ruby-fann 0.7.10 → 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +6 -1
- data/License.txt +1 -1
- data/Manifest.txt +22 -1
- data/README.txt +0 -1
- data/Rakefile +0 -0
- data/config/hoe.rb +0 -0
- data/config/requirements.rb +0 -0
- data/ext/ruby_fann/MANIFEST +0 -0
- data/ext/ruby_fann/Makefile +36 -28
- data/ext/ruby_fann/doublefann.c +30 -0
- data/ext/ruby_fann/doublefann.h +33 -0
- data/ext/ruby_fann/extconf.rb +9 -5
- data/ext/ruby_fann/fann.c +1552 -0
- data/ext/ruby_fann/fann_activation.h +144 -0
- data/ext/ruby_fann/fann_augment.h +0 -0
- data/ext/ruby_fann/fann_cascade.c +1031 -0
- data/ext/ruby_fann/fann_cascade.h +503 -0
- data/ext/ruby_fann/fann_data.h +799 -0
- data/ext/ruby_fann/fann_error.c +204 -0
- data/ext/ruby_fann/fann_error.h +161 -0
- data/ext/ruby_fann/fann_internal.h +148 -0
- data/ext/ruby_fann/fann_io.c +762 -0
- data/ext/ruby_fann/fann_io.h +100 -0
- data/ext/ruby_fann/fann_train.c +962 -0
- data/ext/ruby_fann/fann_train.h +1203 -0
- data/ext/ruby_fann/fann_train_data.c +1231 -0
- data/ext/ruby_fann/neural_network.c +0 -0
- data/lib/ruby_fann/neurotica.rb +0 -0
- data/lib/ruby_fann/version.rb +3 -3
- data/lib/ruby_fann.rb +0 -0
- data/neurotica1.png +0 -0
- data/neurotica2.vrml +18 -18
- data/setup.rb +0 -0
- data/tasks/deployment.rake +0 -0
- data/tasks/environment.rake +0 -0
- data/tasks/website.rake +0 -0
- data/test/test.train +0 -0
- data/test/test_helper.rb +0 -0
- data/test/test_neurotica.rb +0 -0
- data/test/test_ruby_fann.rb +0 -0
- data/test/test_ruby_fann_functional.rb +0 -0
- data/verify.train +0 -0
- data/website/index.html +42 -92
- data/website/index.txt +0 -0
- data/website/javascripts/rounded_corners_lite.inc.js +0 -0
- data/website/stylesheets/screen.css +0 -0
- data/website/template.rhtml +0 -0
- data/xor.train +0 -0
- data/xor_cascade.net +2 -2
- data/xor_float.net +1 -1
- metadata +22 -6
- data/log/debug.log +0 -0
@@ -0,0 +1,762 @@
|
|
1
|
+
/*
|
2
|
+
Fast Artificial Neural Network Library (fann)
|
3
|
+
Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)
|
4
|
+
|
5
|
+
This library is free software; you can redistribute it and/or
|
6
|
+
modify it under the terms of the GNU Lesser General Public
|
7
|
+
License as published by the Free Software Foundation; either
|
8
|
+
version 2.1 of the License, or (at your option) any later version.
|
9
|
+
|
10
|
+
This library is distributed in the hope that it will be useful,
|
11
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13
|
+
Lesser General Public License for more details.
|
14
|
+
|
15
|
+
You should have received a copy of the GNU Lesser General Public
|
16
|
+
License along with this library; if not, write to the Free Software
|
17
|
+
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18
|
+
*/
|
19
|
+
|
20
|
+
#include <stdio.h>
|
21
|
+
#include <stdlib.h>
|
22
|
+
#include <stdarg.h>
|
23
|
+
#include <string.h>
|
24
|
+
|
25
|
+
#include "config.h"
|
26
|
+
#include "fann.h"
|
27
|
+
|
28
|
+
/* Create a network from a configuration file.
|
29
|
+
*/
|
30
|
+
FANN_EXTERNAL struct fann *FANN_API fann_create_from_file(const char *configuration_file)
|
31
|
+
{
|
32
|
+
struct fann *ann;
|
33
|
+
FILE *conf = fopen(configuration_file, "r");
|
34
|
+
|
35
|
+
if(!conf)
|
36
|
+
{
|
37
|
+
fann_error(NULL, FANN_E_CANT_OPEN_CONFIG_R, configuration_file);
|
38
|
+
return NULL;
|
39
|
+
}
|
40
|
+
ann = fann_create_from_fd(conf, configuration_file);
|
41
|
+
fclose(conf);
|
42
|
+
return ann;
|
43
|
+
}
|
44
|
+
|
45
|
+
/* Save the network.
|
46
|
+
*/
|
47
|
+
FANN_EXTERNAL int FANN_API fann_save(struct fann *ann, const char *configuration_file)
|
48
|
+
{
|
49
|
+
return fann_save_internal(ann, configuration_file, 0);
|
50
|
+
}
|
51
|
+
|
52
|
+
/* Save the network as fixed point data.
|
53
|
+
*/
|
54
|
+
FANN_EXTERNAL int FANN_API fann_save_to_fixed(struct fann *ann, const char *configuration_file)
|
55
|
+
{
|
56
|
+
return fann_save_internal(ann, configuration_file, 1);
|
57
|
+
}
|
58
|
+
|
59
|
+
/* INTERNAL FUNCTION
|
60
|
+
Used to save the network to a file.
