ruby-fann 0.7.10 → 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +6 -1
- data/License.txt +1 -1
- data/Manifest.txt +22 -1
- data/README.txt +0 -1
- data/Rakefile +0 -0
- data/config/hoe.rb +0 -0
- data/config/requirements.rb +0 -0
- data/ext/ruby_fann/MANIFEST +0 -0
- data/ext/ruby_fann/Makefile +36 -28
- data/ext/ruby_fann/doublefann.c +30 -0
- data/ext/ruby_fann/doublefann.h +33 -0
- data/ext/ruby_fann/extconf.rb +9 -5
- data/ext/ruby_fann/fann.c +1552 -0
- data/ext/ruby_fann/fann_activation.h +144 -0
- data/ext/ruby_fann/fann_augment.h +0 -0
- data/ext/ruby_fann/fann_cascade.c +1031 -0
- data/ext/ruby_fann/fann_cascade.h +503 -0
- data/ext/ruby_fann/fann_data.h +799 -0
- data/ext/ruby_fann/fann_error.c +204 -0
- data/ext/ruby_fann/fann_error.h +161 -0
- data/ext/ruby_fann/fann_internal.h +148 -0
- data/ext/ruby_fann/fann_io.c +762 -0
- data/ext/ruby_fann/fann_io.h +100 -0
- data/ext/ruby_fann/fann_train.c +962 -0
- data/ext/ruby_fann/fann_train.h +1203 -0
- data/ext/ruby_fann/fann_train_data.c +1231 -0
- data/ext/ruby_fann/neural_network.c +0 -0
- data/lib/ruby_fann/neurotica.rb +0 -0
- data/lib/ruby_fann/version.rb +3 -3
- data/lib/ruby_fann.rb +0 -0
- data/neurotica1.png +0 -0
- data/neurotica2.vrml +18 -18
- data/setup.rb +0 -0
- data/tasks/deployment.rake +0 -0
- data/tasks/environment.rake +0 -0
- data/tasks/website.rake +0 -0
- data/test/test.train +0 -0
- data/test/test_helper.rb +0 -0
- data/test/test_neurotica.rb +0 -0
- data/test/test_ruby_fann.rb +0 -0
- data/test/test_ruby_fann_functional.rb +0 -0
- data/verify.train +0 -0
- data/website/index.html +42 -92
- data/website/index.txt +0 -0
- data/website/javascripts/rounded_corners_lite.inc.js +0 -0
- data/website/stylesheets/screen.css +0 -0
- data/website/template.rhtml +0 -0
- data/xor.train +0 -0
- data/xor_cascade.net +2 -2
- data/xor_float.net +1 -1
- metadata +22 -6
- data/log/debug.log +0 -0
@@ -0,0 +1,1031 @@
|
|
1
|
+
/*
|
2
|
+
Fast Artificial Neural Network Library (fann)
|
3
|
+
Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)
|
4
|
+
|
5
|
+
This library is free software; you can redistribute it and/or
|
6
|
+
modify it under the terms of the GNU Lesser General Public
|
7
|
+
License as published by the Free Software Foundation; either
|
8
|
+
version 2.1 of the License, or (at your option) any later version.
|
9
|
+
|
10
|
+
This library is distributed in the hope that it will be useful,
|
11
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13
|
+
Lesser General Public License for more details.
|
14
|
+
|
15
|
+
You should have received a copy of the GNU Lesser General Public
|
16
|
+
License along with this library; if not, write to the Free Software
|
17
|
+
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18
|
+
*/
|
19
|
+
|
20
|
+
#include "config.h"
|
21
|
+
#include "fann.h"
|
22
|
+
#include "string.h"
|
23
|
+
|
24
|
+
#ifndef FIXEDFANN
|
25
|
+
|
26
|
+
/* #define CASCADE_DEBUG */
|
27
|
+
/* #define CASCADE_DEBUG_FULL */
|
28
|
+
|
29
|
+
void fann_print_connections_raw(struct fann *ann)
|
30
|
+
{
|
31
|
+
unsigned int i;
|
32
|
+
|
33
|
+
for(i = 0; i < ann->total_connections_allocated; i++)
|
34
|
+
{
|
35
|
+
if(i == ann->total_connections)
|
36
|
+
{
|
37
|
+
printf("* ");
|
38
|
+
}
|
39
|
+
printf("%f ", ann->weights[i]);
|
40
|
+
}
|
41
|
+
printf("\n\n");
|
42
|
+
}
|
43
|
+
|
44
|
+
/* Cascade training directly on the training data.
|
45
|
+
The connected_neurons pointers are not valid during training,
|
46
|
+
but they will be again after training.
|
47
|
+
*/
|
48
|
+
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_data(struct fann *ann, struct fann_train_data *data,
|
49
|
+
unsigned int max_neurons,
|
50
|
+
unsigned int neurons_between_reports,
|
51
|
+
float desired_error)
|
52
|
+
{
|
53
|
+
float error;
|
54
|
+
unsigned int i;
|
55
|
+
unsigned int total_epochs = 0;
|
56
|
+
int desired_error_reached;
|
57
|
+
|
58
|
+
if(neurons_between_reports && ann->callback == NULL)
|
59
|
+
{
|
60
|
+
printf("Max neurons %3d. Desired error: %.6f\n", max_neurons, desired_error);
|
61
|
+
}
|
62
|
+
|
63
|
+
for(i = 1; i <= max_neurons; i++)
|
64
|
+
{
|
65
|
+
/* train output neurons */
|
66
|
+
total_epochs += fann_train_outputs(ann, data, desired_error);
|
67
|
+
error = fann_get_MSE(ann);
|
68
|
+
desired_error_reached = fann_desired_error_reached(ann, desired_error);
|
69
|
+
|
70
|
+
/* print current error */
|
71
|
+
if(neurons_between_reports &&
|
72
|
+
(i % neurons_between_reports == 0
|
73
|
+
|| i == max_neurons || i == 1 || desired_error_reached == 0))
|
74
|
+
{
|
75
|
+
if(ann->callback == NULL)
|
76
|
+
{
|
77
|
+
printf
|
78
|
+
("Neurons %3d. Current error: %.6f. Total error:%8.4f. Epochs %5d. Bit fail %3d",
|
79
|
+
i, error, ann->MSE_value, total_epochs, ann->num_bit_fail);
|
80
|
+
if((ann->last_layer-2) != ann->first_layer)
|
81
|
+
{
|
82
|
+
printf(". candidate steepness %.2f. function %s",
|
83
|
+
(ann->last_layer-2)->first_neuron->activation_steepness,
|
84
|
+
FANN_ACTIVATIONFUNC_NAMES[(ann->last_layer-2)->first_neuron->activation_function]);
|
85
|
+
}
|
86
|
+
printf("\n");
|
87
|
+
}
|
88
|
+
else if((*ann->callback) (ann, data, max_neurons,
|
89
|
+
neurons_between_reports, desired_error, total_epochs) == -1)
|
90
|
+
{
|
91
|
+
/* you can break the training by returning -1 */
|
92
|
+
break;
|
93
|
+
}
|
94
|
+
}
|
95
|
+
|
96
|
+
if(desired_error_reached == 0)
|
97
|
+
break;
|
98
|
+
|
99
|
+
if(fann_initialize_candidates(ann) == -1)
|
100
|
+
{
|
101
|
+
/* Unable to initialize room for candidates */
|
102
|
+
break;
|
103
|
+
}
|
104
|
+
|
105
|
+
/* train new candidates */
|
106
|
+
total_epochs += fann_train_candidates(ann, data);
|
107
|
+
|
108
|
+
/* this installs the best candidate */
|
109
|
+
fann_install_candidate(ann);
|
110
|
+
}
|
111
|
+
|
112
|
+
/* Train outputs one last time but without any desired error */
|
113
|
+
total_epochs += fann_train_outputs(ann, data, 0.0);
|
114
|
+
|
115
|
+
if(neurons_between_reports && ann->callback == NULL)
|
116
|
+
{
|
117
|
+
printf("Train outputs Current error: %.6f. Epochs %6d\n", fann_get_MSE(ann),
|
118
|
+
total_epochs);
|
119
|
+
}
|
120
|
+
|
121
|
+
/* Set pointers in connected_neurons
|
122
|
+
* This is ONLY done in the end of cascade training,
|
123
|
+
* since there is no need for them during training.
