449
|
"description": "Mistral Nemo, développé en collaboration entre Mistral AI et NVIDIA, est un modèle de 12B à performance efficace."
|
1459
1450
|
},
|
1451
|
+
"mistral-nemo-instruct": {
|
1452
|
+
"description": "Mistral-Nemo-Instruct-2407 est un grand modèle de langage (LLM) qui est une version affinée par instructions de Mistral-Nemo-Base-2407."
|
1453
|
+
},
|
1460
1454
|
"mistral-small": {
|
1461
1455
|
"description": "Mistral Small peut être utilisé pour toute tâche basée sur le langage nécessitant une haute efficacité et une faible latence."
|
1462
1456
|
},
|
@@ -1670,15 +1664,6 @@
|
|
1670
1664
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1671
1665
|
"description": "Modèle de code puissant de taille moyenne, prenant en charge une longueur de contexte de 32K, spécialisé dans la programmation multilingue."
|
1672
1666
|
},
|
1673
|
-
"qwen1.5-14b-chat": {
|
1674
|
-
"description": "La série Qwen1.5 est la version Beta de Qwen2, un modèle de langage de décodage uniquement basé sur Transformer, pré-entraîné sur de vastes volumes de données. Par rapport aux versions précédentes de la série Qwen, les modèles base et chat de la série Qwen1.5 prennent en charge plusieurs langues et ont été améliorés en termes de conversation globale et de capacités de base. Qwen1.5-14b-chat est le modèle de taille principale de 14 milliards de paramètres spécifiquement conçu pour les scénarios de chat."
|
1675
|
-
},
|
1676
|
-
"qwen1.5-32b-chat": {
|
1677
|
-
"description": "La série Qwen1.5 est la version Beta de Qwen2, un modèle de langage de décodage uniquement basé sur Transformer, pré-entraîné sur de vastes volumes de données. Par rapport aux versions précédentes de la série Qwen, la série Qwen1.5 améliore les modèles base et chat pour prendre en charge plusieurs langues, et offre des améliorations dans les capacités de conversation et de base. Qwen1.5-32b-chat est un grand modèle de 320 milliards de paramètres spécifiquement conçu pour les scénarios de chat, offrant des performances supérieures dans les scénarios d'agents intelligents par rapport au modèle 14b, tout en réduisant les coûts d'inférence par rapport au modèle 72b."
|
1678
|
-
},
|
1679
|
-
"qwen1.5-72b-chat": {
|
1680
|
-
"description": "La série Qwen1.5 est la version Beta de Qwen2, un modèle de langage de décodage uniquement basé sur Transformer, pré-entraîné sur de vastes volumes de données. Par rapport aux versions précédentes de la série Qwen, les modèles base et chat de la série Qwen1.5 prennent en charge plusieurs langues et ont été améliorés en termes de conversation globale et de capacités de base. Qwen1.5-72b-chat est le grand modèle de 72 milliards de paramètres dédié aux scénarios de chat."
|
1681
|
-
},
|
1682
1667
|
"qwen2": {
|
1683
1668
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
1684
1669
|
},
|
@@ -1715,6 +1700,12 @@
|
|
1715
1700
|
"qwen2.5-coder-7b-instruct": {
|
1716
1701
|
"description": "Version open source du modèle de code Tongyi Qwen."
|
1717
1702
|
},
|
1703
|
+
"qwen2.5-coder-instruct": {
|
1704
|
+
"description": "Qwen2.5-Coder est le dernier modèle de langage de grande taille spécialisé dans le code de la série Qwen (anciennement connu sous le nom de CodeQwen)."
|
1705
|
+
},
|
1706
|
+
"qwen2.5-instruct": {
|
1707
|
+
"description": "Qwen2.5 est la dernière série de modèles de langage à grande échelle Qwen. Pour Qwen2.5, nous avons publié plusieurs modèles de langage de base et des modèles de langage affinés par instruction, avec des paramètres allant de 0,5 à 72 milliards."
