rubyvis 0.6.0 → 0.6.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (113) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +16 -0
  3. data/.travis.yml +13 -0
  4. data/Gemfile +8 -0
  5. data/Gemfile.lock +37 -0
  6. data/History.txt +6 -0
  7. data/LICENSE.txt +23 -0
  8. data/{README.txt → README.md} +15 -12
  9. data/Rakefile +4 -11
  10. data/lib/rubyvis.rb +1 -1
  11. data/lib/rubyvis/scale/quantitative.rb +14 -18
  12. data/lib/rubyvis/scene/svg_label.rb +1 -1
  13. data/rubyvis.gemspec +21 -0
  14. data/spec/anchor_spec.rb +2 -1
  15. data/spec/line_spec.rb +2 -2
  16. data/spec/scale_linear_datetime_spec.rb +23 -8
  17. data/spec/spec_helper.rb +2 -1
  18. metadata +31 -214
  19. data/.gemtest +0 -0
  20. data/vendor/protovis/protovis-r3.3.js +0 -287
  21. data/vendor/protovis/src/behavior/Behavior.js +0 -32
  22. data/vendor/protovis/src/behavior/Drag.js +0 -112
  23. data/vendor/protovis/src/behavior/Pan.js +0 -110
  24. data/vendor/protovis/src/behavior/Point.js +0 -157
  25. data/vendor/protovis/src/behavior/Resize.js +0 -104
  26. data/vendor/protovis/src/behavior/Select.js +0 -100
  27. data/vendor/protovis/src/behavior/Zoom.js +0 -85
  28. data/vendor/protovis/src/color/Color.js +0 -598
  29. data/vendor/protovis/src/color/Colors.js +0 -135
  30. data/vendor/protovis/src/color/Ramp.js +0 -17
  31. data/vendor/protovis/src/data/Arrays.js +0 -277
  32. data/vendor/protovis/src/data/Dom.js +0 -380
  33. data/vendor/protovis/src/data/Flatten.js +0 -146
  34. data/vendor/protovis/src/data/Histogram.js +0 -120
  35. data/vendor/protovis/src/data/LinearScale.js +0 -54
  36. data/vendor/protovis/src/data/LogScale.js +0 -142
  37. data/vendor/protovis/src/data/Nest.js +0 -257
  38. data/vendor/protovis/src/data/Numbers.js +0 -313
  39. data/vendor/protovis/src/data/Objects.js +0 -78
  40. data/vendor/protovis/src/data/OrdinalScale.js +0 -267
  41. data/vendor/protovis/src/data/QuantileScale.js +0 -180
  42. data/vendor/protovis/src/data/QuantitativeScale.js +0 -440
  43. data/vendor/protovis/src/data/RootScale.js +0 -55
  44. data/vendor/protovis/src/data/Scale.js +0 -86
  45. data/vendor/protovis/src/data/Transform.js +0 -109
  46. data/vendor/protovis/src/data/Tree.js +0 -124
  47. data/vendor/protovis/src/data/Vector.js +0 -118
  48. data/vendor/protovis/src/geo/Geo.js +0 -5
  49. data/vendor/protovis/src/geo/GeoScale.js +0 -307
  50. data/vendor/protovis/src/geo/LatLng.js +0 -23
  51. data/vendor/protovis/src/geo/Projection.js +0 -43
  52. data/vendor/protovis/src/geo/Projections.js +0 -117
  53. data/vendor/protovis/src/lang/Array.js +0 -112
  54. data/vendor/protovis/src/lang/init.js +0 -26
  55. data/vendor/protovis/src/layout/Arc.js +0 -178
  56. data/vendor/protovis/src/layout/Bullet.js +0 -164
  57. data/vendor/protovis/src/layout/Cluster.js +0 -205
  58. data/vendor/protovis/src/layout/Force.js +0 -309
  59. data/vendor/protovis/src/layout/Grid.js +0 -119
  60. data/vendor/protovis/src/layout/Hierarchy.js +0 -249
  61. data/vendor/protovis/src/layout/Horizon.js +0 -159
  62. data/vendor/protovis/src/layout/Indent.js +0 -83
  63. data/vendor/protovis/src/layout/Layout.js +0 -56
  64. data/vendor/protovis/src/layout/Matrix.js +0 -177
  65. data/vendor/protovis/src/layout/Network.js +0 -302
  66. data/vendor/protovis/src/layout/Pack.js +0 -323
  67. data/vendor/protovis/src/layout/Partition.js +0 -203
  68. data/vendor/protovis/src/layout/Rollup.js +0 -203
  69. data/vendor/protovis/src/layout/Stack.js +0 -391
  70. data/vendor/protovis/src/layout/Tree.js +0 -282
  71. data/vendor/protovis/src/layout/Treemap.js +0 -347
  72. data/vendor/protovis/src/mark/Anchor.js +0 -81
  73. data/vendor/protovis/src/mark/Area.js +0 -268
  74. data/vendor/protovis/src/mark/Bar.js +0 -93