|
124
|
+
*/
|
125
|
+
fann_set_shortcut_connections(ann);
|
126
|
+
}
|
127
|
+
|
128
|
+
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_file(struct fann *ann, const char *filename,
|
129
|
+
unsigned int max_neurons,
|
130
|
+
unsigned int neurons_between_reports,
|
131
|
+
float desired_error)
|
132
|
+
{
|
133
|
+
struct fann_train_data *data = fann_read_train_from_file(filename);
|
134
|
+
|
135
|
+
if(data == NULL)
|
136
|
+
{
|
137
|
+
return;
|
138
|
+
}
|
139
|
+
fann_cascadetrain_on_data(ann, data, max_neurons, neurons_between_reports, desired_error);
|
140
|
+
fann_destroy_train(data);
|
141
|
+
}
|
142
|
+
|
143
|
+
int fann_train_outputs(struct fann *ann, struct fann_train_data *data, float desired_error)
|
144
|
+
{
|
145
|
+
float error, initial_error, error_improvement;
|
146
|
+
float target_improvement = 0.0;
|
147
|
+
float backslide_improvement = -1.0e20f;
|
148
|
+
unsigned int i;
|
149
|
+
unsigned int max_epochs = ann->cascade_max_out_epochs;
|
150
|
+
unsigned int stagnation = max_epochs;
|
151
|
+
|
152
|
+
/* TODO should perhaps not clear all arrays */
|
153
|
+
fann_clear_train_arrays(ann);
|
154
|
+
|
155
|
+
/* run an initial epoch to set the initital error */
|
156
|
+
initial_error = fann_train_outputs_epoch(ann, data);
|
157
|
+
|
158
|
+
if(fann_desired_error_reached(ann, desired_error) == 0)
|
159
|
+
return 1;
|
160
|
+
|
161
|
+
for(i = 1; i < max_epochs; i++)
|
162
|
+
{
|
163
|
+
error = fann_train_outputs_epoch(ann, data);
|
164
|
+
|
165
|
+
/*printf("Epoch %6d. Current error: %.6f. Bit fail %d.\n", i, error, ann->num_bit_fail); */
|
166
|
+
|
167
|
+
if(fann_desired_error_reached(ann, desired_error) == 0)
|
168
|
+
{
|
169
|
+
#ifdef CASCADE_DEBUG
|
170
|
+
printf("Error %f < %f\n", error, desired_error);
|
171
|
+
#endif
|
172
|
+
return i + 1;
|
173
|
+
}
|
174
|
+
|
175
|
+
/* Improvement since start of train */
|
176
|
+
error_improvement = initial_error - error;
|
177
|
+
|
178
|
+
/* After any significant change, set a new goal and
|
179
|
+
* allow a new quota of epochs to reach it */
|
180
|
+
if((error_improvement > target_improvement) || (error_improvement < backslide_improvement))
|
181
|
+
{
|
182
|
+
/*printf("error_improvement=%f, target_improvement=%f, backslide_improvement=%f, stagnation=%d\n", error_improvement, target_improvement, backslide_improvement, stagnation); */
|
183
|
+
|
184
|
+
target_improvement = error_improvement * (1.0f + ann->cascade_output_change_fraction);
|
185
|
+
backslide_improvement = error_improvement * (1.0f - ann->cascade_output_change_fraction);
|
186
|
+
stagnation = i + ann->cascade_output_stagnation_epochs;
|
187
|
+
}
|
188
|
+
|
189
|
+
/* No improvement in allotted period, so quit */
|
190
|
+
if(i >= stagnation)
|
191
|
+
{
|
192
|
+
return i + 1;
|
193
|
+
}
|
194
|
+
}
|
195
|
+
|
196
|
+
return max_epochs;
|
197
|
+
}
|
198
|
+
|
199
|
+
float fann_train_outputs_epoch(struct fann *ann, struct fann_train_data *data)
|
200
|
+
{
|
201
|
+
unsigned int i;
|
202
|
+
|
203
|
+
fann_reset_MSE(ann);
|
204
|
+
|
205
|
+
for(i = 0; i < data->num_data; i++)
|
206
|
+
{
|
207
|
+
fann_run(ann, data->input[i]);
|
208
|
+
fann_compute_MSE(ann, data->output[i]);
|
209
|
+
fann_update_slopes_batch(ann, ann->last_layer - 1, ann->last_layer - 1);
|
210
|
+
}
|
211
|
+
|
212
|
+
switch (ann->training_algorithm)
|
213
|
+
{
|
214
|
+
case FANN_TRAIN_RPROP:
|
215
|
+
fann_update_weights_irpropm(ann, (ann->last_layer - 1)->first_neuron->first_con,
|
216
|
+
ann->total_connections);
|
217
|
+
break;
|
218
|
+
case FANN_TRAIN_QUICKPROP:
|
219
|
+
fann_update_weights_quickprop(ann, data->num_data,
|
220
|
+
(ann->last_layer - 1)->first_neuron->first_con,
|
221
|
+
ann->total_connections);
|
222
|
+
break;
|
223
|
+
case FANN_TRAIN_BATCH:
|
224
|
+
case FANN_TRAIN_INCREMENTAL:
|
225
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_USE_TRAIN_ALG);
|
226
|
+
}
|
227
|
+
|
228
|
+
return fann_get_MSE(ann);
|
229
|
+
}
|
230
|
+
|
231
|
+
int fann_reallocate_connections(struct fann *ann, unsigned int total_connections)
|
232
|
+
{
|
233
|
+
/* The connections are allocated, but the pointers inside are
|
234
|
+
* first moved in the end of the cascade training session.
