@fugood/llama.node 1.3.0-rc.6 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CMakeLists.txt +12 -2
  2. package/package.json +14 -14
  3. package/scripts/llama.cpp.patch +8 -9
  4. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  5. package/src/llama.cpp/common/arg.cpp +39 -1001
  6. package/src/llama.cpp/common/arg.h +2 -2
  7. package/src/llama.cpp/common/chat.cpp +216 -2
  8. package/src/llama.cpp/common/chat.h +1 -0
  9. package/src/llama.cpp/common/common.cpp +33 -0
  10. package/src/llama.cpp/common/common.h +13 -0
  11. package/src/llama.cpp/common/download.cpp +1054 -0
  12. package/src/llama.cpp/common/download.h +55 -0
  13. package/src/llama.cpp/common/json-schema-to-grammar.cpp +19 -3
  14. package/src/llama.cpp/ggml/CMakeLists.txt +3 -1
  15. package/src/llama.cpp/ggml/include/ggml-hexagon.h +19 -0
  16. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  17. package/src/llama.cpp/ggml/src/CMakeLists.txt +7 -3
  18. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +10 -3
  19. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  20. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  21. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  23. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +0 -5
  24. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -35
  25. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  26. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  27. package/src/llama.cpp/include/llama.h +7 -3
  28. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  29. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  30. package/src/llama.cpp/src/llama-arch.h +11 -0
  31. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  32. package/src/llama.cpp/src/llama-batch.h +12 -1
  33. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  34. package/src/llama.cpp/src/llama-chat.h +1 -0
  35. package/src/llama.cpp/src/llama-context.cpp +44 -16
  36. package/src/llama.cpp/src/llama-context.h +5 -5
  37. package/src/llama.cpp/src/llama-cparams.h +1 -0
  38. package/src/llama.cpp/src/llama-graph.cpp +12 -7
  39. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  40. package/src/llama.cpp/src/llama-hparams.h +6 -0
  41. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  42. package/src/llama.cpp/src/llama-kv-cache.cpp +56 -21
  43. package/src/llama.cpp/src/llama-kv-cache.h +2 -4
  44. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  45. package/src/llama.cpp/src/llama-memory-recurrent.cpp +18 -14
  46. package/src/llama.cpp/src/llama-memory-recurrent.h +2 -2
  47. package/src/llama.cpp/src/llama-model.cpp +350 -13194
  48. package/src/llama.cpp/src/llama-model.h +9 -2
  49. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  50. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  51. package/src/llama.cpp/src/llama-vocab.h +1 -0
  52. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  53. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  54. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  55. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  56. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  57. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  58. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  59. package/src/llama.cpp/src/models/bert.cpp +176 -0
  60. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  61. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  62. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  63. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  64. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  65. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  66. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  67. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  68. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  69. package/src/llama.cpp/src/models/deci.cpp +135 -0
  70. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  71. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  72. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  73. package/src/llama.cpp/src/models/dream.cpp +105 -0
  74. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  75. package/src/llama.cpp/src/models/ernie4-5.cpp +111 -0
