ruby-fann 0.7.10 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +6 -1
- data/License.txt +1 -1
- data/Manifest.txt +22 -1
- data/README.txt +0 -1
- data/Rakefile +0 -0
- data/config/hoe.rb +0 -0
- data/config/requirements.rb +0 -0
- data/ext/ruby_fann/MANIFEST +0 -0
- data/ext/ruby_fann/Makefile +36 -28
- data/ext/ruby_fann/doublefann.c +30 -0
- data/ext/ruby_fann/doublefann.h +33 -0
- data/ext/ruby_fann/extconf.rb +9 -5
- data/ext/ruby_fann/fann.c +1552 -0
- data/ext/ruby_fann/fann_activation.h +144 -0
- data/ext/ruby_fann/fann_augment.h +0 -0
- data/ext/ruby_fann/fann_cascade.c +1031 -0
- data/ext/ruby_fann/fann_cascade.h +503 -0
- data/ext/ruby_fann/fann_data.h +799 -0
- data/ext/ruby_fann/fann_error.c +204 -0
- data/ext/ruby_fann/fann_error.h +161 -0
- data/ext/ruby_fann/fann_internal.h +148 -0
- data/ext/ruby_fann/fann_io.c +762 -0
- data/ext/ruby_fann/fann_io.h +100 -0
- data/ext/ruby_fann/fann_train.c +962 -0
- data/ext/ruby_fann/fann_train.h +1203 -0
- data/ext/ruby_fann/fann_train_data.c +1231 -0
- data/ext/ruby_fann/neural_network.c +0 -0
- data/lib/ruby_fann/neurotica.rb +0 -0
- data/lib/ruby_fann/version.rb +3 -3
- data/lib/ruby_fann.rb +0 -0
- data/neurotica1.png +0 -0
- data/neurotica2.vrml +18 -18
- data/setup.rb +0 -0
- data/tasks/deployment.rake +0 -0
- data/tasks/environment.rake +0 -0
- data/tasks/website.rake +0 -0
- data/test/test.train +0 -0
- data/test/test_helper.rb +0 -0
- data/test/test_neurotica.rb +0 -0
- data/test/test_ruby_fann.rb +0 -0
- data/test/test_ruby_fann_functional.rb +0 -0
- data/verify.train +0 -0
- data/website/index.html +42 -92
- data/website/index.txt +0 -0
- data/website/javascripts/rounded_corners_lite.inc.js +0 -0
- data/website/stylesheets/screen.css +0 -0
- data/website/template.rhtml +0 -0
- data/xor.train +0 -0
- data/xor_cascade.net +2 -2
- data/xor_float.net +1 -1
- metadata +22 -6
- data/log/debug.log +0 -0
@@ -0,0 +1,762 @@
|
|
1
|
+
/*
|
2
|
+
Fast Artificial Neural Network Library (fann)
|
3
|
+
Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)
|
4
|
+
|
5
|
+
This library is free software; you can redistribute it and/or
|
6
|
+
modify it under the terms of the GNU Lesser General Public
|
7
|
+
License as published by the Free Software Foundation; either
|
8
|
+
version 2.1 of the License, or (at your option) any later version.
|
9
|
+
|
10
|
+
This library is distributed in the hope that it will be useful,
|
11
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13
|
+
Lesser General Public License for more details.
|
14
|
+
|
15
|
+
You should have received a copy of the GNU Lesser General Public
|
16
|
+
License along with this library; if not, write to the Free Software
|
17
|
+
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18
|
+
*/
|
19
|
+
|
20
|
+
#include <stdio.h>
|
21
|
+
#include <stdlib.h>
|
22
|
+
#include <stdarg.h>
|
23
|
+
#include <string.h>
|
24
|
+
|
25
|
+
#include "config.h"
|
26
|
+
#include "fann.h"
|
27
|
+
|
28
|
+
/* Create a network from a configuration file.
|
29
|
+
*/
|
30
|
+
FANN_EXTERNAL struct fann *FANN_API fann_create_from_file(const char *configuration_file)
|
31
|
+
{
|
32
|
+
struct fann *ann;
|
33
|
+
FILE *conf = fopen(configuration_file, "r");
|
34
|
+
|
35
|
+
if(!conf)
|
36
|
+
{
|
37
|
+
fann_error(NULL, FANN_E_CANT_OPEN_CONFIG_R, configuration_file);
|
38
|
+
return NULL;
|
39
|
+
}
|
40
|
+
ann = fann_create_from_fd(conf, configuration_file);
|
41
|
+
fclose(conf);
|
42
|
+
return ann;
|
43
|
+
}
|
44
|
+
|
45
|
+
/* Save the network.
|
46
|
+
*/
|
47
|
+
FANN_EXTERNAL int FANN_API fann_save(struct fann *ann, const char *configuration_file)
|
48
|
+
{
|
49
|
+
return fann_save_internal(ann, configuration_file, 0);
|
50
|
+
}
|
51
|
+
|
52
|
+
/* Save the network as fixed point data.
|
53
|
+
*/
|
54
|
+
FANN_EXTERNAL int FANN_API fann_save_to_fixed(struct fann *ann, const char *configuration_file)
|
55
|
+
{
|
56
|
+
return fann_save_internal(ann, configuration_file, 1);
|
57
|
+
}
|
58
|
+
|
59
|
+
/* INTERNAL FUNCTION
|
60
|
+
Used to save the network to a file.
