@lobehub/chat 1.75.4 → 1.76.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CHANGELOG.md +52 -0
  2. package/README.md +1 -1
  3. package/README.zh-CN.md +1 -1
  4. package/changelog/v1.json +18 -0
  5. package/docs/developer/database-schema.dbml +1 -0
  6. package/docs/self-hosting/advanced/model-list.mdx +5 -3
  7. package/docs/self-hosting/advanced/model-list.zh-CN.mdx +5 -3
  8. package/docs/usage/providers/infiniai.zh-CN.mdx +4 -0
  9. package/locales/ar/hotkey.json +46 -0
  10. package/locales/ar/models.json +51 -54
  11. package/locales/ar/providers.json +3 -0
  12. package/locales/ar/setting.json +12 -0
  13. package/locales/bg-BG/hotkey.json +46 -0
  14. package/locales/bg-BG/models.json +51 -54
  15. package/locales/bg-BG/providers.json +3 -0
  16. package/locales/bg-BG/setting.json +12 -0
  17. package/locales/de-DE/hotkey.json +46 -0
  18. package/locales/de-DE/models.json +51 -54
  19. package/locales/de-DE/providers.json +3 -0
  20. package/locales/de-DE/setting.json +12 -0
  21. package/locales/en-US/hotkey.json +46 -0
  22. package/locales/en-US/models.json +51 -54
  23. package/locales/en-US/providers.json +3 -0
  24. package/locales/en-US/setting.json +12 -0
  25. package/locales/es-ES/hotkey.json +46 -0
  26. package/locales/es-ES/models.json +51 -54
  27. package/locales/es-ES/providers.json +3 -0
  28. package/locales/es-ES/setting.json +12 -0
  29. package/locales/fa-IR/hotkey.json +46 -0
  30. package/locales/fa-IR/models.json +51 -54
  31. package/locales/fa-IR/providers.json +3 -0
  32. package/locales/fa-IR/setting.json +12 -0
  33. package/locales/fr-FR/hotkey.json +46 -0
  34. package/locales/fr-FR/models.json +51 -54
  35. package/locales/fr-FR/providers.json +3 -0
  36. package/locales/fr-FR/setting.json +12 -0
  37. package/locales/it-IT/hotkey.json +46 -0
  38. package/locales/it-IT/models.json +51 -54
  39. package/locales/it-IT/providers.json +3 -0
  40. package/locales/it-IT/setting.json +12 -0
  41. package/locales/ja-JP/hotkey.json +46 -0
  42. package/locales/ja-JP/models.json +51 -54
  43. package/locales/ja-JP/providers.json +3 -0
  44. package/locales/ja-JP/setting.json +12 -0
  45. package/locales/ko-KR/hotkey.json +46 -0
  46. package/locales/ko-KR/models.json +51 -54
  47. package/locales/ko-KR/providers.json +3 -0
  48. package/locales/ko-KR/setting.json +12 -0
  49. package/locales/nl-NL/hotkey.json +46 -0
  50. package/locales/nl-NL/models.json +51 -54
  51. package/locales/nl-NL/providers.json +3 -0
  52. package/locales/nl-NL/setting.json +12 -0
  53. package/locales/pl-PL/hotkey.json +46 -0
  54. package/locales/pl-PL/models.json +51 -54
  55. package/locales/pl-PL/providers.json +3 -0
  56. package/locales/pl-PL/setting.json +12 -0
  57. package/locales/pt-BR/hotkey.json +46 -0
  58. package/locales/pt-BR/models.json +51 -54
  59. package/locales/pt-BR/providers.json +3 -0
  60. package/locales/pt-BR/setting.json +12 -0
  61. package/locales/ru-RU/hotkey.json +46 -0
  62. package/locales/ru-RU/models.json +51 -54
  63. package/locales/ru-RU/providers.json +3 -0
  64. package/locales/ru-RU/setting.json +12 -0
  65. package/locales/tr-TR/hotkey.json +46 -0
  66. package/locales/tr-TR/models.json +51 -54
  67. package/locales/tr-TR/providers.json +3 -0
  68. package/locales/tr-TR/setting.json +12 -0
  69. package/locales/vi-VN/hotkey.json +46 -0
  70. package/locales/vi-VN/models.json +51 -54
  71. package/locales/vi-VN/providers.json +3 -0
  72. package/locales/vi-VN/setting.json +12 -0
  73. package/locales/zh-CN/hotkey.json +46 -0
  74. package/locales/zh-CN/models.json +55 -58
  75. package/locales/zh-CN/providers.json +3 -0
  76. package/locales/zh-CN/setting.json +12 -0
  77. package/locales/zh-TW/hotkey.json +46 -0
  78. package/locales/zh-TW/models.json +51 -54
  79. package/locales/zh-TW/providers.json +3 -0
  80. package/locales/zh-TW/setting.json +12 -0
  81. package/package.json +3 -3
  82. package/src/app/[variants]/(main)/(mobile)/me/(home)/features/Category.tsx +1 -1
  83. package/src/app/[variants]/(main)/(mobile)/me/(home)/layout.tsx +3 -2
  84. package/src/app/[variants]/(main)/(mobile)/me/data/features/Category.tsx +1 -1
  85. package/src/app/[variants]/(main)/(mobile)/me/profile/features/Category.tsx +1 -1
  86. package/src/app/[variants]/(main)/(mobile)/me/settings/features/Category.tsx +1 -1
  87. package/src/app/[variants]/(main)/_layout/Desktop/RegisterHotkeys.tsx +11 -0
  88. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/PinList/index.tsx +6 -23
  89. package/src/app/[variants]/(main)/_layout/Desktop/SideBar/TopActions.test.tsx +2 -0
  90. package/src/app/[variants]/(main)/_layout/Desktop/index.tsx +11 -4
  91. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/SendMore.tsx +6 -21
  92. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/ShortcutHint.tsx +13 -34
  93. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Desktop/Footer/index.tsx +1 -1
  94. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ZenModeToast/Toast.tsx +7 -4
  95. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/HeaderAction.tsx +12 -8
  96. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/ChatHeader/Main.tsx +24 -30
  97. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/index.tsx +0 -2
  98. package/src/app/[variants]/(main)/chat/(workspace)/features/SettingButton.tsx +12 -7
  99. package/src/app/[variants]/(main)/chat/@session/features/SessionSearchBar.tsx +5 -1