  76. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  77. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  78. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  79. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  80. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  81. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  82. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  83. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  84. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  85. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  86. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  87. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  88. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  89. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  90. package/src/llama.cpp/src/models/granite.cpp +211 -0
  91. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  92. package/src/llama.cpp/src/models/grok.cpp +159 -0
  93. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  94. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  95. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  96. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  97. package/src/llama.cpp/src/models/jais.cpp +86 -0
  98. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  99. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  100. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  101. package/src/llama.cpp/src/models/llada.cpp +99 -0
  102. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  103. package/src/llama.cpp/src/models/llama.cpp +155 -0
  104. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  105. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  106. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  107. package/src/llama.cpp/src/models/models.h +481 -0
  108. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  109. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  110. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  111. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  112. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  113. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  114. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  115. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +123 -0
  116. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  117. package/src/llama.cpp/src/models/orion.cpp +123 -0
  118. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  119. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  120. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  121. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  122. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  123. package/src/llama.cpp/src/models/plm.cpp +168 -0
  124. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  125. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  126. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  127. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  128. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  129. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  130. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  131. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  132. package/src/llama.cpp/src/models/refact.cpp +94 -0
  133. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  134. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  135. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  136. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  137. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  138. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  139. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  140. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  141. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  142. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  143. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  144. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  145. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  146. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  147. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,144 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_bailingmoe::llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ ggml_tensor * cur;
6
+ ggml_tensor * inpL;
7
+
8
+ inpL = build_inp_embd(model.tok_embd);
9
+
10
+ // inp_pos - contains the positions
11
+ ggml_tensor * inp_pos = build_inp_pos();
12
+
13
+ auto * inp_attn = build_attn_inp_kv();
14
+
15