|
61
|
+
*/
|
62
|
+
int fann_save_internal(struct fann *ann, const char *configuration_file, unsigned int save_as_fixed)
|
63
|
+
{
|
64
|
+
int retval;
|
65
|
+
FILE *conf = fopen(configuration_file, "w+");
|
66
|
+
|
67
|
+
if(!conf)
|
68
|
+
{
|
69
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_OPEN_CONFIG_W, configuration_file);
|
70
|
+
return -1;
|
71
|
+
}
|
72
|
+
retval = fann_save_internal_fd(ann, conf, configuration_file, save_as_fixed);
|
73
|
+
fclose(conf);
|
74
|
+
return retval;
|
75
|
+
}
|
76
|
+
|
77
|
+
/* INTERNAL FUNCTION
|
78
|
+
Used to save the network to a file descriptor.
|
79
|
+
*/
|
80
|
+
int fann_save_internal_fd(struct fann *ann, FILE * conf, const char *configuration_file,
|
81
|
+
unsigned int save_as_fixed)
|
82
|
+
{
|
83
|
+
struct fann_layer *layer_it;
|
84
|
+
int calculated_decimal_point = 0;
|
85
|
+
struct fann_neuron *neuron_it, *first_neuron;
|
86
|
+
fann_type *weights;
|
87
|
+
struct fann_neuron **connected_neurons;
|
88
|
+
unsigned int i = 0;
|
89
|
+
|
90
|
+
#ifndef FIXEDFANN
|
91
|
+
/* variabels for use when saving floats as fixed point variabels */
|
92
|
+
unsigned int decimal_point = 0;
|
93
|
+
unsigned int fixed_multiplier = 0;
|
94
|
+
fann_type max_possible_value = 0;
|
95
|
+
unsigned int bits_used_for_max = 0;
|
96
|
+
fann_type current_max_value = 0;
|
97
|
+
#endif
|
98
|
+
|
99
|
+
#ifndef FIXEDFANN
|
100
|
+
if(save_as_fixed)
|
101
|
+
{
|
102
|
+
/* save the version information */
|
103
|
+
fprintf(conf, FANN_FIX_VERSION "\n");
|
104
|
+
}
|
105
|
+
else
|
106
|
+
{
|
107
|
+
/* save the version information */
|
108
|
+
fprintf(conf, FANN_FLO_VERSION "\n");
|
109
|
+
}
|
110
|
+
#else
|
111
|
+
/* save the version information */
|
112
|
+
fprintf(conf, FANN_FIX_VERSION "\n");
|
113
|
+
#endif
|
114
|
+
|
115
|
+
#ifndef FIXEDFANN
|
116
|
+
if(save_as_fixed)
|
117
|
+
{
|
118
|
+
/* calculate the maximal possible shift value */
|
119
|
+
|
120
|
+
for(layer_it = ann->first_layer + 1; layer_it != ann->last_layer; layer_it++)
|
121
|
+
{
|
122
|
+
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
123
|
+
{
|
124
|
+
/* look at all connections to each neurons, and see how high a value we can get */
|
125
|
+
current_max_value = 0;
|
126
|
+
for(i = neuron_it->first_con; i != neuron_it->last_con; i++)
|
127
|
+
{
|
128
|
+
current_max_value += fann_abs(ann->weights[i]);
|
129
|
+
}
|
130
|
+
|
131
|
+
if(current_max_value > max_possible_value)
|
132
|
+
{
|
133
|
+
max_possible_value = current_max_value;
|
134
|
+
}
|
135
|
+
}
|
136
|
+
}
|
137
|
+
|
138
|
+
for(bits_used_for_max = 0; max_possible_value >= 1; bits_used_for_max++)
|
139
|
+
{
|
140
|
+
max_possible_value /= 2.0;
|
141
|
+
}
|
142
|
+
|
143
|
+
/* The maximum number of bits we shift the fix point, is the number
|
144
|
+
* of bits in a integer, minus one for the sign, one for the minus
|
145
|
+
* in stepwise, and minus the bits used for the maximum.
|
146
|
+
* This is devided by two, to allow multiplication of two fixed
|
147
|
+
* point numbers.
