@fugood/llama.node 1.3.0-rc.6 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CMakeLists.txt +12 -2
  2. package/package.json +14 -14
  3. package/scripts/llama.cpp.patch +8 -9
  4. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  5. package/src/llama.cpp/common/arg.cpp +39 -1001
  6. package/src/llama.cpp/common/arg.h +2 -2
  7. package/src/llama.cpp/common/chat.cpp +216 -2
  8. package/src/llama.cpp/common/chat.h +1 -0
  9. package/src/llama.cpp/common/common.cpp +33 -0
  10. package/src/llama.cpp/common/common.h +13 -0
  11. package/src/llama.cpp/common/download.cpp +1054 -0
  12. package/src/llama.cpp/common/download.h +55 -0
  13. package/src/llama.cpp/common/json-schema-to-grammar.cpp +19 -3
  14. package/src/llama.cpp/ggml/CMakeLists.txt +3 -1
  15. package/src/llama.cpp/ggml/include/ggml-hexagon.h +19 -0
  16. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  17. package/src/llama.cpp/ggml/src/CMakeLists.txt +7 -3
  18. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +10 -3
  19. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  20. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  21. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  23. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +0 -5
  24. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -35
  25. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  26. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  27. package/src/llama.cpp/include/llama.h +7 -3
  28. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  29. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  30. package/src/llama.cpp/src/llama-arch.h +11 -0
  31. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  32. package/src/llama.cpp/src/llama-batch.h +12 -1
  33. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  34. package/src/llama.cpp/src/llama-chat.h +1 -0
  35. package/src/llama.cpp/src/llama-context.cpp +44 -16
  36. package/src/llama.cpp/src/llama-context.h +5 -5
  37. package/src/llama.cpp/src/llama-cparams.h +1 -0
  38. package/src/llama.cpp/src/llama-graph.cpp +12 -7
  39. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  40. package/src/llama.cpp/src/llama-hparams.h +6 -0
  41. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  42. package/src/llama.cpp/src/llama-kv-cache.cpp +56 -21
  43. package/src/llama.cpp/src/llama-kv-cache.h +2 -4
  44. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  45. package/src/llama.cpp/src/llama-memory-recurrent.cpp +18 -14
  46. package/src/llama.cpp/src/llama-memory-recurrent.h +2 -2
  47. package/src/llama.cpp/src/llama-model.cpp +350 -13194
  48. package/src/llama.cpp/src/llama-model.h +9 -2
  49. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  50. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  51. package/src/llama.cpp/src/llama-vocab.h +1 -0
  52. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  53. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  54. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  55. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  56. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  57. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  58. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  59. package/src/llama.cpp/src/models/bert.cpp +176 -0
  60. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  61. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  62. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  63. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  64. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  65. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  66. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  67. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  68. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  69. package/src/llama.cpp/src/models/deci.cpp +135 -0
  70. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  71. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  72. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  73. package/src/llama.cpp/src/models/dream.cpp +105 -0
  74. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  75. package/src/llama.cpp/src/models/ernie4-5.cpp +111 -0
  76. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  77. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  78. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  79. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  80. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  81. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  82. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  83. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  84. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  85. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  86. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  87. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  88. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  89. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  90. package/src/llama.cpp/src/models/granite.cpp +211 -0
