@fugood/llama.node 1.3.0-rc.6 → 1.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CMakeLists.txt +12 -2
- package/package.json +14 -14
- package/scripts/llama.cpp.patch +8 -9
- package/src/llama.cpp/common/CMakeLists.txt +2 -0
- package/src/llama.cpp/common/arg.cpp +39 -1001
- package/src/llama.cpp/common/arg.h +2 -2
- package/src/llama.cpp/common/chat.cpp +216 -2
- package/src/llama.cpp/common/chat.h +1 -0
- package/src/llama.cpp/common/common.cpp +33 -0
- package/src/llama.cpp/common/common.h +13 -0
- package/src/llama.cpp/common/download.cpp +1054 -0
- package/src/llama.cpp/common/download.h +55 -0
- package/src/llama.cpp/common/json-schema-to-grammar.cpp +19 -3
- package/src/llama.cpp/ggml/CMakeLists.txt +3 -1
- package/src/llama.cpp/ggml/include/ggml-hexagon.h +19 -0
- package/src/llama.cpp/ggml/include/ggml.h +2 -0
- package/src/llama.cpp/ggml/src/CMakeLists.txt +7 -3
- package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +10 -3
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +0 -5
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -35
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
- package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
- package/src/llama.cpp/include/llama.h +7 -3
- package/src/llama.cpp/src/CMakeLists.txt +95 -0
- package/src/llama.cpp/src/llama-arch.cpp +108 -0
- package/src/llama.cpp/src/llama-arch.h +11 -0
- package/src/llama.cpp/src/llama-batch.cpp +63 -31
- package/src/llama.cpp/src/llama-batch.h +12 -1
- package/src/llama.cpp/src/llama-chat.cpp +32 -0
- package/src/llama.cpp/src/llama-chat.h +1 -0
- package/src/llama.cpp/src/llama-context.cpp +44 -16
- package/src/llama.cpp/src/llama-context.h +5 -5
- package/src/llama.cpp/src/llama-cparams.h +1 -0
- package/src/llama.cpp/src/llama-graph.cpp +12 -7
- package/src/llama.cpp/src/llama-hparams.cpp +11 -1
- package/src/llama.cpp/src/llama-hparams.h +6 -0
- package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
- package/src/llama.cpp/src/llama-kv-cache.cpp +56 -21
- package/src/llama.cpp/src/llama-kv-cache.h +2 -4
- package/src/llama.cpp/src/llama-kv-cells.h +44 -2
- package/src/llama.cpp/src/llama-memory-recurrent.cpp +18 -14
- package/src/llama.cpp/src/llama-memory-recurrent.h +2 -2
- package/src/llama.cpp/src/llama-model.cpp +350 -13194
- package/src/llama.cpp/src/llama-model.h +9 -2
- package/src/llama.cpp/src/llama-quant.cpp +1 -1
- package/src/llama.cpp/src/llama-vocab.cpp +5 -0
- package/src/llama.cpp/src/llama-vocab.h +1 -0
- package/src/llama.cpp/src/models/apertus.cpp +125 -0
- package/src/llama.cpp/src/models/arcee.cpp +135 -0
- package/src/llama.cpp/src/models/arctic.cpp +138 -0
- package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
- package/src/llama.cpp/src/models/baichuan.cpp +122 -0
- package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
- package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
- package/src/llama.cpp/src/models/bert.cpp +176 -0
- package/src/llama.cpp/src/models/bitnet.cpp +160 -0
- package/src/llama.cpp/src/models/bloom.cpp +101 -0
- package/src/llama.cpp/src/models/chameleon.cpp +178 -0
- package/src/llama.cpp/src/models/chatglm.cpp +132 -0
- package/src/llama.cpp/src/models/codeshell.cpp +111 -0
- package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
- package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/command-r.cpp +122 -0
- package/src/llama.cpp/src/models/dbrx.cpp +123 -0
- package/src/llama.cpp/src/models/deci.cpp +135 -0
- package/src/llama.cpp/src/models/deepseek.cpp +144 -0
- package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
- package/src/llama.cpp/src/models/dots1.cpp +134 -0
- package/src/llama.cpp/src/models/dream.cpp +105 -0
- package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
- package/src/llama.cpp/src/models/ernie4-5.cpp +111 -0
- package/src/llama.cpp/src/models/exaone.cpp +114 -0
- package/src/llama.cpp/src/models/exaone4.cpp +123 -0
- package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
- package/src/llama.cpp/src/models/falcon.cpp +120 -0
- package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
- package/src/llama.cpp/src/models/gemma.cpp +112 -0
- package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
- package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
- package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
- package/src/llama.cpp/src/models/glm4.cpp +127 -0
- package/src/llama.cpp/src/models/gpt2.cpp +105 -0
- package/src/llama.cpp/src/models/gptneox.cpp +144 -0
- package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
- package/src/llama.cpp/src/models/granite.cpp +211 -0
- package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
