@fugood/llama.node 1.3.0-rc.6 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CMakeLists.txt +12 -2
  2. package/package.json +14 -14
  3. package/scripts/llama.cpp.patch +8 -9
  4. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  5. package/src/llama.cpp/common/arg.cpp +39 -1001
  6. package/src/llama.cpp/common/arg.h +2 -2
  7. package/src/llama.cpp/common/chat.cpp +216 -2
  8. package/src/llama.cpp/common/chat.h +1 -0
  9. package/src/llama.cpp/common/common.cpp +33 -0
  10. package/src/llama.cpp/common/common.h +13 -0
  11. package/src/llama.cpp/common/download.cpp +1054 -0
  12. package/src/llama.cpp/common/download.h +55 -0
  13. package/src/llama.cpp/common/json-schema-to-grammar.cpp +19 -3
  14. package/src/llama.cpp/ggml/CMakeLists.txt +3 -1
  15. package/src/llama.cpp/ggml/include/ggml-hexagon.h +19 -0
  16. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  17. package/src/llama.cpp/ggml/src/CMakeLists.txt +7 -3
  18. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +10 -3
  19. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  20. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  21. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  23. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +0 -5
  24. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -35
  25. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  26. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  27. package/src/llama.cpp/include/llama.h +7 -3
  28. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  29. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  30. package/src/llama.cpp/src/llama-arch.h +11 -0
  31. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  32. package/src/llama.cpp/src/llama-batch.h +12 -1
  33. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  34. package/src/llama.cpp/src/llama-chat.h +1 -0
  35. package/src/llama.cpp/src/llama-context.cpp +44 -16
  36. package/src/llama.cpp/src/llama-context.h +5 -5
  37. package/src/llama.cpp/src/llama-cparams.h +1 -0
  38. package/src/llama.cpp/src/llama-graph.cpp +12 -7
  39. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  40. package/src/llama.cpp/src/llama-hparams.h +6 -0
  41. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  42. package/src/llama.cpp/src/llama-kv-cache.cpp +56 -21
  43. package/src/llama.cpp/src/llama-kv-cache.h +2 -4
  44. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  45. package/src/llama.cpp/src/llama-memory-recurrent.cpp +18 -14
  46. package/src/llama.cpp/src/llama-memory-recurrent.h +2 -2
  47. package/src/llama.cpp/src/llama-model.cpp +350 -13194
  48. package/src/llama.cpp/src/llama-model.h +9 -2
  49. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  50. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  51. package/src/llama.cpp/src/llama-vocab.h +1 -0
  52. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  53. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  54. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  55. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  56. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  57. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  58. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  59. package/src/llama.cpp/src/models/bert.cpp +176 -0
  60. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  61. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  62. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  63. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  64. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  65. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  66. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  67. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  68. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  69. package/src/llama.cpp/src/models/deci.cpp +135 -0
  70. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  71. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  72. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  73. package/src/llama.cpp/src/models/dream.cpp +105 -0
  74. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  75. package/src/llama.cpp/src/models/ernie4-5.cpp +111 -0
  76. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  77. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  78. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  79. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  80. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  81. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  82. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  83. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  84. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  85. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  86. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  87. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  88. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  89. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  90. package/src/llama.cpp/src/models/granite.cpp +211 -0