  100. package/src/app/[variants]/(main)/chat/_layout/Desktop/RegisterHotkeys.tsx +10 -0
  101. package/src/app/[variants]/(main)/chat/_layout/Desktop/index.tsx +5 -0
  102. package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +1 -1
  103. package/src/app/[variants]/(main)/discover/features/StoreSearchBar.tsx +5 -1
  104. package/src/app/[variants]/(main)/settings/hooks/useCategory.tsx +31 -21
  105. package/src/app/[variants]/(main)/settings/hotkey/features/HotkeySetting.tsx +80 -0
  106. package/src/app/[variants]/(main)/settings/hotkey/index.tsx +9 -0
  107. package/src/app/[variants]/(main)/settings/hotkey/page.tsx +15 -0
  108. package/src/app/[variants]/layout.tsx +16 -13
  109. package/src/config/aiModels/infiniai.ts +52 -55
  110. package/src/config/aiModels/siliconcloud.ts +17 -1
  111. package/src/config/aiModels/tencentcloud.ts +17 -0
  112. package/src/const/hotkeys.ts +80 -10
  113. package/src/const/settings/hotkey.ts +10 -0
  114. package/src/const/settings/index.ts +3 -0
  115. package/src/database/client/migrations.json +46 -32
  116. package/src/database/migrations/0019_add_hotkey_user_settings.sql +2 -0
  117. package/src/database/migrations/meta/0019_snapshot.json +4218 -0
  118. package/src/database/migrations/meta/_journal.json +7 -0
  119. package/src/database/schemas/user.ts +1 -0
  120. package/src/database/server/models/user.ts +2 -0
  121. package/src/features/ChatInput/Desktop/InputArea/index.tsx +8 -0
  122. package/src/features/ChatInput/Desktop/index.tsx +0 -1
  123. package/src/features/ChatInput/Topic/index.tsx +10 -15
  124. package/src/features/FileManager/Header/FilesSearchBar.tsx +6 -2
  125. package/src/features/HotkeyHelperPanel/HotkeyContent.tsx +62 -0
  126. package/src/features/HotkeyHelperPanel/index.tsx +59 -0
  127. package/src/hooks/useHotkeys/chatScope.ts +105 -0
  128. package/src/hooks/useHotkeys/globalScope.ts +69 -0
  129. package/src/hooks/useHotkeys/index.ts +2 -0
  130. package/src/hooks/useHotkeys/useHotkeyById.test.ts +194 -0
  131. package/src/hooks/useHotkeys/useHotkeyById.ts +57 -0
  132. package/src/libs/agent-runtime/infiniai/index.ts +38 -3
  133. package/src/locales/default/hotkey.ts +50 -0
  134. package/src/locales/default/index.ts +2 -0
  135. package/src/locales/default/setting.ts +12 -0
  136. package/src/store/global/initialState.ts +3 -0
  137. package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +79 -0
  138. package/src/store/user/slices/settings/selectors/settings.test.ts +131 -0
  139. package/src/store/user/slices/settings/selectors/settings.ts +6 -0
  140. package/src/types/hotkey.ts +59 -0
  141. package/src/types/user/settings/hotkey.ts +3 -0
  142. package/src/types/user/settings/index.ts +3 -0
  143. package/src/utils/format.ts +1 -1
  144. package/src/utils/parseModels.test.ts +14 -0
  145. package/src/utils/parseModels.ts +4 -0
  146. package/src/app/[variants]/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +0 -44
  147. package/src/components/HotKeys/index.tsx +0 -77
@@ -1,13 +1,4 @@
1
1
  {
2
- "01-ai/Yi-1.5-34B-Chat-16K": {
3
- "description": "Yi-1.5 34B, dzięki bogatym próbom treningowym, oferuje doskonałe wyniki w zastosowaniach branżowych."
4
- },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5-6B-Chat to wariant serii Yi-1.5, należący do otwartych modeli czatu. Yi-1.5 to ulepszona wersja Yi, która była nieprzerwanie trenowana na 500B wysokiej jakości korpusie i dostosowywana na 3M zróżnicowanych próbkach. W porównaniu do Yi, Yi-1.5 wykazuje lepsze zdolności w zakresie kodowania, matematyki, wnioskowania i przestrzegania instrukcji, jednocześnie zachowując doskonałe umiejętności rozumienia języka, wnioskowania ogólnego i rozumienia tekstu. Model ten oferuje wersje o długości kontekstu 4K, 16K i 32K, a całkowita liczba tokenów w pretreningu wynosi 3.6T."
7
- },
8
- "01-ai/Yi-1.5-9B-Chat-16K": {
9
- "description": "Yi-1.5 9B obsługuje 16K tokenów, oferując wydajne i płynne zdolności generowania języka."
10
- },
11
2
  "01-ai/yi-1.5-34b-chat": {
12
3
  "description": "Zero One, najnowszy model open source z dostrojeniem, zawierający 34 miliardy parametrów, dostosowany do różnych scenariuszy dialogowych, z wysokiej jakości danymi treningowymi, dostosowany do preferencji ludzkich."
13
4
  },
@@ -149,12 +140,6 @@
149
140
  "Llama-3.2-90B-Vision-Instruct\t": {
150
141
  "description": "Zaawansowane zdolności wnioskowania obrazów, odpowiednie do zastosowań w agentach rozumienia wizualnego."
151
142
  },
152
- "LoRA/Qwen/Qwen2.5-72B-Instruct": {
153
- "description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
154
- },
155
- "LoRA/Qwen/Qwen2.5-7B-Instruct": {
156
- "description": "Qwen2.5-7B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 7B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
157
- },
158
143
  "Meta-Llama-3.1-405B-Instruct": {
159
144
  "description": "Model tekstowy Llama 3.1 dostosowany do instrukcji, zoptymalizowany do wielojęzycznych przypadków użycia dialogów, osiągający doskonałe wyniki w wielu dostępnych modelach czatu, zarówno otwartych, jak i zamkniętych, w powszechnych benchmarkach branżowych."
160
145
  },
@@ -179,9 +164,6 @@
179
164
  "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": {
180
165
  "description": "Nous Hermes 2 - Mixtral 8x7B-DPO (46.7B) to model poleceń o wysokiej precyzji, idealny do złożonych obliczeń."