  75. data/vendor/protovis/src/mark/Dot.js +0 -212
  76. data/vendor/protovis/src/mark/Ease.js +0 -150
  77. data/vendor/protovis/src/mark/Image.js +0 -154
  78. data/vendor/protovis/src/mark/Label.js +0 -155
  79. data/vendor/protovis/src/mark/Line.js +0 -195
  80. data/vendor/protovis/src/mark/Mark.js +0 -1237
  81. data/vendor/protovis/src/mark/Panel.js +0 -273
  82. data/vendor/protovis/src/mark/Rule.js +0 -143
  83. data/vendor/protovis/src/mark/Transient.js +0 -7
  84. data/vendor/protovis/src/mark/Transition.js +0 -195
  85. data/vendor/protovis/src/mark/Wedge.js +0 -244
  86. data/vendor/protovis/src/physics/BoundConstraint.js +0 -75
  87. data/vendor/protovis/src/physics/ChargeForce.js +0 -184
  88. data/vendor/protovis/src/physics/CollisionConstraint.js +0 -113
  89. data/vendor/protovis/src/physics/Constraint.js +0 -26
  90. data/vendor/protovis/src/physics/DragForce.js +0 -49
  91. data/vendor/protovis/src/physics/Force.js +0 -25
  92. data/vendor/protovis/src/physics/Particle.js +0 -81
  93. data/vendor/protovis/src/physics/PositionConstraint.js +0 -72
  94. data/vendor/protovis/src/physics/Quadtree.js +0 -195
  95. data/vendor/protovis/src/physics/Simulation.js +0 -159
  96. data/vendor/protovis/src/physics/SpringForce.js +0 -141
  97. data/vendor/protovis/src/pv-internals.js +0 -154
  98. data/vendor/protovis/src/pv.js +0 -95
  99. data/vendor/protovis/src/scene/SvgArea.js +0 -172
  100. data/vendor/protovis/src/scene/SvgBar.js +0 -28
  101. data/vendor/protovis/src/scene/SvgCurve.js +0 -354
  102. data/vendor/protovis/src/scene/SvgDot.js +0 -81
  103. data/vendor/protovis/src/scene/SvgImage.js +0 -45
  104. data/vendor/protovis/src/scene/SvgLabel.js +0 -46
  105. data/vendor/protovis/src/scene/SvgLine.js +0 -159
  106. data/vendor/protovis/src/scene/SvgPanel.js +0 -126
  107. data/vendor/protovis/src/scene/SvgRule.js +0 -26
  108. data/vendor/protovis/src/scene/SvgScene.js +0 -185
  109. data/vendor/protovis/src/scene/SvgWedge.js +0 -66
  110. data/vendor/protovis/src/text/DateFormat.js +0 -262
  111. data/vendor/protovis/src/text/Format.js +0 -78
  112. data/vendor/protovis/src/text/NumberFormat.js +0 -227
  113. data/vendor/protovis/src/text/TimeFormat.js +0 -115
@@ -1,86 +0,0 @@
1
- /**
2
- * Abstract; see the various scale implementations.
3
- *
4
- * @class Represents a scale; a function that performs a transformation from
5
- * data domain to visual range. For quantitative and quantile scales, the domain
6
- * is expressed as numbers; for ordinal scales, the domain is expressed as
7
- * strings (or equivalently objects with unique string representations). The
8
- * "visual range" may correspond to pixel space, colors, font sizes, and the
9
- * like.
10
- *
11
- * <p>Note that scales are functions, and thus can be used as properties
12
- * directly, assuming that the data associated with a mark is a number. While
13
- * this is convenient for single-use scales, frequently it is desirable to
14
- * define scales globally:
15
- *
16
- * <pre>var y = pv.Scale.linear(0, 100).range(0, 640);</pre>
17
- *
18
- * The <tt>y</tt> scale can now be equivalently referenced within a property:
19
- *
20
- * <pre> .height(function(d) y(d))</pre>
21
- *
22
- * Alternatively, if the data are not simple numbers, the appropriate value can
23
- * be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
24
- * method similarly allows the data to be mapped to a numeric value before
25
- * performing the linear transformation.
26
- *
27
- * @see pv.Scale.quantitative
28
- * @see pv.Scale.quantile
29
- * @see pv.Scale.ordinal
30
- * @extends function
31
- */
32
- pv.Scale = function() {};
33
-
34
- /**
35
- * @private Returns a function that interpolators from the start value to the
36
- * end value, given a parameter <i>t</i> in [0, 1].