|
61
|
+
*/
|
62
|
+
int fann_save_internal(struct fann *ann, const char *configuration_file, unsigned int save_as_fixed)
|
63
|
+
{
|
64
|
+
int retval;
|
65
|
+
FILE *conf = fopen(configuration_file, "w+");
|
66
|
+
|
67
|
+
if(!conf)
|
68
|
+
{
|
69
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_OPEN_CONFIG_W, configuration_file);
|
70
|
+
return -1;
|
71
|
+
}
|
72
|
+
retval = fann_save_internal_fd(ann, conf, configuration_file, save_as_fixed);
|
73
|
+
fclose(conf);
|
74
|
+
return retval;
|
75
|
+
}
|
76
|
+
|
77
|
+
/* INTERNAL FUNCTION
|
78
|
+
Used to save the network to a file descriptor.
|
79
|
+
*/
|
80
|
+
int fann_save_internal_fd(struct fann *ann, FILE * conf, const char *configuration_file,
|
81
|
+
unsigned int save_as_fixed)
|
82
|
+
{
|
83
|
+
struct fann_layer *layer_it;
|
84
|
+
int calculated_decimal_point = 0;
|
85
|
+
struct fann_neuron *neuron_it, *first_neuron;
|
86
|
+
fann_type *weights;
|
87
|
+
struct fann_neuron **connected_neurons;
|
88
|
+
unsigned int i = 0;
|
89
|
+
|
90
|
+
#ifndef FIXEDFANN
|
91
|
+
/* variabels for use when saving floats as fixed point variabels */
|
92
|
+
unsigned int decimal_point = 0;
|
93
|
+
unsigned int fixed_multiplier = 0;
|
94
|
+
fann_type max_possible_value = 0;
|
95
|
+
unsigned int bits_used_for_max = 0;
|
96
|
+
fann_type current_max_value = 0;
|
97
|
+
#endif
|
98
|
+
|
99
|
+
#ifndef FIXEDFANN
|
100
|
+
if(save_as_fixed)
|
101
|
+
{
|
102
|
+
/* save the version information */
|
103
|
+
fprintf(conf, FANN_FIX_VERSION "\n");
|
104
|
+
}
|
105
|
+
else
|
106
|
+
{
|
107
|
+
/* save the version information */
|
108
|
+
fprintf(conf, FANN_FLO_VERSION "\n");
|
109
|
+
}
|
110
|
+
#else
|
111
|
+
/* save the version information */
|
112
|
+
fprintf(conf, FANN_FIX_VERSION "\n");
|
113
|
+
#endif
|
114
|
+
|
115
|
+
#ifndef FIXEDFANN
|
116
|
+
if(save_as_fixed)
|
117
|
+
{
|
118
|
+
/* calculate the maximal possible shift value */
|
119
|
+
|
120
|
+
for(layer_it = ann->first_layer + 1; layer_it != ann->last_layer; layer_it++)
|
121
|
+
{
|
122
|
+
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
123
|
+
{
|
124
|
+
/* look at all connections to each neurons, and see how high a value we can get */
|
125
|
+
current_max_value = 0;
|
126
|
+
for(i = neuron_it->first_con; i != neuron_it->last_con; i++)
|
127
|
+
{
|
128
|
+
current_max_value += fann_abs(ann->weights[i]);
|
129
|
+
}
|
130
|
+
|
131
|
+
if(current_max_value > max_possible_value)
|
132
|
+
{
|
133
|
+
max_possible_value = current_max_value;
|
134
|
+
}
|
135
|
+
}
|
136
|
+
}
|
137
|
+
|
138
|
+
for(bits_used_for_max = 0; max_possible_value >= 1; bits_used_for_max++)
|
139
|
+
{
|
140
|
+
max_possible_value /= 2.0;
|
141
|
+
}
|
142
|
+
|
143
|
+
/* The maximum number of bits we shift the fix point, is the number
|
144
|
+
* of bits in a integer, minus one for the sign, one for the minus
|
145
|
+
* in stepwise, and minus the bits used for the maximum.
|
146
|
+
* This is devided by two, to allow multiplication of two fixed
|
147
|
+
* point numbers.
