@fugood/llama.node 1.3.0-rc.6 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CMakeLists.txt +12 -2
  2. package/package.json +14 -14
  3. package/scripts/llama.cpp.patch +8 -9
  4. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  5. package/src/llama.cpp/common/arg.cpp +39 -1001
  6. package/src/llama.cpp/common/arg.h +2 -2
  7. package/src/llama.cpp/common/chat.cpp +216 -2
  8. package/src/llama.cpp/common/chat.h +1 -0
  9. package/src/llama.cpp/common/common.cpp +33 -0
  10. package/src/llama.cpp/common/common.h +13 -0
  11. package/src/llama.cpp/common/download.cpp +1054 -0
  12. package/src/llama.cpp/common/download.h +55 -0
  13. package/src/llama.cpp/common/json-schema-to-grammar.cpp +19 -3
  14. package/src/llama.cpp/ggml/CMakeLists.txt +3 -1
  15. package/src/llama.cpp/ggml/include/ggml-hexagon.h +19 -0
  16. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  17. package/src/llama.cpp/ggml/src/CMakeLists.txt +7 -3
  18. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +10 -3
  19. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  20. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  21. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  23. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +0 -5
  24. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -35
  25. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  26. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  27. package/src/llama.cpp/include/llama.h +7 -3
  28. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  29. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  30. package/src/llama.cpp/src/llama-arch.h +11 -0
  31. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  32. package/src/llama.cpp/src/llama-batch.h +12 -1
  33. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  34. package/src/llama.cpp/src/llama-chat.h +1 -0
  35. package/src/llama.cpp/src/llama-context.cpp +44 -16
  36. package/src/llama.cpp/src/llama-context.h +5 -5
  37. package/src/llama.cpp/src/llama-cparams.h +1 -0
  38. package/src/llama.cpp/src/llama-graph.cpp +12 -7
  39. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  40. package/src/llama.cpp/src/llama-hparams.h +6 -0
  41. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  42. package/src/llama.cpp/src/llama-kv-cache.cpp +56 -21
  43. package/src/llama.cpp/src/llama-kv-cache.h +2 -4
  44. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  45. package/src/llama.cpp/src/llama-memory-recurrent.cpp +18 -14
  46. package/src/llama.cpp/src/llama-memory-recurrent.h +2 -2
  47. package/src/llama.cpp/src/llama-model.cpp +350 -13194
  48. package/src/llama.cpp/src/llama-model.h +9 -2
  49. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  50. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  51. package/src/llama.cpp/src/llama-vocab.h +1 -0
  52. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  53. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  54. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  55. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  56. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  57. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  58. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  59. package/src/llama.cpp/src/models/bert.cpp +176 -0
  60. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  61. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  62. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  63. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  64. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  65. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  66. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  67. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  68. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  69. package/src/llama.cpp/src/models/deci.cpp +135 -0
  70. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  71. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  72. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  73. package/src/llama.cpp/src/models/dream.cpp +105 -0
  74. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  75. package/src/llama.cpp/src/models/ernie4-5.cpp +111 -0
  76. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  77. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  78. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  79. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  80. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  81. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  82. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  83. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  84. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  85. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  86. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  87. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  88. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  89. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  90. package/src/llama.cpp/src/models/granite.cpp +211 -0