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
16
+
17
+ for (int il = 0; il < n_layer; ++il) {
18
+ ggml_tensor * inpSA = inpL;
19
+
20
+ // norm
21
+ cur = build_norm(inpL,
22
+ model.layers[il].attn_norm, NULL,
23
+ LLM_NORM_RMS, il);
24
+ cb(cur, "attn_norm", il);
25
+
26
+ // self-attention
27
+ {
28
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
29
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
30
+
31
+ // compute Q and K and RoPE them
32
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
+ cb(Qcur, "Qcur", il);
34
+ if (model.layers[il].bq) {
35
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
36
+ cb(Qcur, "Qcur", il);
37
+ }
38
+
39
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
40
+ cb(Kcur, "Kcur", il);
41
+ if (model.layers[il].bk) {
42
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
43
+ cb(Kcur, "Kcur", il);
44
+ }
45
+
46
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
47
+ cb(Vcur, "Vcur", il);
48
+ if (model.layers[il].bv) {
49
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
50
+ cb(Vcur, "Vcur", il);
51
+ }
52
+
53
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
54
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
55
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
56
+
57
+ Qcur = ggml_rope_ext(
58
+ ctx0, Qcur, inp_pos, rope_factors,
59
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
60
+ ext_factor, attn_factor, beta_fast, beta_slow
61
+ );
62
+
63
+ Kcur = ggml_rope_ext(
64
+ ctx0, Kcur, inp_pos, rope_factors,
65
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
66
+ ext_factor, attn_factor, beta_fast, beta_slow
67
+ );
68
+
69
+ cb(Qcur, "Qcur", il);
70
+ cb(Kcur, "Kcur", il);
71
+ cb(Vcur, "Vcur", il);
72
+
73
+ cur = build_attn(inp_attn,
74
+ model.layers[il].wo, model.layers[il].bo,
75
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
76
+ }
77
+
78
+ if (il == n_layer - 1 && inp_out_ids) {
79
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
80
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
81
+ }
82
+
83
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
84
+ cb(ffn_inp, "ffn_inp", il);
85
+
86
+ cur = build_norm(ffn_inp,
87
+ model.layers[il].ffn_norm, NULL,
88
+ LLM_NORM_RMS, il);
89
+ cb(cur, "ffn_norm", il);
90
+
91
+ ggml_tensor * moe_out =
92
+ build_moe_ffn(cur,
93
+ model.layers[il].ffn_gate_inp,
94
+ model.layers[il].ffn_up_exps,
95
+ model.layers[il].ffn_gate_exps,
96
+ model.layers[il].ffn_down_exps,
97
+ nullptr,
98
+ n_expert, n_expert_used,
99
+ LLM_FFN_SILU, hparams.expert_weights_norm,
100
+ false, hparams.expert_weights_scale,
101
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
102
+ il);
103
+ cb(moe_out, "ffn_moe_out", il);
104
+
105
+ // FFN shared expert
106
+ {
107
+ ggml_tensor * ffn_shexp = build_ffn(cur,
108
+ model.layers[il].ffn_up_shexp, NULL, NULL,
109
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
110
+ model.layers[il].ffn_down_shexp, NULL, NULL,
111
+ NULL,
112
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
113
+ cb(ffn_shexp, "ffn_shexp", il);
114
+
115
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
116
+ cb(cur, "ffn_out", il);
117
+ }
118
+
119
+ cur = ggml_add(ctx0, cur, ffn_inp);
120
+
121
+ cur = build_cvec(cur, il);
122
+ cb(cur, "l_out", il);
123
+
124
+ // input for next layer
125
+ inpL = cur;
126
+ }
127
+
128
+ cur = inpL;
129
+
130
+ cur = build_norm(cur,
131
+ model.output_norm, NULL,
132
+ LLM_NORM_RMS, -1);
133
+
134
+ cb(cur, "result_norm", -1);
135
+ res->t_embd = cur;
136
+
137
+ // lm_head
138
+ cur = build_lora_mm(model.output, cur);
139
+
140
+ cb(cur, "result_output", -1);
141
+ res->t_logits = cur;
142
+
143
+ ggml_build_forward_expand(gf, cur);
144
+ }
@@ -0,0 +1,135 @@
1
+ #include "models.h"
2
+
3
+
4
+
5
+ llm_build_bailingmoe2::llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) :
6
+ llm_graph_context(params) {
7
+ const int64_t n_embd_head = hparams.n_embd_head_v;
8
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
9
+
10
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
11
+
12
+ ggml_tensor * cur;
13
+ ggml_tensor * inpL;
14
+
15
+ inpL = build_inp_embd(model.tok_embd);
16
+
17
+ // inp_pos - contains the positions
18
+ ggml_tensor * inp_pos = build_inp_pos();
19
+
20
+ auto * inp_attn = build_attn_inp_kv();
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
25
+ for (int il = 0; il < n_transformer_layers; ++il) {
26