181
166
  },
182
- "OpenGVLab/InternVL2-26B": {
183
- "description": "InternVL2 pokazuje wyjątkowe wyniki w różnych zadaniach językowych i wizualnych, w tym zrozumieniu dokumentów i wykresów, zrozumieniu tekstu w scenach, OCR, rozwiązywaniu problemów naukowych i matematycznych."
184
- },
185
167
  "Phi-3-medium-128k-instruct": {
186
168
  "description": "Ten sam model Phi-3-medium, ale z większym rozmiarem kontekstu do RAG lub kilku strzałowego wywoływania."
187
169
  },
@@ -206,9 +188,6 @@
206
188
  "Phi-3.5-vision-instrust": {
207
189
  "description": "Zaktualizowana wersja modelu Phi-3-vision."
208
190
  },
209
- "Pro/OpenGVLab/InternVL2-8B": {
210
- "description": "InternVL2 pokazuje wyjątkowe wyniki w różnych zadaniach językowych i wizualnych, w tym zrozumieniu dokumentów i wykresów, zrozumieniu tekstu w scenach, OCR, rozwiązywaniu problemów naukowych i matematycznych."
211
- },
212
191
  "Pro/Qwen/Qwen2-1.5B-Instruct": {
213
192
  "description": "Qwen2-1.5B-Instruct to model dużego języka z serii Qwen2, dostosowany do instrukcji, o rozmiarze parametrów wynoszącym 1.5B. Model ten oparty jest na architekturze Transformer, wykorzystując funkcję aktywacji SwiGLU, przesunięcia QKV w uwadze oraz grupowe zapytania uwagi. Wykazuje doskonałe wyniki w wielu testach benchmarkowych dotyczących rozumienia języka, generowania, zdolności wielojęzycznych, kodowania, matematyki i wnioskowania, przewyższając większość modeli open-source. W porównaniu do Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct wykazuje znaczną poprawę wydajności w testach MMLU, HumanEval, GSM8K, C-Eval i IFEval, mimo że ma nieco mniejszą liczbę parametrów."
214
193
  },
@@ -224,20 +203,23 @@
224
203
  "Pro/Qwen/Qwen2.5-Coder-7B-Instruct": {
225
204
  "description": "Qwen2.5-Coder-7B-Instruct to najnowsza wersja serii dużych modeli językowych specyficznych dla kodu wydana przez Alibaba Cloud. Model ten, oparty na Qwen2.5, został przeszkolony na 55 bilionach tokenów, znacznie poprawiając zdolności generowania kodu, wnioskowania i naprawy. Wzmacnia on nie tylko zdolności kodowania, ale także utrzymuje przewagę w zakresie matematyki i ogólnych umiejętności. Model ten stanowi bardziej kompleksową podstawę dla rzeczywistych zastosowań, takich jak inteligentne agenty kodowe."
226
205
  },
206
+ "Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
207
+ "description": "Qwen2.5-VL to nowa wersja serii Qwen, posiadająca zaawansowane zdolności zrozumienia wizualnego. Potrafi analizować tekst, wykresy i układ w obrazach, a także zrozumieć długie filmy i wykrywać zdarzenia. Jest zdolny do przeprowadzania wnioskowania, operowania narzędziami, obsługuje lokalizację obiektów w różnych formatach i generowanie wyjścia strukturalnego. Optymalizuje trening rozdzielczości i klatki wideo, a także zwiększa efektywność kodera wizualnego."
208
+ },
227
209
  "Pro/THUDM/glm-4-9b-chat": {
228
210
  "description": "GLM-4-9B-Chat to otwarta wersja modelu pretrenowanego z serii GLM-4, wydana przez Zhipu AI. Model ten wykazuje doskonałe wyniki w zakresie semantyki, matematyki, wnioskowania, kodu i wiedzy. Oprócz wsparcia dla wieloetapowych rozmów, GLM-4-9B-Chat oferuje również zaawansowane funkcje, takie jak przeglądanie stron internetowych, wykonywanie kodu, wywoływanie niestandardowych narzędzi (Function Call) oraz wnioskowanie z długich tekstów. Model obsługuje 26 języków, w tym chiński, angielski, japoński, koreański i niemiecki. W wielu testach benchmarkowych, takich jak AlignBench-v2, MT-Bench, MMLU i C-Eval, GLM-4-9B-Chat wykazuje doskonałą wydajność. Model obsługuje maksymalną długość kontekstu 128K, co czyni go odpowiednim do badań akademickich i zastosowań komercyjnych."
229
211
  },
230
212
  "Pro/deepseek-ai/DeepSeek-R1": {
231
213
  "description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem ze wzmocnieniem (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modeli. Przed RL, DeepSeek-R1 wprowadził dane do zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowych i wnioskowania, osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne wyniki."
232
214
  },
233
- "Pro/deepseek-ai/DeepSeek-V3": {
234
- "description": "DeepSeek-V3 to model językowy z 6710 miliardami parametrów, oparty na architekturze mieszanych ekspertów (MoE), wykorzystujący wielogłowicową potencjalną uwagę (MLA) oraz strategię równoważenia obciążenia bez dodatkowych strat, co optymalizuje wydajność wnioskowania i treningu. Dzięki wstępnemu treningowi na 14,8 bilionach wysokiej jakości tokenów oraz nadzorowanemu dostrajaniu i uczeniu ze wzmocnieniem, DeepSeek-V3 przewyższa inne modele open source, zbliżając się do wiodących modeli zamkniętych."
215
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
216
+ "description": "DeepSeek-R1-Distill-Qwen-1.5B to model stworzony na podstawie Qwen2.5-Math-1.5B poprzez proces wiedzy distylacji. Model ten został dostrajony za pomocą 800 000 wybrukowanych próbek wygenerowanych przez DeepSeek-R1, co pozwoliło osiągnąć dobre wyniki na wielu testach benchmarkowych. Jako lekki model, osiągnął 83,9% dokładności na MATH-500, 28,9% sukcesów na AIME 2024 oraz 954 punkty na CodeForces, co świadczy o zdolnościach wnioskowania przekraczających jego rozmiar parametrów."