  91. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  92. package/src/llama.cpp/src/models/grok.cpp +159 -0
  93. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  94. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  95. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  96. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  97. package/src/llama.cpp/src/models/jais.cpp +86 -0
  98. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  99. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  100. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  101. package/src/llama.cpp/src/models/llada.cpp +99 -0
  102. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  103. package/src/llama.cpp/src/models/llama.cpp +155 -0
  104. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  105. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  106. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  107. package/src/llama.cpp/src/models/models.h +481 -0
  108. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  109. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  110. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  111. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  112. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  113. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  114. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  115. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +123 -0
  116. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  117. package/src/llama.cpp/src/models/orion.cpp +123 -0
  118. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  119. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  120. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  121. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  122. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  123. package/src/llama.cpp/src/models/plm.cpp +168 -0
  124. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  125. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  126. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  127. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  128. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  129. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  130. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  131. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  132. package/src/llama.cpp/src/models/refact.cpp +94 -0
  133. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  134. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  135. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  136. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  137. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  138. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  139. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  140. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  141. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  142. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  143. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  144. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  145. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  146. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  147. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,146 @@
1
+ #include "models.h"
2
+
3
+ llm_build_stablelm::llm_build_stablelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+
8
+ ggml_tensor * cur;
9
+ ggml_tensor * inpL;
10
+
11
+ inpL = build_inp_embd(model.tok_embd);
12
+
13
+ // inp_pos - contains the positions
14
+ ggml_tensor * inp_pos = build_inp_pos();
15
+
16
+ auto * inp_attn = build_attn_inp_kv();
17
+
18
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
19
+
20
+ for (int il = 0; il < n_layer; ++il) {
21
+ // norm
22
+ cur = build_norm(inpL,
23
+ model.layers[il].attn_norm,
24
+ model.layers[il].attn_norm_b,
25
+ LLM_NORM, il);
26
+ cb(cur, "attn_norm", il);
27
+
28
+ ggml_tensor * inpSA = cur;
29
+
30
+ // self-attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ cb(Qcur, "Qcur", il);
35
+ if (model.layers[il].bq) {
36
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
37
+ cb(Qcur, "Qcur", il);
38
+ }
39
+
40
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
+ cb(Kcur, "Kcur", il);
42
+ if (model.layers[il].bk) {
43
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
44
+ cb(Kcur, "Kcur", il);
45
+ }
46
+
47
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
48
+ cb(Vcur, "Vcur", il);
49
+ if (model.layers[il].bv) {
50
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
51
+ cb(Vcur, "Vcur", il);
52
+ }
53
+
54
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
55
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
56
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
57
+
58
+ if (model.layers[il].attn_q_norm) {
59