|
148
|
+
*/
|
149
|
+
calculated_decimal_point = (sizeof(int) * 8 - 2 - bits_used_for_max) / 2;
|
150
|
+
|
151
|
+
if(calculated_decimal_point < 0)
|
152
|
+
{
|
153
|
+
decimal_point = 0;
|
154
|
+
}
|
155
|
+
else
|
156
|
+
{
|
157
|
+
decimal_point = calculated_decimal_point;
|
158
|
+
}
|
159
|
+
|
160
|
+
fixed_multiplier = 1 << decimal_point;
|
161
|
+
|
162
|
+
#ifdef DEBUG
|
163
|
+
printf("calculated_decimal_point=%d, decimal_point=%u, bits_used_for_max=%u\n",
|
164
|
+
calculated_decimal_point, decimal_point, bits_used_for_max);
|
165
|
+
#endif
|
166
|
+
|
167
|
+
/* save the decimal_point on a seperate line */
|
168
|
+
fprintf(conf, "decimal_point=%u\n", decimal_point);
|
169
|
+
}
|
170
|
+
#else
|
171
|
+
/* save the decimal_point on a seperate line */
|
172
|
+
fprintf(conf, "decimal_point=%u\n", ann->decimal_point);
|
173
|
+
|
174
|
+
#endif
|
175
|
+
|
176
|
+
/* Save network parameters */
|
177
|
+
fprintf(conf, "num_layers=%u\n", ann->last_layer - ann->first_layer);
|
178
|
+
fprintf(conf, "learning_rate=%f\n", ann->learning_rate);
|
179
|
+
fprintf(conf, "connection_rate=%f\n", ann->connection_rate);
|
180
|
+
fprintf(conf, "network_type=%u\n", ann->network_type);
|
181
|
+
|
182
|
+
fprintf(conf, "learning_momentum=%f\n", ann->learning_momentum);
|
183
|
+
fprintf(conf, "training_algorithm=%u\n", ann->training_algorithm);
|
184
|
+
fprintf(conf, "train_error_function=%u\n", ann->train_error_function);
|
185
|
+
fprintf(conf, "train_stop_function=%u\n", ann->train_stop_function);
|
186
|
+
fprintf(conf, "cascade_output_change_fraction=%f\n", ann->cascade_output_change_fraction);
|
187
|
+
fprintf(conf, "quickprop_decay=%f\n", ann->quickprop_decay);
|
188
|
+
fprintf(conf, "quickprop_mu=%f\n", ann->quickprop_mu);
|
189
|
+
fprintf(conf, "rprop_increase_factor=%f\n", ann->rprop_increase_factor);
|
190
|
+
fprintf(conf, "rprop_decrease_factor=%f\n", ann->rprop_decrease_factor);
|
191
|
+
fprintf(conf, "rprop_delta_min=%f\n", ann->rprop_delta_min);
|
192
|
+
fprintf(conf, "rprop_delta_max=%f\n", ann->rprop_delta_max);
|
193
|
+
fprintf(conf, "rprop_delta_zero=%f\n", ann->rprop_delta_zero);
|
194
|
+
fprintf(conf, "cascade_output_stagnation_epochs=%u\n", ann->cascade_output_stagnation_epochs);
|
195
|
+
fprintf(conf, "cascade_candidate_change_fraction=%f\n", ann->cascade_candidate_change_fraction);
|
196
|
+
fprintf(conf, "cascade_candidate_stagnation_epochs=%u\n", ann->cascade_candidate_stagnation_epochs);
|
197
|
+
fprintf(conf, "cascade_max_out_epochs=%u\n", ann->cascade_max_out_epochs);
|
198
|
+
fprintf(conf, "cascade_max_cand_epochs=%u\n", ann->cascade_max_cand_epochs);
|
199
|
+
fprintf(conf, "cascade_num_candidate_groups=%u\n", ann->cascade_num_candidate_groups);
|
200
|
+
|
201
|
+
#ifndef FIXEDFANN
|
202
|
+
if(save_as_fixed)
|
203
|
+
{
|
204
|
+
fprintf(conf, "bit_fail_limit=%u\n", (int) floor((ann->bit_fail_limit * fixed_multiplier) + 0.5));
|
205
|
+
fprintf(conf, "cascade_candidate_limit=%u\n", (int) floor((ann->cascade_candidate_limit * fixed_multiplier) + 0.5));
|
206
|
+
fprintf(conf, "cascade_weight_multiplier=%u\n", (int) floor((ann->cascade_weight_multiplier * fixed_multiplier) + 0.5));
|
207
|
+
}
|
208
|
+
else
|
209
|
+
#endif
|
210
|
+
{
|
211
|
+
fprintf(conf, "bit_fail_limit="FANNPRINTF"\n", ann->bit_fail_limit);
|
212
|
+
fprintf(conf, "cascade_candidate_limit="FANNPRINTF"\n", ann->cascade_candidate_limit);
|
213
|
+
fprintf(conf, "cascade_weight_multiplier="FANNPRINTF"\n", ann->cascade_weight_multiplier);
|
214
|
+
}
|
215
|
+
|
216
|
+
fprintf(conf, "cascade_activation_functions_count=%u\n", ann->cascade_activation_functions_count);
|
217
|
+
fprintf(conf, "cascade_activation_functions=");
|
218
|
+
for(i = 0; i < ann->cascade_activation_functions_count; i++)
|
219
|
+
fprintf(conf, "%u ", ann->cascade_activation_functions[i]);
|
220
|
+
fprintf(conf, "\n");
|
221
|
+
|
222
|
+
fprintf(conf, "cascade_activation_steepnesses_count=%u\n", ann->cascade_activation_steepnesses_count);
|
223
|
+
fprintf(conf, "cascade_activation_steepnesses=");
|
224
|
+
for(i = 0; i < ann->cascade_activation_steepnesses_count; i++)
|
225
|
+
{
|
226
|
+
#ifndef FIXEDFANN
|
227
|
+
if(save_as_fixed)
|
228
|
+
fprintf(conf, "%u ", (int) floor((ann->cascade_activation_steepnesses[i] * fixed_multiplier) + 0.5));
|
229
|
+
else
|
230
|
+
#endif
|
231
|
+
fprintf(conf, FANNPRINTF" ", ann->cascade_activation_steepnesses[i]);