|
148
|
+
*/
|
149
|
+
calculated_decimal_point = (sizeof(int) * 8 - 2 - bits_used_for_max) / 2;
|
150
|
+
|
151
|
+
if(calculated_decimal_point < 0)
|
152
|
+
{
|
153
|
+
decimal_point = 0;
|
154
|
+
}
|
155
|
+
else
|
156
|
+
{
|
157
|
+
decimal_point = calculated_decimal_point;
|
158
|
+
}
|
159
|
+
|
160
|
+
fixed_multiplier = 1 << decimal_point;
|
161
|
+
|
162
|
+
#ifdef DEBUG
|
163
|
+
printf("calculated_decimal_point=%d, decimal_point=%u, bits_used_for_max=%u\n",
|
164
|
+
calculated_decimal_point, decimal_point, bits_used_for_max);
|
165
|
+
#endif
|
166
|
+
|
167
|
+
/* save the decimal_point on a seperate line */
|
168
|
+
fprintf(conf, "decimal_point=%u\n", decimal_point);
|
169
|
+
}
|
170
|
+
#else
|
171
|
+
/* save the decimal_point on a seperate line */
|
172
|
+
fprintf(conf, "decimal_point=%u\n", ann->decimal_point);
|
173
|
+
|
174
|
+
#endif
|
175
|
+
|
176
|
+
/* Save network parameters */
|
177
|
+
fprintf(conf, "num_layers=%u\n", ann->last_layer - ann->first_layer);
|
178
|
+
fprintf(conf, "learning_rate=%f\n", ann->learning_rate);
|
179
|
+
fprintf(conf, "connection_rate=%f\n", ann->connection_rate);
|
180
|
+
fprintf(conf, "network_type=%u\n", ann->network_type);
|
181
|
+
|
182
|
+
fprintf(conf, "learning_momentum=%f\n", ann->learning_momentum);
|
183
|
+
fprintf(conf, "training_algorithm=%u\n", ann->training_algorithm);
|
184
|
+
fprintf(conf, "train_error_function=%u\n", ann->train_error_function);
|
185
|
+
fprintf(conf, "train_stop_function=%u\n", ann->train_stop_function);
|
186
|
+
fprintf(conf, "cascade_output_change_fraction=%f\n", ann->cascade_output_change_fraction);
|
187
|
+
fprintf(conf, "quickprop_decay=%f\n", ann->quickprop_decay);
|
188
|
+
fprintf(conf, "quickprop_mu=%f\n", ann->quickprop_mu);
|
189
|
+
fprintf(conf, "rprop_increase_factor=%f\n", ann->rprop_increase_factor);
|
190
|
+
fprintf(conf, "rprop_decrease_factor=%f\n", ann->rprop_decrease_factor);
|
191
|
+
fprintf(conf, "rprop_delta_min=%f\n", ann->rprop_delta_min);
|
192
|
+
fprintf(conf, "rprop_delta_max=%f\n", ann->rprop_delta_max);
|
193
|
+
fprintf(conf, "rprop_delta_zero=%f\n", ann->rprop_delta_zero);
|
194
|
+
fprintf(conf, "cascade_output_stagnation_epochs=%u\n", ann->cascade_output_stagnation_epochs);
|
195
|
+
fprintf(conf, "cascade_candidate_change_fraction=%f\n", ann->cascade_candidate_change_fraction);
|
196
|
+
fprintf(conf, "cascade_candidate_stagnation_epochs=%u\n", ann->cascade_candidate_stagnation_epochs);
|
197
|
+
fprintf(conf, "cascade_max_out_epochs=%u\n", ann->cascade_max_out_epochs);
|
198
|
+
fprintf(conf, "cascade_max_cand_epochs=%u\n", ann->cascade_max_cand_epochs);
|
199
|
+
fprintf(conf, "cascade_num_candidate_groups=%u\n", ann->cascade_num_candidate_groups);
|
200
|
+
|
201
|
+
#ifndef FIXEDFANN
|
202
|
+
if(save_as_fixed)
|
203
|
+
{
|
204
|
+
fprintf(conf, "bit_fail_limit=%u\n", (int) floor((ann->bit_fail_limit * fixed_multiplier) + 0.5));
|
205
|
+
fprintf(conf, "cascade_candidate_limit=%u\n", (int) floor((ann->cascade_candidate_limit * fixed_multiplier) + 0.5));
|
206
|
+
fprintf(conf, "cascade_weight_multiplier=%u\n", (int) floor((ann->cascade_weight_multiplier * fixed_multiplier) + 0.5));
|
207
|
+
}
|
208
|
+
else
|
209
|
+
#endif
|
210
|
+
{
|
211
|
+
fprintf(conf, "bit_fail_limit="FANNPRINTF"\n", ann->bit_fail_limit);
|
212
|
+
fprintf(conf, "cascade_candidate_limit="FANNPRINTF"\n", ann->cascade_candidate_limit);
|
213
|
+
fprintf(conf, "cascade_weight_multiplier="FANNPRINTF"\n", ann->cascade_weight_multiplier);
|
214
|
+
}
|
215
|
+
|
216
|
+
fprintf(conf, "cascade_activation_functions_count=%u\n", ann->cascade_activation_functions_count);
|
217
|
+
fprintf(conf, "cascade_activation_functions=");
|
218
|
+
for(i = 0; i < ann->cascade_activation_functions_count; i++)
|
219
|
+
fprintf(conf, "%u ", ann->cascade_activation_functions[i]);
|
220
|
+
fprintf(conf, "\n");
|
221
|
+
|
222
|
+
fprintf(conf, "cascade_activation_steepnesses_count=%u\n", ann->cascade_activation_steepnesses_count);
|
223
|
+
fprintf(conf, "cascade_activation_steepnesses=");
|
224
|
+
for(i = 0; i < ann->cascade_activation_steepnesses_count; i++)
|
225
|
+
{
|
226
|
+
#ifndef FIXEDFANN
|
227
|
+
if(save_as_fixed)
|
228
|
+
fprintf(conf, "%u ", (int) floor((ann->cascade_activation_steepnesses[i] * fixed_multiplier) + 0.5));
|
229
|
+
else
|
230
|
+
#endif
|
231
|
+
fprintf(conf, FANNPRINTF" ", ann->cascade_activation_steepnesses[i]);