|
235
|
+
*/
|
236
|
+
|
237
|
+
#ifdef CASCADE_DEBUG
|
238
|
+
printf("realloc from %d to %d\n", ann->total_connections_allocated, total_connections);
|
239
|
+
#endif
|
240
|
+
ann->connections =
|
241
|
+
(struct fann_neuron **) realloc(ann->connections,
|
242
|
+
total_connections * sizeof(struct fann_neuron *));
|
243
|
+
if(ann->connections == NULL)
|
244
|
+
{
|
245
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
246
|
+
return -1;
|
247
|
+
}
|
248
|
+
|
249
|
+
ann->weights = (fann_type *) realloc(ann->weights, total_connections * sizeof(fann_type));
|
250
|
+
if(ann->weights == NULL)
|
251
|
+
{
|
252
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
253
|
+
return -1;
|
254
|
+
}
|
255
|
+
|
256
|
+
ann->train_slopes =
|
257
|
+
(fann_type *) realloc(ann->train_slopes, total_connections * sizeof(fann_type));
|
258
|
+
if(ann->train_slopes == NULL)
|
259
|
+
{
|
260
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
261
|
+
return -1;
|
262
|
+
}
|
263
|
+
|
264
|
+
ann->prev_steps = (fann_type *) realloc(ann->prev_steps, total_connections * sizeof(fann_type));
|
265
|
+
if(ann->prev_steps == NULL)
|
266
|
+
{
|
267
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
268
|
+
return -1;
|
269
|
+
}
|
270
|
+
|
271
|
+
ann->prev_train_slopes =
|
272
|
+
(fann_type *) realloc(ann->prev_train_slopes, total_connections * sizeof(fann_type));
|
273
|
+
if(ann->prev_train_slopes == NULL)
|
274
|
+
{
|
275
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
276
|
+
return -1;
|
277
|
+
}
|
278
|
+
|
279
|
+
ann->total_connections_allocated = total_connections;
|
280
|
+
|
281
|
+
return 0;
|
282
|
+
}
|
283
|
+
|
284
|
+
int fann_reallocate_neurons(struct fann *ann, unsigned int total_neurons)
|
285
|
+
{
|
286
|
+
struct fann_layer *layer_it;
|
287
|
+
struct fann_neuron *neurons;
|
288
|
+
unsigned int num_neurons = 0;
|
289
|
+
unsigned int num_neurons_so_far = 0;
|
290
|
+
|
291
|
+
neurons =
|
292
|
+
(struct fann_neuron *) realloc(ann->first_layer->first_neuron,
|
293
|
+
total_neurons * sizeof(struct fann_neuron));
|
294
|
+
ann->total_neurons_allocated = total_neurons;
|
295
|
+
|
296
|
+
if(neurons == NULL)
|
297
|
+
{
|
298
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
299
|
+
return -1;
|
300
|
+
}
|
301
|
+
|
302
|
+
/* Also allocate room for more train_errors */
|
303
|
+
ann->train_errors = (fann_type *) realloc(ann->train_errors, total_neurons * sizeof(fann_type));
|
304
|
+
if(ann->train_errors == NULL)
|
305
|
+
{
|
306
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
307
|
+
return -1;
|
308
|
+
}
|
309
|
+
|
310
|
+
if(neurons != ann->first_layer->first_neuron)
|
311
|
+
{
|
312
|
+
/* Then the memory has moved, also move the pointers */
|
313
|
+
|
314
|
+
#ifdef CASCADE_DEBUG_FULL
|
315
|
+
printf("Moving neuron pointers\n");
|
316
|
+
#endif
|
317
|
+
|
318
|
+
/* Move pointers from layers to neurons */
|
319
|
+
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
320
|
+
{
|
321
|
+
num_neurons = layer_it->last_neuron - layer_it->first_neuron;
|
322
|
+
layer_it->first_neuron = neurons + num_neurons_so_far;
|
323
|
+
layer_it->last_neuron = layer_it->first_neuron + num_neurons;
|
324
|
+
num_neurons_so_far += num_neurons;
|
325
|
+
}
|
326
|
+
}
|
327
|
+
|
328
|
+
return 0;
|
329
|
+
}
|
330
|
+
|
331
|
+
void initialize_candidate_weights(struct fann *ann, unsigned int first_con, unsigned int last_con, float scale_factor)
|
332
|
+
{
|
333
|
+
fann_type prev_step;
|
334
|
+
unsigned int i = 0;
|
335
|
+
unsigned int bias_weight = first_con + (ann->first_layer->last_neuron - ann->first_layer->first_neuron) - 1;
|
336
|
+
|
337
|
+
if(ann->training_algorithm == FANN_TRAIN_RPROP)
|
338
|
+
prev_step = ann->rprop_delta_zero;
|
339
|
+
else
|
340
|
+
prev_step = 0;
|
341
|
+
|
342
|
+
for(i = first_con; i < last_con; i++)
|
343
|
+
{
|
344
|
+
if(i == bias_weight)
|
345
|
+
ann->weights[i] = fann_rand(-scale_factor, scale_factor);
|
346
|
+
else
|
347
|
+
ann->weights[i] = fann_rand(0,scale_factor);
|
348
|
+
|
349
|
+
ann->train_slopes[i] = 0;
|
350
|
+
ann->prev_steps[i] = prev_step;
|
351
|
+
ann->prev_train_slopes[i] = 0;
|
352
|
+
}
|
353
|
+
}
|
354
|
+
|
355
|
+
int fann_initialize_candidates(struct fann *ann)
|
356
|
+
{
|
357
|
+
/* The candidates are allocated after the normal neurons and connections,
|
358
|
+
* but there is an empty place between the real neurons and the candidate neurons,
|
359
|
+
* so that it will be possible to make room when the chosen candidate are copied in
|
360
|
+
* on the desired place.
|
361
|
+
*/
|
362
|
+
unsigned int neurons_to_allocate, connections_to_allocate;
|
363
|
+
unsigned int num_candidates = fann_get_cascade_num_candidates(ann);
|
364
|
+
unsigned int num_neurons = ann->total_neurons + num_candidates + 1;
|
365
|
+
unsigned int num_hidden_neurons = ann->total_neurons - ann->num_input - ann->num_output;
|
366
|
+
unsigned int candidate_connections_in = ann->total_neurons - ann->num_output;
|
367
|
+
unsigned int candidate_connections_out = ann->num_output;
|
368
|
+
|
369
|
+
/* the number of connections going into a and out of a candidate is
|
370
|
+
* ann->total_neurons */
|
371
|
+
unsigned int num_connections =
|
372
|
+
ann->total_connections + (ann->total_neurons * (num_candidates + 1));
|
373
|
+
unsigned int first_candidate_connection = ann->total_connections + ann->total_neurons;
|
374
|
+
unsigned int first_candidate_neuron = ann->total_neurons + 1;
|
375
|
+
unsigned int connection_it, i, j, k, candidate_index;
|
376
|
+
struct fann_neuron *neurons;
|
377
|
+
float scale_factor;
|
378
|
+
|
379
|
+
/* First make sure that there is enough room, and if not then allocate a
|
380
|
+
* bit more so that we do not need to allocate more room each time.