|
1708
|
+
},
|
1718
1709
|
"qwen2.5-math-1.5b-instruct": {
|
1719
1710
|
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
1720
1711
|
},
|
@@ -1724,12 +1715,18 @@
|
|
1724
1715
|
"qwen2.5-math-7b-instruct": {
|
1725
1716
|
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
1726
1717
|
},
|
1718
|
+
"qwen2.5-vl-32b-instruct": {
|
1719
|
+
"description": "La série de modèles Qwen2.5-VL améliore l'intelligence, l'utilité et l'adaptabilité des modèles, offrant des performances supérieures dans des scénarios tels que les conversations naturelles, la création de contenu, les services d'expertise professionnelle et le développement de code. La version 32B utilise des techniques d'apprentissage par renforcement pour optimiser le modèle, fournissant par rapport aux autres modèles de la série Qwen2.5 VL un style de sortie plus conforme aux préférences humaines, une capacité de raisonnement sur des problèmes mathématiques complexes, ainsi qu'une compréhension fine et un raisonnement sur les images."
|
1720
|
+
},
|
1727
1721
|
"qwen2.5-vl-72b-instruct": {
|
1728
1722
|
"description": "Amélioration globale des capacités de suivi des instructions, mathématiques, résolution de problèmes et code, amélioration des capacités de reconnaissance, support de divers formats pour un positionnement précis des éléments visuels, compréhension de fichiers vidéo longs (jusqu'à 10 minutes) et localisation d'événements en temps réel, capable de comprendre l'ordre temporel et la vitesse, supportant le contrôle d'agents OS ou Mobile basé sur des capacités d'analyse et de localisation, avec une forte capacité d'extraction d'informations clés et de sortie au format Json. Cette version est la version 72B, la plus puissante de cette série."
|
1729
1723
|
},
|
1730
1724
|
"qwen2.5-vl-7b-instruct": {
|
1731
1725
|
"description": "Amélioration globale des capacités de suivi des instructions, mathématiques, résolution de problèmes et code, amélioration des capacités de reconnaissance, support de divers formats pour un positionnement précis des éléments visuels, compréhension de fichiers vidéo longs (jusqu'à 10 minutes) et localisation d'événements en temps réel, capable de comprendre l'ordre temporel et la vitesse, supportant le contrôle d'agents OS ou Mobile basé sur des capacités d'analyse et de localisation, avec une forte capacité d'extraction d'informations clés et de sortie au format Json. Cette version est la version 72B, la plus puissante de cette série."
|
1732
1726
|
},
|
1727
|
+
"qwen2.5-vl-instruct": {
|
1728
|
+
"description": "Qwen2.5-VL est la dernière version du modèle de langage visuel de la famille de modèles Qwen."
|
1729
|
+
},
|
1733
1730
|
"qwen2.5:0.5b": {
|
1734
1731
|
"description": "Qwen2.5 est le nouveau modèle de langage à grande échelle de Alibaba, offrant d'excellentes performances pour répondre à des besoins d'application diversifiés."
|
1735
1732
|
},
|
@@ -146,6 +146,9 @@
|
|
146
146
|
"xai": {
|
147
147
|
"description": "xAI est une entreprise dédiée à la construction d'intelligences artificielles pour accélérer les découvertes scientifiques humaines. Notre mission est de promouvoir notre compréhension commune de l'univers."
|
148
148
|
},
|
149
|
+
"xinference": {
|
150
|
+
"description": "Xorbits Inference (Xinference) est une plateforme open source conçue pour simplifier l'exécution et l'intégration de divers modèles d'IA. Grâce à Xinference, vous pouvez utiliser n'importe quel LLM open source, modèle d'embedding ou modèle multimodal pour effectuer des inférences dans le cloud ou en local, et créer des applications IA puissantes."
|
151
|
+
},
|
149
152
|
"zeroone": {
|
150
153
|
"description": "01.AI se concentre sur les technologies d'intelligence artificielle de l'ère IA 2.0, promouvant activement l'innovation et l'application de \"l'homme + l'intelligence artificielle\", utilisant des modèles puissants et des technologies IA avancées pour améliorer la productivité humaine et réaliser l'autonomisation technologique."