- package/src/llama.cpp/src/models/grok.cpp +159 -0
- package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
- package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
- package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
- package/src/llama.cpp/src/models/internlm2.cpp +120 -0
- package/src/llama.cpp/src/models/jais.cpp +86 -0
- package/src/llama.cpp/src/models/jamba.cpp +106 -0
- package/src/llama.cpp/src/models/lfm2.cpp +173 -0
- package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
- package/src/llama.cpp/src/models/llada.cpp +99 -0
- package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
- package/src/llama.cpp/src/models/llama.cpp +155 -0
- package/src/llama.cpp/src/models/mamba.cpp +55 -0
- package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
- package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
- package/src/llama.cpp/src/models/models.h +481 -0
- package/src/llama.cpp/src/models/mpt.cpp +126 -0
- package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
- package/src/llama.cpp/src/models/nemotron.cpp +122 -0
- package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
- package/src/llama.cpp/src/models/olmo.cpp +121 -0
- package/src/llama.cpp/src/models/olmo2.cpp +150 -0
- package/src/llama.cpp/src/models/olmoe.cpp +124 -0
- package/src/llama.cpp/src/models/openai-moe-iswa.cpp +123 -0
- package/src/llama.cpp/src/models/openelm.cpp +124 -0
- package/src/llama.cpp/src/models/orion.cpp +123 -0
- package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
- package/src/llama.cpp/src/models/phi2.cpp +121 -0
- package/src/llama.cpp/src/models/phi3.cpp +152 -0
- package/src/llama.cpp/src/models/plamo.cpp +110 -0
- package/src/llama.cpp/src/models/plamo2.cpp +316 -0
- package/src/llama.cpp/src/models/plm.cpp +168 -0
- package/src/llama.cpp/src/models/qwen.cpp +108 -0
- package/src/llama.cpp/src/models/qwen2.cpp +117 -0
- package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
- package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
- package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
- package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
- package/src/llama.cpp/src/models/refact.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
- package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
- package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
- package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
- package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
- package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
- package/src/llama.cpp/src/models/smollm3.cpp +128 -0
- package/src/llama.cpp/src/models/stablelm.cpp +146 -0
- package/src/llama.cpp/src/models/starcoder.cpp +100 -0
- package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
- package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
- package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
- package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
- package/src/llama.cpp/src/models/xverse.cpp +108 -0
|
@@ -0,0 +1,377 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) :
|
|
6
|
+
llm_graph_context(params),
|
|
7
|
+
model(model),
|
|
8
|
+
n_embd_head(model.hparams.n_embd_head_k),
|
|
9
|
+
n_embd_altup(model.hparams.n_embd_altup),
|
|
10
|
+
n_altup(model.hparams.n_altup),
|
|
11
|
+
i_altup_act(model.hparams.i_altup_act) {
|
|
12
|
+
ggml_tensor * cur;
|
|
13
|
+
ggml_tensor * inpL;
|
|
14
|
+
|
|
15
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
16
|
+
|
|
17
|
+
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
|
|
18
|
+
if (ubatch.token) {
|
|
19
|
+
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
|
20
|
+
cb(inpL, "inp_scaled", -1);
|
|
21
|
+
}
|
|
22
|
+
// inp_pos - contains the positions
|
|
23
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
24
|
+
|
|
25
|
+
// TODO: is causal == true correct? might need some changes
|
|
26
|
+
auto * inp_attn = build_attn_inp_kv_iswa();
|
|
27
|
+
|
|
28
|
+
// inp_per_layer shape: [n_embd_altup, n_tokens, n_layer]
|
|
29
|
+
ggml_tensor * inp_per_layer = project_per_layer_inputs(inpL, get_per_layer_inputs());
|
|
30
|
+
|
|
31
|
+
// inpL now has only 1 altup, project it to the rest of the altups
|
|
32
|
+
// these "added" altups will be concat to the last dim of inpL
|
|
33
|
+
{
|
|
34
|
+
ggml_tensor * target_magnitude = calc_magnitude(inpL);
|
|
35
|
+
ggml_tensor * inp_repeated = ggml_repeat_4d(ctx0, inpL, n_embd, n_tokens, n_altup - 1, 1);
|
|
36
|
+
ggml_tensor * altup_added =
|
|
37
|
+
ggml_mul_mat(ctx0, model.altup_proj, inp_repeated); // shape: [n_embd, n_tokens, n_altup - 1]
|
|
38
|
+
