@fugood/llama.node 1.3.0-rc.6 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CMakeLists.txt +12 -2
  2. package/package.json +14 -14
  3. package/scripts/llama.cpp.patch +8 -9
  4. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  5. package/src/llama.cpp/common/arg.cpp +39 -1001
  6. package/src/llama.cpp/common/arg.h +2 -2
  7. package/src/llama.cpp/common/chat.cpp +216 -2
  8. package/src/llama.cpp/common/chat.h +1 -0
  9. package/src/llama.cpp/common/common.cpp +33 -0
  10. package/src/llama.cpp/common/common.h +13 -0
  11. package/src/llama.cpp/common/download.cpp +1054 -0
  12. package/src/llama.cpp/common/download.h +55 -0
  13. package/src/llama.cpp/common/json-schema-to-grammar.cpp +19 -3
  14. package/src/llama.cpp/ggml/CMakeLists.txt +3 -1
  15. package/src/llama.cpp/ggml/include/ggml-hexagon.h +19 -0
  16. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  17. package/src/llama.cpp/ggml/src/CMakeLists.txt +7 -3
  18. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +10 -3
  19. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  20. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  21. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  23. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +0 -5
  24. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -35
  25. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  26. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  27. package/src/llama.cpp/include/llama.h +7 -3
  28. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  29. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  30. package/src/llama.cpp/src/llama-arch.h +11 -0
  31. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  32. package/src/llama.cpp/src/llama-batch.h +12 -1
  33. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  34. package/src/llama.cpp/src/llama-chat.h +1 -0
  35. package/src/llama.cpp/src/llama-context.cpp +44 -16
  36. package/src/llama.cpp/src/llama-context.h +5 -5
  37. package/src/llama.cpp/src/llama-cparams.h +1 -0
  38. package/src/llama.cpp/src/llama-graph.cpp +12 -7
  39. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  40. package/src/llama.cpp/src/llama-hparams.h +6 -0
  41. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  42. package/src/llama.cpp/src/llama-kv-cache.cpp +56 -21
  43. package/src/llama.cpp/src/llama-kv-cache.h +2 -4
  44. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  45. package/src/llama.cpp/src/llama-memory-recurrent.cpp +18 -14
  46. package/src/llama.cpp/src/llama-memory-recurrent.h +2 -2
  47. package/src/llama.cpp/src/llama-model.cpp +350 -13194
  48. package/src/llama.cpp/src/llama-model.h +9 -2
  49. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  50. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  51. package/src/llama.cpp/src/llama-vocab.h +1 -0
  52. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  53. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  54. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  55. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  56. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  57. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  58. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  59. package/src/llama.cpp/src/models/bert.cpp +176 -0
  60. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  61. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  62. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  63. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  64. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  65. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  66. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  67. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  68. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  69. package/src/llama.cpp/src/models/deci.cpp +135 -0
  70. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  71. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  72. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  73. package/src/llama.cpp/src/models/dream.cpp +105 -0
  74. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  75. package/src/llama.cpp/src/models/ernie4-5.cpp +111 -0
  76. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  77. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  78. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  79. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  80. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  81. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  82. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  83. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  84. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  85. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  86. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  87. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  88. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  89. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  90. package/src/llama.cpp/src/models/granite.cpp +211 -0
  91. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  92. package/src/llama.cpp/src/models/grok.cpp +159 -0
  93. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  94. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  95. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  96. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  97. package/src/llama.cpp/src/models/jais.cpp +86 -0