  91. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  92. package/src/llama.cpp/src/models/grok.cpp +159 -0
  93. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  94. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  95. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  96. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  97. package/src/llama.cpp/src/models/jais.cpp +86 -0
  98. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  99. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  100. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  101. package/src/llama.cpp/src/models/llada.cpp +99 -0
  102. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  103. package/src/llama.cpp/src/models/llama.cpp +155 -0
  104. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  105. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  106. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  107. package/src/llama.cpp/src/models/models.h +481 -0
  108. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  109. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  110. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  111. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  112. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  113. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  114. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  115. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +123 -0
  116. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  117. package/src/llama.cpp/src/models/orion.cpp +123 -0
  118. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  119. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  120. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  121. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  122. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  123. package/src/llama.cpp/src/models/plm.cpp +168 -0
  124. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  125. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  126. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  127. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  128. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  129. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  130. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  131. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  132. package/src/llama.cpp/src/models/refact.cpp +94 -0
  133. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  134. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  135. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  136. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  137. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  138. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  139. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  140. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  141. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  142. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  143. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  144. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  145. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  146. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  147. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,117 @@
1
+ #include "models.h"
2
+
3
+ llm_build_qwen2::llm_build_qwen2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ // norm
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, NULL,
27
+ LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self-attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
35
+ cb(Qcur, "Qcur", il);
36
+
37
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
38
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
39
+ cb(Kcur, "Kcur", il);
40
+
41
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
42
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
43
+ cb(Vcur, "Vcur", il);
44
+
45
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
46
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
47
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
48
+
49
+ Qcur = ggml_rope_ext(
50
+ ctx0, Qcur, inp_pos, nullptr,
51
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