+ Qcur = build_norm(Qcur,
60
+ model.layers[il].attn_q_norm,
61
+ NULL,
62
+ LLM_NORM, il);
63
+ cb(Qcur, "Qcur", il);
64
+ }
65
+ if (model.layers[il].attn_k_norm) {
66
+ Kcur = build_norm(Kcur,
67
+ model.layers[il].attn_k_norm,
68
+ NULL,
69
+ LLM_NORM, il);
70
+ cb(Kcur, "Kcur", il);
71
+ }
72
+
73
+ Qcur = ggml_rope_ext(
74
+ ctx0, Qcur, inp_pos, nullptr,
75
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
76
+ ext_factor, attn_factor, beta_fast, beta_slow
77
+ );
78
+
79
+ Kcur = ggml_rope_ext(
80
+ ctx0, Kcur, inp_pos, nullptr,
81
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
82
+ ext_factor, attn_factor, beta_fast, beta_slow
83
+ );
84
+
85
+ cb(Qcur, "Qcur", il);
86
+ cb(Kcur, "Kcur", il);
87
+ cb(Vcur, "Vcur", il);
88
+
89
+ cur = build_attn(inp_attn,
90
+ model.layers[il].wo, NULL,
91
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
92
+ }
93
+ if (il == n_layer - 1 && inp_out_ids) {
94
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
95
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
96
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
97
+ }
98
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
99
+ cb(ffn_inp, "ffn_inp", il);
100
+
101
+ // feed-forward network
102
+ {
103
+ if (model.layers[il].ffn_norm) {
104
+ cur = build_norm(ffn_inp,
105
+ model.layers[il].ffn_norm,
106
+ model.layers[il].ffn_norm_b,
107
+ LLM_NORM, il);
108
+ cb(cur, "ffn_norm", il);
109
+ } else {
110
+ // parallel residual
111
+ cur = inpSA;
112
+ }
113
+ cur = build_ffn(cur,
114
+ model.layers[il].ffn_up, NULL, NULL,
115
+ model.layers[il].ffn_gate, NULL, NULL,
116
+ model.layers[il].ffn_down, NULL, NULL,
117
+ NULL,
118
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
119
+ cb(cur, "ffn_out", il);
120
+ }
121
+ cur = ggml_add(ctx0, cur, ffn_inp);
122
+
123
+ cur = build_cvec(cur, il);
124
+ cb(cur, "l_out", il);
125
+
126
+ // input for next layer
127
+ inpL = cur;
128
+ }
129
+ cur = inpL;
130
+
131
+ cur = build_norm(cur,
132
+ model.output_norm,
133
+ model.output_norm_b,
134
+ LLM_NORM, -1);
135
+
136
+ cb(cur, "result_norm", -1);
137
+ res->t_embd = cur;
138
+
139
+ // lm_head
140
+ cur = build_lora_mm(model.output, cur);
141
+
142
+ cb(cur, "result_output", -1);
143
+ res->t_logits = cur;
144
+
145
+ ggml_build_forward_expand(gf, cur);
146
+ }
@@ -0,0 +1,100 @@
1
+ #include "models.h"
2
+
3
+ llm_build_starcoder::llm_build_starcoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
20
+ cb(pos, "pos_embd", -1);
21
+
22
+ inpL = ggml_add(ctx0, inpL, pos);
23
+ cb(inpL, "inpL", -1);
24
+
25
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
26
+
27
+ for (int il = 0; il < n_layer; ++il) {
28
+ cur = build_norm(inpL,
29
+ model.layers[il].attn_norm,
30
+ model.layers[il].attn_norm_b,
31
+ LLM_NORM, il);
32
+ cb(cur, "attn_norm", il);
33
+
34
+ // self-attention
35
+ {
36
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
37
+ cb(cur, "wqkv", il);
38
+
39
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
40
+ cb(cur, "bqkv", il);
41
+
42
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
43
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
44
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
45
+
46
+ cb(Qcur, "Qcur", il);
47
+ cb(Kcur, "Kcur", il);
48
+ cb(Vcur, "Vcur", il);
49
+
50
+ cur = build_attn(inp_attn,
51
+ model.layers[il].wo, model.layers[il].bo,
52
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
53
+ }
54
+ if (il == n_layer - 1 && inp_out_ids) {
55
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
56
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
57
+ }
58
+ // add the input
59
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
60
+ cb(ffn_inp, "ffn_inp", il);
61
+
62
+ // FF
63
+ {
64
+ cur = build_norm(ffn_inp,
65
+ model.layers[il].ffn_norm,
66
+ model.layers[il].ffn_norm_b,
67
+ LLM_NORM, il);
68
+ cb(cur, "ffn_norm", il);
69
+
70
+ cur = build_ffn(cur,
71
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
72
+ NULL, NULL, NULL,
73
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
74
+ NULL,
75
+ LLM_FFN_GELU, LLM_FFN_SEQ, il);
76
+ cb(cur, "ffn_out", il);
77
+ }
78
+ cur = ggml_add(ctx0, cur, ffn_inp);
79
+
80
+ cur = build_cvec(cur, il);
81
+ cb(cur, "l_out", il);
82
+
83
+ // input for next layer
84
+ inpL = cur;
85
+ }
86
+ cur = build_norm(inpL,
87
+ model.output_norm,
88
+ model.output_norm_b,
89
+ LLM_NORM, -1);
90
+
91
+ cb(cur, "result_norm", -1);
92
+ res->t_embd = cur;
93
+
94
+ cur = build_lora_mm(model.output, cur);
95
+
96
+ cb(cur, "result_output", -1);
97
+ res->t_logits = cur;
98
+
99
+ ggml_build_forward_expand(gf, cur);
100
+ }
@@ -0,0 +1,121 @@
1
+ #include "models.h"
2
+
3
+ llm_build_starcoder2::llm_build_starcoder2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ // norm
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, model.layers[il].attn_norm_b,
27
+ LLM_NORM, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self-attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ cb(Qcur, "Qcur", il);