235
217
  },
236
- "Pro/google/gemma-2-9b-it": {
237
- "description": "Gemma to jedna z lekkich, nowoczesnych otwartych serii modeli opracowanych przez Google. Jest to duży model językowy z jedynie dekoderem, wspierający język angielski, oferujący otwarte wagi, pretrenowane warianty oraz warianty dostosowane do instrukcji. Model Gemma nadaje się do różnych zadań generowania tekstu, w tym pytania-odpowiedzi, streszczenia i wnioskowania. Model 9B został przeszkolony na 8 bilionach tokenów. Jego stosunkowo mała skala umożliwia wdrożenie w środowiskach o ograniczonych zasobach, takich jak laptopy, komputery stacjonarne lub własna infrastruktura chmurowa, co umożliwia większej liczbie osób dostęp do nowoczesnych modeli AI i wspiera innowacje."
218
+ "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
219
+ "description": "DeepSeek-R1-Distill-Qwen-7B to model stworzony na podstawie Qwen2.5-Math-7B poprzez proces wiedzy distylacji. Model ten został wytrenowany na 800 000 wybrukowanych próbkach wygenerowanych przez DeepSeek-R1, co pozwoliło mu wykazać się doskonałymi zdolnościami wnioskowania. W wielu testach referencyjnych osiągnął znakomite wyniki, w tym 92,8% dokładności na MATH-500, 55,5% sukcesów na AIME 2024 oraz 1189 punktów na CodeForces, co potwierdza jego silne umiejętności matematyczne i programistyczne jako modelu o rozmiarze 7B."
238
220
  },
239
- "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
240
- "description": "Meta Llama 3.1 to rodzina dużych modeli językowych opracowanych przez Meta, obejmująca pretrenowane i dostosowane do instrukcji warianty o rozmiarach parametrów 8B, 70B i 405B. Model 8B dostosowany do instrukcji został zoptymalizowany do scenariuszy rozmów wielojęzycznych, osiągając doskonałe wyniki w wielu branżowych testach benchmarkowych. Trening modelu wykorzystał ponad 150 bilionów tokenów danych publicznych oraz zastosował techniki takie jak nadzorowane dostrajanie i uczenie przez wzmacnianie z ludzkim feedbackiem, aby zwiększyć użyteczność i bezpieczeństwo modelu. Llama 3.1 wspiera generowanie tekstu i kodu, a data graniczna wiedzy to grudzień 2023 roku."
221
+ "Pro/deepseek-ai/DeepSeek-V3": {
222
+ "description": "DeepSeek-V3 to model językowy z 6710 miliardami parametrów, oparty na architekturze mieszanych ekspertów (MoE), wykorzystujący wielogłowicową potencjalną uwagę (MLA) oraz strategię równoważenia obciążenia bez dodatkowych strat, co optymalizuje wydajność wnioskowania i treningu. Dzięki wstępnemu treningowi na 14,8 bilionach wysokiej jakości tokenów oraz nadzorowanemu dostrajaniu i uczeniu ze wzmocnieniem, DeepSeek-V3 przewyższa inne modele open source, zbliżając się do wiodących modeli zamkniętych."
241
223
  },
242
224
  "QwQ-32B-Preview": {
243
225
  "description": "QwQ-32B-Preview to innowacyjny model przetwarzania języka naturalnego, który efektywnie radzi sobie z złożonymi zadaniami generowania dialogów i rozumienia kontekstu."
@@ -290,6 +272,12 @@
290
272
  "Qwen/Qwen2.5-Coder-7B-Instruct": {
291
273
  "description": "Qwen2.5-Coder-7B-Instruct to najnowsza wersja serii dużych modeli językowych specyficznych dla kodu wydana przez Alibaba Cloud. Model ten, oparty na Qwen2.5, został przeszkolony na 55 bilionach tokenów, znacznie poprawiając zdolności generowania kodu, wnioskowania i naprawy. Wzmacnia on nie tylko zdolności kodowania, ale także utrzymuje przewagę w zakresie matematyki i ogólnych umiejętności. Model ten stanowi bardziej kompleksową podstawę dla rzeczywistych zastosowań, takich jak inteligentne agenty kodowe."
292
274
  },
275
+ "Qwen/Qwen2.5-VL-32B-Instruct": {
276
+ "description": "Qwen2.5-VL-32B-Instruct to wielomodalny model stworzony przez zespół Qwen2.5-VL, który jest częścią serii Qwen2.5-VL. Ten model nie tylko doskonale rozpoznaje obiekty, ale także analizuje tekst, wykresy, ikony, rysunki i układ w obrazach. Może działać jako inteligentny agent wizualny, który potrafi rozumować i dynamicznie sterować narzędziami, posiadając umiejętności korzystania z komputerów i telefonów. Ponadto, ten model może precyzyjnie lokalizować obiekty w obrazach i generować strukturalne wyjścia dla faktur, tabel i innych dokumentów. W porównaniu do poprzedniego modelu Qwen2-VL, ta wersja została dalej rozwinięta w zakresie umiejętności matematycznych i rozwiązywania problemów poprzez uczenie wzmacnianie, a styl odpowiedzi jest bardziej zgodny z preferencjami ludzkimi."
277
+ },
278
+ "Qwen/Qwen2.5-VL-72B-Instruct": {
279
+ "description": "Qwen2.5-VL to model językowo-wizualny z serii Qwen2.5. Ten model przynosi znaczące poprawy w wielu aspektach: posiada lepsze zdolności zrozumienia wizualnego, umożliwiając rozpoznawanie powszechnych obiektów, analizowanie tekstu, wykresów i układu; jako wizualny agent może wnioskować i dynamicznie kierować użyciem narzędzi; obsługuje zrozumienie filmów o długości przekraczającej 1 godzinę i łapanie kluczowych zdarzeń; może precyzyjnie lokalizować obiekty na obrazach poprzez generowanie ramki granicznej lub punktów; obsługuje generowanie danych strukturalnych, szczególnie przydatnych dla skanowanych danych, takich jak faktury i tabele."
280
+ },
293
281
  "Qwen2-72B-Instruct": {
294
282
  "description": "Qwen2 to najnowsza seria modeli Qwen, obsługująca kontekst 128k. W porównaniu do obecnie najlepszych modeli open source, Qwen2-72B znacznie przewyższa w zakresie rozumienia języka naturalnego, wiedzy, kodowania, matematyki i wielu języków."