ggml_tensor * new_magnitude = calc_magnitude(altup_added);
|
|
39
|
+
altup_added = ggml_div(ctx0, ggml_mul(ctx0, altup_added, target_magnitude), new_magnitude);
|
|
40
|
+
inpL = ggml_concat(ctx0, inpL, altup_added, 2); // shape: [n_embd, n_tokens, n_altup]
|
|
41
|
+
cb(inpL, "inp_stacked", -1);
|
|
42
|
+
}
|
|
43
|
+
// inpL now has shape: [n_embd, n_tokens, n_altup]
|
|
44
|
+
// inp_per_layer now has shape: [n_embd_altup, n_tokens, n_layer]
|
|
45
|
+
|
|
46
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
47
|
+
// this block is made to be closely resemble Gemma3p5DecoderLayer on python code
|
|
48
|
+
const float freq_base_l = model.get_rope_freq_base(cparams, il);
|
|
49
|
+
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
|
50
|
+
|
|
51
|
+
ggml_tensor * cur = inpL; // [n_embd, n_tokens, n_altup]
|
|
52
|
+
ggml_tensor * predictions = altup_predict(cur, il); // [n_embd, n_tokens, n_altup]
|
|
53
|
+
|
|
54
|
+
// predicted value will go through self-attention and laurel
|
|
55
|
+
ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act); // [n_embd, n_tokens]
|
|
56
|
+
cur = active_prediction;
|
|
57
|
+
cb(cur, "active_prediction", il);
|
|
58
|
+
|
|
59
|
+
// norm
|
|
60
|
+
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
61
|
+
cb(cur, "attn_norm", il);
|
|
62
|
+
|
|
63
|
+
// laurel
|
|
64
|
+
ggml_tensor * laurel_out = laurel(cur, il); // [n_embd, n_tokens]
|
|
65
|
+
|
|
66
|
+
// self-attention
|
|
67
|
+
if (hparams.has_kv(il)) {
|
|
68
|
+
// compute Q and K and RoPE them
|
|
69
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
70
|
+
cb(Qcur, "Qcur", il);
|
|
71
|
+
|
|
72
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
73
|
+
cb(Kcur, "Kcur", il);
|
|
74
|
+
|
|
75
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
76
|
+
cb(Vcur, "Vcur", il);
|
|
77
|
+
|
|
78
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
79
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
80
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
81
|
+
|
|
82
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
83
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
84
|
+
Vcur = ggml_rms_norm(ctx0, Vcur, hparams.f_norm_rms_eps);
|
|
85
|
+
|
|
86
|
+
cb(Qcur, "Qcur_normed", il);
|
|
87
|
+
cb(Kcur, "Kcur_normed", il);
|
|
88
|
+
cb(Vcur, "Vcur_normed", il);
|
|
89
|
+
|
|
90
|
+
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
|
91
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
92
|
+
|
|
93
|
+
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
|
94
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
95
|
+
|
|
96
|
+
cb(Qcur, "Qcur_pos", il);
|
|
97
|
+
cb(Kcur, "Kcur_pos", il);
|
|
98
|
+
|
|
99
|
+
cur = build_attn(inp_attn, model.layers[il].wo,
|
|
100
|
+
NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr,
|
|
101
|
+
hparams.f_attention_scale, il);
|
|
102
|
+
} else {
|
|
103
|
+
// reuse KV cache of earlier layers
|
|
104
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
105
|
+
cb(Qcur, "Qcur", il);
|
|
106
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
107
|
+
|
|
108
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
109
|
+
cb(Qcur, "Qcur_normed", il);
|
|
110
|
+
|
|
111
|
+
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
|
112
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
113
|
+
cb(Qcur, "Qcur_pos", il);
|
|
114
|
+
|
|
115
|
+
cur = build_attn(inp_attn,
|
|
116
|
+
model.layers[il].wo, NULL,
|
|
117
|
+
Qcur, nullptr, nullptr, nullptr, nullptr, nullptr, hparams.f_attention_scale, il);
|
|
118
|
+
}
|
|
119
|
+
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
|
|
120
|
+
cb(cur, "attn_post_norm", il);
|
|
121
|
+
|
|
122
|
+
cur = ggml_add(ctx0, cur, active_prediction); // [n_embd, n_tokens]
|
|
123
|
+
cb(cur, "attn_gated", il);
|
|
124
|
+
|
|
125
|
+
ggml_tensor * attn_laurel = ggml_scale(ctx0, ggml_add(ctx0, cur, laurel_out),
|
|
126
|
+
1.0f / sqrtf(2.0f)); // [n_embd, n_tokens]
|
|
127
|
+
cb(attn_laurel, "attn_laurel", il);
|
|
128
|
+
|
|
129
|
+
cur = build_norm(attn_laurel, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
130
|
+
cb(cur, "ffn_norm", il);
|
|
131
|
+
|
|
132
|
+
// feed-forward network
|
|
133
|
+
{
|
|
134
|
+
ggml_tensor * up_proj = build_lora_mm(model.layers[il].ffn_up, cur);
|
|
135
|
+
ggml_tensor * gate_proj = build_lora_mm(model.layers[il].ffn_gate, cur);
|
|
136
|
+
|
|
137
|
+
if (il < n_layer_sparsity) {
|
|
138
|
+
// apply activation sparsity
|
|
139
|
+
gate_proj = gaussian_topk(gate_proj);
|
|
140
|
+
}
|
|
141
|
+
gate_proj = ggml_gelu(ctx0, gate_proj);
|
|
142
|
+
|
|
143
|
+
cur = ggml_mul(ctx0, up_proj, gate_proj);
|
|
144
|
+