+ ggml_tensor * inpSA = inpL;
27
+
28
+ // norm
29
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
30
+ cb(cur, "attn_norm", il);
31
+
32
+ // self_attention
33
+ {
34
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
35
+ cb(cur, "wqkv", il);
36
+
37
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
38
+ cur->nb[1], 0 * sizeof(float) * (n_embd));
39
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
40
+ cur->nb[1], 1 * sizeof(float) * (n_embd));
41
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
42
+ cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
43
+
44
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
45
+ cb(Qcur, "Qcur_normed", il);
46
+
47
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
48
+ ext_factor, attn_factor, beta_fast, beta_slow);
49
+
50
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
51
+ cb(Kcur, "Kcur_normed", il);
52
+
53
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
54
+ ext_factor, attn_factor, beta_fast, beta_slow);
55
+
56
+ cb(Qcur, "Qcur", il);
57
+ cb(Kcur, "Kcur", il);
58
+ cb(Vcur, "Vcur", il);
59
+
60
+ cur = build_attn(inp_attn,
61
+ model.layers[il].wo, model.layers[il].bo,
62
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
63
+ }
64
+
65
+ if (il == n_transformer_layers - 1 && inp_out_ids) {
66
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
67
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
68
+ }
69
+
70
+ ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
71
+ cb(sa_out, "sa_out", il);
72
+
73
+ // MoE branch
74
+ cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
75
+ cb(cur, "ffn_norm", il);
76
+
77
+ if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
78
+ cur = build_ffn(cur,
79
+ model.layers[il].ffn_up, NULL, NULL,
80
+ model.layers[il].ffn_gate, NULL, NULL,
81
+ model.layers[il].ffn_down, NULL, NULL,
82
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
83
+ cb(cur, "ffn_out", il);
84
+ } else {
85
+ ggml_tensor * moe_out = build_moe_ffn(cur,
86
+ model.layers[il].ffn_gate_inp,
87
+ model.layers[il].ffn_up_exps,
88
+ model.layers[il].ffn_gate_exps,
89
+ model.layers[il].ffn_down_exps,
90
+ model.layers[il].ffn_exp_probs_b,
91
+ n_expert, n_expert_used,
92
+ LLM_FFN_SILU, hparams.expert_weights_norm,
93
+ true, hparams.expert_weights_scale,
94
+ (llama_expert_gating_func_type) hparams.expert_gating_func,
95
+ il);
96
+ cb(moe_out, "ffn_moe_out", il);
97
+
98
+ {
99
+ ggml_tensor * ffn_shexp =
100
+ build_ffn(cur,
101
+ model.layers[il].ffn_up_shexp, NULL, NULL,
102
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
103
+ model.layers[il].ffn_down_shexp, NULL, NULL,
104
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
105
+ cb(ffn_shexp, "ffn_shexp", il);
106
+
107
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
108
+ cb(cur, "ffn_out", il);
109
+ }
110
+ }
111
+
112
+ cur = ggml_add(ctx0, cur, sa_out);
113
+
114
+ cur = build_cvec(cur, il);
115
+ cb(cur, "l_out", il);
116
+
117
+ // input for next layer
118
+ inpL = cur;
119
+ }
120
+
121
+ cur = inpL;
122
+
123
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
124
+
125
+ cb(cur, "result_norm", -1);
126
+ res->t_embd = cur;
127
+
128
+ // lm_head
129
+ cur = build_lora_mm(model.output, cur);
130
+
131
+ cb(cur, "result_output", -1);
132
+ res->t_logits = cur;
133
+
134
+ ggml_build_forward_expand(gf, cur);
135
+ }
@@ -0,0 +1,176 @@
1
+ #include "models.h"
2
+
3
+
4
+
5
+ llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
+ const int64_t n_embd_head = hparams.n_embd_head_v;
7
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
8
+
9
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
+
11
+ ggml_tensor * cur;
12
+ ggml_tensor * inpL;
13
+ ggml_tensor * inp_pos = nullptr;
14
+
15
+ if (model.arch != LLM_ARCH_JINA_BERT_V2) {
16
+ inp_pos = build_inp_pos();
17
+ }
18
+
19
+ // construct input embeddings (token, type, position)
20
+ inpL = build_inp_embd(model.tok_embd);
21
+
22
+ // token types are hardcoded to zero ("Sentence A")
23
+ if (model.type_embd) {
24
+ ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
25
+ inpL = ggml_add(ctx0, inpL, type_row0);
26
+ }
27
+ if (model.arch == LLM_ARCH_BERT) {
28
+ inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
29
+ }
30
+ cb(inpL, "inp_embd", -1);
31
+
32
+ // embed layer norm
33
+ inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
34
+ cb(inpL, "inp_norm", -1);
35
+
36