|
232
|
+
}
|
233
|
+
fprintf(conf, "\n");
|
234
|
+
|
235
|
+
fprintf(conf, "layer_sizes=");
|
236
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
237
|
+
{
|
238
|
+
/* the number of neurons in the layers (in the last layer, there is always one too many neurons, because of an unused bias) */
|
239
|
+
fprintf(conf, "%u ", layer_it->last_neuron - layer_it->first_neuron);
|
240
|
+
}
|
241
|
+
fprintf(conf, "\n");
|
242
|
+
|
243
|
+
#ifndef FIXEDFANN
|
244
|
+
/* 2.1 */
|
245
|
+
#define SCALE_SAVE( what, where ) \
|
246
|
+
fprintf( conf, #what "_" #where "=" ); \
|
247
|
+
for( i = 0; i < ann->num_##where##put; i++ ) \
|
248
|
+
fprintf( conf, "%f ", ann->what##_##where[ i ] ); \
|
249
|
+
fprintf( conf, "\n" );
|
250
|
+
|
251
|
+
if(!save_as_fixed)
|
252
|
+
{
|
253
|
+
if(ann->scale_mean_in != NULL)
|
254
|
+
{
|
255
|
+
fprintf(conf, "scale_included=1\n");
|
256
|
+
SCALE_SAVE( scale_mean, in )
|
257
|
+
SCALE_SAVE( scale_deviation, in )
|
258
|
+
SCALE_SAVE( scale_new_min, in )
|
259
|
+
SCALE_SAVE( scale_factor, in )
|
260
|
+
|
261
|
+
SCALE_SAVE( scale_mean, out )
|
262
|
+
SCALE_SAVE( scale_deviation, out )
|
263
|
+
SCALE_SAVE( scale_new_min, out )
|
264
|
+
SCALE_SAVE( scale_factor, out )
|
265
|
+
}
|
266
|
+
else
|
267
|
+
fprintf(conf, "scale_included=0\n");
|
268
|
+
}
|
269
|
+
#undef SCALE_SAVE
|
270
|
+
#endif
|
271
|
+
|
272
|
+
/* 2.0 */
|
273
|
+
fprintf(conf, "neurons (num_inputs, activation_function, activation_steepness)=");
|
274
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
275
|
+
{
|
276
|
+
/* the neurons */
|
277
|
+
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
278
|
+
{
|
279
|
+
#ifndef FIXEDFANN
|
280
|
+
if(save_as_fixed)
|
281
|
+
{
|
282
|
+
fprintf(conf, "(%u, %u, %u) ", neuron_it->last_con - neuron_it->first_con,
|
283
|
+
neuron_it->activation_function,
|
284
|
+
(int) floor((neuron_it->activation_steepness * fixed_multiplier) + 0.5));
|
285
|
+
}
|
286
|
+
else
|
287
|
+
{
|
288
|
+
fprintf(conf, "(%u, %u, " FANNPRINTF ") ", neuron_it->last_con - neuron_it->first_con,
|
289
|
+
neuron_it->activation_function, neuron_it->activation_steepness);
|
290
|
+
}
|
291
|
+
#else
|
292
|
+
fprintf(conf, "(%u, %u, " FANNPRINTF ") ", neuron_it->last_con - neuron_it->first_con,
|
293
|
+
neuron_it->activation_function, neuron_it->activation_steepness);
|
294
|
+
#endif
|
295
|
+
}
|
296
|
+
}
|
297
|
+
fprintf(conf, "\n");
|
298
|
+
|
299
|
+
connected_neurons = ann->connections;
|
300
|
+
weights = ann->weights;
|
301
|
+
first_neuron = ann->first_layer->first_neuron;
|
302
|
+
|
303
|
+
/* Now save all the connections.
|
304
|
+
* We only need to save the source and the weight,
|
305
|
+
* since the destination is given by the order.
|
306
|
+
*
|
307
|
+
* The weight is not saved binary due to differences
|
308
|
+
* in binary definition of floating point numbers.
|
309
|
+
* Especially an iPAQ does not use the same binary
|
310
|
+
* representation as an i386 machine.
|
311
|
+
*/
|
312
|
+
fprintf(conf, "connections (connected_to_neuron, weight)=");
|
313
|
+
for(i = 0; i < ann->total_connections; i++)
|
314
|
+
{
|
315
|
+
#ifndef FIXEDFANN
|
316
|
+
if(save_as_fixed)
|
317
|
+
{
|
318
|
+
/* save the connection "(source weight) " */
|
319
|
+
fprintf(conf, "(%u, %d) ",
|
320
|
+
connected_neurons[i] - first_neuron,
|
321
|
+
(int) floor((weights[i] * fixed_multiplier) + 0.5));
|
322
|
+
}
|
323
|
+
else
|
324
|
+
{
|
325
|
+
/* save the connection "(source weight) " */
|
326
|
+
fprintf(conf, "(%u, " FANNPRINTF ") ", connected_neurons[i] - first_neuron, weights[i]);
|
327
|
+
}
|
328
|
+
#else
|
329
|
+
/* save the connection "(source weight) " */
|
330
|
+
fprintf(conf, "(%u, " FANNPRINTF ") ", connected_neurons[i] - first_neuron, weights[i]);
|
331
|
+
#endif
|
332
|
+
|
333
|
+
}
|
334
|
+
fprintf(conf, "\n");
|
335
|
+
|
336
|
+
return calculated_decimal_point;
|
337
|
+
}
|
338
|
+
|
339
|
+
struct fann *fann_create_from_fd_1_1(FILE * conf, const char *configuration_file);
|
340
|
+
|
341
|
+
#define fann_scanf(type, name, val) \
|
342
|
+
{ \
|
343
|
+
if(fscanf(conf, name"="type"\n", val) != 1) \
|
344
|
+
{ \
|
345
|
+
fann_error(NULL, FANN_E_CANT_READ_CONFIG, name, configuration_file); \
|
346
|
+
fann_destroy(ann); \
|
347
|
+
return NULL; \
|
348
|
+
} \
|
349
|
+
}
|
350
|
+
|
351
|
+
/* INTERNAL FUNCTION
|
352
|
+
Create a network from a configuration file descriptor.