  91. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  92. package/src/llama.cpp/src/models/grok.cpp +159 -0
  93. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  94. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  95. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  96. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  97. package/src/llama.cpp/src/models/jais.cpp +86 -0
  98. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  99. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  100. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  101. package/src/llama.cpp/src/models/llada.cpp +99 -0
  102. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  103. package/src/llama.cpp/src/models/llama.cpp +155 -0
  104. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  105. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  106. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  107. package/src/llama.cpp/src/models/models.h +481 -0
  108. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  109. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  110. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  111. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  112. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  113. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  114. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  115. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +123 -0
  116. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  117. package/src/llama.cpp/src/models/orion.cpp +123 -0
  118. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  119. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  120. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  121. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  122. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  123. package/src/llama.cpp/src/models/plm.cpp +168 -0
  124. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  125. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  126. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  127. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  128. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  129. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  130. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  131. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  132. package/src/llama.cpp/src/models/refact.cpp +94 -0
  133. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  134. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  135. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  136. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  137. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  138. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  139. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  140. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  141. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  142. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  143. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  144. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  145. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  146. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  147. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,124 @@
1
+ #include "models.h"
2
+
3
+ llm_build_olmoe::llm_build_olmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ // norm
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, NULL,
27
+ LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self_attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ cb(Qcur, "Qcur", il);
35
+
36
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
37
+ cb(Kcur, "Kcur", il);
38
+
39
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
40
+ cb(Vcur, "Vcur", il);
41
+
42
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
43
+ LLM_NORM_RMS, il);
44
+ cb(Qcur, "Qcur_normed", il);
45
+
46
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
47
+ LLM_NORM_RMS, il);
48
+ cb(Kcur, "Kcur_normed", il);
49
+
50
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
51
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
52
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
53
+
54
+ Qcur = ggml_rope_ext(
55
+ ctx0, Qcur, inp_pos, nullptr,
56
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
57
+ ext_factor, attn_factor, beta_fast, beta_slow
58
+ );
59
+
60
+ Kcur = ggml_rope_ext(
61
+ ctx0, Kcur, inp_pos, nullptr,
62
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