52
+ ext_factor, attn_factor, beta_fast, beta_slow
53
+ );
54
+
55
+ Kcur = ggml_rope_ext(
56
+ ctx0, Kcur, inp_pos, nullptr,
57
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
+ ext_factor, attn_factor, beta_fast, beta_slow
59
+ );
60
+
61
+ cb(Qcur, "Qcur", il);
62
+ cb(Kcur, "Kcur", il);
63
+ cb(Vcur, "Vcur", il);
64
+
65
+ cur = build_attn(inp_attn,
66
+ model.layers[il].wo, model.layers[il].bo,
67
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
68
+ }
69
+ if (il == n_layer - 1 && inp_out_ids) {
70
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
71
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
72
+ }
73
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
74
+ cb(ffn_inp, "ffn_inp", il);
75
+
76
+ // feed-forward network
77
+ cur = build_norm(ffn_inp,
78
+ model.layers[il].ffn_norm, NULL,
79
+ LLM_NORM_RMS, il);
80
+ cb(cur, "ffn_norm", il);
81
+
82
+ cur = build_ffn(cur,
83
+ model.layers[il].ffn_up, NULL, NULL,
84
+ model.layers[il].ffn_gate, NULL, NULL,
85
+ model.layers[il].ffn_down, NULL, NULL,
86
+ NULL,
87
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
88
+ cb(cur, "ffn_out", il);
89
+
90
+ cur = ggml_add(ctx0, cur, ffn_inp);
91
+
92
+ cur = build_cvec(cur, il);
93
+ cb(cur, "l_out", il);
94
+
95
+ // input for next layer
96
+ inpL = cur;
97
+ }
98
+ cur = inpL;
99
+
100
+ cur = build_norm(cur,
101
+ model.output_norm, NULL,
102
+ LLM_NORM_RMS, -1);
103
+
104
+ cb(cur, "result_norm", -1);
105
+ res->t_embd = cur;
106
+
107
+ // lm_head
108
+ cur = build_lora_mm(model.output, cur);
109
+
110
+ if (model.output_b != nullptr) {
111
+ cur = ggml_add(ctx0, cur, model.output_b);
112
+ }
113
+ cb(cur, "result_output", -1);
114
+ res->t_logits = cur;
115
+
116
+ ggml_build_forward_expand(gf, cur);
117
+ }
@@ -0,0 +1,151 @@
1
+ #include "models.h"
2
+
3
+ llm_build_qwen2moe::llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ // norm
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, NULL,
27
+ LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self_attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ cb(Qcur, "Qcur", il);
35
+ if (model.layers[il].bq) {
36
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
37
+ cb(Qcur, "Qcur", il);
38
+ }
39
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
40
+ cb(Kcur, "Kcur", il);
41
+ if (model.layers[il].bk) {
42
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
43
+ cb(Kcur, "Kcur", il);
44
+ }
45
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
46
+ cb(Vcur, "Vcur", il);
47
+ if (model.layers[il].bv) {
48
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
49
+ cb(Vcur, "Vcur", il);
50
+ }
51
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
52
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
53
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
54
+
55
+ Qcur = ggml_rope_ext(
56
+ ctx0, Qcur, inp_pos, nullptr,
57
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
+ ext_factor, attn_factor, beta_fast, beta_slow
59
+ );
60
+
61
+ Kcur = ggml_rope_ext(
62
+ ctx0, Kcur, inp_pos, nullptr,
63
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
64
+ ext_factor, attn_factor, beta_fast, beta_slow
65
+ );
66
+
67
+ cb(Qcur, "Qcur", il);
68
+ cb(Kcur, "Kcur", il);
69
+ cb(Vcur, "Vcur", il);
70
+
71
+ cur = build_attn(inp_attn,
72
+ model.layers[il].wo, model.layers[il].bo,
73
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
74
+ }
75
+ if (il == n_layer - 1 && inp_out_ids) {
76
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
77
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
78
+ }
79
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
80
+ cb(ffn_inp, "ffn_inp", il);
81
+
82
+ // MoE branch
83
+ cur = build_norm(ffn_inp,
84
+ model.layers[il].ffn_norm, NULL,
85
+ LLM_NORM_RMS, il);
86
+ cb(cur, "ffn_norm", il);
87
+
88
+ ggml_tensor * moe_out =
89
+ build_moe_ffn(cur,
90
+ model.layers[il].ffn_gate_inp,
91
+ model.layers[il].ffn_up_exps,
92
+ model.layers[il].ffn_gate_exps,
93
+ model.layers[il].ffn_down_exps,
94
+ nullptr,
95
+ n_expert, n_expert_used,
96
+ LLM_FFN_SILU, false,
97
+ false, 0.0,
98
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
99
+ il);
100
+ cb(moe_out, "ffn_moe_out", il);
101
+
102
+ // FFN shared expert
103
+ {
104
+ ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
105
+ cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
106
+
107
+ // sigmoid
108
+ ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
109
+ cb(cur_gate, "ffn_shexp_gate", il);
110
+
111
+ ggml_tensor * cur_ffn = build_ffn(cur,
112
+ model.layers[il].ffn_up_shexp, NULL, NULL,
113
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
114