|
353
|
+
*/
|
354
|
+
struct fann *fann_create_from_fd(FILE * conf, const char *configuration_file)
|
355
|
+
{
|
356
|
+
unsigned int num_layers, layer_size, input_neuron, i, num_connections;
|
357
|
+
#ifdef FIXEDFANN
|
358
|
+
unsigned int decimal_point, multiplier;
|
359
|
+
#else
|
360
|
+
unsigned int scale_included;
|
361
|
+
#endif
|
362
|
+
struct fann_neuron *first_neuron, *neuron_it, *last_neuron, **connected_neurons;
|
363
|
+
fann_type *weights;
|
364
|
+
struct fann_layer *layer_it;
|
365
|
+
struct fann *ann = NULL;
|
366
|
+
|
367
|
+
char *read_version;
|
368
|
+
|
369
|
+
read_version = (char *) calloc(strlen(FANN_CONF_VERSION "\n"), 1);
|
370
|
+
if(read_version == NULL)
|
371
|
+
{
|
372
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
373
|
+
return NULL;
|
374
|
+
}
|
375
|
+
|
376
|
+
fread(read_version, 1, strlen(FANN_CONF_VERSION "\n"), conf); /* reads version */
|
377
|
+
|
378
|
+
/* compares the version information */
|
379
|
+
if(strncmp(read_version, FANN_CONF_VERSION "\n", strlen(FANN_CONF_VERSION "\n")) != 0)
|
380
|
+
{
|
381
|
+
#ifdef FIXEDFANN
|
382
|
+
if(strncmp(read_version, "FANN_FIX_1.1\n", strlen("FANN_FIX_1.1\n")) == 0)
|
383
|
+
{
|
384
|
+
#else
|
385
|
+
if(strncmp(read_version, "FANN_FLO_1.1\n", strlen("FANN_FLO_1.1\n")) == 0)
|
386
|
+
{
|
387
|
+
#endif
|
388
|
+
free(read_version);
|
389
|
+
return fann_create_from_fd_1_1(conf, configuration_file);
|
390
|
+
}
|
391
|
+
|
392
|
+
#ifndef FIXEDFANN
|
393
|
+
/* Maintain compatibility with 2.0 version that doesnt have scale parameters. */
|
394
|
+
if(strncmp(read_version, "FANN_FLO_2.0\n", strlen("FANN_FLO_2.0\n")) != 0 &&
|
395
|
+
strncmp(read_version, "FANN_FLO_2.1\n", strlen("FANN_FLO_2.1\n")) != 0)
|
396
|
+
#else
|
397
|
+
if(strncmp(read_version, "FANN_FIX_2.0\n", strlen("FANN_FIX_2.0\n")) != 0 &&
|
398
|
+
strncmp(read_version, "FANN_FIX_2.1\n", strlen("FANN_FIX_2.1\n")) != 0)
|
399
|
+
#endif
|
400
|
+
{
|
401
|
+
free(read_version);
|
402
|
+
fann_error(NULL, FANN_E_WRONG_CONFIG_VERSION, configuration_file);
|
403
|
+
|
404
|
+
return NULL;
|
405
|
+
}
|
406
|
+
}
|
407
|
+
|
408
|
+
free(read_version);
|
409
|
+
|
410
|
+
#ifdef FIXEDFANN
|
411
|
+
fann_scanf("%u", "decimal_point", &decimal_point);
|
412
|
+
multiplier = 1 << decimal_point;
|
413
|
+
#endif
|
414
|
+
|
415
|
+
fann_scanf("%u", "num_layers", &num_layers);
|
416
|
+
|
417
|
+
ann = fann_allocate_structure(num_layers);
|
418
|
+
if(ann == NULL)
|
419
|
+
{
|
420
|
+
return NULL;
|
421
|
+
}
|
422
|
+
|
423
|
+
fann_scanf("%f", "learning_rate", &ann->learning_rate);
|
424
|
+
fann_scanf("%f", "connection_rate", &ann->connection_rate);
|
425
|
+
fann_scanf("%u", "network_type", (unsigned int *)&ann->network_type);
|
426
|
+
fann_scanf("%f", "learning_momentum", &ann->learning_momentum);
|
427
|
+
fann_scanf("%u", "training_algorithm", (unsigned int *)&ann->training_algorithm);
|
428
|
+
fann_scanf("%u", "train_error_function", (unsigned int *)&ann->train_error_function);
|
429
|
+
fann_scanf("%u", "train_stop_function", (unsigned int *)&ann->train_stop_function);
|
430
|
+
fann_scanf("%f", "cascade_output_change_fraction", &ann->cascade_output_change_fraction);
|
431
|
+
fann_scanf("%f", "quickprop_decay", &ann->quickprop_decay);
|
432
|
+
fann_scanf("%f", "quickprop_mu", &ann->quickprop_mu);
|
433
|
+
fann_scanf("%f", "rprop_increase_factor", &ann->rprop_increase_factor);
|
434
|
+
fann_scanf("%f", "rprop_decrease_factor", &ann->rprop_decrease_factor);
|
435
|
+
fann_scanf("%f", "rprop_delta_min", &ann->rprop_delta_min);
|
436
|
+
fann_scanf("%f", "rprop_delta_max", &ann->rprop_delta_max);
|
437
|
+
fann_scanf("%f", "rprop_delta_zero", &ann->rprop_delta_zero);
|
438
|
+
fann_scanf("%u", "cascade_output_stagnation_epochs", &ann->cascade_output_stagnation_epochs);
|
439
|
+
fann_scanf("%f", "cascade_candidate_change_fraction", &ann->cascade_candidate_change_fraction);
|
440
|
+
fann_scanf("%u", "cascade_candidate_stagnation_epochs", &ann->cascade_candidate_stagnation_epochs);
|
441
|
+
fann_scanf("%u", "cascade_max_out_epochs", &ann->cascade_max_out_epochs);
|
442
|
+