  98. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  99. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  100. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  101. package/src/llama.cpp/src/models/llada.cpp +99 -0
  102. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  103. package/src/llama.cpp/src/models/llama.cpp +155 -0
  104. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  105. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  106. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  107. package/src/llama.cpp/src/models/models.h +481 -0
  108. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  109. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  110. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  111. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  112. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  113. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  114. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  115. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +123 -0
  116. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  117. package/src/llama.cpp/src/models/orion.cpp +123 -0
  118. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  119. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  120. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  121. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  122. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  123. package/src/llama.cpp/src/models/plm.cpp +168 -0
  124. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  125. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  126. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  127. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  128. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  129. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  130. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  131. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  132. package/src/llama.cpp/src/models/refact.cpp +94 -0
  133. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  134. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  135. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  136. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  137. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  138. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  139. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  140. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  141. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  142. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  143. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  144. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  145. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  146. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  147. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,120 @@
1
+ #include "models.h"
2
+
3
+
4
+
5
+ llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
6
+ llm_graph_context(params) {
7
+ const int64_t n_embd_head = hparams.n_embd_head_k;
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
15
+ if (ubatch.token) {
16
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
17
+ cb(inpL, "inp_scaled", -1);
18
+ }
19
+
20
+ // inp_pos - contains the positions
21
+ ggml_tensor * inp_pos = build_inp_pos();
22
+
23
+ auto * inp_attn = build_attn_inp_no_cache();
24
+
25
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
26
+
27
+ for (int il = 0; il < n_layer; ++il) {
28
+ const float freq_base_l = model.get_rope_freq_base(cparams, il);
29
+ const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
30
+
31
+ // norm
32
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
33
+ cb(cur, "attn_norm", il);
34
+
35
+ // self-attention
36
+ {
37
+ // compute Q and K and RoPE them
38
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
39
+ cb(Qcur, "Qcur", il);
40
+
41
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
42
+ cb(Kcur, "Kcur", il);
43
+
44
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
45
+ cb(Vcur, "Vcur", il);
46
+
47
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
48
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
49
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
50
+
51
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
52
+ cb(Qcur, "Qcur_normed", il);
53
+
54
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
55
+ ext_factor, attn_factor, beta_fast, beta_slow);
56
+
57
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
58
+ cb(Kcur, "Kcur_normed", il);
59
+
60
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
61
+ ext_factor, attn_factor, beta_fast, beta_slow);
62
+
63
+ cb(Qcur, "Qcur", il);
64
+ cb(Kcur, "Kcur", il);
65
+ cb(Vcur, "Vcur", il);
66
+
67
+ // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
68
+ Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
69
+
70
+ cur =
71
+ build_attn(inp_attn,
72
+ model.layers[il].wo, NULL,
73
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
74
+ }
75
+
76
+ if (il == n_layer - 1 && inp_out_ids) {
77
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
78
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
79
+ }
80
+
81
+ cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
82
+ cb(cur, "attn_post_norm", il);
83
+
84
+ ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
85
+ cb(sa_out, "sa_out", il);