35
+ if (model.layers[il].bq) {
36
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
37
+ cb(Qcur, "Qcur", il);
38
+ }
39
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
40
+ cb(Kcur, "Kcur", il);
41
+ if (model.layers[il].bk) {
42
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
43
+ cb(Kcur, "Kcur", il);
44
+ }
45
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
46
+ cb(Vcur, "Vcur", il);
47
+ if (model.layers[il].bv) {
48
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
49
+ cb(Vcur, "Vcur", il);
50
+ }
51
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
52
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
53
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
54
+
55
+ Qcur = ggml_rope_ext(
56
+ ctx0, Qcur, inp_pos, nullptr,
57
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
+ ext_factor, attn_factor, beta_fast, beta_slow
59
+ );
60
+
61
+ Kcur = ggml_rope_ext(
62
+ ctx0, Kcur, inp_pos, nullptr,
63
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
64
+ ext_factor, attn_factor, beta_fast, beta_slow
65
+ );
66
+
67
+ cb(Qcur, "Qcur", il);
68
+ cb(Kcur, "Kcur", il);
69
+ cb(Vcur, "Vcur", il);
70
+
71
+ cur = build_attn(inp_attn,
72
+ model.layers[il].wo, model.layers[il].bo,
73
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
74
+ }
75
+ if (il == n_layer - 1 && inp_out_ids) {
76
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
77
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
78
+ }
79
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
80
+ cb(ffn_inp, "ffn_inp", il);
81
+
82
+ // feed-forward network
83
+
84
+ cur = build_norm(ffn_inp,
85
+ model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
86
+ LLM_NORM, il);
87
+ cb(cur, "ffn_norm", il);
88
+
89
+ cur = build_ffn(cur,
90
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
91
+ NULL, NULL, NULL,
92
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
93
+ NULL,
94
+ LLM_FFN_GELU, LLM_FFN_SEQ, il);
95
+ cb(cur, "ffn_out", il);
96
+
97
+ cur = ggml_add(ctx0, cur, ffn_inp);
98
+
99
+ cur = build_cvec(cur, il);
100
+ cb(cur, "l_out", il);
101
+
102
+ // input for next layer
103
+ inpL = cur;
104
+ }
105
+ cur = inpL;
106
+
107
+ cur = build_norm(cur,
108
+ model.output_norm, model.output_norm_b,
109
+ LLM_NORM, -1);
110
+
111
+ cb(cur, "result_norm", -1);
112
+ res->t_embd = cur;
113
+
114
+ // lm_head
115
+ cur = build_lora_mm(model.output, cur);
116
+
117
+ cb(cur, "result_output", -1);
118
+ res->t_logits = cur;
119
+
120
+ ggml_build_forward_expand(gf, cur);
121
+ }
@@ -0,0 +1,166 @@
1
+ #include "models.h"
2
+
3
+ llm_build_t5_dec::llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+ //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ ggml_tensor * embd_enc = build_inp_cross_embd();
15
+ ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
16
+
17
+ const int64_t n_outputs_enc = embd_enc->ne[1];
18
+
19
+ auto * inp_attn_self = build_attn_inp_kv();
20
+ auto * inp_attn_cross = build_attn_inp_cross();
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ const int64_t dec_n_layer = hparams.dec_n_layer;
25
+
26
+ for (int il = 0; il < dec_n_layer; ++il) {
27
+ ggml_tensor * inpSA = inpL;
28
+
29
+ // norm
30
+ cur = build_norm(inpL,
31
+ model.layers[il].attn_norm, NULL,
32
+ LLM_NORM_RMS, il);
33
+ cb(cur, "attn_norm", il);
34
+
35
+ // self-attention
36
+ {
37
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
38
+ cb(Qcur, "Qcur", il);
39
+
40
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
+ cb(Kcur, "Kcur", il);
42
+
43
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
44
+ cb(Vcur, "Vcur", il);
45
+
46
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
47
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
48
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
49
+
50
+ ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
51
+ ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
52
+
53
+ cur = build_attn(inp_attn_self,
54
+ model.layers[il].wo, model.layers[il].bo,
55
+ Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
56
+ cb(cur, "kqv_out", il);
57
+ }
58
+ cur = ggml_add(ctx0, cur, inpSA);
59
+ cb(cur, "cross_inp", il);
60
+
61
+ ggml_tensor * inpCA = cur;
62
+
63
+ // norm
64
+ cur = build_norm(cur,
65
+ model.layers[il].attn_norm_cross, NULL,
66
+ LLM_NORM_RMS, il);
67
+ cb(cur, "attn_norm_cross", il);
68
+
69
+ // cross-attention
70
+ {
71
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
72
+ cb(Qcur, "Qcur", il);
73
+
74
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
75
+ cb(Kcur, "Kcur", il);
76
+
77
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
78
+ cb(Vcur, "Vcur", il);
79
+
80
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
81
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
82
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
83
+
84
+ cur = build_attn(inp_attn_cross,
85
+ model.layers[il].wo_cross, nullptr,
86
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
87
+ cb(cur, "kqv_out", il);