|
381
|
+
*/
|
382
|
+
if(num_neurons > ann->total_neurons_allocated)
|
383
|
+
{
|
384
|
+
/* Then we need to allocate more neurons
|
385
|
+
* Allocate half as many neurons as already exist (at least ten)
|
386
|
+
*/
|
387
|
+
neurons_to_allocate = num_neurons + num_neurons / 2;
|
388
|
+
if(neurons_to_allocate < num_neurons + 10)
|
389
|
+
{
|
390
|
+
neurons_to_allocate = num_neurons + 10;
|
391
|
+
}
|
392
|
+
|
393
|
+
if(fann_reallocate_neurons(ann, neurons_to_allocate) == -1)
|
394
|
+
{
|
395
|
+
return -1;
|
396
|
+
}
|
397
|
+
}
|
398
|
+
|
399
|
+
if(num_connections > ann->total_connections_allocated)
|
400
|
+
{
|
401
|
+
/* Then we need to allocate more connections
|
402
|
+
* Allocate half as many connections as already exist
|
403
|
+
* (at least enough for ten neurons)
|
404
|
+
*/
|
405
|
+
connections_to_allocate = num_connections + num_connections / 2;
|
406
|
+
if(connections_to_allocate < num_connections + ann->total_neurons * 10)
|
407
|
+
{
|
408
|
+
connections_to_allocate = num_connections + ann->total_neurons * 10;
|
409
|
+
}
|
410
|
+
|
411
|
+
if(fann_reallocate_connections(ann, connections_to_allocate) == -1)
|
412
|
+
{
|
413
|
+
return -1;
|
414
|
+
}
|
415
|
+
}
|
416
|
+
|
417
|
+
/* Some test code to do semi Widrow + Nguyen initialization */
|
418
|
+
scale_factor = (float) 2.0f*(pow((double) (0.7f * (double) num_hidden_neurons),
|
419
|
+
(double) (1.0f / (double) ann->num_input)));
|
420
|
+
if(scale_factor > 8)
|
421
|
+
scale_factor = 8;
|
422
|
+
else if(scale_factor < 0.5)
|
423
|
+
scale_factor = 0.5;
|
424
|
+
|
425
|
+
/* Set the neurons.
|
426
|
+
*/
|
427
|
+
connection_it = first_candidate_connection;
|
428
|
+
neurons = ann->first_layer->first_neuron;
|
429
|
+
candidate_index = first_candidate_neuron;
|
430
|
+
|
431
|
+
for(i = 0; i < ann->cascade_activation_functions_count; i++)
|
432
|
+
{
|
433
|
+
for(j = 0; j < ann->cascade_activation_steepnesses_count; j++)
|
434
|
+
{
|
435
|
+
for(k = 0; k < ann->cascade_num_candidate_groups; k++)
|
436
|
+
{
|
437
|
+
/* TODO candidates should actually be created both in
|
438
|
+
* the last layer before the output layer, and in a new layer.
|
439
|
+
*/
|
440
|
+
neurons[candidate_index].value = 0;
|
441
|
+
neurons[candidate_index].sum = 0;
|
442
|
+
|
443
|
+
neurons[candidate_index].activation_function =
|
444
|
+
ann->cascade_activation_functions[i];
|
445
|
+
neurons[candidate_index].activation_steepness =
|
446
|
+
ann->cascade_activation_steepnesses[j];
|
447
|
+
|
448
|
+
neurons[candidate_index].first_con = connection_it;
|
449
|
+
connection_it += candidate_connections_in;
|
450
|
+
neurons[candidate_index].last_con = connection_it;
|
451
|
+
/* We have no specific pointers to the output weights, but they are
|
452
|
+
* available after last_con */
|
453
|
+
connection_it += candidate_connections_out;
|
454
|
+
ann->train_errors[candidate_index] = 0;
|
455
|
+
initialize_candidate_weights(ann, neurons[candidate_index].first_con, neurons[candidate_index].last_con+candidate_connections_out, scale_factor);
|
456
|
+
candidate_index++;
|
457
|
+
}
|
458
|
+
}
|
459
|
+
}
|
460
|
+
|
461
|
+
|
462
|
+
/* Now randomize the weights and zero out the arrays that needs zeroing out.
|
463
|
+
*/
|
464
|
+
/*
|
465
|
+
#ifdef CASCADE_DEBUG_FULL
|
466
|
+
printf("random cand weight [%d ... %d]\n", first_candidate_connection, num_connections - 1);
|
467
|
+
#endif
|
468
|
+
|
469
|
+
for(i = first_candidate_connection; i < num_connections; i++)
|
470
|
+
{
|
471
|
+
|
472
|
+
//ann->weights[i] = fann_random_weight();
|
473
|
+
ann->weights[i] = fann_rand(-2.0,2.0);
|
474
|
+
ann->train_slopes[i] = 0;
|
475
|
+
ann->prev_steps[i] = 0;
|
476
|
+
ann->prev_train_slopes[i] = initial_slope;
|
477
|
+
}
|
478
|
+
*/
|
479
|
+
|
480
|
+
return 0;
|
481
|
+
}
|
482
|
+
|
483
|
+
int fann_train_candidates(struct fann *ann, struct fann_train_data *data)
|
484
|
+
{
|
485
|
+
fann_type best_cand_score = 0.0;
|
486
|
+
fann_type target_cand_score = 0.0;
|
487
|
+
fann_type backslide_cand_score = -1.0e20f;
|
488
|
+
unsigned int i;
|
489
|
+
unsigned int max_epochs = ann->cascade_max_cand_epochs;
|
490
|
+
unsigned int stagnation = max_epochs;
|
491
|
+
|
492
|
+
if(ann->cascade_candidate_scores == NULL)
|
493
|
+
{
|
494
|
+
ann->cascade_candidate_scores =
|
495
|
+
(fann_type *) malloc(fann_get_cascade_num_candidates(ann) * sizeof(fann_type));
|
496
|
+
if(ann->cascade_candidate_scores == NULL)
|
497
|
+
{
|
498
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
499
|
+
return 0;
|
500
|
+
}
|
501
|
+
}
|
502
|
+
|
503
|
+
for(i = 0; i < max_epochs; i++)
|
504
|
+
{
|
505
|
+
best_cand_score = fann_train_candidates_epoch(ann, data);
|
506
|
+
|
507
|
+
if(best_cand_score / ann->MSE_value > ann->cascade_candidate_limit)
|
508
|
+
{
|
509
|
+
#ifdef CASCADE_DEBUG
|
510
|
+
printf("above candidate limit %f/%f > %f", best_cand_score, ann->MSE_value,
|
511
|
+
ann->cascade_candidate_limit);
|
512
|
+
#endif
|
513
|
+
return i + 1;
|
514
|
+
}
|
515
|
+
|
516
|
+
if((best_cand_score > target_cand_score) || (best_cand_score < backslide_cand_score))
|
517
|
+
{
|
518
|
+
#ifdef CASCADE_DEBUG_FULL
|
519
|
+
printf("Best candidate score %f, real score: %f\n", ann->MSE_value - best_cand_score,
|
520
|
+
best_cand_score);
|
521
|
+