37
- *
38
- * @param start the start value.
39
- * @param end the end value.
40
- */
41
- pv.Scale.interpolator = function(start, end) {
42
- if (typeof start == "number") {
43
- return function(t) {
44
- return t * (end - start) + start;
45
- };
46
- }
47
-
48
- /* For now, assume color. */
49
- start = pv.color(start).rgb();
50
- end = pv.color(end).rgb();
51
- return function(t) {
52
- var a = start.a * (1 - t) + end.a * t;
53
- if (a < 1e-5) a = 0; // avoid scientific notation
54
- return (start.a == 0) ? pv.rgb(end.r, end.g, end.b, a)
55
- : ((end.a == 0) ? pv.rgb(start.r, start.g, start.b, a)
56
- : pv.rgb(
57
- Math.round(start.r * (1 - t) + end.r * t),
58
- Math.round(start.g * (1 - t) + end.g * t),
59
- Math.round(start.b * (1 - t) + end.b * t), a));
60
- };
61
- };
62
-
63
- /**
64
- * Returns a view of this scale by the specified accessor function <tt>f</tt>.
65
- * Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
66
- * <tt>function(d) y(d.foo)</tt>.
67
- *
68
- * <p>This method is provided for convenience, such that scales can be
69
- * succinctly defined inline. For example, given an array of data elements that
70
- * have a <tt>score</tt> attribute with the domain [0, 1], the height property
71
- * could be specified as:
72
- *
73
- * <pre> .height(pv.Scale.linear().range(0, 480).by(function(d) d.score))</pre>
74
- *
75
- * This is equivalent to:
76
- *
77
- * <pre> .height(function(d) d.score * 480)</pre>
78
- *
79
- * This method should be used judiciously; it is typically more clear to invoke
80
- * the scale directly, passing in the value to be scaled.
81
- *
82
- * @function
83
- * @name pv.Scale.prototype.by
84
- * @param {function} f an accessor function.
85
- * @returns {pv.Scale} a view of this scale by the specified accessor function.
86
- */
@@ -1,109 +0,0 @@
1
- /**
2
- * Returns a new identity transform.
3
- *
4
- * @class Represents a transformation matrix. The transformation matrix is
5
- * limited to expressing translate and uniform scale transforms only; shearing,
6
- * rotation, general affine, and other transforms are not supported.
7
- *
8
- * <p>The methods on this class treat the transform as immutable, returning a
9
- * copy of the transformation matrix with the specified transform applied. Note,
10
- * alternatively, that the matrix fields can be get and set directly.
11
- */
12
- pv.Transform = function() {};
13
- pv.Transform.prototype = {k: 1, x: 0, y: 0};
14
-
15
- /**
16
- * The scale magnitude; defaults to 1.
17
- *
18
- * @type number
19
- * @name pv.Transform.prototype.k
20
- */
21
-
22
- /**
23
- * The x-offset; defaults to 0.
24
- *
25
- * @type number
26
- * @name pv.Transform.prototype.x
27
- */
28
-
29
- /**
30
- * The y-offset; defaults to 0.
31
- *
32
- * @type number
33
- * @name pv.Transform.prototype.y
34
- */
35
-
36
- /**
37
- * @private The identity transform.
38
- *
39
- * @type pv.Transform
40
- */
41
- pv.Transform.identity = new pv.Transform();
42
-
43
- // k 0 x 1 0 a k 0 ka+x
44
- // 0 k y * 0 1 b = 0 k kb+y
45
- // 0 0 1 0 0 1 0 0 1
46
-
47
- /**
48
- * Returns a translated copy of this transformation matrix.
49
- *
50
- * @param {number} x the x-offset.
51
- * @param {number} y the y-offset.
52
- * @returns {pv.Transform} the translated transformation matrix.
53
- */
54
- pv.Transform.prototype.translate = function(x, y) {
55
- var v = new pv.Transform();
56
- v.k = this.k;
57
- v.x = this.k * x + this.x;
58
- v.y = this.k * y + this.y;
59
- return v;
60
- };
61
-
62
- // k 0 x d 0 0 kd 0 x
63
- // 0 k y * 0 d 0 = 0 kd y
64
- // 0 0 1 0 0 1 0 0 1
65
-
66
- /**
67
- * Returns a scaled copy of this transformation matrix.
68
- *
69
- * @param {number} k
70
- * @returns {pv.Transform} the scaled transformation matrix.
71
- */
72
- pv.Transform.prototype.scale = function(k) {
73
- var v = new pv.Transform();
74
- v.k = this.k * k;
75
- v.x = this.x;
76
- v.y = this.y;
77
- return v;
78
- };
79
-
80
- /**
81
- * Returns the inverse of this transformation matrix.
82
- *
83
- * @returns {pv.Transform} the inverted transformation matrix.