295
283
  },
@@ -374,9 +362,6 @@
374
362
  "TeleAI/TeleChat2": {
375
363
  "description": "Model TeleChat2 to generatywny model semantyczny opracowany przez China Telecom, który wspiera funkcje takie jak pytania i odpowiedzi encyklopedyczne, generowanie kodu oraz generowanie długich tekstów, oferując użytkownikom usługi konsultacyjne. Model ten potrafi prowadzić interakcje z użytkownikami, odpowiadać na pytania, wspierać twórczość oraz efektywnie pomagać w pozyskiwaniu informacji, wiedzy i inspiracji. Model wykazuje dobre wyniki w zakresie problemów z halucynacjami, generowaniem długich tekstów oraz rozumieniem logicznym."
376
364
  },
377
- "TeleAI/TeleMM": {
378
- "description": "Model TeleMM to model wielomodalny opracowany przez China Telecom, który potrafi przetwarzać różne rodzaje wejść, takie jak tekst i obrazy, wspierając funkcje rozumienia obrazów oraz analizy wykresów, oferując użytkownikom usługi rozumienia międzymodalnego. Model ten potrafi prowadzić interakcje wielomodalne z użytkownikami, dokładnie rozumiejąc wprowadzone treści, odpowiadając na pytania, wspierając twórczość oraz efektywnie dostarczając informacji i inspiracji w różnych modalnościach. Wykazuje doskonałe wyniki w zadaniach wielomodalnych, takich jak precyzyjne postrzeganie i rozumowanie logiczne."
379
- },
380
365
  "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
381
366
  "description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
382
367
  },
@@ -662,9 +647,6 @@
662
647
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
663
648
  "description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
664
649
  },
665
- "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
666
- "description": "DeepSeek-R1-Distill-Llama-8B to model destylacyjny oparty na Llama-3.1-8B. Model ten został dostosowany przy użyciu próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe zdolności wnioskowania. Osiągnął dobre wyniki w wielu testach referencyjnych, w tym 89,1% dokładności w MATH-500, 50,4% wskaźnika zdawalności w AIME 2024 oraz 1205 punktów w CodeForces, demonstrując silne zdolności matematyczne i programistyczne jako model o skali 8B."
667
- },
668
650
  "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
669
651
  "description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
670
652
  },
@@ -713,6 +695,9 @@
713
695
  "deepseek-r1-70b-online": {
714
696
  "description": "DeepSeek R1 70B standardowa wersja, wspierająca wyszukiwanie w czasie rzeczywistym, odpowiednia do zadań konwersacyjnych i przetwarzania tekstu wymagających najnowszych informacji."
715
697
  },
698
+ "deepseek-r1-distill-llama": {
699
+ "description": "deepseek-r1-distill-llama to model stworzony na podstawie Llamy, uzyskany przez destylację z DeepSeek-R1."
700
+ },
716
701
  "deepseek-r1-distill-llama-70b": {
717
702
  "description": "DeepSeek R1 — większy i inteligentniejszy model w zestawie DeepSeek — został destylowany do architektury Llama 70B. Na podstawie testów referencyjnych i ocen ręcznych, model ten jest bardziej inteligentny niż oryginalna Llama 70B, szczególnie w zadaniach wymagających precyzji matematycznej i faktograficznej."
718
703
  },
@@ -725,6 +710,9 @@
725
710
  "deepseek-r1-distill-qianfan-llama-8b": {
726
711
  "description": "Pierwsze wydanie 14 lutego 2025 roku, wyodrębnione przez zespół badawczy Qianfan z modelu bazowego Llama3_8B (zbudowanego z Meta Llama), w którym dodano również korpus Qianfan."
727
712
  },
713
+ "deepseek-r1-distill-qwen": {
714
+ "description": "deepseek-r1-distill-qwen to model stworzony na podstawie Qwen poprzez destylację z DeepSeek-R1."
715
+ },
728
716
  "deepseek-r1-distill-qwen-1.5b": {
729
717
  "description": "Modele z serii DeepSeek-R1-Distill są dostosowywane do modeli open source, takich jak Qwen i Llama, poprzez technologię destylacji wiedzy, na podstawie próbek generowanych przez DeepSeek-R1."
730
718
  },
@@ -872,6 +860,9 @@
872
860
  "gemini-1.5-flash-8b-exp-0924": {
873
861
  "description": "Gemini 1.5 Flash 8B 0924 to najnowszy eksperymentalny model, który wykazuje znaczące poprawy wydajności w zastosowaniach tekstowych i multimodalnych."
874
862
  },
863
+ "gemini-1.5-flash-8b-latest": {
864
+ "description": "Gemini 1.5 Flash 8B to wydajny model wielomodalny, który obsługuje szeroki zakres zastosowań."
865
+ },
875
866
  "gemini-1.5-flash-exp-0827": {
876
867
  "description": "Gemini 1.5 Flash 0827 oferuje zoptymalizowane możliwości przetwarzania multimodalnego, odpowiednie dla wielu złożonych scenariuszy."
877
868
  },
@@ -914,9 +905,6 @@
914
905
  "gemini-2.0-flash-lite-preview-02-05": {
915
906
  "description": "Model Gemini 2.0 Flash, zoptymalizowany pod kątem efektywności kosztowej i niskiej latencji."
916
907
  },
917
- "gemini-2.0-flash-thinking-exp": {
918
- "description": "Gemini 2.0 Flash Exp to najnowszy eksperymentalny model AI multimodalnego Google, posiadający cechy nowej generacji, doskonałą prędkość, natywne wywołania narzędzi oraz generację multimodalną."
919
- },
920
908
  "gemini-2.0-flash-thinking-exp-01-21": {
921
909
  "description": "Gemini 2.0 Flash Exp to najnowszy eksperymentalny model AI multimodalnego Google, posiadający cechy nowej generacji, doskonałą prędkość, natywne wywołania narzędzi oraz generację multimodalną."
922
910
  },
@@ -1223,6 +1211,9 @@
1223
1211
  "llama-3.1-8b-instant": {
1224
1212
  "description": "Llama 3.1 8B to model o wysokiej wydajności, oferujący szybkie możliwości generowania tekstu, idealny do zastosowań wymagających dużej efektywności i opłacalności."
1225
1213
  },
1214
+ "llama-3.1-instruct": {
1215
+ "description": "Model Llama 3.1 zoptymalizowany do rozmów przewyższa wiele istniejących open-source modeli czatowych w standardowych testach branżowych."