/* printf("best_cand_score=%f, target_cand_score=%f, backslide_cand_score=%f, stagnation=%d\n", best_cand_score, target_cand_score, backslide_cand_score, stagnation); */
|
522
|
+
#endif
|
523
|
+
|
524
|
+
target_cand_score = best_cand_score * (1.0f + ann->cascade_candidate_change_fraction);
|
525
|
+
backslide_cand_score = best_cand_score * (1.0f - ann->cascade_candidate_change_fraction);
|
526
|
+
stagnation = i + ann->cascade_candidate_stagnation_epochs;
|
527
|
+
}
|
528
|
+
|
529
|
+
/* No improvement in allotted period, so quit */
|
530
|
+
if(i >= stagnation)
|
531
|
+
{
|
532
|
+
#ifdef CASCADE_DEBUG
|
533
|
+
printf("Stagnation with %d epochs, best candidate score %f, real score: %f\n", i + 1,
|
534
|
+
ann->MSE_value - best_cand_score, best_cand_score);
|
535
|
+
#endif
|
536
|
+
return i + 1;
|
537
|
+
}
|
538
|
+
}
|
539
|
+
|
540
|
+
#ifdef CASCADE_DEBUG
|
541
|
+
printf("Max epochs %d reached, best candidate score %f, real score: %f\n", max_epochs,
|
542
|
+
ann->MSE_value - best_cand_score, best_cand_score);
|
543
|
+
#endif
|
544
|
+
return max_epochs;
|
545
|
+
}
|
546
|
+
|
547
|
+
void fann_update_candidate_slopes(struct fann *ann)
|
548
|
+
{
|
549
|
+
struct fann_neuron *neurons = ann->first_layer->first_neuron;
|
550
|
+
struct fann_neuron *first_cand = neurons + ann->total_neurons + 1;
|
551
|
+
struct fann_neuron *last_cand = first_cand + fann_get_cascade_num_candidates(ann);
|
552
|
+
struct fann_neuron *cand_it;
|
553
|
+
unsigned int i, j, num_connections;
|
554
|
+
unsigned int num_output = ann->num_output;
|
555
|
+
fann_type max_sum, cand_sum, activation, derived, error_value, diff, cand_score;
|
556
|
+
fann_type *weights, *cand_out_weights, *cand_slopes, *cand_out_slopes;
|
557
|
+
fann_type *output_train_errors = ann->train_errors + (ann->total_neurons - ann->num_output);
|
558
|
+
|
559
|
+
for(cand_it = first_cand; cand_it < last_cand; cand_it++)
|
560
|
+
{
|
561
|
+
cand_score = ann->cascade_candidate_scores[cand_it - first_cand];
|
562
|
+
error_value = 0.0;
|
563
|
+
|
564
|
+
/* code more or less stolen from fann_run to fast forward pass
|
565
|
+
*/
|
566
|
+
cand_sum = 0.0;
|
567
|
+
num_connections = cand_it->last_con - cand_it->first_con;
|
568
|
+
weights = ann->weights + cand_it->first_con;
|
569
|
+
|
570
|
+
/* unrolled loop start */
|
571
|
+
i = num_connections & 3; /* same as modulo 4 */
|
572
|
+
switch (i)
|
573
|
+
{
|
574
|
+
case 3:
|
575
|
+
cand_sum += weights[2] * neurons[2].value;
|
576
|
+
case 2:
|
577
|
+
cand_sum += weights[1] * neurons[1].value;
|
578
|
+
case 1:
|
579
|
+
cand_sum += weights[0] * neurons[0].value;
|
580
|
+
case 0:
|
581
|
+
break;
|
582
|
+
}
|
583
|
+
|
584
|
+
for(; i != num_connections; i += 4)
|
585
|
+
{
|
586
|
+
cand_sum +=
|
587
|
+
weights[i] * neurons[i].value +
|
588
|
+
weights[i + 1] * neurons[i + 1].value +
|
589
|
+
weights[i + 2] * neurons[i + 2].value + weights[i + 3] * neurons[i + 3].value;
|
590
|
+
}
|
591
|
+
/*
|
592
|
+
* for(i = 0; i < num_connections; i++){
|
593
|
+
* cand_sum += weights[i] * neurons[i].value;
|
594
|
+
* }
|
595
|
+
*/
|
596
|
+
/* unrolled loop end */
|
597
|
+
|
598
|
+
max_sum = 150/cand_it->activation_steepness;
|
599
|
+
if(cand_sum > max_sum)
|
600
|
+
cand_sum = max_sum;
|
601
|
+
else if(cand_sum < -max_sum)
|
602
|
+
cand_sum = -max_sum;
|
603
|
+
|
604
|
+
activation =
|
605
|
+
fann_activation(ann, cand_it->activation_function, cand_it->activation_steepness,
|
606
|
+
cand_sum);
|
607
|
+
/* printf("%f = sigmoid(%f);\n", activation, cand_sum); */
|
608
|
+
|
609
|
+
cand_it->sum = cand_sum;
|
610
|
+
cand_it->value = activation;
|
611
|
+
|
612
|
+
derived = fann_activation_derived(cand_it->activation_function,
|
613
|
+
cand_it->activation_steepness, activation, cand_sum);
|
614
|
+
|
615
|
+
/* The output weights is located right after the input weights in
|
616
|
+
* the weight array.
|
617
|
+
*/
|
618
|
+
cand_out_weights = weights + num_connections;
|
619
|
+
|
620
|
+
cand_out_slopes = ann->train_slopes + cand_it->first_con + num_connections;
|
621
|
+
for(j = 0; j < num_output; j++)
|
622
|
+
{
|
623
|
+
diff = (activation * cand_out_weights[j]) - output_train_errors[j];
|
624
|
+
#ifdef CASCADE_DEBUG_FULL
|
625
|
+
/* printf("diff = %f = (%f * %f) - %f;\n", diff, activation, cand_out_weights[j], output_train_errors[j]); */
|
626
|
+
#endif
|
627
|
+
cand_out_slopes[j] -= 2.0f * diff * activation;
|
628
|
+
#ifdef CASCADE_DEBUG_FULL
|
629
|
+
/* printf("cand_out_slopes[%d] <= %f += %f * %f;\n", j, cand_out_slopes[j], diff, activation); */
|
630
|
+
#endif
|
631
|
+
error_value += diff * cand_out_weights[j];
|
632
|
+
cand_score -= (diff * diff);
|
633
|
+
#ifdef CASCADE_DEBUG_FULL
|
634
|
+
/* printf("cand_score[%d][%d] = %f -= (%f * %f)\n", cand_it - first_cand, j, cand_score, diff, diff); */
|
635
|
+
|
636
|
+
printf("cand[%d]: error=%f, activation=%f, diff=%f, slope=%f\n", cand_it - first_cand,
|
637
|
+
output_train_errors[j], (activation * cand_out_weights[j]), diff,
|
638
|
+
-2.0 * diff * activation);
|
639
|
+
#endif
|
640
|
+
}
|
641
|
+
|
642
|
+
ann->cascade_candidate_scores[cand_it - first_cand] = cand_score;
|
643
|
+
error_value *= derived;
|
644
|
+
|
645
|
+
cand_slopes = ann->train_slopes + cand_it->first_con;
|
646
|
+
for(i = 0; i < num_connections; i++)
|
647
|
+
{
|
648
|
+
cand_slopes[i] -= error_value * neurons[i].value;