84
- */
85
- pv.Transform.prototype.invert = function() {
86
- var v = new pv.Transform(), k = 1 / this.k;
87
- v.k = k;
88
- v.x = -this.x * k;
89
- v.y = -this.y * k;
90
- return v;
91
- };
92
-
93
- // k 0 x d 0 a kd 0 ka+x
94
- // 0 k y * 0 d b = 0 kd kb+y
95
- // 0 0 1 0 0 1 0 0 1
96
-
97
- /**
98
- * Returns this matrix post-multiplied by the specified matrix <i>m</i>.
99
- *
100
- * @param {pv.Transform} m
101
- * @returns {pv.Transform} the post-multiplied transformation matrix.
102
- */
103
- pv.Transform.prototype.times = function(m) {
104
- var v = new pv.Transform();
105
- v.k = this.k * m.k;
106
- v.x = this.k * m.x + this.x;
107
- v.y = this.k * m.y + this.y;
108
- return v;
109
- };
@@ -1,124 +0,0 @@
1
- /**
2
- * Returns a {@link pv.Tree} operator for the specified array. This is a
3
- * convenience factory method, equivalent to <tt>new pv.Tree(array)</tt>.
4
- *
5
- * @see pv.Tree
6
- * @param {array} array an array from which to construct a tree.
7
- * @returns {pv.Tree} a tree operator for the specified array.
8
- */
9
- pv.tree = function(array) {
10
- return new pv.Tree(array);
11
- };
12
-
13
- /**
14
- * Constructs a tree operator for the specified array. This constructor should
15
- * not be invoked directly; use {@link pv.tree} instead.
16
- *
17
- * @class Represents a tree operator for the specified array. The tree operator
18
- * allows a hierarchical map to be constructed from an array; it is similar to
19
- * the {@link pv.Nest} operator, except the hierarchy is derived dynamically
20
- * from the array elements.
21
- *
22
- * <p>For example, given an array of size information for ActionScript classes:
23
- *
24
- * <pre>{ name: "flare.flex.FlareVis", size: 4116 },
25
- * { name: "flare.physics.DragForce", size: 1082 },
26
- * { name: "flare.physics.GravityForce", size: 1336 }, ...</pre>
27
- *
28
- * To facilitate visualization, it may be useful to nest the elements by their
29
- * package hierarchy:
30
- *
31
- * <pre>var tree = pv.tree(classes)
32
- * .keys(function(d) d.name.split("."))
33
- * .map();</pre>
34
- *
35
- * The resulting tree is:
36
- *
37
- * <pre>{ flare: {
38
- * flex: {
39
- * FlareVis: {
40
- * name: "flare.flex.FlareVis",
41
- * size: 4116 } },
42
- * physics: {
43
- * DragForce: {
44
- * name: "flare.physics.DragForce",
45
- * size: 1082 },
46
- * GravityForce: {
47
- * name: "flare.physics.GravityForce",
48
- * size: 1336 } },
49
- * ... } }</pre>
50
- *
51
- * By specifying a value function,
52
- *
53
- * <pre>var tree = pv.tree(classes)
54
- * .keys(function(d) d.name.split("."))
55
- * .value(function(d) d.size)
56
- * .map();</pre>
57
- *
58
- * we can further eliminate redundant data:
59
- *
60
- * <pre>{ flare: {
61
- * flex: {
62
- * FlareVis: 4116 },
63
- * physics: {
64
- * DragForce: 1082,
65
- * GravityForce: 1336 },
66
- * ... } }</pre>
67
- *
68
- * For visualizations with large data sets, performance improvements may be seen
69
- * by storing the data in a tree format, and then flattening it into an array at
70
- * runtime with {@link pv.Flatten}.
71
- *
72
- * @param {array} array an array from which to construct a tree.
73
- */
74
- pv.Tree = function(array) {
75
- this.array = array;
76
- };
77
-
78
- /**
79
- * Assigns a <i>keys</i> function to this operator; required. The keys function
80
- * returns an array of <tt>string</tt>s for each element in the associated
81
- * array; these keys determine how the elements are nested in the tree. The
82
- * returned keys should be unique for each element in the array; otherwise, the
83
- * behavior of this operator is undefined.
84
- *
85
- * @param {function} k the keys function.
86
- * @returns {pv.Tree} this.
87
- */
88
- pv.Tree.prototype.keys = function(k) {
89
- this.k = k;
90
- return this;
91
- };
92
-
93
- /**
94
- * Assigns a <i>value</i> function to this operator; optional. The value
95
- * function specifies an optional transformation of the element in the array
96
- * before it is inserted into the map. If no value function is specified, it is
97
- * equivalent to using the identity function.
98
- *
99
- * @param {function} k the value function.