cur = build_lora_mm(model.layers[il].ffn_down, cur);
|
|
145
|
+
cb(cur, "ffn_out", il);
|
|
146
|
+
}
|
|
147
|
+
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
|
|
148
|
+
cb(cur, "ffn_post_norm", il);
|
|
149
|
+
|
|
150
|
+
ggml_tensor * attn_ffw_laurel_gated = ggml_add(ctx0, cur, attn_laurel); // [n_embd, n_tokens]
|
|
151
|
+
cb(attn_ffw_laurel_gated, "attn_ffw_laurel_gated", il);
|
|
152
|
+
|
|
153
|
+
ggml_tensor * corrected = altup_correct(predictions, attn_ffw_laurel_gated, il); // [n_embd, n_tokens, n_altup]
|
|
154
|
+
|
|
155
|
+
ggml_tensor * first_prediction; // [n_embd, n_tokens]
|
|
156
|
+
{
|
|
157
|
+
first_prediction = view_2d_slice(corrected, i_altup_act); // [n_embd, n_tokens]
|
|
158
|
+
first_prediction = ggml_mul(ctx0, first_prediction, model.layers[il].altup_correct_scale);
|
|
159
|
+
first_prediction = build_lora_mm(model.layers[il].per_layer_inp_gate, first_prediction);
|
|
160
|
+
first_prediction = ggml_gelu(ctx0, first_prediction); // [n_embd_altup, n_tokens]
|
|
161
|
+
cb(first_prediction, "first_prediction_gated", il);
|
|
162
|
+
ggml_tensor * inp_this_layer = view_2d_slice(inp_per_layer, il); // [n_embd_altup, n_tokens]
|
|
163
|
+
first_prediction = ggml_mul(ctx0, first_prediction, inp_this_layer); // [n_embd_altup, n_tokens]
|
|
164
|
+
cb(first_prediction, "first_prediction_scaled", il);
|
|
165
|
+
|
|
166
|
+
first_prediction = build_lora_mm(model.layers[il].per_layer_proj, first_prediction); // [n_embd, n_tokens]
|
|
167
|
+
first_prediction =
|
|
168
|
+
build_norm(first_prediction, model.layers[il].per_layer_post_norm, NULL, LLM_NORM_RMS, il);
|
|
169
|
+
cb(first_prediction, "first_prediction_out", il);
|
|
170
|
+
}
|
|
171
|
+
// equivalent to python code: corrected_predictions[1:] += first_prediction
|
|
172
|
+
{
|
|
173
|
+
ggml_tensor * slice_first = view_2d_slice(corrected, 0);
|
|
174
|
+
ggml_tensor * slice_rest = ggml_view_3d(
|
|
175
|
+
ctx0, corrected, n_embd, n_tokens, n_altup - 1, ggml_row_size(corrected->type, n_embd),
|
|
176
|
+
ggml_row_size(corrected->type, n_embd * n_tokens), n_embd * n_tokens * ggml_element_size(corrected));
|
|
177
|
+
ggml_tensor * tmp = ggml_add(ctx0, slice_rest, first_prediction); // [n_embd, n_tokens, n_altup - 1]
|
|
178
|
+
corrected = ggml_concat(ctx0, slice_first, tmp, 2); // [n_embd, n_tokens, n_altup]
|
|
179
|
+
}
|
|
180
|
+
cur = corrected; // [n_embd, n_tokens, n_altup]
|
|
181
|
+
cur = build_cvec(cur, il);
|
|
182
|
+
cb(cur, "l_out", il);
|
|
183
|
+
|
|
184
|
+
// input for next layer
|
|
185
|
+
inpL = cur;
|
|
186
|
+
}
|
|
187
|
+
cur = inpL; // [n_embd, n_tokens, n_altup]
|
|
188
|
+
|
|
189
|
+
// cur now has multiple altup(s), we want to merge them back to 1 altup
|
|
190
|
+
{
|
|
191
|
+
ggml_tensor * target_magnitude = calc_magnitude(view_2d_slice(cur, i_altup_act)); // [n_embd, n_tokens]
|
|
192
|
+
// do a view to skip the first slice (active altup)
|
|
193
|
+
ggml_tensor * alt_slice =
|
|
194
|
+
ggml_view_3d(ctx0, cur, n_embd, n_tokens, n_altup - 1, ggml_row_size(cur->type, n_embd),
|
|
195
|
+
ggml_row_size(cur->type, n_embd * n_tokens), n_embd * n_tokens * ggml_element_size(cur));
|
|
196
|
+
ggml_tensor * altup_unembd =
|
|
197
|
+
ggml_mul_mat(ctx0, model.altup_unembd_proj, alt_slice); // shape: [n_embd, n_tokens, n_altup - 1]
|
|
198
|
+
ggml_tensor * new_magnitude = calc_magnitude(altup_unembd);
|
|
199
|
+
altup_unembd = ggml_div(ctx0, ggml_mul(ctx0, altup_unembd, target_magnitude), new_magnitude);
|
|
200
|
+
cb(altup_unembd, "altup_unembd", -1);
|
|
201
|
+
|
|
202
|
+
// equivalent to torch.mean(hidden_states, dim=0)
|
|
203
|
+
cur = view_2d_slice(cur, 0); // [n_embd, n_tokens]
|
|
204
|
+
for (int i = 0; i < n_altup - 1; ++i) {
|
|
205
|
+
cur = ggml_add(ctx0, cur, view_2d_slice(altup_unembd, i));
|
|
206
|
+
}
|
|
207
|
+
cur = ggml_scale(ctx0, cur, 1.0f / float(n_altup)); // [n_embd, n_tokens]
|
|
208
|
+
cb(cur, "unembd_merged", -1);
|
|
209
|
+
}
|
|
210
|
+
// cur now has shape: [n_embd, n_tokens]
|
|
211
|
+
|
|
212
|
+
// TODO: move this to right after the last KV layer
|
|
213
|
+
{
|
|
214
|
+
// skip computing output for unused tokens
|
|
215
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
216
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
217
|
+
}
|
|
218
|
+
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
219
|
+
|
|
220
|
+
cb(cur, "result_norm", -1);
|
|
221
|
+
res->t_embd = cur;
|
|
222
|
+
|
|
223
|
+
cur = build_lora_mm(model.output, cur);
|
|
224
|
+
|
|
225
|
+
{
|
|
226
|
+
// final logit soft-capping
|
|
227
|
+
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
|
|
228
|
+
cur = ggml_tanh(ctx0, cur);
|
|
229
|
+