86
+
87
+ cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
88
+ cb(cur, "ffn_norm", il);
89
+
90
+ // feed-forward network
91
+ {
92
+ cur = build_ffn(cur,
93
+ model.layers[il].ffn_up, NULL, NULL,
94
+ model.layers[il].ffn_gate, NULL, NULL,
95
+ model.layers[il].ffn_down, NULL, NULL,
96
+ NULL, LLM_FFN_GELU, LLM_FFN_PAR, il);
97
+ cb(cur, "ffn_out", il);
98
+ }
99
+
100
+ cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
101
+ cb(cur, "ffn_post_norm", -1);
102
+
103
+ cur = ggml_add(ctx0, cur, sa_out);
104
+
105
+ cur = build_cvec(cur, il);
106
+ cb(cur, "l_out", il);
107
+
108
+ // input for next layer
109
+ inpL = cur;
110
+ }
111
+
112
+ cur = inpL;
113
+
114
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
115
+
116
+ cb(cur, "result_norm", -1);
117
+ res->t_embd = cur;
118
+
119
+ ggml_build_forward_expand(gf, cur);
120
+ }
@@ -0,0 +1,112 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_gemma::llm_build_gemma(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ ggml_tensor * cur;
8
+ ggml_tensor * inpL;
9
+
10
+ inpL = build_inp_embd(model.tok_embd);
11
+
12
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
13
+ cb(inpL, "inp_scaled", -1);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
21
+
22
+ for (int il = 0; il < n_layer; ++il) {
23
+ // norm
24
+ cur = build_norm(inpL,
25
+ model.layers[il].attn_norm, NULL,
26
+ LLM_NORM_RMS, il);
27
+ cb(cur, "attn_norm", il);
28
+
29
+ // self-attention
30
+ {
31
+ // compute Q and K and RoPE them
32
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
+ cb(Qcur, "Qcur", il);
34
+
35
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
36
+ cb(Kcur, "Kcur", il);
37
+
38
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
39
+ cb(Vcur, "Vcur", il);
40
+
41
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
42
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
43
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
44
+
45
+ Qcur = ggml_rope_ext(
46
+ ctx0, Qcur, inp_pos, nullptr,
47
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
48
+ ext_factor, attn_factor, beta_fast, beta_slow);
49
+
50
+ Kcur = ggml_rope_ext(
51
+ ctx0, Kcur, inp_pos, nullptr,
52
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
53
+ ext_factor, attn_factor, beta_fast, beta_slow);
54
+
55
+ cb(Qcur, "Qcur", il);
56
+ cb(Kcur, "Kcur", il);
57
+ cb(Vcur, "Vcur", il);
58
+
59
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
60
+ cb(Qcur, "Qcur_scaled", il);
61
+
62
+ cur = build_attn(inp_attn,
63
+ model.layers[il].wo, NULL,
64
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
65
+ }
66
+ if (il == n_layer - 1 && inp_out_ids) {
67
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
68
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
69
+ }
70
+ ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
71
+ cb(sa_out, "sa_out", il);
72
+
73
+ cur = build_norm(sa_out,
74
+ model.layers[il].ffn_norm, NULL,
75
+ LLM_NORM_RMS, il);
76
+ cb(cur, "ffn_norm", il);
77
+
78
+ // feed-forward network
79
+ {
80
+ cur = build_ffn(cur,
81
+ model.layers[il].ffn_up, NULL, NULL,
82
+ model.layers[il].ffn_gate, NULL, NULL,
83
+ model.layers[il].ffn_down, NULL, NULL,
84
+ NULL,
85
+ LLM_FFN_GELU, LLM_FFN_PAR, il);
86
+ cb(cur, "ffn_out", il);
87
+ }
88
+ cur = ggml_add(ctx0, cur, sa_out);
89
+
90
+ cur = build_cvec(cur, il);
91
+ cb(cur, "l_out", il);
92
+
93
+ // input for next layer
94
+ inpL = cur;
95
+ }
96
+ cur = inpL;
97
+
98
+ cur = build_norm(cur,
99
+ model.output_norm, NULL,
100
+ LLM_NORM_RMS, -1);
101
+
102
+ cb(cur, "result_norm", -1);
103
+ res->t_embd = cur;
104
+
105
+ // lm_head
106
+ cur = build_lora_mm(model.output, cur);
107
+
108
+ cb(cur, "result_output", -1);
109
+ res->t_logits = cur;
110
+
111
+ ggml_build_forward_expand(gf, cur);
112
+ }
@@ -0,0 +1,125 @@
1
+ #include "models.h"
2
+
3
+ llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_k;
5
+
6
+ ggml_tensor * cur;
7
+ ggml_tensor * inpL;
8
+
9
+ inpL = build_inp_embd(model.tok_embd);
10
+
11
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
12
+ cb(inpL, "inp_scaled", -1);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv_iswa();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ // norm
23
+ cur = build_norm(inpL,
24
+ model.layers[il].attn_norm, NULL,
25
+ LLM_NORM_RMS, il);
26
+ cb(cur, "attn_norm", il);
27
+
28
+ // self-attention
29
+ {
30
+ // compute Q and K and RoPE them
31
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
32
+ cb(Qcur, "Qcur", il);
33
+
34
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
35
+ cb(Kcur, "Kcur", il);
36
+
37
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
38
+ cb(Vcur, "Vcur", il);
39
+
40
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
41
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
42
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
43
+
44
+ Qcur = ggml_rope_ext(
45
+ ctx0, Qcur, inp_pos, nullptr,
46
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
47
+ ext_factor, attn_factor, beta_fast, beta_slow);
48
+
49
+ Kcur = ggml_rope_ext(
50
+ ctx0, Kcur, inp_pos, nullptr,
51
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
52
+ ext_factor, attn_factor, beta_fast, beta_slow);
53
+
54
+ cb(Qcur, "Qcur", il);
55
+ cb(Kcur, "Kcur", il);
56
+ cb(Vcur, "Vcur", il);
57
+
58
+ Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
59
+
60
+ cur = build_attn(inp_attn,
61
+ model.layers[il].wo, NULL,
62
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