100
- * @returns {pv.Tree} this.
101
- */
102
- pv.Tree.prototype.value = function(v) {
103
- this.v = v;
104
- return this;
105
- };
106
-
107
- /**
108
- * Returns a hierarchical map of values. The hierarchy is determined by the keys
109
- * function; the values in the map are determined by the value function.
110
- *
111
- * @returns a hierarchical map of values.
112
- */
113
- pv.Tree.prototype.map = function() {
114
- var map = {}, o = {};
115
- for (var i = 0; i < this.array.length; i++) {
116
- o.index = i;
117
- var value = this.array[i], keys = this.k.call(o, value), node = map;
118
- for (var j = 0; j < keys.length - 1; j++) {
119
- node = node[keys[j]] || (node[keys[j]] = {});
120
- }
121
- node[keys[j]] = this.v ? this.v.call(o, value) : value;
122
- }
123
- return map;
124
- };
@@ -1,118 +0,0 @@
1
- /**
2
- * Returns a {@link pv.Vector} for the specified <i>x</i> and <i>y</i>
3
- * coordinate. This is a convenience factory method, equivalent to <tt>new
4
- * pv.Vector(x, y)</tt>.
5
- *
6
- * @see pv.Vector
7
- * @param {number} x the <i>x</i> coordinate.
8
- * @param {number} y the <i>y</i> coordinate.
9
- * @returns {pv.Vector} a vector for the specified coordinates.
10
- */
11
- pv.vector = function(x, y) {
12
- return new pv.Vector(x, y);
13
- };
14
-
15
- /**
16
- * Constructs a {@link pv.Vector} for the specified <i>x</i> and <i>y</i>
17
- * coordinate. This constructor should not be invoked directly; use
18
- * {@link pv.vector} instead.
19
- *
20
- * @class Represents a two-dimensional vector; a 2-tuple <i>&#x27e8;x,
21
- * y&#x27e9;</i>. The intent of this class is to simplify vector math. Note that
22
- * in performance-sensitive cases it may be more efficient to represent 2D
23
- * vectors as simple objects with <tt>x</tt> and <tt>y</tt> attributes, rather
24
- * than using instances of this class.
25
- *
26
- * @param {number} x the <i>x</i> coordinate.
27
- * @param {number} y the <i>y</i> coordinate.
28
- */
29
- pv.Vector = function(x, y) {
30
- this.x = x;
31
- this.y = y;
32
- };
33
-
34
- /**
35
- * Returns a vector perpendicular to this vector: <i>&#x27e8;-y, x&#x27e9;</i>.
36
- *
37
- * @returns {pv.Vector} a perpendicular vector.
38
- */
39
- pv.Vector.prototype.perp = function() {
40
- return new pv.Vector(-this.y, this.x);
41
- };
42
-
43
- /**
44
- * Returns a normalized copy of this vector: a vector with the same direction,
45
- * but unit length. If this vector has zero length this method returns a copy of
46
- * this vector.
47
- *
48
- * @returns {pv.Vector} a unit vector.
49
- */
50
- pv.Vector.prototype.norm = function() {
51
- var l = this.length();
52
- return this.times(l ? (1 / l) : 1);
53
- };
54
-
55
- /**
56
- * Returns the magnitude of this vector, defined as <i>sqrt(x * x + y * y)</i>.
57
- *
58
- * @returns {number} a length.
59
- */
60
- pv.Vector.prototype.length = function() {
61
- return Math.sqrt(this.x * this.x + this.y * this.y);
62
- };
63
-
64
- /**
65
- * Returns a scaled copy of this vector: <i>&#x27e8;x * k, y * k&#x27e9;</i>.
66
- * To perform the equivalent divide operation, use <i>1 / k</i>.
67
- *
68
- * @param {number} k the scale factor.
69
- * @returns {pv.Vector} a scaled vector.
70
- */
71
- pv.Vector.prototype.times = function(k) {
72
- return new pv.Vector(this.x * k, this.y * k);
73
- };
74
-
75
- /**
76
- * Returns this vector plus the vector <i>v</i>: <i>&#x27e8;x + v.x, y +
77
- * v.y&#x27e9;</i>. If only one argument is specified, it is interpreted as the
78
- * vector <i>v</i>.
79
- *
80
- * @param {number} x the <i>x</i> coordinate to add.
81
- * @param {number} y the <i>y</i> coordinate to add.
82
- * @returns {pv.Vector} a new vector.
83
- */
84
- pv.Vector.prototype.plus = function(x, y) {
85
- return (arguments.length == 1)
86
- ? new pv.Vector(this.x + x.x, this.y + x.y)
87
- : new pv.Vector(this.x + x, this.y + y);
88
- };
89
-
90
- /**
91
- * Returns this vector minus the vector <i>v</i>: <i>&#x27e8;x - v.x, y -
92
- * v.y&#x27e9;</i>. If only one argument is specified, it is interpreted as the
93
- * vector <i>v</i>.