+ auto * inp_attn = build_attn_inp_no_cache();
37
+
38
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
39
+
40
+ for (int il = 0; il < n_layer; ++il) {
41
+ ggml_tensor * cur = inpL;
42
+
43
+ {
44
+ ggml_tensor * Qcur;
45
+ ggml_tensor * Kcur;
46
+ ggml_tensor * Vcur;
47
+
48
+ // self-attention
49
+ if (model.layers[il].wqkv) {
50
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
51
+ cb(cur, "wqkv", il);
52
+
53
+ if (model.layers[il].bqkv) {
54
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
55
+ cb(cur, "bqkv", il);
56
+ }
57
+
58
+ Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
59
+ 0 * sizeof(float) * (n_embd));
60
+ Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
61
+ cur->nb[1], 1 * sizeof(float) * (n_embd));
62
+ Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
63
+ cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
64
+ } else {
65
+ Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
66
+ Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
67
+ Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
68
+
69
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
70
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
71
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
72
+ }
73
+
74
+ if (model.layers[il].attn_q_norm) {
75
+ Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens);
76
+
77
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il);
78
+
79
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
80
+ }
81
+
82
+ if (model.layers[il].attn_k_norm) {
83
+ Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens);
84
+
85
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il);
86
+
87
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
88
+ }
89
+
90
+ // RoPE
91
+ if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
92
+ model.arch == LLM_ARCH_JINA_BERT_V3) {
93
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
94
+ ext_factor, attn_factor, beta_fast, beta_slow);
95
+
96
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
97
+ ext_factor, attn_factor, beta_fast, beta_slow);
98
+ }
99
+
100
+ cb(Qcur, "Qcur", il);
101
+ cb(Kcur, "Kcur", il);
102
+ cb(Vcur, "Vcur", il);
103
+
104
+ cur = build_attn(inp_attn,
105
+ model.layers[il].wo, model.layers[il].bo,
106
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
107
+ cb(cur, "kqv_out", il);
108
+ }
109
+
110
+ if (il == n_layer - 1 && inp_out_ids) {
111
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
112
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
113
+ }
114
+
115
+ // re-add the layer input
116
+ cur = ggml_add(ctx0, cur, inpL);
117
+
118
+ // attention layer norm
119
+ cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
120
+
121
+ if (model.layers[il].attn_norm_2 != nullptr) {
122
+ cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
123
+ cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
124
+ }
125
+
126
+ ggml_tensor * ffn_inp = cur;
127
+ cb(ffn_inp, "ffn_inp", il);
128
+
129
+ // feed-forward network
130
+ if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
131
+ // MoE branch
132
+ cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, nullptr,
133
+ model.layers[il].ffn_down_exps, nullptr, hparams.n_expert, hparams.n_expert_used,
134
+ LLM_FFN_GELU, false, false, 0.0f, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
135
+ cb(cur, "ffn_moe_out", il);
136
+ } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
137
+ model.arch == LLM_ARCH_JINA_BERT_V3) {
138
+ cur = build_ffn(cur,
139
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
140
+ NULL, NULL, NULL,
141
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
142
+ LLM_FFN_GELU, LLM_FFN_SEQ, il);
143
+ cb(cur, "ffn_out", il);
144
+ } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
145
+ cur = build_ffn(cur,
146
+ model.layers[il].ffn_up, NULL, NULL,
147
+ model.layers[il].ffn_gate, NULL, NULL,
148
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
149
+ model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
150
+ cb(cur, "ffn_out", il);
151
+ } else {
152
+ cur = build_ffn(cur,
153
+ model.layers[il].ffn_up, NULL, NULL,
154
+ model.layers[il].ffn_gate, NULL, NULL,
155
+ model.layers[il].ffn_down, NULL, NULL,
156
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
157
+ cb(cur, "ffn_out", il);
158
+ }
159
+
160
+ // attentions bypass the intermediate layer
161
+ cur = ggml_add(ctx0, cur, ffn_inp);
162