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
|
|
230
|
+
}
|
|
231
|
+
cb(cur, "result_output", -1);
|
|
232
|
+
res->t_logits = cur;
|
|
233
|
+
|
|
234
|
+
ggml_build_forward_expand(gf, cur);
|
|
235
|
+
}
|
|
236
|
+
|
|
237
|
+
ggml_tensor * llm_build_gemma3n_iswa::calc_magnitude(ggml_tensor * x) {
|
|
238
|
+
return ggml_sqrt(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, x)));
|
|
239
|
+
}
|
|
240
|
+
|
|
241
|
+
// get 2D slice view from a 3D tensor, the idx corresponds to the 3rd dim
|
|
242
|
+
ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
|
|
243
|
+
GGML_ASSERT(idx < (int) x->ne[2]);
|
|
244
|
+
return ggml_view_2d(ctx0, x, x->ne[0], x->ne[1], ggml_row_size(x->type, x->ne[0]),
|
|
245
|
+
idx * x->ne[0] * x->ne[1] * ggml_element_size(x));
|
|
246
|
+
}
|
|
247
|
+
|
|
248
|
+
// equivalent to get_per_layer_inputs() in python code
|
|
249
|
+
// output shape: [n_embd_altup, n_layer, n_tokens]
|
|
250
|
+
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
|
|
251
|
+
auto inp = std::make_unique<llm_graph_input_embd>();
|
|
252
|
+
ggml_tensor * inp_per_layer;
|
|
253
|
+
if (ubatch.token) {
|
|
254
|
+
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
|
|
255
|
+
ggml_set_input(inp->tokens);
|
|
256
|
+
res->t_tokens = inp->tokens;
|
|
257
|
+
inp_per_layer = ggml_get_rows(ctx0, model.tok_embd_per_layer, inp->tokens);
|
|
258
|
+
inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, n_tokens);
|
|
259
|
+
inp_per_layer = ggml_scale(ctx0, inp_per_layer, sqrtf((float) n_embd_altup));
|
|
260
|
+
cb(inp_per_layer, "inp_per_layer_selected", -1);
|
|
261
|
+
} else {
|
|
262
|
+
GGML_ABORT("TODO: support embd input");
|
|
263
|
+
}
|
|
264
|
+
res->add_input(std::move(inp));
|
|
265
|
+
return inp_per_layer;
|
|
266
|
+
}
|
|
267
|
+
|
|
268
|
+
// equivalent to project_per_layer_inputs() in python code
|
|
269
|
+
// this calculates the per-layer inputs, so the final tensor shape will have n_layer as the last dim
|
|
270
|
+
// output shape: [n_embd_altup, n_tokens, n_layer]
|
|
271
|
+
ggml_tensor * llm_build_gemma3n_iswa::project_per_layer_inputs(ggml_tensor * inputs_embeds, ggml_tensor * inp_per_layer) {
|
|
272
|
+
const float per_layer_projection_scale = 1.0f / sqrtf((float) n_embd);
|
|
273
|
+
const float per_layer_input_scale = 1.0f / sqrtf(2.0f);
|
|
274
|
+
|
|
275
|
+
ggml_tensor * per_layer_proj = ggml_mul_mat(ctx0, model.per_layer_model_proj, inputs_embeds);
|
|
276
|
+
per_layer_proj = ggml_scale(ctx0, per_layer_proj, per_layer_projection_scale);
|
|
277
|
+
per_layer_proj = ggml_reshape_3d(ctx0, per_layer_proj, n_embd_altup, n_layer, n_tokens);
|
|
278
|
+
per_layer_proj = build_norm(per_layer_proj, model.per_layer_proj_norm, NULL, LLM_NORM_RMS,
|
|
279
|
+
-1); // [n_embd_altup, n_layer, n_tokens]
|
|
280
|
+
cb(per_layer_proj, "per_layer_proj", -1);
|
|
281
|
+
|
|
282
|
+
inp_per_layer = ggml_add(ctx0, inp_per_layer, per_layer_proj);
|
|
283
|
+
inp_per_layer = ggml_scale(ctx0, inp_per_layer, per_layer_input_scale);
|
|
284
|
+
cb(inp_per_layer, "inp_per_layer", -1);
|
|
285
|
+
|
|
286
|
+
// permute to shape: [n_embd_altup, n_tokens, n_layer]
|
|
287
|
+
inp_per_layer = ggml_cont(ctx0, ggml_permute(ctx0, inp_per_layer, 0, 2, 1, 3));
|
|
288
|
+
return inp_per_layer;
|
|
289
|
+
}
|
|
290
|
+
|
|
291
|
+
// input cur shape: [n_altup, n_tokens]
|
|
292
|
+
// output shape: [n_altup, n_tokens]
|
|
293
|
+
ggml_tensor * llm_build_gemma3n_iswa::laurel(ggml_tensor * cur, int il) {
|
|
294
|
+
ggml_tensor * tmp = cur;
|
|
295
|
+
tmp = build_lora_mm(model.layers[il].laurel_l, tmp);
|
|
296
|
+
tmp = build_lora_mm(model.layers[il].laurel_r, tmp);
|
|
297
|
+
tmp = build_norm(tmp, model.layers[il].laurel_post_norm, NULL, LLM_NORM_RMS, il);
|
|
298
|
+
tmp = ggml_add(ctx0, tmp, cur);
|
|
299
|
+
cb(tmp, "laurel_out", il);
|
|
300
|
+
return tmp;
|
|
301
|
+
}
|
|
302
|
+
|
|
303
|
+
// input x shape: [n_embd, n_tokens]
|
|
304
|
+
// output shape: [n_embd, n_tokens]
|
|
305
|
+
ggml_tensor * llm_build_gemma3n_iswa::gaussian_topk(ggml_tensor * x) {
|
|
306
|
+
ggml_tensor * mean = ggml_mean(ctx0, x);
|
|
307
|
+
ggml_tensor * std = ggml_sqrt(ctx0, ggml_scale(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x, mean))),
|
|
308
|
+
1.0f / (float) (x->ne[0] - 1)));
|
|
309
|
+
ggml_tensor * cutoff_x = ggml_add(ctx0, mean, ggml_scale(ctx0, std, f_sparsity_std_mul));
|
|
310
|
+
return ggml_relu(ctx0, ggml_sub(ctx0, x, cutoff_x));
|
|
311
|
+
}
|
|
312
|
+
|
|
313
|
+
//
|
|
314
|
+
// altup functions
|
|
315
|
+
//
|
|
316
|
+
|
|
317
|
+
// equivalent to compute_router_modalities() in python code
|
|
318
|
+
// input x shape: [n_embd, n_tokens]