94
- *
95
- * @param {number} x the <i>x</i> coordinate to subtract.
96
- * @param {number} y the <i>y</i> coordinate to subtract.
97
- * @returns {pv.Vector} a new vector.
98
- */
99
- pv.Vector.prototype.minus = function(x, y) {
100
- return (arguments.length == 1)
101
- ? new pv.Vector(this.x - x.x, this.y - x.y)
102
- : new pv.Vector(this.x - x, this.y - y);
103
- };
104
-
105
- /**
106
- * Returns the dot product of this vector and the vector <i>v</i>: <i>x * v.x +
107
- * y * v.y</i>. If only one argument is specified, it is interpreted as the
108
- * vector <i>v</i>.
109
- *
110
- * @param {number} x the <i>x</i> coordinate to dot.
111
- * @param {number} y the <i>y</i> coordinate to dot.
112
- * @returns {number} a dot product.
113
- */
114
- pv.Vector.prototype.dot = function(x, y) {
115
- return (arguments.length == 1)
116
- ? this.x * x.x + this.y * x.y
117
- : this.x * x + this.y * y;
118
- };
@@ -1,5 +0,0 @@
1
- /**
2
- * @ignore
3
- * @namespace
4
- */
5
- pv.Geo = function() {};
@@ -1,307 +0,0 @@
1
- /**
2
- * Returns a geographic scale. The arguments to this constructor are optional,
3
- * and equivalent to calling {@link #projection}.
4
- *
5
- * @class Represents a geographic scale; a mapping between latitude-longitude
6
- * coordinates and screen pixel coordinates. By default, the domain is inferred
7
- * from the geographic coordinates, so that the domain fills the output range.
8
- *
9
- * <p>Note that geographic scales are two-dimensional transformations, rather
10
- * than the one-dimensional bidrectional mapping typical of other scales.
11
- * Rather than mapping (for example) between a numeric domain and a numeric
12
- * range, geographic scales map between two coordinate objects: {@link
13
- * pv.Geo.LatLng} and {@link pv.Vector}.
14
- *
15
- * @param {pv.Geo.Projection} [p] optional projection.
16
- * @see pv.Geo.scale#ticks
17
- */
18
- pv.Geo.scale = function(p) {
19
- var rmin = {x: 0, y: 0}, // default range minimum
20
- rmax = {x: 1, y: 1}, // default range maximum
21
- d = [], // default domain
22
- j = pv.Geo.projections.identity, // domain <-> normalized range
23
- x = pv.Scale.linear(-1, 1).range(0, 1), // normalized <-> range
24
- y = pv.Scale.linear(-1, 1).range(1, 0), // normalized <-> range
25
- c = {lng: 0, lat: 0}, // Center Point
26
- lastLatLng, // cached latlng
27
- lastPoint; // cached point
28
-
29
- /** @private */
30
- function scale(latlng) {
31
- if (!lastLatLng
32
- || (latlng.lng != lastLatLng.lng)
33
- || (latlng.lat != lastLatLng.lat)) {
34
- lastLatLng = latlng;
35
- var p = project(latlng);
36
- lastPoint = {x: x(p.x), y: y(p.y)};
37
- }
38
- return lastPoint;
39
- }
40
-
41
- /** @private */
42
- function project(latlng) {
43
- var offset = {lng: latlng.lng - c.lng, lat: latlng.lat};
44
- return j.project(offset);
45
- }
46
-
47
- /** @private */
48
- function invert(xy) {
49
- var latlng = j.invert(xy);
50
- latlng.lng += c.lng;
51
- return latlng;
52
- }
53
-
54
- /** Returns the projected x-coordinate. */
55
- scale.x = function(latlng) {
56
- return scale(latlng).x;
57
- };
58
-
59
- /** Returns the projected y-coordinate. */
60
- scale.y = function(latlng) {
61
- return scale(latlng).y;
62
- };
63
-
64
- /**
65
- * Abstract; this is a local namespace on a given geographic scale.
66
- *
67
- * @namespace Tick functions for geographic scales. Because geographic scales
68
- * represent two-dimensional transformations (as opposed to one-dimensional
69
- * transformations typical of other scales), the tick values are similarly
70
- * represented as two-dimensional coordinates in the input domain, i.e.,
71
- * {@link pv.Geo.LatLng} objects.
72
- *
73
- * <p>Also, note that non-rectilinear projections, such as sinsuoidal and
74
- * aitoff, may not produce straight lines for constant longitude or constant
75
- * latitude. Therefore the returned array of ticks is a two-dimensional array,
76
- * sampling various latitudes as constant longitude, and vice versa.