|
232
|
+
}
|
233
|
+
fprintf(conf, "\n");
|
234
|
+
|
235
|
+
fprintf(conf, "layer_sizes=");
|
236
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
237
|
+
{
|
238
|
+
/* the number of neurons in the layers (in the last layer, there is always one too many neurons, because of an unused bias) */
|
239
|
+
fprintf(conf, "%u ", layer_it->last_neuron - layer_it->first_neuron);
|
240
|
+
}
|
241
|
+
fprintf(conf, "\n");
|
242
|
+
|
243
|
+
#ifndef FIXEDFANN
|
244
|
+
/* 2.1 */
|
245
|
+
#define SCALE_SAVE( what, where ) \
|
246
|
+
fprintf( conf, #what "_" #where "=" ); \
|
247
|
+
for( i = 0; i < ann->num_##where##put; i++ ) \
|
248
|
+
fprintf( conf, "%f ", ann->what##_##where[ i ] ); \
|
249
|
+
fprintf( conf, "\n" );
|
250
|
+
|
251
|
+
if(!save_as_fixed)
|
252
|
+
{
|
253
|
+
if(ann->scale_mean_in != NULL)
|
254
|
+
{
|
255
|
+
fprintf(conf, "scale_included=1\n");
|
256
|
+
SCALE_SAVE( scale_mean, in )
|
257
|
+
SCALE_SAVE( scale_deviation, in )
|
258
|
+
SCALE_SAVE( scale_new_min, in )
|
259
|
+
SCALE_SAVE( scale_factor, in )
|
260
|
+
|
261
|
+
SCALE_SAVE( scale_mean, out )
|
262
|
+
SCALE_SAVE( scale_deviation, out )
|
263
|
+
SCALE_SAVE( scale_new_min, out )
|
264
|
+
SCALE_SAVE( scale_factor, out )
|
265
|
+
}
|
266
|
+
else
|
267
|
+
fprintf(conf, "scale_included=0\n");
|
268
|
+
}
|
269
|
+
#undef SCALE_SAVE
|
270
|
+
#endif
|
271
|
+
|
272
|
+
/* 2.0 */
|
273
|
+
fprintf(conf, "neurons (num_inputs, activation_function, activation_steepness)=");
|
274
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
275
|
+
{
|
276
|
+
/* the neurons */
|
277
|
+
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
278
|
+
{
|
279
|
+
#ifndef FIXEDFANN
|
280
|
+
if(save_as_fixed)
|
281
|
+
{
|
282
|
+
fprintf(conf, "(%u, %u, %u) ", neuron_it->last_con - neuron_it->first_con,
|
283
|
+
neuron_it->activation_function,
|
284
|
+
(int) floor((neuron_it->activation_steepness * fixed_multiplier) + 0.5));
|
285
|
+
}
|
286
|
+
else
|
287
|
+
{
|
288
|
+
fprintf(conf, "(%u, %u, " FANNPRINTF ") ", neuron_it->last_con - neuron_it->first_con,
|
289
|
+
neuron_it->activation_function, neuron_it->activation_steepness);
|
290
|
+
}
|
291
|
+
#else
|
292
|
+
fprintf(conf, "(%u, %u, " FANNPRINTF ") ", neuron_it->last_con - neuron_it->first_con,
|
293
|
+
neuron_it->activation_function, neuron_it->activation_steepness);
|
294
|
+
#endif
|
295
|
+
}
|
296
|
+
}
|
297
|
+
fprintf(conf, "\n");
|
298
|
+
|
299
|
+
connected_neurons = ann->connections;
|
300
|
+
weights = ann->weights;
|
301
|
+
first_neuron = ann->first_layer->first_neuron;
|
302
|
+
|
303
|
+
/* Now save all the connections.
|
304
|
+
* We only need to save the source and the weight,
|
305
|
+
* since the destination is given by the order.
|
306
|
+
*
|
307
|
+
* The weight is not saved binary due to differences
|
308
|
+
* in binary definition of floating point numbers.
|
309
|
+
* Especially an iPAQ does not use the same binary
|
310
|
+
* representation as an i386 machine.
|
311
|
+
*/
|
312
|
+
fprintf(conf, "connections (connected_to_neuron, weight)=");
|
313
|
+
for(i = 0; i < ann->total_connections; i++)
|
314
|
+
{
|
315
|
+
#ifndef FIXEDFANN
|
316
|
+
if(save_as_fixed)
|
317
|
+
{
|
318
|
+
/* save the connection "(source weight) " */
|
319
|
+
fprintf(conf, "(%u, %d) ",
|
320
|
+
connected_neurons[i] - first_neuron,
|
321
|
+
(int) floor((weights[i] * fixed_multiplier) + 0.5));
|
322
|
+
}
|
323
|
+
else
|
324
|
+
{
|
325
|
+
/* save the connection "(source weight) " */
|
326
|
+
fprintf(conf, "(%u, " FANNPRINTF ") ", connected_neurons[i] - first_neuron, weights[i]);
|
327
|
+
}
|
328
|
+
#else
|
329
|
+
/* save the connection "(source weight) " */
|
330
|
+
fprintf(conf, "(%u, " FANNPRINTF ") ", connected_neurons[i] - first_neuron, weights[i]);
|
331
|
+
#endif
|
332
|
+
|
333
|
+
}
|
334
|
+
fprintf(conf, "\n");
|
335
|
+
|
336
|
+
return calculated_decimal_point;
|
337
|
+
}
|
338
|
+
|
339
|
+
struct fann *fann_create_from_fd_1_1(FILE * conf, const char *configuration_file);
|
340
|
+
|
341
|
+
#define fann_scanf(type, name, val) \
|
342
|
+
{ \
|
343
|
+
if(fscanf(conf, name"="type"\n", val) != 1) \
|
344
|
+
{ \
|
345
|
+
fann_error(NULL, FANN_E_CANT_READ_CONFIG, name, configuration_file); \
|
346
|
+
fann_destroy(ann); \
|
347
|
+
return NULL; \
|
348
|
+
} \
|
349
|
+
}
|
350
|
+
|
351
|
+
/* INTERNAL FUNCTION
|
352
|
+
Create a network from a configuration file descriptor.