|
|
319
|
+
// output shape: [n_altup, n_tokens]
|
|
320
|
+
ggml_tensor * llm_build_gemma3n_iswa::altup_compute_router_modalities(ggml_tensor * x, int il) {
|
|
321
|
+
ggml_tensor * router_inputs = build_norm(x, model.layers[il].altup_router_norm, NULL, LLM_NORM_RMS, il);
|
|
322
|
+
|
|
323
|
+
// router_input_scale
|
|
324
|
+
router_inputs = ggml_scale(ctx0, router_inputs, 1.0f / (float) n_embd);
|
|
325
|
+
|
|
326
|
+
ggml_tensor * output = ggml_mul_mat(ctx0, model.layers[il].altup_router, router_inputs);
|
|
327
|
+
return ggml_tanh(ctx0, output); // [n_altup, n_tokens]
|
|
328
|
+
}
|
|
329
|
+
|
|
330
|
+
// input cur shape: [n_embd, n_tokens, n_altup]
|
|
331
|
+
// output shape: [n_embd, n_tokens, n_altup]
|
|
332
|
+
ggml_tensor * llm_build_gemma3n_iswa::altup_predict(ggml_tensor * cur, int il) {
|
|
333
|
+
ggml_tensor * activated = view_2d_slice(cur, i_altup_act); // [n_embd, n_tokens]
|
|
334
|
+
ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
|
|
335
|
+
cb(modalities, "modalities", il);
|
|
336
|
+
|
|
337
|
+
ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_predict_coef, modalities);
|
|
338
|
+
cb(all_coefs, "all_coefs", il);
|
|
339
|
+
// first dim now having n_altup^2 elements, we reshape it to 2D (so we end up with 3D tensor)
|
|
340
|
+
all_coefs = ggml_reshape_3d(ctx0, all_coefs, n_altup, n_altup, n_tokens);
|
|
341
|
+
|
|
342
|
+
// permute to [n_altup, n_embd, n_tokens]
|
|
343
|
+
ggml_tensor * cur_permuted = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
|
|
344
|
+
ggml_tensor * predictions = ggml_mul_mat(ctx0, cur_permuted, all_coefs); // [n_altup, n_embd, n_tokens]
|
|
345
|
+
|
|
346
|
+
// final shape must be the same as cur: [n_embd, n_tokens, n_altup]
|
|
347
|
+
predictions = ggml_cont(ctx0, ggml_permute(ctx0, predictions, 0, 2, 1, 3));
|
|
348
|
+
predictions = ggml_add(ctx0, predictions, cur);
|
|
349
|
+
cb(predictions, "predictions", il);
|
|
350
|
+
|
|
351
|
+
return predictions;
|
|
352
|
+
}
|
|
353
|
+
|
|
354
|
+
// input predictions shape: [n_embd, n_tokens, n_altup]
|
|
355
|
+
// input activated shape: [n_embd, n_tokens]
|
|
356
|
+
// output shape: [n_embd, n_tokens, n_altup]
|
|
357
|
+
ggml_tensor * llm_build_gemma3n_iswa::altup_correct(ggml_tensor * predictions, ggml_tensor * activated, int il) {
|
|
358
|
+
ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
|
|
359
|
+
cb(modalities, "modalities", il);
|
|
360
|
+
|
|
361
|
+
ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act);
|
|
362
|
+
ggml_tensor * innovation = ggml_sub(ctx0, activated, active_prediction); // [n_embd, n_tokens]
|
|
363
|
+
cb(innovation, "innovation", il);
|
|
364
|
+
|
|
365
|
+
ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_correct_coef, modalities); // [n_altup, n_tokens]
|
|
366
|
+
all_coefs = ggml_scale_bias(ctx0, all_coefs, 1.0f, 1.0f); // + 1.0
|
|
367
|
+
cb(all_coefs, "all_coefs", il);
|
|
368
|
+
all_coefs = ggml_transpose(ctx0, all_coefs); // [n_tokens, n_altup]
|
|
369
|
+
all_coefs = ggml_cont_3d(ctx0, all_coefs, 1, n_tokens, n_altup); // [1, n_tokens, n_altup]
|
|
370
|
+
|
|
371
|
+
innovation = ggml_repeat_4d(ctx0, innovation, n_embd, n_tokens, n_altup, 1);
|
|
372
|
+
ggml_tensor * corrected = ggml_mul(ctx0, innovation, all_coefs); // [n_embd, n_tokens, n_altup]
|
|
373
|
+
corrected = ggml_add(ctx0, corrected, predictions); // [n_embd, n_tokens, n_altup]
|
|
374
|
+
cb(corrected, "corrected", il);
|
|
375
|
+
|
|
376
|
+
return corrected;
|
|
377
|
+
}
|
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
5
|
+
|
|
6
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
7
|
+
|
|
8
|
+
ggml_tensor * cur;
|
|
9
|
+
ggml_tensor * inpL;
|
|
10
|
+
|
|
11
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
12
|
+
|
|
13
|
+
// inp_pos - contains the positions
|
|
14
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
15
|
+
|
|
16
|
+
auto * inp_attn = build_attn_inp_kv();
|
|
17
|
+
|
|
18
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
19
|
+
|
|
20
|
+
// Only process up to last layer (skip final NextN layer)
|
|
21
|
+
// Final layer tensors are loaded but not processed in forward pass
|
|
22
|
+
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
|
|
23
|
+
for (int il = 0; il < n_transformer_layers; ++il) {
|
|
24
|
+
ggml_tensor * inpSA = inpL;
|
|
25
|
+
|
|
26
|
+
// Pre-attention norm
|
|
27
|
+
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
28
|
+
cb(cur, "attn_norm", il);
|
|
29
|
+
|
|
30
|
+
// self-attention
|
|
31
|
+
{
|
|
32
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
33
|
+
if (model.layers[il].bq) {
|
|
34
|
+
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