|
151
154
|
},
|
@@ -42,6 +42,17 @@
|
|
42
42
|
"sessionWithName": "Paramètres de session · {{name}}",
|
43
43
|
"title": "Paramètres"
|
44
44
|
},
|
45
|
+
"hotkey": {
|
46
|
+
"conflicts": "Conflit avec les raccourcis existants",
|
47
|
+
"group": {
|
48
|
+
"conversation": "Conversation",
|
49
|
+
"essential": "Essentiel"
|
50
|
+
},
|
51
|
+
"invalidCombination": "Le raccourci doit contenir au moins une touche de modification (Ctrl, Alt, Shift) et une touche normale",
|
52
|
+
"record": "Appuyez sur une touche pour enregistrer le raccourci",
|
53
|
+
"reset": "Réinitialiser aux raccourcis par défaut",
|
54
|
+
"title": "Raccourcis clavier"
|
55
|
+
},
|
45
56
|
"llm": {
|
46
57
|
"aesGcm": "Votre clé, votre adresse de proxy, etc. seront cryptées à l'aide de l'algorithme de chiffrement <1>AES-GCM</1>",
|
47
58
|
"apiKey": {
|
@@ -425,6 +436,7 @@
|
|
425
436
|
"agent": "Agent par défaut",
|
426
437
|
"common": "Paramètres généraux",
|
427
438
|
"experiment": "Expérience",
|
439
|
+
"hotkey": "Raccourcis clavier",
|
428
440
|
"llm": "Modèle de langue",
|
429
441
|
"provider": "Fournisseur de services d'IA",
|
430
442
|
"sync": "Synchronisation cloud",
|
@@ -0,0 +1,46 @@
|
|
1
|
+
{
|
2
|
+
"addUserMessage": {
|
3
|
+
"desc": "Aggiungi il contenuto attuale come messaggio utente, senza attivare la generazione",
|
4
|
+
"title": "Aggiungi un messaggio utente"
|
5
|
+
},
|
6
|
+
"editMessage": {
|
7
|
+
"desc": "Entra in modalità di modifica tenendo premuto Alt e facendo doppio clic sul messaggio",
|
8
|
+
"title": "Modifica messaggio"
|
9
|
+
},
|
10
|
+
"openChatSettings": {
|
11
|
+
"desc": "Visualizza e modifica le impostazioni della conversazione attuale",
|
12
|
+
"title": "Apri impostazioni chat"
|
13
|
+
},
|
14
|
+
"openHotkeyHelper": {
|
15
|
+
"desc": "Visualizza le istruzioni per l'uso di tutte le scorciatoie da tastiera",
|
16
|
+
"title": "Apri aiuto scorciatoie"
|
17
|
+
},
|
18
|
+
"regenerateMessage": {
|
19
|
+
"desc": "Rigenera l'ultimo messaggio",
|
20
|
+
"title": "Rigenera messaggio"
|
21
|
+
},
|
22
|
+
"saveTopic": {
|
23
|
+
"desc": "Salva l'argomento attuale e apri un nuovo argomento",
|
24
|
+
"title": "Inizia un nuovo argomento"
|
25
|
+
},
|
26
|
+
"search": {
|
27
|
+
"desc": "Attiva la barra di ricerca principale della pagina corrente",
|
28
|
+
"title": "Cerca"
|
29
|
+
},
|
30
|
+
"switchAgent": {
|
31
|
+
"desc": "Cambia l'assistente fissato nella barra laterale tenendo premuto Ctrl e premendo un numero da 0 a 9",
|
32
|
+
"title": "Cambia assistente rapidamente"
|
33
|
+
},
|
34
|
+
"toggleLeftPanel": {
|
35
|
+
"desc": "Mostra o nascondi il pannello assistente a sinistra",
|
36
|
+
"title": "Mostra/Nascondi pannello assistente"
|
37
|
+
},
|
38
|
+
"toggleRightPanel": {
|
39
|
+
"desc": "Mostra o nascondi il pannello argomenti a destra",
|
40
|
+
"title": "Mostra/Nascondi pannello argomenti"
|
41
|
+
},
|
42
|
+
"toggleZenMode": {
|
43
|
+
"desc": "In modalità concentrazione, mostra solo la conversazione attuale, nascondendo altre interfacce",
|
44
|
+
"title": "Attiva/disattiva modalità di concentrazione"
|
45
|
+
}
|
46
|
+
}
|