1216
+ },
1226
1217
  "llama-3.2-11b-vision-instruct": {
1227
1218
  "description": "Wyjątkowe zdolności wnioskowania wizualnego na obrazach o wysokiej rozdzielczości, idealne do zastosowań związanych ze zrozumieniem wizualnym."
1228
1219
  },
@@ -1235,12 +1226,18 @@
1235
1226
  "llama-3.2-90b-vision-preview": {
1236
1227
  "description": "Llama 3.2 jest zaprojektowana do obsługi zadań łączących dane wizualne i tekstowe. Wykazuje doskonałe wyniki w zadaniach takich jak opisywanie obrazów i wizualne pytania i odpowiedzi, przekraczając przepaść między generowaniem języka a wnioskowaniem wizualnym."
1237
1228
  },
1229
+ "llama-3.2-vision-instruct": {
1230
+ "description": "Model Llama 3.2-Vision zoptymalizowany jest do rozpoznawania wizualnego, wnioskowania na podstawie obrazów, opisywania obrazów oraz odpowiadania na typowe pytania związane z obrazami."
1231
+ },
1238
1232
  "llama-3.3-70b-instruct": {
1239
1233
  "description": "Llama 3.3 to najnowocześniejszy wielojęzyczny, otwarty model językowy z serii Llama, który oferuje wydajność porównywalną z modelem 405B przy bardzo niskich kosztach. Opiera się na strukturze Transformer i poprawia użyteczność oraz bezpieczeństwo dzięki nadzorowanemu dostrajaniu (SFT) i uczeniu ze wzmocnieniem na podstawie ludzkich opinii (RLHF). Jego wersja dostosowana do instrukcji jest zoptymalizowana do wielojęzycznych rozmów i w wielu branżowych benchmarkach przewyższa wiele otwartych i zamkniętych modeli czatu. Data graniczna wiedzy to grudzień 2023."
1240
1234
  },
1241
1235
  "llama-3.3-70b-versatile": {
1242
1236
  "description": "Meta Llama 3.3 to wielojęzyczny model językowy (LLM) 70B, pretrenowany i dostosowany do poleceń. Model Llama 3.3, dostosowany do poleceń, jest zoptymalizowany do zastosowań w dialogach wielojęzycznych i przewyższa wiele dostępnych modeli czatu, zarówno open source, jak i zamkniętych, w popularnych branżowych benchmarkach."
1243
1237
  },
1238
+ "llama-3.3-instruct": {
1239
+ "description": "Model Llama 3.3 zoptymalizowany do rozmów, który w standardowych testach branżowych przewyższa wiele istniejących modeli czatowych o otwartym kodzie."
1240
+ },
1244
1241
  "llama3-70b-8192": {
1245
1242
  "description": "Meta Llama 3 70B oferuje niezrównane możliwości przetwarzania złożoności, dostosowane do projektów o wysokich wymaganiach."
1246
1243
  },
@@ -1319,9 +1316,6 @@
1319
1316
  "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
1320
1317
  "description": "LLaMA 3.2 zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Doskonała w zadaniach takich jak opisywanie obrazów i wizualne pytania odpowiedzi, przekracza granice między generowaniem języka a wnioskowaniem wizualnym."
1321
1318
  },
1322
- "meta-llama/Llama-3.3-70B-Instruct": {
1323
- "description": "Llama 3.3 to najnowocześniejszy wielojęzyczny model językowy open-source z serii Llama, oferujący wydajność porównywalną z modelem 405B przy bardzo niskich kosztach. Oparty na strukturze Transformer, poprawiony dzięki nadzorowanemu dostrajaniu (SFT) oraz uczeniu się z ludzkiego feedbacku (RLHF), co zwiększa użyteczność i bezpieczeństwo. Jego wersja dostosowana do instrukcji jest zoptymalizowana do wielojęzycznych rozmów, osiągając lepsze wyniki w wielu branżowych benchmarkach niż wiele modeli czatu open-source i zamkniętych. Data graniczna wiedzy to grudzień 2023 roku."
1324
- },
1325
1319
  "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1326
1320
  "description": "Meta Llama 3.3 to wielojęzyczny model językowy (LLM) o skali 70B (wejście/wyjście tekstowe), będący modelem generacyjnym wstępnie wytrenowanym i dostosowanym do instrukcji. Model Llama 3.3 dostosowany do instrukcji jest zoptymalizowany pod kątem zastosowań w dialogach wielojęzycznych i przewyższa wiele dostępnych modeli open-source i zamkniętych w popularnych testach branżowych."
1327
1321
  },
@@ -1349,15 +1343,9 @@
1349
1343
  "meta-llama/Meta-Llama-3.1-70B": {
1350
1344
  "description": "Llama 3.1 to wiodący model wydany przez Meta, wspierający do 405B parametrów, mogący być stosowany w złożonych rozmowach, tłumaczeniach wielojęzycznych i analizie danych."
1351
1345
  },
1352
- "meta-llama/Meta-Llama-3.1-70B-Instruct": {
1353
- "description": "LLaMA 3.1 70B oferuje efektywne wsparcie dialogowe w wielu językach."
1354
- },
1355
1346
  "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
1356
1347
  "description": "Model Llama 3.1 70B został starannie dostosowany do aplikacji o dużym obciążeniu, kwantyzowany do FP8, co zapewnia wyższą wydajność obliczeniową i dokładność, gwarantując doskonałe osiągi w złożonych scenariuszach."
1357
1348
  },
1358
- "meta-llama/Meta-Llama-3.1-8B-Instruct": {
1359
- "description": "LLaMA 3.1 oferuje wsparcie dla wielu języków i jest jednym z wiodących modeli generacyjnych w branży."
1360
- },
1361
1349
  "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {
1362
1350
  "description": "Model Llama 3.1 8B wykorzystuje kwantyzację FP8, obsługując do 131,072 kontekstowych tokenów, wyróżniając się wśród modeli open source, idealny do złożonych zadań, przewyższający wiele branżowych standardów."
1363
1351
  },
@@ -1451,12 +1439,18 @@
1451
1439
  "mistral-large": {
1452
1440
  "description": "Mixtral Large to flagowy model Mistral, łączący zdolności generowania kodu, matematyki i wnioskowania, wspierający kontekst o długości 128k."