35
|
+
}
|
|
36
|
+
cb(Qcur, "Qcur", il);
|
|
37
|
+
|
|
38
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
39
|
+
if (model.layers[il].bk) {
|
|
40
|
+
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
41
|
+
}
|
|
42
|
+
cb(Kcur, "Kcur", il);
|
|
43
|
+
|
|
44
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
45
|
+
if (model.layers[il].bv) {
|
|
46
|
+
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
47
|
+
}
|
|
48
|
+
cb(Vcur, "Vcur", il);
|
|
49
|
+
|
|
50
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
51
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
52
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
53
|
+
|
|
54
|
+
// Apply Q/K norm if available (GLM-4.5 355B variant)
|
|
55
|
+
if (model.layers[il].attn_q_norm) {
|
|
56
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
57
|
+
cb(Qcur, "Qcur_normed", il);
|
|
58
|
+
}
|
|
59
|
+
if (model.layers[il].attn_k_norm) {
|
|
60
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
61
|
+
cb(Kcur, "Kcur_normed", il);
|
|
62
|
+
}
|
|
63
|
+
Qcur = ggml_rope_ext(
|
|
64
|
+
ctx0, Qcur, inp_pos, nullptr,
|
|
65
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
66
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
67
|
+
);
|
|
68
|
+
|
|
69
|
+
Kcur = ggml_rope_ext(
|
|
70
|
+
ctx0, Kcur, inp_pos, nullptr,
|
|
71
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
72
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
73
|
+
);
|
|
74
|
+
|
|
75
|
+
cb(Qcur, "Qcur", il);
|
|
76
|
+
cb(Kcur, "Kcur", il);
|
|
77
|
+
cb(Vcur, "Vcur", il);
|
|
78
|
+
|
|
79
|
+
cur = build_attn(inp_attn,
|
|
80
|
+
model.layers[il].wo, NULL,
|
|
81
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
82
|
+
}
|
|
83
|
+
if (il == n_transformer_layers - 1 && inp_out_ids) {
|
|
84
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
85
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
86
|
+
}
|
|
87
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
88
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
89
|
+
|
|
90
|
+
// Post-attention norm
|
|
91
|
+
cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
|
|
92
|
+
cb(cur, "post_attn_norm", il);
|
|
93
|
+
|
|
94
|
+
// Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
|
|
95
|
+
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
|
|
96
|
+
// Dense FFN layer
|
|
97
|
+
cur = build_ffn(cur,
|
|
98
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
99
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
|
100
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
101
|
+
NULL,
|
|
102
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
103
|
+
cb(cur, "ffn_out", il);
|
|
104
|
+
} else {
|
|
105
|
+
// Process routed experts using existing MoE infrastructure
|
|
106
|
+
ggml_tensor * routed_out = build_moe_ffn(cur,
|
|
107
|
+
model.layers[il].ffn_gate_inp,
|
|
108
|
+
model.layers[il].ffn_up_exps,
|
|
109
|
+
model.layers[il].ffn_gate_exps,
|
|
110
|
+
model.layers[il].ffn_down_exps,
|
|
111
|
+
model.layers[il].ffn_exp_probs_b,
|
|
112
|
+
n_expert, n_expert_used,
|
|
113
|
+
LLM_FFN_SILU, hparams.expert_weights_norm,
|
|
114
|
+
true, hparams.expert_weights_scale,
|
|
115
|
+
(llama_expert_gating_func_type) hparams.expert_gating_func,
|
|
116
|
+
il);
|
|
117
|
+
cb(routed_out, "ffn_moe_out", il);
|
|
118
|
+
|
|
119
|
+
// Process shared expert on original input
|
|
120
|
+
ggml_tensor * shared_out = build_ffn(cur,
|
|
121
|
+
model.layers[il].ffn_up_shexp, NULL, NULL,
|
|
122
|
+
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
|
123
|
+
model.layers[il].ffn_down_shexp, NULL, NULL,
|
|
124
|
+
NULL,
|
|
125
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
126
|
+
cb(shared_out, "ffn_shexp_out", il);
|
|
127
|
+
|
|
128
|
+
// Final output: routed_output + shared_output
|
|
129
|
+
cur = ggml_add(ctx0, routed_out, shared_out);
|
|
130
|
+
cb(cur, "ffn_out", il);
|
|
131
|
+
}
|
|
132
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
133
|
+
|
|
134
|
+
cur = build_cvec(cur, il);
|
|
135
|
+
cb(cur, "l_out", il);
|
|
136
|
+
|
|
137
|
+
// input for next layer
|
|
138
|
+
inpL = cur;
|
|
139
|
+
}
|
|
140
|
+
cur = inpL;
|
|
141
|
+
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
142
|
+
|
|
143
|
+
cb(cur, "result_norm", -1);
|
|
144
|
+
res->t_embd = cur;
|
|
145
|
+
|
|
146
|
+
// lm_head
|
|
147
|
+
cur = build_lora_mm(model.output, cur);
|
|
148
|
+
|
|
149
|
+
cb(cur, "result_output", -1);
|
|
150
|
+
res->t_logits = cur;
|
|
151
|
+
|
|
152
|
+
ggml_build_forward_expand(gf, cur);
|
|
153
|
+
}
|
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
llm_build_glm4::llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