|
353
|
+
*/
|
354
|
+
struct fann *fann_create_from_fd(FILE * conf, const char *configuration_file)
|
355
|
+
{
|
356
|
+
unsigned int num_layers, layer_size, input_neuron, i, num_connections;
|
357
|
+
#ifdef FIXEDFANN
|
358
|
+
unsigned int decimal_point, multiplier;
|
359
|
+
#else
|
360
|
+
unsigned int scale_included;
|
361
|
+
#endif
|
362
|
+
struct fann_neuron *first_neuron, *neuron_it, *last_neuron, **connected_neurons;
|
363
|
+
fann_type *weights;
|
364
|
+
struct fann_layer *layer_it;
|
365
|
+
struct fann *ann = NULL;
|
366
|
+
|
367
|
+
char *read_version;
|
368
|
+
|
369
|
+
read_version = (char *) calloc(strlen(FANN_CONF_VERSION "\n"), 1);
|
370
|
+
if(read_version == NULL)
|
371
|
+
{
|
372
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
373
|
+
return NULL;
|
374
|
+
}
|
375
|
+
|
376
|
+
fread(read_version, 1, strlen(FANN_CONF_VERSION "\n"), conf); /* reads version */
|
377
|
+
|
378
|
+
/* compares the version information */
|
379
|
+
if(strncmp(read_version, FANN_CONF_VERSION "\n", strlen(FANN_CONF_VERSION "\n")) != 0)
|
380
|
+
{
|
381
|
+
#ifdef FIXEDFANN
|
382
|
+
if(strncmp(read_version, "FANN_FIX_1.1\n", strlen("FANN_FIX_1.1\n")) == 0)
|
383
|
+
{
|
384
|
+
#else
|
385
|
+
if(strncmp(read_version, "FANN_FLO_1.1\n", strlen("FANN_FLO_1.1\n")) == 0)
|
386
|
+
{
|
387
|
+
#endif
|
388
|
+
free(read_version);
|
389
|
+
return fann_create_from_fd_1_1(conf, configuration_file);
|
390
|
+
}
|
391
|
+
|
392
|
+
#ifndef FIXEDFANN
|
393
|
+
/* Maintain compatibility with 2.0 version that doesnt have scale parameters. */
|
394
|
+
if(strncmp(read_version, "FANN_FLO_2.0\n", strlen("FANN_FLO_2.0\n")) != 0 &&
|
395
|
+
strncmp(read_version, "FANN_FLO_2.1\n", strlen("FANN_FLO_2.1\n")) != 0)
|
396
|
+
#else
|
397
|
+
if(strncmp(read_version, "FANN_FIX_2.0\n", strlen("FANN_FIX_2.0\n")) != 0 &&
|
398
|
+
strncmp(read_version, "FANN_FIX_2.1\n", strlen("FANN_FIX_2.1\n")) != 0)
|
399
|
+
#endif
|
400
|
+
{
|
401
|
+
free(read_version);
|
402
|
+
fann_error(NULL, FANN_E_WRONG_CONFIG_VERSION, configuration_file);
|
403
|
+
|
404
|
+
return NULL;
|
405
|
+
}
|
406
|
+
}
|
407
|
+
|
408
|
+
free(read_version);
|
409
|
+
|
410
|
+
#ifdef FIXEDFANN
|
411
|
+
fann_scanf("%u", "decimal_point", &decimal_point);
|
412
|
+
multiplier = 1 << decimal_point;
|
413
|
+
#endif
|
414
|
+
|
415
|
+
fann_scanf("%u", "num_layers", &num_layers);
|
416
|
+
|
417
|
+
ann = fann_allocate_structure(num_layers);
|
418
|
+
if(ann == NULL)
|
419
|
+
{
|
420
|
+
return NULL;
|
421
|
+
}
|
422
|
+
|
423
|
+
fann_scanf("%f", "learning_rate", &ann->learning_rate);
|
424
|
+
fann_scanf("%f", "connection_rate", &ann->connection_rate);
|
425
|
+
fann_scanf("%u", "network_type", (unsigned int *)&ann->network_type);
|
426
|
+
fann_scanf("%f", "learning_momentum", &ann->learning_momentum);
|
427
|
+
fann_scanf("%u", "training_algorithm", (unsigned int *)&ann->training_algorithm);
|
428
|
+
fann_scanf("%u", "train_error_function", (unsigned int *)&ann->train_error_function);
|
429
|
+
fann_scanf("%u", "train_stop_function", (unsigned int *)&ann->train_stop_function);
|
430
|
+
fann_scanf("%f", "cascade_output_change_fraction", &ann->cascade_output_change_fraction);
|
431
|
+
fann_scanf("%f", "quickprop_decay", &ann->quickprop_decay);
|
432
|
+
fann_scanf("%f", "quickprop_mu", &ann->quickprop_mu);
|
433
|
+
fann_scanf("%f", "rprop_increase_factor", &ann->rprop_increase_factor);
|
434
|
+
fann_scanf("%f", "rprop_decrease_factor", &ann->rprop_decrease_factor);
|
435
|
+
fann_scanf("%f", "rprop_delta_min", &ann->rprop_delta_min);
|
436
|
+
fann_scanf("%f", "rprop_delta_max", &ann->rprop_delta_max);
|
437
|
+
fann_scanf("%f", "rprop_delta_zero", &ann->rprop_delta_zero);
|
438
|
+
fann_scanf("%u", "cascade_output_stagnation_epochs", &ann->cascade_output_stagnation_epochs);
|
439
|
+
fann_scanf("%f", "cascade_candidate_change_fraction", &ann->cascade_candidate_change_fraction);
|
440
|
+
fann_scanf("%u", "cascade_candidate_stagnation_epochs", &ann->cascade_candidate_stagnation_epochs);
|
441
|
+
fann_scanf("%u", "cascade_max_out_epochs", &ann->cascade_max_out_epochs);
|
442
|
+