+ ext_factor, attn_factor, beta_fast, beta_slow
64
+ );
65
+
66
+ cb(Qcur, "Qcur", il);
67
+ cb(Kcur, "Kcur", il);
68
+ cb(Vcur, "Vcur", il);
69
+
70
+ cur = build_attn(inp_attn,
71
+ model.layers[il].wo, NULL,
72
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
73
+ }
74
+ if (il == n_layer - 1 && inp_out_ids) {
75
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
76
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
77
+ }
78
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
79
+ cb(ffn_inp, "ffn_inp", il);
80
+
81
+ // MoE branch
82
+ cur = build_norm(ffn_inp,
83
+ model.layers[il].ffn_norm, NULL,
84
+ LLM_NORM_RMS, il);
85
+ cb(cur, "ffn_norm", il);
86
+
87
+ cur = build_moe_ffn(cur,
88
+ model.layers[il].ffn_gate_inp,
89
+ model.layers[il].ffn_up_exps,
90
+ model.layers[il].ffn_gate_exps,
91
+ model.layers[il].ffn_down_exps,
92
+ nullptr,
93
+ n_expert, n_expert_used,
94
+ LLM_FFN_SILU, false,
95
+ false, 0.0,
96
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
97
+ il);
98
+ cb(cur, "ffn_moe_out", il);
99
+
100
+ cur = ggml_add(ctx0, cur, ffn_inp);
101
+
102
+ cur = build_cvec(cur, il);
103
+ cb(cur, "l_out", il);
104
+
105
+ // input for next layer
106
+ inpL = cur;
107
+ }
108
+ cur = inpL;
109
+
110
+ cur = build_norm(cur,
111
+ model.output_norm, NULL,
112
+ LLM_NORM_RMS, -1);
113
+
114
+ cb(cur, "result_norm", -1);
115
+ res->t_embd = cur;
116
+
117
+ // lm_head
118
+ cur = build_lora_mm(model.output, cur);
119
+
120
+ cb(cur, "result_output", -1);
121
+ res->t_logits = cur;
122
+
123
+ ggml_build_forward_expand(gf, cur);
124
+ }
@@ -0,0 +1,123 @@
1
+ #include "models.h"
2
+
3
+ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ ggml_tensor * cur;
5
+ ggml_tensor * inpL;
6
+
7
+ inpL = build_inp_embd(model.tok_embd);
8
+
9
+ // inp_pos - contains the positions
10
+ ggml_tensor * inp_pos = build_inp_pos();
11
+
12
+ auto * inp_attn = build_attn_inp_kv_iswa();
13
+
14
+ for (int il = 0; il < n_layer; ++il) {
15
+ ggml_tensor * inpSA = inpL;
16
+
17
+ // norm
18
+ cur = build_norm(inpL,
19
+ model.layers[il].attn_norm, nullptr,
20
+ LLM_NORM_RMS, il);
21
+ cb(cur, "attn_norm", il);
22
+
23
+ // self-attention
24
+ {
25
+ // compute Q and K and RoPE them
26
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
27
+ cb(Qcur, "Qcur", il);
28
+ if (model.layers[il].bq) {
29
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
30
+ cb(Qcur, "Qcur", il);
31
+ }
32
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
33
+ cb(Kcur, "Kcur", il);
34
+ if (model.layers[il].bk) {
35
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
36
+ cb(Kcur, "Kcur", il);
37
+ }
38
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
39
+ cb(Vcur, "Vcur", il);
40
+ if (model.layers[il].bv) {
41
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
42
+ cb(Vcur, "Vcur", il);
43
+ }
44
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
45
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
46
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
47
+
48
+ Qcur = ggml_rope_ext(
49
+ ctx0, Qcur, inp_pos, nullptr,
50
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
51
+ ext_factor, attn_factor, beta_fast, beta_slow
52
+ );
53
+
54
+ Kcur = ggml_rope_ext(
55
+ ctx0, Kcur, inp_pos, nullptr,
56
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
57
+ ext_factor, attn_factor, beta_fast, beta_slow
58
+ );
59
+
60
+ cb(Qcur, "Qcur", il);
61
+ cb(Kcur, "Kcur", il);
62
+ cb(Vcur, "Vcur", il);
63
+
64
+ cur = build_attn(inp_attn,
65
+ model.layers[il].wo, model.layers[il].bo,
66
+ Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il);
67
+
68
+ cb(cur, "attn_out", il);
69
+ }
70
+ if (il == n_layer - 1) {
71
+ // skip computing output for unused tokens
72
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
73
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
74
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
75
+ }
76
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
77
+ cb(ffn_inp, "ffn_inp", il);
78
+
79
+ cur = ffn_inp;
80
+ cur = build_norm(cur,
81
+ model.layers[il].attn_post_norm, nullptr,
82
+ LLM_NORM_RMS, il);
83
+ cb(cur, "attn_post_norm", il);
84
+
85
+ // MoE branch
86
+ cur = build_moe_ffn(cur,
87
+ model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b,
88
+ model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b,
89
+ model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
90
+ model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
91
+ nullptr,
92
+ n_expert, n_expert_used,
93
+ LLM_FFN_SWIGLU_OAI_MOE, false,
94
+ false, 0.0,
95
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT,
96
+ il);
97
+ cb(cur, "ffn_moe_out", il);
98
+
99
+ cur = ggml_add(ctx0, cur, ffn_inp);
100
+
101
+ cur = build_cvec(cur, il);
102
+ cb(cur, "l_out", il);
103
+
104
+ // input for next layer
105
+ inpL = cur;
106
+ }
107