6
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
7
|
+
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
|
8
|
+
|
|
9
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
10
|
+
|
|
11
|
+
ggml_tensor * cur;
|
|
12
|
+
ggml_tensor * inpL;
|
|
13
|
+
|
|
14
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
15
|
+
|
|
16
|
+
// inp_pos - contains the positions
|
|
17
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
18
|
+
|
|
19
|
+
auto * inp_attn = build_attn_inp_kv();
|
|
20
|
+
|
|
21
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
22
|
+
|
|
23
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
24
|
+
ggml_tensor * inpSA = inpL;
|
|
25
|
+
|
|
26
|
+
// Pre-attention norm
|
|
27
|
+
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
28
|
+
cb(cur, "attn_norm", il);
|
|
29
|
+
|
|
30
|
+
// self-attention
|
|
31
|
+
{
|
|
32
|
+
ggml_tensor * Qcur = nullptr;
|
|
33
|
+
ggml_tensor * Kcur = nullptr;
|
|
34
|
+
ggml_tensor * Vcur = nullptr;
|
|
35
|
+
|
|
36
|
+
if (model.layers[il].wqkv == nullptr) {
|
|
37
|
+
Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
38
|
+
if (model.layers[il].bq) {
|
|
39
|
+
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
40
|
+
}
|
|
41
|
+
Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
42
|
+
if (model.layers[il].bk) {
|
|
43
|
+
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
44
|
+
}
|
|
45
|
+
Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
46
|
+
if (model.layers[il].bv) {
|
|
47
|
+
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
48
|
+
}
|
|
49
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
50
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
51
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
52
|
+
} else {
|
|
53
|
+
cur = build_lora_mm(model.layers[il].wqkv, cur);
|
|
54
|
+
cb(cur, "wqkv", il);
|
|
55
|
+
if (model.layers[il].bqkv) {
|
|
56
|
+
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
|
57
|
+
cb(cur, "bqkv", il);
|
|
58
|
+
}
|
|
59
|
+
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
|
|
60
|
+
0 * sizeof(float) * (n_embd));
|
|
61
|
+
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
|
|
62
|
+
cur->nb[1], 1 * sizeof(float) * (n_embd));
|
|
63
|
+
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
|
|
64
|
+
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
|
|
65
|
+
}
|
|
66
|
+
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
67
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
68
|
+
|
|
69
|
+
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
70
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
71
|
+
|
|
72
|
+
cb(Qcur, "Qcur", il);
|
|
73
|
+
cb(Kcur, "Kcur", il);
|
|
74
|
+
cb(Vcur, "Vcur", il);
|
|
75
|
+
|
|
76
|
+
cur = build_attn(inp_attn,
|
|
77
|
+
model.layers[il].wo, NULL,
|
|
78
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
|
|
79
|
+
}
|
|
80
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
81
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
82
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
83
|
+
}
|
|
84
|
+
// Post-attention norm (new!)
|
|
85
|
+
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
|
|
86
|
+
cb(cur, "post_attn_norm", il);
|
|
87
|
+
|
|
88
|
+
// Add the input (residual connection after post-attention norm)
|
|
89
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
90
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
91
|
+
|
|
92
|
+
// FF
|
|
93
|
+
{
|
|
94
|
+
// Pre-MLP norm
|
|
95
|
+
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
96
|
+
cb(cur, "ffn_norm", il);
|
|
97
|
+
|
|
98
|
+
// MLP
|
|
99
|
+
cur = build_ffn(cur,
|
|
100
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
101
|
+
NULL, NULL, NULL,
|
|
102
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
103
|
+
NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
|
|
104
|
+
cb(cur, "ffn_out", il);
|
|
105
|
+
|
|
106
|
+
// Post-MLP norm
|
|
107
|
+
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
|
|
108
|
+
cb(cur, "post_mlp_norm", il);
|
|
109
|
+
}
|
|
110
|
+
// Add residual connection after post-MLP norm
|
|
111
|
+
inpL = ggml_add(ctx0, cur, ffn_inp);
|
|
112
|
+
cb(inpL, "l_out", il);
|
|
113
|
+
}
|
|
114
|
+
// Final norm
|
|
115
|
+
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
116
|
+
|
|
117
|
+
cb(cur, "result_norm", -1);
|
|
118
|
+
res->t_embd = cur;
|
|
119
|
+
|
|
120
|
+
// Output projection
|
|
121
|
+
cur = build_lora_mm(model.output, cur);
|
|
122
|
+
|
|
123
|
+
cb(cur, "result_output", -1);
|
|
124
|
+
res->t_logits = cur;
|
|
125
|
+
|
|
126
|
+
ggml_build_forward_expand(gf, cur);
|
|
127
|
+
}
|