fann_scanf("%u", "cascade_max_cand_epochs", &ann->cascade_max_cand_epochs);
|
443
|
+
fann_scanf("%u", "cascade_num_candidate_groups", &ann->cascade_num_candidate_groups);
|
444
|
+
|
445
|
+
fann_scanf(FANNSCANF, "bit_fail_limit", &ann->bit_fail_limit);
|
446
|
+
fann_scanf(FANNSCANF, "cascade_candidate_limit", &ann->cascade_candidate_limit);
|
447
|
+
fann_scanf(FANNSCANF, "cascade_weight_multiplier", &ann->cascade_weight_multiplier);
|
448
|
+
|
449
|
+
|
450
|
+
fann_scanf("%u", "cascade_activation_functions_count", &ann->cascade_activation_functions_count);
|
451
|
+
|
452
|
+
/* reallocate mem */
|
453
|
+
ann->cascade_activation_functions =
|
454
|
+
(enum fann_activationfunc_enum *)realloc(ann->cascade_activation_functions,
|
455
|
+
ann->cascade_activation_functions_count * sizeof(enum fann_activationfunc_enum));
|
456
|
+
if(ann->cascade_activation_functions == NULL)
|
457
|
+
{
|
458
|
+
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
459
|
+
fann_destroy(ann);
|
460
|
+
return NULL;
|
461
|
+
}
|
462
|
+
|
463
|
+
fscanf(conf, "cascade_activation_functions=");
|
464
|
+
for(i = 0; i < ann->cascade_activation_functions_count; i++)
|
465
|
+
fscanf(conf, "%u ", (unsigned int *)&ann->cascade_activation_functions[i]);
|
466
|
+
|
467
|
+
fann_scanf("%u", "cascade_activation_steepnesses_count", &ann->cascade_activation_steepnesses_count);
|
468
|
+
|
469
|
+
/* reallocate mem */
|
470
|
+
ann->cascade_activation_steepnesses =
|
471
|
+
(fann_type *)realloc(ann->cascade_activation_steepnesses,
|
472
|
+
ann->cascade_activation_steepnesses_count * sizeof(fann_type));
|
473
|
+
if(ann->cascade_activation_steepnesses == NULL)
|
474
|
+
{
|
475
|
+
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
476
|
+
fann_destroy(ann);
|
477
|
+
return NULL;
|
478
|
+
}
|
479
|
+
|
480
|
+
fscanf(conf, "cascade_activation_steepnesses=");
|
481
|
+
for(i = 0; i < ann->cascade_activation_steepnesses_count; i++)
|
482
|
+
fscanf(conf, FANNSCANF" ", &ann->cascade_activation_steepnesses[i]);
|
483
|
+
|
484
|
+
#ifdef FIXEDFANN
|
485
|
+
ann->decimal_point = decimal_point;
|
486
|
+
ann->multiplier = multiplier;
|
487
|
+
#endif
|
488
|
+
|
489
|
+
#ifdef FIXEDFANN
|
490
|
+
fann_update_stepwise(ann);
|
491
|
+
#endif
|
492
|
+
|
493
|
+
#ifdef DEBUG
|
494
|
+
printf("creating network with %d layers\n", num_layers);
|
495
|
+
printf("input\n");
|
496
|
+
#endif
|
497
|
+
|
498
|
+
fscanf(conf, "layer_sizes=");
|
499
|
+
/* determine how many neurons there should be in each layer */
|
500
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
501
|
+
{
|
502
|
+
if(fscanf(conf, "%u ", &layer_size) != 1)
|
503
|
+
{
|
504
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONFIG, "layer_sizes", configuration_file);
|
505
|
+
fann_destroy(ann);
|
506
|
+
return NULL;
|
507
|
+
}
|
508
|
+
/* we do not allocate room here, but we make sure that
|
509
|
+
* last_neuron - first_neuron is the number of neurons */
|
510
|
+
layer_it->first_neuron = NULL;
|
511
|
+
layer_it->last_neuron = layer_it->first_neuron + layer_size;
|
512
|
+
ann->total_neurons += layer_size;
|
513
|
+
#ifdef DEBUG
|
514
|
+
if(ann->network_type == FANN_NETTYPE_SHORTCUT && layer_it != ann->first_layer)
|
515
|
+
{
|
516
|
+
printf(" layer : %d neurons, 0 bias\n", layer_size);
|
517
|
+
}
|
518
|
+
else
|
519
|
+
{
|
520
|
+
printf(" layer : %d neurons, 1 bias\n", layer_size - 1);
|
521
|
+
}
|
522
|
+
#endif
|
523
|
+
}
|
524
|
+
|
525
|
+
ann->num_input = ann->first_layer->last_neuron - ann->first_layer->first_neuron - 1;
|
526
|
+
ann->num_output = ((ann->last_layer - 1)->last_neuron - (ann->last_layer - 1)->first_neuron);
|
527
|
+
if(ann->network_type == FANN_NETTYPE_LAYER)
|
528
|
+
{
|
529
|
+
/* one too many (bias) in the output layer */
|
530
|
+
ann->num_output--;
|
531
|
+
}
|
532
|
+
|
533
|
+
#ifndef FIXEDFANN
|
534
|
+
#define SCALE_LOAD( what, where ) \
|
535
|
+
fscanf( conf, #what "_" #where "=" ); \
|
536
|
+
for(i = 0; i < ann->num_##where##put; i++) \
|
537
|
+
{ \
|
538
|
+
if(fscanf( conf, "%f ", (float *)&ann->what##_##where[ i ] ) != 1) \
|
539
|
+
{ \
|
540