fann_scanf("%u", "cascade_max_cand_epochs", &ann->cascade_max_cand_epochs);
|
443
|
+
fann_scanf("%u", "cascade_num_candidate_groups", &ann->cascade_num_candidate_groups);
|
444
|
+
|
445
|
+
fann_scanf(FANNSCANF, "bit_fail_limit", &ann->bit_fail_limit);
|
446
|
+
fann_scanf(FANNSCANF, "cascade_candidate_limit", &ann->cascade_candidate_limit);
|
447
|
+
fann_scanf(FANNSCANF, "cascade_weight_multiplier", &ann->cascade_weight_multiplier);
|
448
|
+
|
449
|
+
|
450
|
+
fann_scanf("%u", "cascade_activation_functions_count", &ann->cascade_activation_functions_count);
|
451
|
+
|
452
|
+
/* reallocate mem */
|
453
|
+
ann->cascade_activation_functions =
|
454
|
+
(enum fann_activationfunc_enum *)realloc(ann->cascade_activation_functions,
|
455
|
+
ann->cascade_activation_functions_count * sizeof(enum fann_activationfunc_enum));
|
456
|
+
if(ann->cascade_activation_functions == NULL)
|
457
|
+
{
|
458
|
+
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
459
|
+
fann_destroy(ann);
|
460
|
+
return NULL;
|
461
|
+
}
|
462
|
+
|
463
|
+
fscanf(conf, "cascade_activation_functions=");
|
464
|
+
for(i = 0; i < ann->cascade_activation_functions_count; i++)
|
465
|
+
fscanf(conf, "%u ", (unsigned int *)&ann->cascade_activation_functions[i]);
|
466
|
+
|
467
|
+
fann_scanf("%u", "cascade_activation_steepnesses_count", &ann->cascade_activation_steepnesses_count);
|
468
|
+
|
469
|
+
/* reallocate mem */
|
470
|
+
ann->cascade_activation_steepnesses =
|
471
|
+
(fann_type *)realloc(ann->cascade_activation_steepnesses,
|
472
|
+
ann->cascade_activation_steepnesses_count * sizeof(fann_type));
|
473
|
+
if(ann->cascade_activation_steepnesses == NULL)
|
474
|
+
{
|
475
|
+
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
476
|
+
fann_destroy(ann);
|
477
|
+
return NULL;
|
478
|
+
}
|
479
|
+
|
480
|
+
fscanf(conf, "cascade_activation_steepnesses=");
|
481
|
+
for(i = 0; i < ann->cascade_activation_steepnesses_count; i++)
|
482
|
+
fscanf(conf, FANNSCANF" ", &ann->cascade_activation_steepnesses[i]);
|
483
|
+
|
484
|
+
#ifdef FIXEDFANN
|
485
|
+
ann->decimal_point = decimal_point;
|
486
|
+
ann->multiplier = multiplier;
|
487
|
+
#endif
|
488
|
+
|
489
|
+
#ifdef FIXEDFANN
|
490
|
+
fann_update_stepwise(ann);
|
491
|
+
#endif
|
492
|
+
|
493
|
+
#ifdef DEBUG
|
494
|
+
printf("creating network with %d layers\n", num_layers);
|
495
|
+
printf("input\n");
|
496
|
+
#endif
|
497
|
+
|
498
|
+
fscanf(conf, "layer_sizes=");
|
499
|
+
/* determine how many neurons there should be in each layer */
|
500
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
501
|
+
{
|
502
|
+
if(fscanf(conf, "%u ", &layer_size) != 1)
|
503
|
+
{
|
504
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONFIG, "layer_sizes", configuration_file);
|
505
|
+
fann_destroy(ann);
|
506
|
+
return NULL;
|
507
|
+
}
|
508
|
+
/* we do not allocate room here, but we make sure that
|
509
|
+
* last_neuron - first_neuron is the number of neurons */
|
510
|
+
layer_it->first_neuron = NULL;
|
511
|
+
layer_it->last_neuron = layer_it->first_neuron + layer_size;
|
512
|
+
ann->total_neurons += layer_size;
|
513
|
+
#ifdef DEBUG
|
514
|
+
if(ann->network_type == FANN_NETTYPE_SHORTCUT && layer_it != ann->first_layer)
|
515
|
+
{
|
516
|
+
printf(" layer : %d neurons, 0 bias\n", layer_size);
|
517
|
+
}
|
518
|
+
else
|
519
|
+
{
|
520
|
+
printf(" layer : %d neurons, 1 bias\n", layer_size - 1);
|
521
|
+
}
|
522
|
+
#endif
|
523
|
+
}
|
524
|
+
|
525
|
+
ann->num_input = ann->first_layer->last_neuron - ann->first_layer->first_neuron - 1;
|
526
|
+
ann->num_output = ((ann->last_layer - 1)->last_neuron - (ann->last_layer - 1)->first_neuron);
|
527
|
+
if(ann->network_type == FANN_NETTYPE_LAYER)
|
528
|
+
{
|
529
|
+
/* one too many (bias) in the output layer */
|
530
|
+
ann->num_output--;
|
531
|
+
}
|
532
|
+
|
533
|
+
#ifndef FIXEDFANN
|
534
|
+
#define SCALE_LOAD( what, where ) \
|
535
|
+
fscanf( conf, #what "_" #where "=" ); \
|
536
|
+
for(i = 0; i < ann->num_##where##put; i++) \
|
537
|
+
{ \
|
538
|
+
if(fscanf( conf, "%f ", (float *)&ann->what##_##where[ i ] ) != 1) \
|
539
|
+
{ \
|
540