77
- *
78
- * <p>The tick lines can therefore be approximated as polylines, either with
79
- * "linear" or "cardinal" interpolation. This is not as accurate as drawing
80
- * the true curve through the projection space, but is usually sufficient.
81
- *
82
- * @name pv.Geo.scale.prototype.ticks
83
- * @see pv.Geo.scale
84
- * @see pv.Geo.LatLng
85
- * @see pv.Line#interpolate
86
- */
87
- scale.ticks = {
88
-
89
- /**
90
- * Returns longitude ticks.
91
- *
92
- * @function
93
- * @param {number} [m] the desired number of ticks.
94
- * @returns {array} a nested array of <tt>pv.Geo.LatLng</tt> ticks.
95
- * @name pv.Geo.scale.prototype.ticks.prototype.lng
96
- */
97
- lng: function(m) {
98
- var lat, lng;
99
- if (d.length > 1) {
100
- var s = pv.Scale.linear();
101
- if (m == undefined) m = 10;
102
- lat = s.domain(d, function(d) { return d.lat; }).ticks(m);
103
- lng = s.domain(d, function(d) { return d.lng; }).ticks(m);
104
- } else {
105
- lat = pv.range(-80, 81, 10);
106
- lng = pv.range(-180, 181, 10);
107
- }
108
- return lng.map(function(lng) {
109
- return lat.map(function(lat) {
110
- return {lat: lat, lng: lng};
111
- });
112
- });
113
- },
114
-
115
- /**
116
- * Returns latitude ticks.
117
- *
118
- * @function
119
- * @param {number} [m] the desired number of ticks.
120
- * @returns {array} a nested array of <tt>pv.Geo.LatLng</tt> ticks.
121
- * @name pv.Geo.scale.prototype.ticks.prototype.lat
122
- */
123
- lat: function(m) {
124
- return pv.transpose(scale.ticks.lng(m));
125
- }
126
- };
127
-
128
- /**
129
- * Inverts the specified value in the output range, returning the
130
- * corresponding value in the input domain. This is frequently used to convert
131
- * the mouse location (see {@link pv.Mark#mouse}) to a value in the input
132
- * domain. Inversion is only supported for numeric ranges, and not colors.
133
- *
134
- * <p>Note that this method does not do any rounding or bounds checking. If
135
- * the input domain is discrete (e.g., an array index), the returned value
136
- * should be rounded. If the specified <tt>y</tt> value is outside the range,
137
- * the returned value may be equivalently outside the input domain.
138
- *
139
- * @function
140
- * @name pv.Geo.scale.prototype.invert
141
- * @param {number} y a value in the output range (a pixel location).
142
- * @returns {number} a value in the input domain.
143
- */
144
- scale.invert = function(p) {
145
- return invert({x: x.invert(p.x), y: y.invert(p.y)});
146
- };
147
-
148
- /**
149
- * Sets or gets the input domain. Note that unlike quantitative scales, the
150
- * domain cannot be reduced to a simple rectangle (i.e., minimum and maximum
151
- * values for latitude and longitude). Instead, the domain values must be
152
- * projected to normalized space, effectively finding the domain in normalized
153
- * space rather than in terms of latitude and longitude. Thus, changing the
154
- * projection requires recomputing the normalized domain.
155
- *
156
- * <p>This method can be invoked several ways:
157
- *
158
- * <p>1. <tt>domain(values...)</tt>
159
- *
160
- * <p>Specifying the domain as a series of {@link pv.Geo.LatLng}s is the most
161
- * explicit and recommended approach. However, if the domain values are
162
- * derived from data, you may find the second method more appropriate.
163
- *
164
- * <p>2. <tt>domain(array, f)</tt>
165
- *
166
- * <p>Rather than enumerating the domain explicitly, you can specify a single
167
- * argument of an array. In addition, you can specify an optional accessor
168
- * function to extract the domain values (as {@link pv.Geo.LatLng}s) from the
169
- * array. If the specified array has fewer than two elements, this scale will
170
- * default to the full normalized domain.
171
- *
172
- * <p>2. <tt>domain()</tt>
173
- *
174
- * <p>Invoking the <tt>domain</tt> method with no arguments returns the
175
- * current domain as an array.
176
- *
177
- * @function
178
- * @name pv.Geo.scale.prototype.domain
179
- * @param {...} domain... domain values.
180
- * @returns {pv.Geo.scale} <tt>this</tt>, or the current domain.