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONFIG, #what "_" #where, configuration_file); \
|
541
|
+
fann_destroy(ann); \
|
542
|
+
return NULL; \
|
543
|
+
} \
|
544
|
+
}
|
545
|
+
|
546
|
+
if(fscanf(conf, "scale_included=%u\n", &scale_included) == 1 && scale_included == 1)
|
547
|
+
{
|
548
|
+
fann_allocate_scale(ann);
|
549
|
+
SCALE_LOAD( scale_mean, in )
|
550
|
+
SCALE_LOAD( scale_deviation, in )
|
551
|
+
SCALE_LOAD( scale_new_min, in )
|
552
|
+
SCALE_LOAD( scale_factor, in )
|
553
|
+
|
554
|
+
SCALE_LOAD( scale_mean, out )
|
555
|
+
SCALE_LOAD( scale_deviation, out )
|
556
|
+
SCALE_LOAD( scale_new_min, out )
|
557
|
+
SCALE_LOAD( scale_factor, out )
|
558
|
+
}
|
559
|
+
#undef SCALE_LOAD
|
560
|
+
#endif
|
561
|
+
|
562
|
+
/* allocate room for the actual neurons */
|
563
|
+
fann_allocate_neurons(ann);
|
564
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
565
|
+
{
|
566
|
+
fann_destroy(ann);
|
567
|
+
return NULL;
|
568
|
+
}
|
569
|
+
|
570
|
+
last_neuron = (ann->last_layer - 1)->last_neuron;
|
571
|
+
fscanf(conf, "neurons (num_inputs, activation_function, activation_steepness)=");
|
572
|
+
for(neuron_it = ann->first_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
|
573
|
+
{
|
574
|
+
if(fscanf
|
575
|
+
(conf, "(%u, %u, " FANNSCANF ") ", &num_connections, (unsigned int *)&neuron_it->activation_function,
|
576
|
+
&neuron_it->activation_steepness) != 3)
|
577
|
+
{
|
578
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
579
|
+
fann_destroy(ann);
|
580
|
+
return NULL;
|
581
|
+
}
|
582
|
+
neuron_it->first_con = ann->total_connections;
|
583
|
+
ann->total_connections += num_connections;
|
584
|
+
neuron_it->last_con = ann->total_connections;
|
585
|
+
}
|
586
|
+
|
587
|
+
fann_allocate_connections(ann);
|
588
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
589
|
+
{
|
590
|
+
fann_destroy(ann);
|
591
|
+
return NULL;
|
592
|
+
}
|
593
|
+
|
594
|
+
connected_neurons = ann->connections;
|
595
|
+
weights = ann->weights;
|
596
|
+
first_neuron = ann->first_layer->first_neuron;
|
597
|
+
|
598
|
+
fscanf(conf, "connections (connected_to_neuron, weight)=");
|
599
|
+
for(i = 0; i < ann->total_connections; i++)
|
600
|
+
{
|
601
|
+
if(fscanf(conf, "(%u, " FANNSCANF ") ", &input_neuron, &weights[i]) != 2)
|
602
|
+
{
|
603
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONNECTIONS, configuration_file);
|
604
|
+
fann_destroy(ann);
|
605
|
+
return NULL;
|
606
|
+
}
|
607
|
+
connected_neurons[i] = first_neuron + input_neuron;
|
608
|
+
}
|
609
|
+
|
610
|
+
#ifdef DEBUG
|
611
|
+
printf("output\n");
|
612
|
+
#endif
|
613
|
+
return ann;
|
614
|
+
}
|
615
|
+
|
616
|
+
|
617
|
+
/* INTERNAL FUNCTION
|
618
|
+
Create a network from a configuration file descriptor. (backward compatible read of version 1.1 files)
|
619
|
+
*/
|
620
|
+
struct fann *fann_create_from_fd_1_1(FILE * conf, const char *configuration_file)
|
621
|
+
{
|
622
|
+
unsigned int num_layers, layer_size, input_neuron, i, network_type, num_connections;
|
623
|
+
unsigned int activation_function_hidden, activation_function_output;
|
624
|
+
#ifdef FIXEDFANN
|
625
|
+
unsigned int decimal_point, multiplier;
|
626
|
+
#endif
|
627
|
+
fann_type activation_steepness_hidden, activation_steepness_output;
|
628
|
+
float learning_rate, connection_rate;
|
629
|
+
struct fann_neuron *first_neuron, *neuron_it, *last_neuron, **connected_neurons;
|
630
|
+
fann_type *weights;
|
631
|
+
struct fann_layer *layer_it;
|
632
|
+
struct fann *ann;
|
633
|
+
|
634
|
+
#ifdef FIXEDFANN
|
635
|
+
if(fscanf(conf, "%u\n", &decimal_point) != 1)
|
636
|
+
{
|
637
|
+
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "decimal_point", configuration_file);
|
638
|
+
return NULL;
|
639
|
+
}
|
640
|
+
multiplier = 1 << decimal_point;
|
641
|
+
#endif
|
642
|
+
|
643
|
+
if(fscanf(conf, "%u %f %f %u %u %u " FANNSCANF " " FANNSCANF "\n", &num_layers, &learning_rate,
|
644
|
+
&connection_rate, &network_type, &activation_function_hidden,
|
645
|
+
&activation_function_output, &activation_steepness_hidden,
|
646
|
+
&activation_steepness_output) != 8)
|
647
|
+
{
|
648
|
+