1453
1441
  },
1442
+ "mistral-large-instruct": {
1443
+ "description": "Mistral-Large-Instruct-2407 to zaawansowany gęsty model językowy o dużym rozmiarze (LLM) z 123 miliardami parametrów, posiadający najnowocześniejsze zdolności wnioskowania, wiedzy i kodowania."
1444
+ },
1454
1445
  "mistral-large-latest": {
1455
1446
  "description": "Mistral Large to flagowy model, doskonały w zadaniach wielojęzycznych, złożonym wnioskowaniu i generowaniu kodu, idealny do zaawansowanych zastosowań."
1456
1447
  },
1457
1448
  "mistral-nemo": {
1458
1449
  "description": "Mistral Nemo, opracowany przez Mistral AI i NVIDIA, to model 12B o wysokiej wydajności."
1459
1450
  },
1451
+ "mistral-nemo-instruct": {
1452
+ "description": "Duży model językowy (LLM) Mistral-Nemo-Instruct-2407 to wersja dostosowana do poleceń modelu Mistral-Nemo-Base-2407."
1453
+ },
1460
1454
  "mistral-small": {
1461
1455
  "description": "Mistral Small może być używany w każdym zadaniu opartym na języku, które wymaga wysokiej wydajności i niskiej latencji."
1462
1456
  },
@@ -1670,15 +1664,6 @@
1670
1664
  "qwen/qwen2.5-coder-7b-instruct": {
1671
1665
  "description": "Potężny średniej wielkości model kodu, wspierający długość kontekstu 32K, specjalizujący się w programowaniu wielojęzycznym."
1672
1666
  },
1673
- "qwen1.5-14b-chat": {
1674
- "description": "Seria Qwen1.5 to wersja Beta Qwen2, która jest modelem językowym opartym na Transformer, działającym tylko w trybie dekodowania i wytrenowanym na ogromnej ilości danych. W porównaniu z wcześniejszymi wersjami serii Qwen, modele base i chat serii Qwen1.5 obsługują wiele języków i zyskały na zdolnościach podstawowych oraz rozmowowych. Qwen1.5-14b-chat to specjalnie zaprojektowany model do zastosowań rozmowowych, posiadający 14 miliardów parametrów, co jest rozmiarem powszechnie stosowanym w branży."
1675
- },
1676
- "qwen1.5-32b-chat": {
1677
- "description": "Seria Qwen1.5 to wersja Beta Qwen2, oparta na modelu językowym Transformer, który jest modelu dekodującego, przeszkolonego na ogromnej ilości danych. W porównaniu do wcześniejszych wersji serii Qwen, modele base i chat serii Qwen1.5 obsługują wiele języków i oferują poprawioną jakość rozmów i podstawowe umiejętności. Qwen1.5-32b-chat to specjalnie zaprojektowany model do zastosowań czatowych, posiadający 32 miliardy parametrów. W porównaniu do modelu 14b, jest lepszy w scenariuszach agentów inteligentnych, a w porównaniu do modelu 72b, ma niższe koszty wnioskowania."
1678
- },
1679
- "qwen1.5-72b-chat": {
1680
- "description": "Seria Qwen1.5 to wersja Beta Qwen2, która jest modelem językowym opartym na Transformer, działającym tylko w trybie dekodowania, wytrenowanym na ogromnej ilości danych. W porównaniu z wcześniejszymi wersjami serii Qwen, modele base i chat serii Qwen1.5 obsługują wiele języków i zyskały na zdolnościach podstawowych oraz rozmowowych. Qwen1.5-72b-chat to specjalnie zaprojektowany model do zastosowań rozmowowych, posiadający 72 miliardy parametrów."
1681
- },
1682
1667
  "qwen2": {
1683
1668
  "description": "Qwen2 to nowa generacja dużego modelu językowego Alibaba, wspierająca różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
1684
1669
  },
@@ -1715,6 +1700,12 @@
1715
1700
  "qwen2.5-coder-7b-instruct": {
1716
1701
  "description": "Otwarta wersja modelu kodowania Qwen."
1717
1702
  },
1703
+ "qwen2.5-coder-instruct": {
1704
+ "description": "Qwen2.5-Coder to najnowszy model językowy o dużym rozmiarze z serii Qwen, specjalnie przeznaczony do obsługi kodu (wcześniej znany jako CodeQwen)."
1705
+ },
1706
+ "qwen2.5-instruct": {
1707
+ "description": "Qwen2.5 to najnowsza seria modeli językowych Qwen. W przypadku Qwen2.5 wydaliśmy wiele podstawowych modeli językowych oraz modeli językowych dostosowanych do instrukcji, z zakresem parametrów od 500 milionów do 7,2 miliarda."
1708
+ },
1718
1709
  "qwen2.5-math-1.5b-instruct": {
1719
1710
  "description": "Model Qwen-Math ma silne umiejętności rozwiązywania problemów matematycznych."
1720
1711
  },
@@ -1724,12 +1715,18 @@
1724
1715
  "qwen2.5-math-7b-instruct": {
1725
1716
  "description": "Model Qwen-Math, który ma silne zdolności rozwiązywania problemów matematycznych."
1726
1717
  },
1718
+ "qwen2.5-vl-32b-instruct": {
1719
+ "description": "Seria modeli Qwen2.5-VL poprawia poziom inteligencji, praktyczności i zastosowania modelu, co pozwala mu lepiej radzić sobie w naturalnej konwersacji, tworzeniu treści, usługach wiedzy specjalistycznej i programowaniu. Wersja 32B została zoptymalizowana za pomocą technologii uczenia wzmacniającego, co w porównaniu z innymi modelami serii Qwen2.5 VL, zapewnia bardziej zgodny z preferencjami ludzi styl wyjściowy, zdolność wnioskowania w złożonych problemach matematycznych oraz zdolność szczegółowej interpretacji i wnioskowania na podstawie obrazów."