63
+ }
64
+ if (il == n_layer - 1 && inp_out_ids) {
65
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
66
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
67
+ }
68
+ cur = build_norm(cur,
69
+ model.layers[il].attn_post_norm, NULL,
70
+ LLM_NORM_RMS, il);
71
+ cb(cur, "attn_post_norm", il);
72
+
73
+ ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
74
+ cb(sa_out, "sa_out", il);
75
+
76
+ cur = build_norm(sa_out,
77
+ model.layers[il].ffn_norm, NULL,
78
+ LLM_NORM_RMS, il);
79
+ cb(cur, "ffn_norm", il);
80
+
81
+ // feed-forward network
82
+ {
83
+ cur = build_ffn(cur,
84
+ model.layers[il].ffn_up, NULL, NULL,
85
+ model.layers[il].ffn_gate, NULL, NULL,
86
+ model.layers[il].ffn_down, NULL, NULL,
87
+ NULL,
88
+ LLM_FFN_GELU, LLM_FFN_PAR, il);
89
+ cb(cur, "ffn_out", il);
90
+ }
91
+ cur = build_norm(cur,
92
+ model.layers[il].ffn_post_norm, NULL,
93
+ LLM_NORM_RMS, -1);
94
+ cb(cur, "ffn_post_norm", -1);
95
+
96
+ cur = ggml_add(ctx0, cur, sa_out);
97
+
98
+ cur = build_cvec(cur, il);
99
+ cb(cur, "l_out", il);
100
+
101
+ // input for next layer
102
+ inpL = cur;
103
+ }
104
+ cur = inpL;
105
+
106
+ cur = build_norm(cur,
107
+ model.output_norm, NULL,
108
+ LLM_NORM_RMS, -1);
109
+
110
+ cb(cur, "result_norm", -1);
111
+ res->t_embd = cur;
112
+
113
+ // lm_head
114
+ cur = build_lora_mm(model.output, cur);
115
+
116
+ // final logit soft-capping
117
+ cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
118
+ cur = ggml_tanh(ctx0, cur);
119
+ cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
120
+
121
+ cb(cur, "result_output", -1);
122
+ res->t_logits = cur;
123
+
124
+ ggml_build_forward_expand(gf, cur);
125
+ }
@@ -0,0 +1,131 @@
1
+ #include "models.h"
2
+
3
+ llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_k;
5
+
6
+ ggml_tensor * cur;
7
+ ggml_tensor * inpL;
8
+
9
+ inpL = build_inp_embd(model.tok_embd);
10
+
11
+ // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
12
+ if (ubatch.token) {
13
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
14
+ cb(inpL, "inp_scaled", -1);
15
+ }
16
+ // inp_pos - contains the positions
17
+ ggml_tensor * inp_pos = build_inp_pos();
18
+
19
+ // TODO: is causal == true correct? might need some changes
20
+ auto * inp_attn = build_attn_inp_kv_iswa();
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ for (int il = 0; il < n_layer; ++il) {
25
+ const float freq_base_l = model.get_rope_freq_base (cparams, il);
26
+ const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
27
+
28
+ // norm
29
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
30
+ cb(cur, "attn_norm", il);
31
+
32
+ // self-attention
33
+ {
34
+ // compute Q and K and RoPE them
35
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
+ cb(Qcur, "Qcur", il);
37
+
38
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
+ cb(Kcur, "Kcur", il);
40
+
41
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
42
+ cb(Vcur, "Vcur", il);
43
+
44
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
45
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
46
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
47
+
48
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
49
+ cb(Qcur, "Qcur_normed", il);
50
+
51
+ Qcur = ggml_rope_ext(
52
+ ctx0, Qcur, inp_pos, nullptr,
53
+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
54
+ ext_factor, attn_factor, beta_fast, beta_slow);
55
+
56
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
57
+ cb(Kcur, "Kcur_normed", il);
58
+
59
+ Kcur = ggml_rope_ext(
60
+ ctx0, Kcur, inp_pos, nullptr,
61
+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
62
+ ext_factor, attn_factor, beta_fast, beta_slow);
63
+
64
+ cb(Qcur, "Qcur", il);
65
+ cb(Kcur, "Kcur", il);
66
+ cb(Vcur, "Vcur", il);
67
+
68
+ // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
69
+ Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
70
+
71
+ cur = build_attn(inp_attn,
72
+ model.layers[il].wo, NULL,
73
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
74
+ }
75
+ if (il == n_layer - 1 && inp_out_ids) {
76
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
77
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
78
+ }
79
+ cur = build_norm(cur,
80
+ model.layers[il].attn_post_norm, NULL,
81
+ LLM_NORM_RMS, il);
82
+ cb(cur, "attn_post_norm", il);
83
+
84
+ ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
85
+ cb(sa_out, "sa_out", il);
86
+
87
+ cur = build_norm(sa_out,
88
+ model.layers[il].ffn_norm, NULL,
89
+ LLM_NORM_RMS, il);
90
+ cb(cur, "ffn_norm", il);
91
+
92
+ // feed-forward network
93
+ {
94
+ cur = build_ffn(cur,
95
+ model.layers[il].ffn_up, NULL, NULL,
96
+ model.layers[il].ffn_gate, NULL, NULL,
97
+ model.layers[il].ffn_down, NULL, NULL,
98
+ NULL,
99
+ LLM_FFN_GELU, LLM_FFN_PAR, il);
100
+ cb(cur, "ffn_out", il);
101
+ }
102
+ cur = build_norm(cur,
103
+ model.layers[il].ffn_post_norm, NULL,
104
+ LLM_NORM_RMS, -1);
105
+ cb(cur, "ffn_post_norm", -1);
106
+
107
+ cur = ggml_add(ctx0, cur, sa_out);
108
+
109
+ cur = build_cvec(cur, il);
110
+ cb(cur, "l_out", il);
111
+
112
+ // input for next layer
113
+ inpL = cur;
114
+ }
115
+ cur = inpL;
116
+
117
+ cur = build_norm(cur,
118
+ model.output_norm, NULL,
119
+ LLM_NORM_RMS, -1);
120
+
121
+ cb(cur, "result_norm", -1);
122
+ res->t_embd = cur;
123
+
124
+ // lm_head
125
+ cur = build_lora_mm(model.output, cur);
126
+
127
+ cb(cur, "result_output", -1);
128
+ res->t_logits = cur;
129
+
130
+ ggml_build_forward_expand(gf, cur);
131
+ }