88
+
89
+ //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
90
+ //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
91
+
92
+ //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
93
+ //cb(kq, "kq", il);
94
+
95
+ //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
96
+ //cb(kq, "kq_soft_max_ext", il);
97
+
98
+ //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
99
+ //cb(v, "v", il);
100
+
101
+ //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
102
+ //cb(kqv, "kqv", il);
103
+
104
+ //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
105
+ //cb(kqv_merged, "kqv_merged", il);
106
+
107
+ //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
108
+ //cb(cur, "kqv_merged_cont", il);
109
+
110
+ //ggml_build_forward_expand(gf, cur);
111
+
112
+ //cur = build_lora_mm(model.layers[il].wo_cross, cur);
113
+ //cb(cur, "kqv_out", il);
114
+ }
115
+ if (il == dec_n_layer - 1 && inp_out_ids) {
116
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
117
+ inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
118
+ }
119
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
120
+ cb(ffn_inp, "ffn_inp", il);
121
+
122
+ // feed-forward network
123
+ {
124
+ cur = build_norm(ffn_inp,
125
+ model.layers[il].ffn_norm, NULL,
126
+ LLM_NORM_RMS, il);
127
+ cb(cur, "ffn_norm", il);
128
+
129
+ // T5 uses relu, flan-T5 uses gelu-gated
130
+ cur = build_ffn(cur,
131
+ model.layers[il].ffn_up, NULL, NULL,
132
+ model.layers[il].ffn_gate, NULL, NULL,
133
+ model.layers[il].ffn_down, NULL, NULL,
134
+ NULL,
135
+ model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU,
136
+ model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ,
137
+ il);
138
+ cb(cur, "ffn_out", il);
139
+ }
140
+ cur = ggml_add(ctx0, cur, ffn_inp);
141
+ cb(cur, "ffn_out", il);
142
+
143
+ cur = build_cvec(cur, il);
144
+ cb(cur, "l_out", il);
145
+
146
+ // input for next layer
147
+ inpL = cur;
148
+ }
149
+ cur = inpL;
150
+ cb(cur, "result_embd", -1);
151
+
152
+ cur = build_norm(cur,
153
+ model.output_norm, NULL,
154
+ LLM_NORM_RMS, -1);
155
+
156
+ cb(cur, "result_norm", -1);
157
+ res->t_embd = cur;
158
+
159
+ // lm_head
160
+ cur = build_lora_mm(model.output, cur);
161
+
162
+ cb(cur, "result_output", -1);
163
+ res->t_logits = cur;
164
+
165
+ ggml_build_forward_expand(gf, cur);
166
+ }
@@ -0,0 +1,96 @@
1
+ #include "models.h"
2
+
3
+ llm_build_t5_enc::llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+
8
+ ggml_tensor * cur;
9
+ ggml_tensor * inpL;
10
+
11
+ inpL = build_inp_embd(model.tok_embd);
12
+
13
+ ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
14
+
15
+ auto * inp_attn = build_attn_inp_no_cache();
16
+
17
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
18
+
19
+ for (int il = 0; il < n_layer; ++il) {
20
+ ggml_tensor * inpSA = inpL;
21
+
22
+ // norm
23
+ cur = build_norm(inpL,
24
+ model.layers[il].attn_norm_enc, NULL,
25
+ LLM_NORM_RMS, il);
26
+ cb(cur, "attn_norm", il);
27
+
28
+ // self-attention
29
+ {
30
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
31
+ cb(Qcur, "Qcur", il);
32
+
33
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
34
+ cb(Kcur, "Kcur", il);
35
+
36
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
37
+ cb(Vcur, "Vcur", il);
38
+
39
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
40
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
41
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
42
+
43
+ ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
44
+ ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
45
+
46
+ cur = build_attn(inp_attn,
47
+ model.layers[il].wo_enc, nullptr,
48
+ Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
49
+ cb(cur, "kqv_out", il);
50
+ }
51
+ if (il == n_layer - 1 && inp_out_ids) {
52
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
53
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
54
+ }
55
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
56
+ cb(ffn_inp, "ffn_inp", il);
57
+
58
+ // feed-forward network
59
+ {
60
+ cur = build_norm(ffn_inp,
61
+ model.layers[il].ffn_norm_enc, NULL,
62
+ LLM_NORM_RMS, il);
63
+ cb(cur, "ffn_norm", il);
64
+
65
+ // T5 uses relu, flan-T5 uses gelu-gated
66
+ cur = build_ffn(cur,
67
+ model.layers[il].ffn_up_enc, NULL, NULL,
68
+ model.layers[il].ffn_gate_enc, NULL, NULL,
69
+ model.layers[il].ffn_down_enc, NULL, NULL,
70
+ NULL,
71
+ model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
72
+ model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
73
+ il);
74
+ cb(cur, "ffn_out", il);
75
+ }
76
+ cur = ggml_add(ctx0, cur, ffn_inp);
77
+ cb(cur, "ffn_out", il);
78
+
79
+ cur = build_cvec(cur, il);
80
+ cb(cur, "l_out", il);
81
+
82
+ // input for next layer
83
+ inpL = cur;
84
+ }
85
+ cur = inpL;
86
+ cb(cur, "result_embd", -1);
87
+
88
+ cur = build_norm(cur,
89
+ model.output_norm_enc, NULL,
90
+ LLM_NORM_RMS, -1);
91
+
92
+ cb(cur, "result_norm", -1);
93
+ res->t_embd = cur;
94
+
95
+ ggml_build_forward_expand(gf, cur);
96
+ }