1720
+ },
1727
1721
  "qwen2.5-vl-72b-instruct": {
1728
1722
  "description": "Zwiększona zdolność do podążania za instrukcjami, matematyki, rozwiązywania problemów i kodowania, poprawiona zdolność do rozpoznawania obiektów, wsparcie dla różnych formatów do precyzyjnego lokalizowania elementów wizualnych, zdolność do rozumienia długich plików wideo (do 10 minut) oraz lokalizowania momentów zdarzeń w czasie rzeczywistym, zdolność do rozumienia kolejności czasowej i szybkości, wsparcie dla operacji na systemach OS lub Mobile, silna zdolność do ekstrakcji kluczowych informacji i generowania wyjścia w formacie JSON. Ta wersja to wersja 72B, najsilniejsza w tej serii."
1729
1723
  },
1730
1724
  "qwen2.5-vl-7b-instruct": {
1731
1725
  "description": "Zwiększona zdolność do podążania za instrukcjami, matematyki, rozwiązywania problemów i kodowania, poprawiona zdolność do rozpoznawania obiektów, wsparcie dla różnych formatów do precyzyjnego lokalizowania elementów wizualnych, zdolność do rozumienia długich plików wideo (do 10 minut) oraz lokalizowania momentów zdarzeń w czasie rzeczywistym, zdolność do rozumienia kolejności czasowej i szybkości, wsparcie dla operacji na systemach OS lub Mobile, silna zdolność do ekstrakcji kluczowych informacji i generowania wyjścia w formacie JSON. Ta wersja to wersja 72B, najsilniejsza w tej serii."
1732
1726
  },
1727
+ "qwen2.5-vl-instruct": {
1728
+ "description": "Qwen2.5-VL to najnowsza wersja modelu wizualno-lingwistycznego rodziny Qwen."
1729
+ },
1733
1730
  "qwen2.5:0.5b": {
1734
1731
  "description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
1735
1732
  },
@@ -146,6 +146,9 @@
146
146
  "xai": {
147
147
  "description": "xAI to firma, która dąży do budowy sztucznej inteligencji w celu przyspieszenia ludzkich odkryć naukowych. Naszą misją jest wspieranie wspólnego zrozumienia wszechświata."
148
148
  },
149
+ "xinference": {
150
+ "description": "Xorbits Inference (Xinference) to otwarty platforma, która ułatwia uruchamianie i integrację różnych modeli AI. Dzięki Xinference możesz wykonywać wnioskowanie za pomocą dowolnego otwartego modelu LLM, modelu osadzania i modelu wielomodalnego w środowisku chmurowym lub lokalnym, tworząc przy tym potężne aplikacje AI."
151
+ },
149
152
  "zeroone": {
150
153
  "description": "01.AI koncentruje się na technologiach sztucznej inteligencji w erze AI 2.0, intensywnie promując innowacje i zastosowania „człowiek + sztuczna inteligencja”, wykorzystując potężne modele i zaawansowane technologie AI w celu zwiększenia wydajności ludzkiej produkcji i realizacji technologicznego wsparcia."
151
154
  },
@@ -42,6 +42,17 @@
42
42
  "sessionWithName": "Ustawienia sesji · {{name}}",
43
43
  "title": "Ustawienia"
44
44
  },
45
+ "hotkey": {
46
+ "conflicts": "Kolizja z istniejącymi skrótami klawiszowymi",
47
+ "group": {
48
+ "conversation": "Rozmowa",
49
+ "essential": "Podstawowy"
50
+ },
51
+ "invalidCombination": "Skrót klawiszowy musi zawierać przynajmniej jeden klawisz modyfikujący (Ctrl, Alt, Shift) oraz jeden klawisz zwykły",
52
+ "record": "Naciśnij klawisz, aby nagrać skrót klawiszowy",
53
+ "reset": "Przywróć domyślne skróty klawiszowe",
54
+ "title": "Skróty klawiszowe"
55
+ },
45
56
  "llm": {
46
57
  "aesGcm": "Twój klucz, adres proxy i inne będą szyfrowane za pomocą algorytmu szyfrowania <1>AES-GCM</1>",
47
58
  "apiKey": {
@@ -425,6 +436,7 @@
425
436
  "agent": "Domyślny asystent",
426
437
  "common": "Ustawienia ogólne",
427
438
  "experiment": "Eksperyment",
439
+ "hotkey": "Skróty klawiszowe",
428
440
  "llm": "Model językowy",
429
441
  "provider": "Dostawca usług AI",
430
442
  "sync": "Synchronizacja w chmurze",
@@ -0,0 +1,46 @@
1
+ {
2
+ "addUserMessage": {
3
+ "desc": "Adiciona o conteúdo atual como uma mensagem do usuário, mas não aciona a geração",
4
+ "title": "Adicionar uma mensagem do usuário"
5
+ },
6
+ "editMessage": {
7
+ "desc": "Entre no modo de edição pressionando Alt e clicando duas vezes na mensagem",
8
+ "title": "Editar mensagem"
9
+ },
10
+ "openChatSettings": {
11
+ "desc": "Ver e modificar as configurações da conversa atual",
12
+ "title": "Abrir configurações de conversa"
13
+ },
14
+ "openHotkeyHelper": {
15
+ "desc": "Ver as instruções de uso de todos os atalhos",
16
+ "title": "Abrir ajuda de atalhos"
17
+ },
18
+ "regenerateMessage": {
19
+ "desc": "Regenerar a última mensagem",
20
+ "title": "Regenerar mensagem"
21
+ },
22
+ "saveTopic": {
23
+ "desc": "Salvar o tópico atual e abrir um novo tópico",
24
+ "title": "Iniciar novo tópico"
25
+ },
26
+ "search": {
27
+ "desc": "Abrir a caixa de pesquisa principal da página atual",
28
+ "title": "Pesquisar"
29
+ },
30
+ "switchAgent": {
31
+ "desc": "Troque o assistente fixo na barra lateral pressionando Ctrl e um número de 0 a 9",
32
+ "title": "Troca rápida de assistente"
33
+ },
34
+ "toggleLeftPanel": {
35
+ "desc": "Mostrar ou ocultar o painel de assistente à esquerda",
36
+ "title": "Mostrar/Ocultar painel do assistente"
37
+ },
38
+ "toggleRightPanel": {
39
+ "desc": "Mostrar ou ocultar o painel de tópicos à direita",
40
+ "title": "Mostrar/Ocultar painel de tópicos"
41
+ },
42
+ "toggleZenMode": {
43
+ "desc": "No modo de foco, exibe apenas a conversa atual, ocultando outras interfaces",
44
+ "title": "Alternar modo de foco"
45
+ }
46
+ }