+ model.layers[il].ffn_down_shexp, NULL, NULL,
115
+ NULL,
116
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
117
+ cb(cur_ffn, "ffn_shexp", il);
118
+
119
+ ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
120
+ cb(ffn_shexp_out, "ffn_shexp_out", il);
121
+
122
+ moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
123
+ cb(moe_out, "ffn_out", il);
124
+
125
+ cur = moe_out;
126
+ }
127
+ cur = ggml_add(ctx0, cur, ffn_inp);
128
+
129
+ cur = build_cvec(cur, il);
130
+ cb(cur, "l_out", il);
131
+
132
+ // input for next layer
133
+ inpL = cur;
134
+ }
135
+ cur = inpL;
136
+
137
+ cur = build_norm(cur,
138
+ model.output_norm, NULL,
139
+ LLM_NORM_RMS, -1);
140
+
141
+ cb(cur, "result_norm", -1);
142
+ res->t_embd = cur;
143
+
144
+ // lm_head
145
+ cur = build_lora_mm(model.output, cur);
146
+
147
+ cb(cur, "result_output", -1);
148
+ res->t_logits = cur;
149
+
150
+ ggml_build_forward_expand(gf, cur);
151
+ }
@@ -0,0 +1,117 @@
1
+ #include "models.h"
2
+
3
+ llm_build_qwen2vl::llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ int sections[4];
20
+ std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ for (int il = 0; il < n_layer; ++il) {
25
+ ggml_tensor * inpSA = inpL;
26
+
27
+ // norm
28
+ cur = build_norm(inpL,
29
+ model.layers[il].attn_norm, NULL,
30
+ LLM_NORM_RMS, il);
31
+ cb(cur, "attn_norm", il);
32
+
33
+ // self-attention
34
+ {
35
+ // compute Q and K and RoPE them
36
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
37
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
38
+ cb(Qcur, "Qcur", il);
39
+
40
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
42
+ cb(Kcur, "Kcur", il);
43
+
44
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
45
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
46
+ cb(Vcur, "Vcur", il);
47
+
48
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
49
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
50
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
51
+
52
+ Qcur = ggml_rope_multi(
53
+ ctx0, Qcur, inp_pos, nullptr,
54
+ n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
55
+ ext_factor, attn_factor, beta_fast, beta_slow
56
+ );
57
+
58
+ Kcur = ggml_rope_multi(
59
+ ctx0, Kcur, inp_pos, nullptr,
60
+ n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
61
+ ext_factor, attn_factor, beta_fast, beta_slow
62
+ );
63
+
64
+ cb(Qcur, "Qcur", il);
65
+ cb(Kcur, "Kcur", il);
66
+ cb(Vcur, "Vcur", il);
67
+
68
+ cur = build_attn(inp_attn,
69
+ model.layers[il].wo, model.layers[il].bo,
70
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
71
+ }
72
+ if (il == n_layer - 1 && inp_out_ids) {
73
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
74
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
75
+ }
76
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
77
+ cb(ffn_inp, "ffn_inp", il);
78
+
79
+ // feed-forward network
80
+ cur = build_norm(ffn_inp,
81
+ model.layers[il].ffn_norm, NULL,
82
+ LLM_NORM_RMS, il);
83
+ cb(cur, "ffn_norm", il);
84
+
85
+ cur = build_ffn(cur,
86
+ model.layers[il].ffn_up, NULL, NULL,
87
+ model.layers[il].ffn_gate, NULL, NULL,
88
+ model.layers[il].ffn_down, NULL, NULL,
89
+ NULL,
90
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
91
+ cb(cur, "ffn_out", il);
92
+
93
+ cur = ggml_add(ctx0, cur, ffn_inp);
94
+
95
+ cur = build_cvec(cur, il);
96
+ cb(cur, "l_out", il);
97
+
98
+ // input for next layer
99
+ inpL = cur;
100
+ }
101
+ cur = inpL;
102
+
103
+ cur = build_norm(cur,
104
+ model.output_norm, NULL,
105
+ LLM_NORM_RMS, -1);
106
+
107
+ cb(cur, "result_norm", -1);
108
+ res->t_embd = cur;
109
+
110
+ // lm_head
111
+ cur = build_lora_mm(model.output, cur);
112
+
113
+ cb(cur, "result_output", -1);
114
+ res->t_logits = cur;
115
+
116
+ ggml_build_forward_expand(gf, cur);
117
+ }
@@ -0,0 +1,117 @@
1
+ #include "models.h"
2
+
3
+ llm_build_qwen3::llm_build_qwen3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ // norm
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, NULL,
27
+ LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self-attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ cb(Qcur, "Qcur", il);
35
+
36
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
37
+ cb(Kcur, "Kcur", il);
38
+
39
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
40
+ cb(Vcur, "Vcur", il);
41
+
42
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
43
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
44
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
45
+
46
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
47
+ cb(Qcur, "Qcur_normed", il);
48
+
49
+ Qcur = ggml_rope_ext(
50
+ ctx0, Qcur, inp_pos, nullptr,
51
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