181
- */
182
- scale.domain = function(array, f) {
183
- if (arguments.length) {
184
- d = (array instanceof Array)
185
- ? ((arguments.length > 1) ? pv.map(array, f) : array)
186
- : Array.prototype.slice.call(arguments);
187
- if (d.length > 1) {
188
- var lngs = d.map(function(c) { return c.lng; });
189
- var lats = d.map(function(c) { return c.lat; });
190
- c = {
191
- lng: (pv.max(lngs) + pv.min(lngs)) / 2,
192
- lat: (pv.max(lats) + pv.min(lats)) / 2
193
- };
194
- var n = d.map(project); // normalized domain
195
- x.domain(n, function(p) { return p.x; });
196
- y.domain(n, function(p) { return p.y; });
197
- } else {
198
- c = {lng: 0, lat: 0};
199
- x.domain(-1, 1);
200
- y.domain(-1, 1);
201
- }
202
- lastLatLng = null; // invalidate the cache
203
- return this;
204
- }
205
- return d;
206
- };
207
-
208
- /**
209
- * Sets or gets the output range. This method can be invoked several ways:
210
- *
211
- * <p>1. <tt>range(min, max)</tt>
212
- *
213
- * <p>If two objects are specified, the arguments should be {@link pv.Vector}s
214
- * which specify the minimum and maximum values of the x- and y-coordinates
215
- * explicitly.
216
- *
217
- * <p>2. <tt>range(width, height)</tt>
218
- *
219
- * <p>If two numbers are specified, the arguments specify the maximum values
220
- * of the x- and y-coordinates explicitly; the minimum values are implicitly
221
- * zero.
222
- *
223
- * <p>3. <tt>range()</tt>
224
- *
225
- * <p>Invoking the <tt>range</tt> method with no arguments returns the current
226
- * range as an array of two {@link pv.Vector}s: the minimum (top-left) and
227
- * maximum (bottom-right) values.
228
- *
229
- * @function
230
- * @name pv.Geo.scale.prototype.range
231
- * @param {...} range... range values.
232
- * @returns {pv.Geo.scale} <tt>this</tt>, or the current range.
233
- */
234
- scale.range = function(min, max) {
235
- if (arguments.length) {
236
- if (typeof min == "object") {
237
- rmin = {x: Number(min.x), y: Number(min.y)};
238
- rmax = {x: Number(max.x), y: Number(max.y)};
239
- } else {
240
- rmin = {x: 0, y: 0};
241
- rmax = {x: Number(min), y: Number(max)};
242
- }
243
- x.range(rmin.x, rmax.x);
244
- y.range(rmax.y, rmin.y); // XXX flipped?
245
- lastLatLng = null; // invalidate the cache
246
- return this;
247
- }
248
- return [rmin, rmax];
249
- };
250
-
251
- /**
252
- * Sets or gets the projection. This method can be invoked several ways:
253
- *
254
- * <p>1. <tt>projection(string)</tt>
255
- *
256
- * <p>Specifying a string sets the projection to the given named projection in
257
- * {@link pv.Geo.projections}. If no such projection is found, the identity
258
- * projection is used.
259
- *
260
- * <p>2. <tt>projection(object)</tt>
261
- *
262
- * <p>Specifying an object sets the projection to the given custom projection,
263
- * which must implement the <i>forward</i> and <i>inverse</i> methods per the
264
- * {@link pv.Geo.Projection} interface.
265
- *
266
- * <p>3. <tt>projection()</tt>
267
- *
268
- * <p>Invoking the <tt>projection</tt> method with no arguments returns the
269
- * current object that defined the projection.
270
- *
271
- * @function
272
- * @name pv.Scale.geo.prototype.projection
273
- * @param {...} range... range values.
274
- * @returns {pv.Scale.geo} <tt>this</tt>, or the current range.
275
- */
276
- scale.projection = function(p) {
277
- if (arguments.length) {
278
- j = typeof p == "string"
279
- ? pv.Geo.projections[p] || pv.Geo.projections.identity
280
- : p;
281
- return this.domain(d); // recompute normalized domain
282
- }
283
- return p;
284
- };
285
-
286
- /**
287
- * Returns a view of this scale by the specified accessor function <tt>f</tt>.
288
- * Given a scale <tt>g</tt>, <tt>g.by(function(d) d.foo)</tt> is equivalent to
289
- * <tt>function(d) g(d.foo)</tt>. This method should be used judiciously; it
290
- * is typically more clear to invoke the scale directly, passing in the value
291
- * to be scaled.
292
- *
293
- * @function
294
- * @name pv.Geo.scale.prototype.by
295
- * @param {function} f an accessor function.
296
- * @returns {pv.Geo.scale} a view of this scale by the specified accessor
297
- * function.
298
- */
299
- scale.by = function(f) {
300
- function by() { return scale(f.apply(this, arguments)); }
301
- for (var method in scale) by[method] = scale[method];
302
- return by;
303
- };
304
-
305
- if (arguments.length) scale.projection(p);
306
- return scale;
307
- };