+ cur = inpL;
108
+
109
+ cur = build_norm(cur,
110
+ model.output_norm, NULL,
111
+ LLM_NORM_RMS, -1);
112
+
113
+ cb(cur, "result_norm", -1);
114
+ res->t_embd = cur;
115
+
116
+ // lm_head
117
+ cur = build_lora_mm(model.output, cur);
118
+
119
+ cb(cur, "result_output", -1);
120
+ res->t_logits = cur;
121
+
122
+ ggml_build_forward_expand(gf, cur);
123
+ }
@@ -0,0 +1,124 @@
1
+ #include "models.h"
2
+
3
+ llm_build_openelm::llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+
8
+ ggml_tensor * cur;
9
+ ggml_tensor * inpL;
10
+ inpL = build_inp_embd(model.tok_embd);
11
+
12
+ // inp_pos - contains the positions
13
+ ggml_tensor * inp_pos = build_inp_pos();
14
+
15
+ auto * inp_attn = build_attn_inp_kv();
16
+
17
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
18
+
19
+ for (int il = 0; il < n_layer; ++il) {
20
+ const int64_t n_head = hparams.n_head(il);
21
+ const int64_t n_head_kv = hparams.n_head_kv(il);
22
+ const int64_t n_head_qkv = 2*n_head_kv + n_head;
23
+
24
+ cur = inpL;
25
+ ggml_tensor * residual = cur;
26
+
27
+ // norm
28
+ cur = build_norm(inpL,
29
+ model.layers[il].attn_norm, NULL,
30
+ LLM_NORM_RMS, il);
31
+ cb(cur, "attn_norm", il);
32
+
33
+ // self-attention
34
+ {
35
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
36
+ cb(cur, "wqkv", il);
37
+
38
+ cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
39
+
40
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0);
41
+ cb(Qcur, "Qcur", il);
42
+
43
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head);
44
+ cb(Kcur, "Kcur", il);
45
+
46
+ ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
47
+ cb(Vcur, "Vcur", il);
48
+
49
+ Qcur = build_norm(Qcur,
50
+ model.layers[il].attn_q_norm, NULL,
51
+ LLM_NORM_RMS, il);
52
+ cb(Qcur, "Qcur", il);
53
+
54
+ Kcur = build_norm(Kcur,
55
+ model.layers[il].attn_k_norm, NULL,
56
+ LLM_NORM_RMS, il);
57
+ cb(Kcur, "Kcur", il);
58
+
59
+ Qcur = ggml_rope_ext(
60
+ ctx0, Qcur, inp_pos, NULL,
61
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
62
+ ext_factor, attn_factor, beta_fast, beta_slow
63
+ );
64
+
65
+ Kcur = ggml_rope_ext(
66
+ ctx0, Kcur, inp_pos, NULL,
67
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
68
+ ext_factor, attn_factor, beta_fast, beta_slow
69
+ );
70
+
71
+ cb(Qcur, "Qcur", il);
72
+ cb(Kcur, "Kcur", il);
73
+ cb(Qcur, "Vcur", il);
74
+
75
+ cur = build_attn(inp_attn,
76
+ model.layers[il].wo, NULL,
77
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
78
+ }
79
+ if (il == n_layer - 1 && inp_out_ids) {
80
+ residual = ggml_get_rows(ctx0, residual, inp_out_ids);
81
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
82
+ }
83
+ ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
84
+ cb(ffn_inp, "ffn_inp", il);
85
+
86
+ // feed-forward network
87
+ {
88
+ cur = build_norm(ffn_inp,
89
+ model.layers[il].ffn_norm, NULL,
90
+ LLM_NORM_RMS, il);
91
+ cb(cur, "ffn_norm", il);
92
+
93
+ cur = build_ffn(cur,
94
+ model.layers[il].ffn_up, NULL, NULL,
95
+ model.layers[il].ffn_gate, NULL, NULL,
96
+ model.layers[il].ffn_down, NULL, NULL,
97
+ NULL,
98
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
99
+ cb(cur, "ffn_out", il);
100
+ }
101
+ cur = ggml_add(ctx0, cur, ffn_inp);
102
+
103
+ cur = build_cvec(cur, il);
104
+ cb(cur, "l_out", il);
105
+
106
+ inpL = cur;
107
+ }
108
+ cur = inpL;
109
+
110
+ // norm
111
+ cur = build_norm(cur,
112
+ model.output_norm, NULL,
113
+ LLM_NORM_RMS, -1);
114
+
115
+ cb(cur, "result_norm", -1);
116
+ res->t_embd = cur;
117
+
118
+ cur = build_lora_mm(model.output, cur);
119
+
120
+ cb(cur, "result_output", -1);
121
+ res->t_logits = cur;
122
+
123
+ ggml_build_forward_expand(gf, cur);
124
+ }
@@ -0,0 +1,123 @@
1
+ #include "models.h"
2
+
3
+ llm_build_orion::llm_build_orion(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ // norm
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, model.layers[il].attn_norm_b,
27
+ LLM_NORM, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self-attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ cb(Qcur, "Qcur", il);
35
+ // if (model.layers[il].bq) {
36
+ // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
37
+ // cb(Qcur, "Qcur", il);
38
+ // }
39
+
40
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
+ cb(Kcur, "Kcur", il);
42
+ // if (model.layers[il].bk) {
43
+ // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
44
+ // cb(Kcur, "Kcur", il);
45
+ // }
46
+
47
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
48
+ cb(Vcur, "Vcur", il);
49
+ // if (model.layers[il].bv) {
50
+ // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
51
+ // cb(Vcur, "Vcur", il);
52
+ // }
53
+
54
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
55
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
56
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
57
+
58
+ Qcur = ggml_rope_ext(
59