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "parameters", configuration_file);
|
649
|
+
return NULL;
|
650
|
+
}
|
651
|
+
|
652
|
+
ann = fann_allocate_structure(num_layers);
|
653
|
+
if(ann == NULL)
|
654
|
+
{
|
655
|
+
return NULL;
|
656
|
+
}
|
657
|
+
ann->connection_rate = connection_rate;
|
658
|
+
ann->network_type = (enum fann_nettype_enum)network_type;
|
659
|
+
ann->learning_rate = learning_rate;
|
660
|
+
|
661
|
+
#ifdef FIXEDFANN
|
662
|
+
ann->decimal_point = decimal_point;
|
663
|
+
ann->multiplier = multiplier;
|
664
|
+
#endif
|
665
|
+
|
666
|
+
#ifdef FIXEDFANN
|
667
|
+
fann_update_stepwise(ann);
|
668
|
+
#endif
|
669
|
+
|
670
|
+
#ifdef DEBUG
|
671
|
+
printf("creating network with learning rate %f\n", learning_rate);
|
672
|
+
printf("input\n");
|
673
|
+
#endif
|
674
|
+
|
675
|
+
/* determine how many neurons there should be in each layer */
|
676
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
677
|
+
{
|
678
|
+
if(fscanf(conf, "%u ", &layer_size) != 1)
|
679
|
+
{
|
680
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
681
|
+
fann_destroy(ann);
|
682
|
+
return NULL;
|
683
|
+
}
|
684
|
+
/* we do not allocate room here, but we make sure that
|
685
|
+
* last_neuron - first_neuron is the number of neurons */
|
686
|
+
layer_it->first_neuron = NULL;
|
687
|
+
layer_it->last_neuron = layer_it->first_neuron + layer_size;
|
688
|
+
ann->total_neurons += layer_size;
|
689
|
+
#ifdef DEBUG
|
690
|
+
if(ann->network_type == FANN_NETTYPE_SHORTCUT && layer_it != ann->first_layer)
|
691
|
+
{
|
692
|
+
printf(" layer : %d neurons, 0 bias\n", layer_size);
|
693
|
+
}
|
694
|
+
else
|
695
|
+
{
|
696
|
+
printf(" layer : %d neurons, 1 bias\n", layer_size - 1);
|
697
|
+
}
|
698
|
+
#endif
|
699
|
+
}
|
700
|
+
|
701
|
+
ann->num_input = ann->first_layer->last_neuron - ann->first_layer->first_neuron - 1;
|
702
|
+
ann->num_output = ((ann->last_layer - 1)->last_neuron - (ann->last_layer - 1)->first_neuron);
|
703
|
+
if(ann->network_type == FANN_NETTYPE_LAYER)
|
704
|
+
{
|
705
|
+
/* one too many (bias) in the output layer */
|
706
|
+
ann->num_output--;
|
707
|
+
}
|
708
|
+
|
709
|
+
/* allocate room for the actual neurons */
|
710
|
+
fann_allocate_neurons(ann);
|
711
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
712
|
+
{
|
713
|
+
fann_destroy(ann);
|
714
|
+
return NULL;
|
715
|
+
}
|
716
|
+
|
717
|
+
last_neuron = (ann->last_layer - 1)->last_neuron;
|
718
|
+
for(neuron_it = ann->first_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
|
719
|
+
{
|
720
|
+
if(fscanf(conf, "%u ", &num_connections) != 1)
|
721
|
+
{
|
722
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
723
|
+
fann_destroy(ann);
|
724
|
+
return NULL;
|
725
|
+
}
|
726
|
+
neuron_it->first_con = ann->total_connections;
|
727
|
+
ann->total_connections += num_connections;
|
728
|
+
neuron_it->last_con = ann->total_connections;
|
729
|
+
}
|
730
|
+
|
731
|
+
fann_allocate_connections(ann);
|
732
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
733
|
+
{
|
734
|
+
fann_destroy(ann);
|
735
|
+
return NULL;
|
736
|
+
}
|
737
|
+
|
738
|
+
connected_neurons = ann->connections;
|
739
|
+
weights = ann->weights;
|
740
|
+
first_neuron = ann->first_layer->first_neuron;
|
741
|
+
|
742
|
+
for(i = 0; i < ann->total_connections; i++)
|
743
|
+
{
|
744
|
+
if(fscanf(conf, "(%u " FANNSCANF ") ", &input_neuron, &weights[i]) != 2)
|
745
|
+
{
|
746
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONNECTIONS, configuration_file);
|
747
|
+
fann_destroy(ann);
|
748
|
+
return NULL;
|
749
|
+
}
|
750
|
+
connected_neurons[i] = first_neuron + input_neuron;
|
751
|
+
}
|
752
|
+
|
753
|
+
fann_set_activation_steepness_hidden(ann, activation_steepness_hidden);
|
754
|
+
fann_set_activation_steepness_output(ann, activation_steepness_output);
|
755
|
+
fann_set_activation_function_hidden(ann, (enum fann_activationfunc_enum)activation_function_hidden);
|
756
|
+
fann_set_activation_function_output(ann, (enum fann_activationfunc_enum)activation_function_output);
|
757
|
+
|
758
|
+
#ifdef DEBUG
|
759
|
+
printf("output\n");
|
760
|
+
#endif
|
761
|
+
return ann;
|
762
|
+
}
|