+
163
+ // output layer norm
164
+ cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
165
+
166
+ // input for next layer
167
+ inpL = cur;
168
+ }
169
+
170
+ cur = inpL;
171
+
172
+ cb(cur, "result_embd", -1);
173
+ res->t_embd = cur;
174
+
175
+ ggml_build_forward_expand(gf, cur);
176
+ }
@@ -0,0 +1,160 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_bitnet::llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ cur = build_norm(inpL,
25
+ model.layers[il].attn_norm, NULL,
26
+ LLM_NORM_RMS, il);
27
+ cb(cur, "attn_norm", il);
28
+
29
+ // self-attention
30
+ {
31
+ // compute Q and K and RoPE them
32
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
+ if (model.layers[il].wq_scale) {
34
+ Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
35
+ }
36
+ cb(Qcur, "Qcur", il);
37
+ if (model.layers[il].bq) {
38
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
39
+ cb(Qcur, "Qcur", il);
40
+ }
41
+
42
+ // B1.K
43
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
44
+ if (model.layers[il].wk_scale) {
45
+ Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
46
+ }
47
+ cb(Kcur, "Kcur", il);
48
+ if (model.layers[il].bk) {
49
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
50
+ cb(Kcur, "Kcur", il);
51
+ }
52
+
53
+ // B1.V
54
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
55
+ if (model.layers[il].wv_scale) {
56
+ Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
57
+ }
58
+ cb(Vcur, "Vcur", il);
59
+ if (model.layers[il].bv) {
60
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
61
+ cb(Vcur, "Vcur", il);
62
+ }
63
+
64
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
65
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
66
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
67
+
68
+ Qcur = ggml_rope_ext(
69
+ ctx0, Qcur, inp_pos, nullptr,
70
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
71
+ ext_factor, attn_factor, beta_fast, beta_slow
72
+ );
73
+
74
+ Kcur = ggml_rope_ext(
75
+ ctx0, Kcur, inp_pos, nullptr,
76
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
77
+ ext_factor, attn_factor, beta_fast, beta_slow
78
+ );
79
+
80
+ cb(Qcur, "Qcur", il);
81
+ cb(Kcur, "Kcur", il);
82
+ cb(Vcur, "Vcur", il);
83
+
84
+ cur = build_attn(inp_attn,
85
+ NULL, NULL,
86
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
87
+
88
+ cur = build_norm(cur,
89
+ model.layers[il].attn_sub_norm, NULL,
90
+ LLM_NORM_RMS, il);
91
+ cb(cur, "attn_sub_norm", il);
92
+
93
+ cur = build_lora_mm(model.layers[il].wo, cur);
94
+ if (model.layers[il].wo_scale) {
95
+ cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
96
+ }
97
+ if (model.layers[il].bo) {
98
+ cur = ggml_add(ctx0, cur, model.layers[il].bo);
99
+ }
100
+ cb(cur, "attn_out", il);
101
+ }
102
+
103
+ if (il == n_layer - 1 && inp_out_ids) {
104
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
105
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
106
+ }
107
+
108
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
109
+ cb(ffn_inp, "ffn_inp", il);
110
+
111
+ // feed-forward forward
112
+ cur = build_norm(ffn_inp,
113
+ model.layers[il].ffn_norm, NULL,
114
+ LLM_NORM_RMS, il);
115
+ cb(cur, "ffn_norm", il);
116
+
117
+ cur = build_ffn(cur,
118
+ model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
119
+ model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
120
+ NULL, NULL, NULL,
121
+ NULL,
122
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
123
+ cb(cur, "ffn_sub_out", il);
124
+
125
+ cur = build_norm(cur,
126
+ model.layers[il].ffn_sub_norm, NULL,
127
+ LLM_NORM_RMS, il);
128
+ cb(cur, "ffn_sub_norm", il);
129
+
130
+ cur = build_lora_mm(model.layers[il].ffn_down, cur);
131
+ if (model.layers[il].ffn_down_scale) {
132
+ cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
133
+ }
134
+ cb(cur, "ffn_down", il);
135
+
136
+ cur = ggml_add(ctx0, cur, ffn_inp);
137
+ cb(cur, "l_out", il);
138
+
139
+ // input for next layer
140
+ inpL = cur;
141
+ }
142
+
143
+ cur = inpL;
144
+
145
+ cur = build_norm(cur,
146
+ model.output_norm, NULL,
147
+ LLM_NORM_RMS, -1);
148
+
149
+ cb(cur, "result_norm", -1);
150
+ res->t_embd = cur;
151
+
152
+ // lm_head
153
+ // FIXME: do not use model.tok_embd directly, duplicate as model.output
154
+ cur = build_lora_mm(model.tok_embd, cur);
155
+
156
+ cb(cur, "result_output", -1);
157
+ res->t_logits = cur;
158
+
159
+ ggml_build_forward_expand(gf, cur);
160
+ }