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONFIG, #what "_" #where, configuration_file); \
|
541
|
+
fann_destroy(ann); \
|
542
|
+
return NULL; \
|
543
|
+
} \
|
544
|
+
}
|
545
|
+
|
546
|
+
if(fscanf(conf, "scale_included=%u\n", &scale_included) == 1 && scale_included == 1)
|
547
|
+
{
|
548
|
+
fann_allocate_scale(ann);
|
549
|
+
SCALE_LOAD( scale_mean, in )
|
550
|
+
SCALE_LOAD( scale_deviation, in )
|
551
|
+
SCALE_LOAD( scale_new_min, in )
|
552
|
+
SCALE_LOAD( scale_factor, in )
|
553
|
+
|
554
|
+
SCALE_LOAD( scale_mean, out )
|
555
|
+
SCALE_LOAD( scale_deviation, out )
|
556
|
+
SCALE_LOAD( scale_new_min, out )
|
557
|
+
SCALE_LOAD( scale_factor, out )
|
558
|
+
}
|
559
|
+
#undef SCALE_LOAD
|
560
|
+
#endif
|
561
|
+
|
562
|
+
/* allocate room for the actual neurons */
|
563
|
+
fann_allocate_neurons(ann);
|
564
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
565
|
+
{
|
566
|
+
fann_destroy(ann);
|
567
|
+
return NULL;
|
568
|
+
}
|
569
|
+
|
570
|
+
last_neuron = (ann->last_layer - 1)->last_neuron;
|
571
|
+
fscanf(conf, "neurons (num_inputs, activation_function, activation_steepness)=");
|
572
|
+
for(neuron_it = ann->first_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
|
573
|
+
{
|
574
|
+
if(fscanf
|
575
|
+
(conf, "(%u, %u, " FANNSCANF ") ", &num_connections, (unsigned int *)&neuron_it->activation_function,
|
576
|
+
&neuron_it->activation_steepness) != 3)
|
577
|
+
{
|
578
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
579
|
+
fann_destroy(ann);
|
580
|
+
return NULL;
|
581
|
+
}
|
582
|
+
neuron_it->first_con = ann->total_connections;
|
583
|
+
ann->total_connections += num_connections;
|
584
|
+
neuron_it->last_con = ann->total_connections;
|
585
|
+
}
|
586
|
+
|
587
|
+
fann_allocate_connections(ann);
|
588
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
589
|
+
{
|
590
|
+
fann_destroy(ann);
|
591
|
+
return NULL;
|
592
|
+
}
|
593
|
+
|
594
|
+
connected_neurons = ann->connections;
|
595
|
+
weights = ann->weights;
|
596
|
+
first_neuron = ann->first_layer->first_neuron;
|
597
|
+
|
598
|
+
fscanf(conf, "connections (connected_to_neuron, weight)=");
|
599
|
+
for(i = 0; i < ann->total_connections; i++)
|
600
|
+
{
|
601
|
+
if(fscanf(conf, "(%u, " FANNSCANF ") ", &input_neuron, &weights[i]) != 2)
|
602
|
+
{
|
603
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONNECTIONS, configuration_file);
|
604
|
+
fann_destroy(ann);
|
605
|
+
return NULL;
|
606
|
+
}
|
607
|
+
connected_neurons[i] = first_neuron + input_neuron;
|
608
|
+
}
|
609
|
+
|
610
|
+
#ifdef DEBUG
|
611
|
+
printf("output\n");
|
612
|
+
#endif
|
613
|
+
return ann;
|
614
|
+
}
|
615
|
+
|
616
|
+
|
617
|
+
/* INTERNAL FUNCTION
|
618
|
+
Create a network from a configuration file descriptor. (backward compatible read of version 1.1 files)
|
619
|
+
*/
|
620
|
+
struct fann *fann_create_from_fd_1_1(FILE * conf, const char *configuration_file)
|
621
|
+
{
|
622
|
+
unsigned int num_layers, layer_size, input_neuron, i, network_type, num_connections;
|
623
|
+
unsigned int activation_function_hidden, activation_function_output;
|
624
|
+
#ifdef FIXEDFANN
|
625
|
+
unsigned int decimal_point, multiplier;
|
626
|
+
#endif
|
627
|
+
fann_type activation_steepness_hidden, activation_steepness_output;
|
628
|
+
float learning_rate, connection_rate;
|
629
|
+
struct fann_neuron *first_neuron, *neuron_it, *last_neuron, **connected_neurons;
|
630
|
+
fann_type *weights;
|
631
|
+
struct fann_layer *layer_it;
|
632
|
+
struct fann *ann;
|
633
|
+
|
634
|
+
#ifdef FIXEDFANN
|
635
|
+
if(fscanf(conf, "%u\n", &decimal_point) != 1)
|
636
|
+
{
|
637
|
+
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "decimal_point", configuration_file);
|
638
|
+
return NULL;
|
639
|
+
}
|
640
|
+
multiplier = 1 << decimal_point;
|
641
|
+
#endif
|
642
|
+
|
643
|
+
if(fscanf(conf, "%u %f %f %u %u %u " FANNSCANF " " FANNSCANF "\n", &num_layers, &learning_rate,
|
644
|
+
&connection_rate, &network_type, &activation_function_hidden,
|
645
|
+
&activation_function_output, &activation_steepness_hidden,
|
646
|
+
&activation_steepness_output) != 8)
|
647
|
+
{
|
648
|
+