|
649
|
+
}
|
650
|
+
}
|
651
|
+
}
|
652
|
+
|
653
|
+
void fann_update_candidate_weights(struct fann *ann, unsigned int num_data)
|
654
|
+
{
|
655
|
+
struct fann_neuron *first_cand = (ann->last_layer - 1)->last_neuron + 1; /* there is an empty neuron between the actual neurons and the candidate neuron */
|
656
|
+
struct fann_neuron *last_cand = first_cand + fann_get_cascade_num_candidates(ann) - 1;
|
657
|
+
|
658
|
+
switch (ann->training_algorithm)
|
659
|
+
{
|
660
|
+
case FANN_TRAIN_RPROP:
|
661
|
+
fann_update_weights_irpropm(ann, first_cand->first_con,
|
662
|
+
last_cand->last_con + ann->num_output);
|
663
|
+
break;
|
664
|
+
case FANN_TRAIN_QUICKPROP:
|
665
|
+
fann_update_weights_quickprop(ann, num_data, first_cand->first_con,
|
666
|
+
last_cand->last_con + ann->num_output);
|
667
|
+
break;
|
668
|
+
case FANN_TRAIN_BATCH:
|
669
|
+
case FANN_TRAIN_INCREMENTAL:
|
670
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_USE_TRAIN_ALG);
|
671
|
+
break;
|
672
|
+
}
|
673
|
+
}
|
674
|
+
|
675
|
+
fann_type fann_train_candidates_epoch(struct fann *ann, struct fann_train_data *data)
|
676
|
+
{
|
677
|
+
unsigned int i, j;
|
678
|
+
unsigned int best_candidate;
|
679
|
+
fann_type best_score;
|
680
|
+
unsigned int num_cand = fann_get_cascade_num_candidates(ann);
|
681
|
+
fann_type *output_train_errors = ann->train_errors + (ann->total_neurons - ann->num_output);
|
682
|
+
struct fann_neuron *output_neurons = (ann->last_layer - 1)->first_neuron;
|
683
|
+
|
684
|
+
for(i = 0; i < num_cand; i++)
|
685
|
+
{
|
686
|
+
/* The ann->MSE_value is actually the sum squared error */
|
687
|
+
ann->cascade_candidate_scores[i] = ann->MSE_value;
|
688
|
+
}
|
689
|
+
/*printf("start score: %f\n", ann->MSE_value); */
|
690
|
+
|
691
|
+
for(i = 0; i < data->num_data; i++)
|
692
|
+
{
|
693
|
+
fann_run(ann, data->input[i]);
|
694
|
+
|
695
|
+
for(j = 0; j < ann->num_output; j++)
|
696
|
+
{
|
697
|
+
/* TODO only debug, but the error is in opposite direction, this might be usefull info */
|
698
|
+
/* if(output_train_errors[j] != (ann->output[j] - data->output[i][j])){
|
699
|
+
* printf("difference in calculated error at %f != %f; %f = %f - %f;\n", output_train_errors[j], (ann->output[j] - data->output[i][j]), output_train_errors[j], ann->output[j], data->output[i][j]);
|
700
|
+
* } */
|
701
|
+
|
702
|
+
/*
|
703
|
+
* output_train_errors[j] = (data->output[i][j] - ann->output[j])/2;
|
704
|
+
* output_train_errors[j] = ann->output[j] - data->output[i][j];
|
705
|
+
*/
|
706
|
+
|
707
|
+
output_train_errors[j] = (data->output[i][j] - ann->output[j]);
|
708
|
+
|
709
|
+
switch (output_neurons[j].activation_function)
|
710
|
+
{
|
711
|
+
case FANN_LINEAR_PIECE_SYMMETRIC:
|
712
|
+
case FANN_SIGMOID_SYMMETRIC:
|
713
|
+
case FANN_SIGMOID_SYMMETRIC_STEPWISE:
|
714
|
+
case FANN_THRESHOLD_SYMMETRIC:
|
715
|
+
case FANN_ELLIOT_SYMMETRIC:
|
716
|
+
case FANN_GAUSSIAN_SYMMETRIC:
|
717
|
+
case FANN_SIN_SYMMETRIC:
|
718
|
+
case FANN_COS_SYMMETRIC:
|
719
|
+
output_train_errors[j] /= 2.0;
|
720
|
+
break;
|
721
|
+
case FANN_LINEAR:
|
722
|
+
case FANN_THRESHOLD:
|
723
|
+
case FANN_SIGMOID:
|
724
|
+
case FANN_SIGMOID_STEPWISE:
|
725
|
+
case FANN_GAUSSIAN:
|
726
|
+
case FANN_GAUSSIAN_STEPWISE:
|
727
|
+
case FANN_ELLIOT:
|
728
|
+
case FANN_LINEAR_PIECE:
|
729
|
+
case FANN_SIN:
|
730
|
+
case FANN_COS:
|
731
|
+
break;
|
732
|
+
}
|
733
|
+
}
|
734
|
+
|
735
|
+
fann_update_candidate_slopes(ann);
|
736
|
+
}
|
737
|
+
|
738
|
+
fann_update_candidate_weights(ann, data->num_data);
|
739
|
+
|
740
|
+
/* find the best candidate score */
|
741
|
+
best_candidate = 0;
|
742
|
+
best_score = ann->cascade_candidate_scores[best_candidate];
|
743
|
+
for(i = 1; i < num_cand; i++)
|
744
|
+
{
|
745
|
+
/*struct fann_neuron *cand = ann->first_layer->first_neuron + ann->total_neurons + 1 + i;
|
746
|
+
* printf("candidate[%d] = activation: %s, steepness: %f, score: %f\n",
|
747
|
+
* i, FANN_ACTIVATIONFUNC_NAMES[cand->activation_function],
|
748
|
+
* cand->activation_steepness, ann->cascade_candidate_scores[i]); */
|
749
|
+
|
750
|
+
if(ann->cascade_candidate_scores[i] > best_score)
|
751
|
+
{
|
752
|
+
best_candidate = i;
|
753
|
+
best_score = ann->cascade_candidate_scores[best_candidate];
|
754
|
+
}
|
755
|
+
}
|
756
|
+
|
757
|
+
ann->cascade_best_candidate = ann->total_neurons + best_candidate + 1;
|
758
|
+
#ifdef CASCADE_DEBUG_FULL
|
759
|
+
printf("Best candidate[%d]: with score %f, real score: %f\n", best_candidate,
|
760
|
+
ann->MSE_value - best_score, best_score);
|
761
|
+
#endif
|
762
|
+
|
763
|
+
return best_score;
|
764
|
+
}
|
765
|
+
|
766
|
+
/* add a layer ad the position pointed to by *layer */
|
767
|
+
struct fann_layer *fann_add_layer(struct fann *ann, struct fann_layer *layer)
|
768
|
+
{
|
769
|
+
int layer_pos = layer - ann->first_layer;
|
770
|
+
int num_layers = ann->last_layer - ann->first_layer + 1;
|
771
|
+
int i;
|
772
|
+
|
773
|
+
/* allocate the layer */
|
774
|
+
struct fann_layer *layers =
|
775
|
+
(struct fann_layer *) realloc(ann->first_layer, num_layers * sizeof(struct fann_layer));
|
776
|
+
if(layers == NULL)
|
777
|
+
{
|
778
|
+
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
|
779
|
+
return NULL;
|
780
|
+
}
|
781
|
+
|
782
|
+
/* copy layers so that the free space is at the right location */