+ ctx0, Qcur, inp_pos, nullptr,
60
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
61
+ ext_factor, attn_factor, beta_fast, beta_slow
62
+ );
63
+
64
+ Kcur = ggml_rope_ext(
65
+ ctx0, Kcur, inp_pos, nullptr,
66
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
67
+ ext_factor, attn_factor, beta_fast, beta_slow
68
+ );
69
+
70
+ cb(Qcur, "Qcur", il);
71
+ cb(Kcur, "Kcur", il);
72
+ cb(Vcur, "Vcur", il);
73
+
74
+ cur = build_attn(inp_attn,
75
+ model.layers[il].wo, NULL,
76
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
77
+ }
78
+ if (il == n_layer - 1 && inp_out_ids) {
79
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
80
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
81
+ }
82
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
83
+ cb(ffn_inp, "ffn_inp", il);
84
+
85
+ // feed-forward network
86
+ cur = build_norm(ffn_inp,
87
+ model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
88
+ LLM_NORM, il);
89
+ cb(cur, "ffn_norm", il);
90
+
91
+ cur = build_ffn(cur,
92
+ model.layers[il].ffn_up, NULL, NULL,
93
+ model.layers[il].ffn_gate, NULL, NULL,
94
+ model.layers[il].ffn_down, NULL, NULL,
95
+ NULL,
96
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
97
+ cb(cur, "ffn_out", il);
98
+
99
+ cur = ggml_add(ctx0, cur, ffn_inp);
100
+
101
+ cur = build_cvec(cur, il);
102
+ cb(cur, "l_out", il);
103
+
104
+ // input for next layer
105
+ inpL = cur;
106
+ }
107
+ cur = inpL;
108
+
109
+ cur = build_norm(cur,
110
+ model.output_norm, model.output_norm_b,
111
+ LLM_NORM, -1);
112
+
113
+ cb(cur, "result_norm", -1);
114
+ res->t_embd = cur;
115
+
116
+ // lm_head
117
+ cur = build_lora_mm(model.output, cur);
118
+
119
+ cb(cur, "result_output", -1);
120
+ res->t_logits = cur;
121
+
122
+ ggml_build_forward_expand(gf, cur);
123
+ }
@@ -0,0 +1,121 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_pangu_embedded::llm_build_pangu_embedded(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ inpL = build_inp_embd(model.tok_embd);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
21
+
22
+ for (int il = 0; il < n_layer; ++il) {
23
+ ggml_tensor * inpSA = inpL;
24
+
25
+ // norm
26
+ cur = build_norm(inpL,
27
+ model.layers[il].attn_norm, NULL,
28
+ LLM_NORM_RMS, il);
29
+ cb(cur, "attn_norm", il);
30
+
31
+ // self attention
32
+ {
33
+ // compute Q and K and RoPE them
34
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
35
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
36
+ cb(Qcur, "Qcur", il);
37
+
38
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
40
+ cb(Kcur, "Kcur", il);
41
+
42
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
43
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
44
+ cb(Vcur, "Vcur", il);
45
+
46
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
47
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
48
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
49
+
50
+ Qcur = ggml_rope_ext(
51
+ ctx0, Qcur, inp_pos, nullptr,
52
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
53
+ ext_factor, attn_factor, beta_fast, beta_slow
54
+ );
55
+
56
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
57
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
+ ext_factor, attn_factor, beta_fast, beta_slow
59
+ );
60
+
61
+ cb(Qcur, "Qcur", il);
62
+ cb(Kcur, "Kcur", il);
63
+ cb(Vcur, "Vcur", il);
64
+
65
+ cur = build_attn(inp_attn,
66
+ model.layers[il].wo, model.layers[il].bo,
67
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
68
+ }
69
+
70
+ if (il == n_layer - 1 && inp_out_ids) {
71
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
72
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
73
+ }
74
+
75
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
76
+ cb(ffn_inp, "ffn_inp", il);
77
+
78
+ // feed-forward network
79
+ cur = build_norm(ffn_inp,
80
+ model.layers[il].ffn_norm, NULL,
81
+ LLM_NORM_RMS, il);
82
+ cb(cur, "ffn_norm", il);
83
+
84
+ cur = build_ffn(cur,
85
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
86
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
87
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
88
+ NULL,
89
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
90
+
91
+ cur = ggml_add(ctx0, cur, ffn_inp);
92
+ cb(cur, "ffn_out", il);
93
+
94
+ cur = build_cvec(cur, il);
95
+ cb(cur, "l_out", il);
96
+
97
+ // input for next layer
98
+ inpL = cur;
99
+ }
100
+
101
+ cur = inpL;
102
+
103
+ cur = build_norm(cur,
104
+ model.output_norm, NULL,
105
+ LLM_NORM_RMS, -1);
106
+
107
+ cb(cur, "result_norm", -1);
108
+ res->t_embd = cur;
109
+
110
+ // lm_head
111
+ cur = build_lora_mm(model.output, cur);
112
+
113
+ if (model.output_b != nullptr) {
114
+ cur = ggml_add(ctx0, cur, model.output_b);
115
+ }
116
+
117
+ cb(cur, "result_output", -1);
118
+ res->t_logits = cur;
119
+
120
+ ggml_build_forward_expand(gf, cur);
121
+ }