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "parameters", configuration_file);
|
649
|
+
return NULL;
|
650
|
+
}
|
651
|
+
|
652
|
+
ann = fann_allocate_structure(num_layers);
|
653
|
+
if(ann == NULL)
|
654
|
+
{
|
655
|
+
return NULL;
|
656
|
+
}
|
657
|
+
ann->connection_rate = connection_rate;
|
658
|
+
ann->network_type = (enum fann_nettype_enum)network_type;
|
659
|
+
ann->learning_rate = learning_rate;
|
660
|
+
|
661
|
+
#ifdef FIXEDFANN
|
662
|
+
ann->decimal_point = decimal_point;
|
663
|
+
ann->multiplier = multiplier;
|
664
|
+
#endif
|
665
|
+
|
666
|
+
#ifdef FIXEDFANN
|
667
|
+
fann_update_stepwise(ann);
|
668
|
+
#endif
|
669
|
+
|
670
|
+
#ifdef DEBUG
|
671
|
+
printf("creating network with learning rate %f\n", learning_rate);
|
672
|
+
printf("input\n");
|
673
|
+
#endif
|
674
|
+
|
675
|
+
/* determine how many neurons there should be in each layer */
|
676
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
677
|
+
{
|
678
|
+
if(fscanf(conf, "%u ", &layer_size) != 1)
|
679
|
+
{
|
680
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
681
|
+
fann_destroy(ann);
|
682
|
+
return NULL;
|
683
|
+
}
|
684
|
+
/* we do not allocate room here, but we make sure that
|
685
|
+
* last_neuron - first_neuron is the number of neurons */
|
686
|
+
layer_it->first_neuron = NULL;
|
687
|
+
layer_it->last_neuron = layer_it->first_neuron + layer_size;
|
688
|
+
ann->total_neurons += layer_size;
|
689
|
+
#ifdef DEBUG
|
690
|
+
if(ann->network_type == FANN_NETTYPE_SHORTCUT && layer_it != ann->first_layer)
|
691
|
+
{
|
692
|
+
printf(" layer : %d neurons, 0 bias\n", layer_size);
|
693
|
+
}
|
694
|
+
else
|
695
|
+
{
|
696
|
+
printf(" layer : %d neurons, 1 bias\n", layer_size - 1);
|
697
|
+
}
|
698
|
+
#endif
|
699
|
+
}
|
700
|
+
|
701
|
+
ann->num_input = ann->first_layer->last_neuron - ann->first_layer->first_neuron - 1;
|
702
|
+
ann->num_output = ((ann->last_layer - 1)->last_neuron - (ann->last_layer - 1)->first_neuron);
|
703
|
+
if(ann->network_type == FANN_NETTYPE_LAYER)
|
704
|
+
{
|
705
|
+
/* one too many (bias) in the output layer */
|
706
|
+
ann->num_output--;
|
707
|
+
}
|
708
|
+
|
709
|
+
/* allocate room for the actual neurons */
|
710
|
+
fann_allocate_neurons(ann);
|
711
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
712
|
+
{
|
713
|
+
fann_destroy(ann);
|
714
|
+
return NULL;
|
715
|
+
}
|
716
|
+
|
717
|
+
last_neuron = (ann->last_layer - 1)->last_neuron;
|
718
|
+
for(neuron_it = ann->first_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
|
719
|
+
{
|
720
|
+
if(fscanf(conf, "%u ", &num_connections) != 1)
|
721
|
+
{
|
722
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
723
|
+
fann_destroy(ann);
|
724
|
+
return NULL;
|
725
|
+
}
|
726
|
+
neuron_it->first_con = ann->total_connections;
|
727
|
+
ann->total_connections += num_connections;
|
728
|
+
neuron_it->last_con = ann->total_connections;
|
729
|
+
}
|
730
|
+
|
731
|
+
fann_allocate_connections(ann);
|
732
|
+
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
733
|
+
{
|
734
|
+
fann_destroy(ann);
|
735
|
+
return NULL;
|
736
|
+
}
|
737
|
+
|
738
|
+
connected_neurons = ann->connections;
|
739
|
+
weights = ann->weights;
|
740
|
+
first_neuron = ann->first_layer->first_neuron;
|
741
|
+
|
742
|
+
for(i = 0; i < ann->total_connections; i++)
|
743
|
+
{
|
744
|
+
if(fscanf(conf, "(%u " FANNSCANF ") ", &input_neuron, &weights[i]) != 2)
|
745
|
+
{
|
746
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONNECTIONS, configuration_file);
|
747
|
+
fann_destroy(ann);
|
748
|
+
return NULL;
|
749
|
+
}
|
750
|
+
connected_neurons[i] = first_neuron + input_neuron;
|
751
|
+
}
|
752
|
+
|
753
|
+
fann_set_activation_steepness_hidden(ann, activation_steepness_hidden);
|
754
|
+
fann_set_activation_steepness_output(ann, activation_steepness_output);
|
755
|
+
fann_set_activation_function_hidden(ann, (enum fann_activationfunc_enum)activation_function_hidden);
|
756
|
+
fann_set_activation_function_output(ann, (enum fann_activationfunc_enum)activation_function_output);
|
757
|
+
|
758
|
+
#ifdef DEBUG
|
759
|
+
printf("output\n");
|
760
|
+
#endif
|
761
|
+
return ann;
|
762
|
+
}
|