52
+ ext_factor, attn_factor, beta_fast, beta_slow
53
+ );
54
+
55
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
56
+ cb(Kcur, "Kcur_normed", il);
57
+
58
+ Kcur = ggml_rope_ext(
59
+ ctx0, Kcur, inp_pos, nullptr,
60
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
61
+ ext_factor, attn_factor, beta_fast, beta_slow
62
+ );
63
+
64
+ cb(Qcur, "Qcur", il);
65
+ cb(Kcur, "Kcur", il);
66
+ cb(Vcur, "Vcur", il);
67
+
68
+ cur = build_attn(inp_attn,
69
+ model.layers[il].wo, model.layers[il].bo,
70
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
71
+ }
72
+ if (il == n_layer - 1 && inp_out_ids) {
73
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
74
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
75
+ }
76
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
77
+ cb(ffn_inp, "ffn_inp", il);
78
+
79
+ // feed-forward network
80
+ cur = build_norm(ffn_inp,
81
+ model.layers[il].ffn_norm, NULL,
82
+ LLM_NORM_RMS, il);
83
+ cb(cur, "ffn_norm", il);
84
+
85
+ cur = build_ffn(cur,
86
+ model.layers[il].ffn_up, NULL, NULL,
87
+ model.layers[il].ffn_gate, NULL, NULL,
88
+ model.layers[il].ffn_down, NULL, NULL,
89
+ NULL,
90
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
91
+ cb(cur, "ffn_out", il);
92
+
93
+ cur = ggml_add(ctx0, cur, ffn_inp);
94
+
95
+ cur = build_cvec(cur, il);
96
+ cb(cur, "l_out", il);
97
+
98
+ // input for next layer
99
+ inpL = cur;
100
+ }
101
+ cur = inpL;
102
+
103
+ cur = build_norm(cur,
104
+ model.output_norm, NULL,
105
+ LLM_NORM_RMS, -1);
106
+
107
+ cb(cur, "result_norm", -1);
108
+ res->t_embd = cur;
109
+
110
+ // lm_head
111
+ cur = build_lora_mm(model.output, cur);
112
+
113
+ cb(cur, "result_output", -1);
114
+ res->t_logits = cur;
115
+
116
+ ggml_build_forward_expand(gf, cur);
117
+ }
@@ -0,0 +1,124 @@
1
+ #include "models.h"
2
+
3
+ llm_build_qwen3moe::llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ // norm
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, NULL,
27
+ LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self_attention
31
+ {
32
+ // compute Q and K and RoPE them
33
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
+ cb(Qcur, "Qcur", il);
35
+
36
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
37
+ cb(Kcur, "Kcur", il);
38
+
39
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
40
+ cb(Vcur, "Vcur", il);
41
+
42
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
43
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
44
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
45
+
46
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
47
+ cb(Qcur, "Qcur_normed", il);
48
+
49
+ Qcur = ggml_rope_ext(
50
+ ctx0, Qcur, inp_pos, nullptr,
51
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
52
+ ext_factor, attn_factor, beta_fast, beta_slow
53
+ );
54
+
55
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
56
+ cb(Kcur, "Kcur_normed", il);
57
+
58
+ Kcur = ggml_rope_ext(
59
+ ctx0, Kcur, inp_pos, nullptr,
60
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
61
+ ext_factor, attn_factor, beta_fast, beta_slow
62
+ );
63
+
64
+ cb(Qcur, "Qcur", il);
65
+ cb(Kcur, "Kcur", il);
66
+ cb(Vcur, "Vcur", il);
67
+
68
+ cur = build_attn(inp_attn,
69
+ model.layers[il].wo, model.layers[il].bo,
70
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
71
+ }
72
+ if (il == n_layer - 1 && inp_out_ids) {
73
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
74
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
75
+ }
76
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
77
+ cb(ffn_inp, "ffn_inp", il);
78
+
79
+ // MoE branch
80
+ cur = build_norm(ffn_inp,
81
+ model.layers[il].ffn_norm, NULL,
82
+ LLM_NORM_RMS, il);
83
+ cb(cur, "ffn_norm", il);
84
+
85
+ ggml_tensor * moe_out =
86
+ build_moe_ffn(cur,
87
+ model.layers[il].ffn_gate_inp,
88
+ model.layers[il].ffn_up_exps,
89
+ model.layers[il].ffn_gate_exps,
90
+ model.layers[il].ffn_down_exps,
91
+ nullptr,
92
+ n_expert, n_expert_used,
93
+ LLM_FFN_SILU, true,
94
+ false, 0.0,
95
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
96
+ il);
97
+ cb(moe_out, "ffn_moe_out", il);
98
+ cur = moe_out;
99
+
100
+ cur = ggml_add(ctx0, cur, ffn_inp);
101
+
102
+ cur = build_cvec(cur, il);
103
+ cb(cur, "l_out", il);
104
+
105
+ // input for next layer
106
+ inpL = cur;
107
+ }
108
+ cur = inpL;
109
+
110
+ cur = build_norm(cur,
111
+ model.output_norm, NULL,
112
+ LLM_NORM_RMS, -1);
113
+
114
+ cb(cur, "result_norm", -1);
115
+ res->t_embd = cur;
116
+
117
+ // lm_head
118
+ cur = build_lora_mm(model.output, cur);
119
+
120
+ cb(cur, "result_output", -1);
121
+ res->t_logits = cur;
122
+
123
+ ggml_build_forward_expand(gf, cur);
124
+ }