|
783
|
+
for(i = num_layers - 1; i >= layer_pos; i--)
|
784
|
+
{
|
785
|
+
layers[i] = layers[i - 1];
|
786
|
+
}
|
787
|
+
|
788
|
+
/* the newly allocated layer is empty */
|
789
|
+
layers[layer_pos].first_neuron = layers[layer_pos + 1].first_neuron;
|
790
|
+
layers[layer_pos].last_neuron = layers[layer_pos + 1].first_neuron;
|
791
|
+
|
792
|
+
/* Set the ann pointers correctly */
|
793
|
+
ann->first_layer = layers;
|
794
|
+
ann->last_layer = layers + num_layers;
|
795
|
+
|
796
|
+
#ifdef CASCADE_DEBUG_FULL
|
797
|
+
printf("add layer at pos %d\n", layer_pos);
|
798
|
+
#endif
|
799
|
+
|
800
|
+
return layers + layer_pos;
|
801
|
+
}
|
802
|
+
|
803
|
+
void fann_set_shortcut_connections(struct fann *ann)
|
804
|
+
{
|
805
|
+
struct fann_layer *layer_it;
|
806
|
+
struct fann_neuron *neuron_it, **neuron_pointers, *neurons;
|
807
|
+
unsigned int num_connections = 0, i;
|
808
|
+
|
809
|
+
neuron_pointers = ann->connections;
|
810
|
+
neurons = ann->first_layer->first_neuron;
|
811
|
+
|
812
|
+
for(layer_it = ann->first_layer + 1; layer_it != ann->last_layer; layer_it++)
|
813
|
+
{
|
814
|
+
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
815
|
+
{
|
816
|
+
|
817
|
+
neuron_pointers += num_connections;
|
818
|
+
num_connections = neuron_it->last_con - neuron_it->first_con;
|
819
|
+
|
820
|
+
for(i = 0; i != num_connections; i++)
|
821
|
+
{
|
822
|
+
neuron_pointers[i] = neurons + i;
|
823
|
+
}
|
824
|
+
}
|
825
|
+
}
|
826
|
+
}
|
827
|
+
|
828
|
+
void fann_add_candidate_neuron(struct fann *ann, struct fann_layer *layer)
|
829
|
+
{
|
830
|
+
unsigned int num_connections_in = layer->first_neuron - ann->first_layer->first_neuron;
|
831
|
+
unsigned int num_connections_out =
|
832
|
+
(ann->last_layer - 1)->last_neuron - (layer + 1)->first_neuron;
|
833
|
+
unsigned int num_connections_move = num_connections_out + num_connections_in;
|
834
|
+
|
835
|
+
unsigned int candidate_con, candidate_output_weight;
|
836
|
+
int i;
|
837
|
+
|
838
|
+
struct fann_layer *layer_it;
|
839
|
+
struct fann_neuron *neuron_it, *neuron_place, *candidate;
|
840
|
+
|
841
|
+
/* We know that there is enough room for the new neuron
|
842
|
+
* (the candidates are in the same arrays), so move
|
843
|
+
* the last neurons to make room for this neuron.
|
844
|
+
*/
|
845
|
+
|
846
|
+
/* first move the pointers to neurons in the layer structs */
|
847
|
+
for(layer_it = ann->last_layer - 1; layer_it != layer; layer_it--)
|
848
|
+
{
|
849
|
+
#ifdef CASCADE_DEBUG_FULL
|
850
|
+
printf("move neuron pointers in layer %d, first(%d -> %d), last(%d -> %d)\n",
|
851
|
+
layer_it - ann->first_layer,
|
852
|
+
layer_it->first_neuron - ann->first_layer->first_neuron,
|
853
|
+
layer_it->first_neuron - ann->first_layer->first_neuron + 1,
|
854
|
+
layer_it->last_neuron - ann->first_layer->first_neuron,
|
855
|
+
layer_it->last_neuron - ann->first_layer->first_neuron + 1);
|
856
|
+
#endif
|
857
|
+
layer_it->first_neuron++;
|
858
|
+
layer_it->last_neuron++;
|
859
|
+
}
|
860
|
+
|
861
|
+
/* also move the last neuron in the layer that needs the neuron added */
|
862
|
+
layer->last_neuron++;
|
863
|
+
|
864
|
+
/* this is the place that should hold the new neuron */
|
865
|
+
neuron_place = layer->last_neuron - 1;
|
866
|
+
|
867
|
+
#ifdef CASCADE_DEBUG_FULL
|
868
|
+
printf("num_connections_in=%d, num_connections_out=%d\n", num_connections_in,
|
869
|
+
num_connections_out);
|
870
|
+
#endif
|
871
|
+
|
872
|
+
candidate = ann->first_layer->first_neuron + ann->cascade_best_candidate;
|
873
|
+
|
874
|
+
/* the output weights for the candidates are located after the input weights */
|
875
|
+
candidate_output_weight = candidate->last_con;
|
876
|
+
|
877
|
+
/* move the actual output neurons and the indexes to the connection arrays */
|
878
|
+
for(neuron_it = (ann->last_layer - 1)->last_neuron - 1; neuron_it != neuron_place; neuron_it--)
|
879
|
+
{
|
880
|
+
#ifdef CASCADE_DEBUG_FULL
|
881
|
+
printf("move neuron %d -> %d\n", neuron_it - ann->first_layer->first_neuron - 1,
|
882
|
+
neuron_it - ann->first_layer->first_neuron);
|
883
|
+
#endif
|
884
|
+
*neuron_it = *(neuron_it - 1);
|
885
|
+
|
886
|
+
/* move the weights */
|
887
|
+
#ifdef CASCADE_DEBUG_FULL
|
888
|
+
printf("move weight[%d ... %d] -> weight[%d ... %d]\n", neuron_it->first_con,
|
889
|
+
neuron_it->last_con - 1, neuron_it->first_con + num_connections_move - 1,
|
890
|
+
neuron_it->last_con + num_connections_move - 2);
|
891
|
+
#endif
|
892
|
+
for(i = neuron_it->last_con - 1; i >= (int)neuron_it->first_con; i--)
|
893
|
+
{
|
894
|
+
#ifdef CASCADE_DEBUG_FULL
|
895
|
+
printf("move weight[%d] = weight[%d]\n", i + num_connections_move - 1, i);
|
896
|
+
#endif
|
897
|
+
ann->weights[i + num_connections_move - 1] = ann->weights[i];
|
898
|
+
}
|
899
|
+
|
900
|
+
/* move the indexes to weights */
|
901
|
+
neuron_it->last_con += num_connections_move;
|
902
|
+
num_connections_move--;
|
903
|
+
neuron_it->first_con += num_connections_move;
|
904
|
+
|
905
|
+
/* set the new weight to the newly allocated neuron */
|
906
|
+
ann->weights[neuron_it->last_con - 1] =
|
907
|
+
(ann->weights[candidate_output_weight]) * ann->cascade_weight_multiplier;
|
908
|
+
candidate_output_weight++;
|
909
|
+
}
|
910
|
+
|
911
|
+
/* Now inititalize the actual neuron */
|
912
|
+
neuron_place->value = 0;
|
913
|
+
neuron_place->sum = 0;
|
914
|
+
neuron_place->activation_function = candidate->activation_function;
|
915
|
+
neuron_place->activation_steepness = candidate->activation_steepness;
|
916
|
+
neuron_place->last_con = (neuron_place + 1)->first_con;
|
917
|
+
neuron_place->first_con = neuron_place->last_con - num_connections_in;
|
918
|
+
#ifdef CASCADE_DEBUG_FULL
|
919
|
+
printf("neuron[%d] = weights[%d ... %d] activation: %s, steepness: %f\n",
|
920
|
+
neuron_place - ann->first_layer->first_neuron, neuron_place->first_con,
|
921
|
+
neuron_place->last_con - 1, FANN_ACTIVATIONFUNC_NAMES[neuron_place->activation_function],
|
922
|
+
neuron_place->activation_steepness);/* TODO remove */
|
923
|
+
#endif
|
924
|
+
|
925
|
+
candidate_con = candidate->first_con;
|
926
|
+
/* initialize the input weights at random */
|
927
|
+
#ifdef CASCADE_DEBUG_FULL
|
928
|
+
printf("move cand weights[%d ... %d] -> [%d ... %d]\n", candidate_con,
|
929
|
+
candidate_con + num_connections_in - 1, neuron_place->first_con,
|
930
|
+
neuron_place->last_con - 1);
|
931
|
+
#endif
|
932
|
+
|
933
|
+
for(i = 0; i < (int)num_connections_in; i++)
|
934
|
+
{
|
935
|
+
ann->weights[i + neuron_place->first_con] = ann->weights[i + candidate_con];
|
936
|
+
#ifdef CASCADE_DEBUG_FULL
|
937
|
+
printf("move weights[%d] -> weights[%d] (%f)\n", i + candidate_con,
|
938
|
+
i + neuron_place->first_con, ann->weights[i + neuron_place->first_con]);
|
939
|
+
#endif
|
940
|
+
}
|
941
|
+
|
942
|
+
/* Change some of main variables */
|
943
|
+
ann->total_neurons++;
|
944
|
+
ann->total_connections += num_connections_in + num_connections_out;
|
945
|
+
|
946
|
+
return;
|
947
|
+
}
|
948
|
+
|
949
|
+
void fann_install_candidate(struct fann *ann)
|
950
|
+
{
|
951
|
+
struct fann_layer *layer;
|
952
|
+
|
953
|
+
layer = fann_add_layer(ann, ann->last_layer - 1);
|
954
|
+
fann_add_candidate_neuron(ann, layer);
|
955
|
+
return;
|
956
|
+
}
|
957
|
+
|
958
|
+
#endif /* FIXEDFANN */
|
959
|
+
|
960
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_num_candidates(struct fann *ann)
|
961
|
+
{
|
962
|
+
return ann->cascade_activation_functions_count *
|
963
|
+
ann->cascade_activation_steepnesses_count *
|
964
|
+
ann->cascade_num_candidate_groups;
|
965
|
+
}
|
966
|
+
|
967
|
+
FANN_GET_SET(float, cascade_output_change_fraction)
|
968
|
+
FANN_GET_SET(unsigned int, cascade_output_stagnation_epochs)
|
969
|
+
FANN_GET_SET(float, cascade_candidate_change_fraction)
|
970
|
+
FANN_GET_SET(unsigned int, cascade_candidate_stagnation_epochs)
|
971
|
+
FANN_GET_SET(unsigned int, cascade_num_candidate_groups)
|
972
|
+
FANN_GET_SET(fann_type, cascade_weight_multiplier)
|
973
|
+
FANN_GET_SET(fann_type, cascade_candidate_limit)
|
974
|
+
FANN_GET_SET(unsigned int, cascade_max_out_epochs)
|
975
|
+
FANN_GET_SET(unsigned int, cascade_max_cand_epochs)
|
976
|
+
|
977
|
+
FANN_GET(unsigned int, cascade_activation_functions_count)
|
978
|
+
FANN_GET(enum fann_activationfunc_enum *, cascade_activation_functions)
|
979
|
+
|
980
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_activation_functions(struct fann *ann,
|
981
|
+
enum fann_activationfunc_enum *
|
982
|
+
cascade_activation_functions,
|
983
|
+
unsigned int
|
984
|
+
cascade_activation_functions_count)
|
985
|
+
{
|
986
|
+
if(ann->cascade_activation_functions_count != cascade_activation_functions_count)
|
987
|
+
{
|
988
|
+
ann->cascade_activation_functions_count = cascade_activation_functions_count;
|
989
|
+
|
990
|
+
/* reallocate mem */
|
991
|
+
ann->cascade_activation_functions =
|
992
|
+
(enum fann_activationfunc_enum *)realloc(ann->cascade_activation_functions,
|
993
|
+
ann->cascade_activation_functions_count * sizeof(enum fann_activationfunc_enum));
|
994
|
+
if(ann->cascade_activation_functions == NULL)
|
995
|
+
{
|
996
|
+
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
997
|
+
return;
|
998
|
+
}
|
999
|
+
}
|
1000
|
+
|
1001
|
+
memmove(ann->cascade_activation_functions, cascade_activation_functions,
|
1002
|
+
ann->cascade_activation_functions_count * sizeof(enum fann_activationfunc_enum));
|
1003
|
+
}
|
1004
|
+
|
1005
|
+
FANN_GET(unsigned int, cascade_activation_steepnesses_count)
|
1006
|
+
FANN_GET(fann_type *, cascade_activation_steepnesses)
|
1007
|
+
|
1008
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_activation_steepnesses(struct fann *ann,
|
1009
|
+
fann_type *
|
1010
|
+
cascade_activation_steepnesses,
|
1011
|
+
unsigned int
|
1012
|
+
cascade_activation_steepnesses_count)
|
1013
|
+
{
|
1014
|
+
if(ann->cascade_activation_steepnesses_count != cascade_activation_steepnesses_count)
|
1015
|
+
{
|
1016
|
+
ann->cascade_activation_steepnesses_count = cascade_activation_steepnesses_count;
|
1017
|
+
|
1018
|
+
/* reallocate mem */
|
1019
|
+
ann->cascade_activation_steepnesses =
|
1020
|
+
(fann_type *)realloc(ann->cascade_activation_steepnesses,
|
1021
|
+
ann->cascade_activation_steepnesses_count * sizeof(fann_type));
|
1022
|
+
if(ann->cascade_activation_steepnesses == NULL)
|
1023
|
+
{
|
1024
|
+
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
1025
|
+
return;
|
1026
|
+
}
|
1027
|
+
}
|
1028
|
+
|
1029
|
+
memmove(ann->cascade_activation_steepnesses, cascade_activation_steepnesses,
|
1030
|
+
ann->cascade_activation_steepnesses_count * sizeof(fann_type));
|
1031
|
+
}
|