ruby-fann 0.7.10 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +6 -1
- data/License.txt +1 -1
- data/Manifest.txt +22 -1
- data/README.txt +0 -1
- data/Rakefile +0 -0
- data/config/hoe.rb +0 -0
- data/config/requirements.rb +0 -0
- data/ext/ruby_fann/MANIFEST +0 -0
- data/ext/ruby_fann/Makefile +36 -28
- data/ext/ruby_fann/doublefann.c +30 -0
- data/ext/ruby_fann/doublefann.h +33 -0
- data/ext/ruby_fann/extconf.rb +9 -5
- data/ext/ruby_fann/fann.c +1552 -0
- data/ext/ruby_fann/fann_activation.h +144 -0
- data/ext/ruby_fann/fann_augment.h +0 -0
- data/ext/ruby_fann/fann_cascade.c +1031 -0
- data/ext/ruby_fann/fann_cascade.h +503 -0
- data/ext/ruby_fann/fann_data.h +799 -0
- data/ext/ruby_fann/fann_error.c +204 -0
- data/ext/ruby_fann/fann_error.h +161 -0
- data/ext/ruby_fann/fann_internal.h +148 -0
- data/ext/ruby_fann/fann_io.c +762 -0
- data/ext/ruby_fann/fann_io.h +100 -0
- data/ext/ruby_fann/fann_train.c +962 -0
- data/ext/ruby_fann/fann_train.h +1203 -0
- data/ext/ruby_fann/fann_train_data.c +1231 -0
- data/ext/ruby_fann/neural_network.c +0 -0
- data/lib/ruby_fann/neurotica.rb +0 -0
- data/lib/ruby_fann/version.rb +3 -3
- data/lib/ruby_fann.rb +0 -0
- data/neurotica1.png +0 -0
- data/neurotica2.vrml +18 -18
- data/setup.rb +0 -0
- data/tasks/deployment.rake +0 -0
- data/tasks/environment.rake +0 -0
- data/tasks/website.rake +0 -0
- data/test/test.train +0 -0
- data/test/test_helper.rb +0 -0
- data/test/test_neurotica.rb +0 -0
- data/test/test_ruby_fann.rb +0 -0
- data/test/test_ruby_fann_functional.rb +0 -0
- data/verify.train +0 -0
- data/website/index.html +42 -92
- data/website/index.txt +0 -0
- data/website/javascripts/rounded_corners_lite.inc.js +0 -0
- data/website/stylesheets/screen.css +0 -0
- data/website/template.rhtml +0 -0
- data/xor.train +0 -0
- data/xor_cascade.net +2 -2
- data/xor_float.net +1 -1
- metadata +22 -6
- data/log/debug.log +0 -0
@@ -0,0 +1,1231 @@
|
|
1
|
+
/*
|
2
|
+
* Fast Artificial Neural Network Library (fann) Copyright (C) 2003
|
3
|
+
* Steffen Nissen (lukesky@diku.dk)
|
4
|
+
*
|
5
|
+
* This library is free software; you can redistribute it and/or modify it
|
6
|
+
* under the terms of the GNU Lesser General Public License as published
|
7
|
+
* by the Free Software Foundation; either version 2.1 of the License, or
|
8
|
+
* (at your option) any later version.
|
9
|
+
*
|
10
|
+
* This library is distributed in the hope that it will be useful, but
|
11
|
+
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
12
|
+
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13
|
+
* Lesser General Public License for more details.
|
14
|
+
*
|
15
|
+
* You should have received a copy of the GNU Lesser General Public
|
16
|
+
* License along with this library; if not, write to the Free Software
|
17
|
+
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18
|
+
*/
|
19
|
+
|
20
|
+
#include <stdio.h>
|
21
|
+
#include <stdlib.h>
|
22
|
+
#include <stdarg.h>
|
23
|
+
#include <string.h>
|
24
|
+
|
25
|
+
#include "config.h"
|
26
|
+
#include "fann.h"
|
27
|
+
|
28
|
+
/*
|
29
|
+
* Reads training data from a file.
|
30
|
+
*/
|
31
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_read_train_from_file(const char *configuration_file)
|
32
|
+
{
|
33
|
+
struct fann_train_data *data;
|
34
|
+
FILE *file = fopen(configuration_file, "r");
|
35
|
+
|
36
|
+
if(!file)
|
37
|
+
{
|
38
|
+
fann_error(NULL, FANN_E_CANT_OPEN_CONFIG_R, configuration_file);
|
39
|
+
return NULL;
|
40
|
+
}
|
41
|
+
|
42
|
+
data = fann_read_train_from_fd(file, configuration_file);
|
43
|
+
fclose(file);
|
44
|
+
return data;
|
45
|
+
}
|
46
|
+
|
47
|
+
/*
|
48
|
+
* Save training data to a file
|
49
|
+
*/
|
50
|
+
FANN_EXTERNAL int FANN_API fann_save_train(struct fann_train_data *data, const char *filename)
|
51
|
+
{
|
52
|
+
return fann_save_train_internal(data, filename, 0, 0);
|
53
|
+
}
|
54
|
+
|
55
|
+
/*
|
56
|
+
* Save training data to a file in fixed point algebra. (Good for testing
|
57
|
+
* a network in fixed point)
|
58
|
+
*/
|
59
|
+
FANN_EXTERNAL int FANN_API fann_save_train_to_fixed(struct fann_train_data *data, const char *filename,
|
60
|
+
unsigned int decimal_point)
|
61
|
+
{
|
62
|
+
return fann_save_train_internal(data, filename, 1, decimal_point);
|
63
|
+
}
|
64
|
+
|
65
|
+
/*
|
66
|
+
* deallocate the train data structure.
|
67
|
+
*/
|
68
|
+
FANN_EXTERNAL void FANN_API fann_destroy_train(struct fann_train_data *data)
|
69
|
+
{
|
70
|
+
if(data == NULL)
|
71
|
+
return;
|
72
|
+
if(data->input != NULL)
|
73
|
+
fann_safe_free(data->input[0]);
|
74
|
+
if(data->output != NULL)
|
75
|
+
fann_safe_free(data->output[0]);
|
76
|
+
fann_safe_free(data->input);
|
77
|
+
fann_safe_free(data->output);
|
78
|
+
fann_safe_free(data);
|
79
|
+
}
|
80
|
+
|
81
|
+
/*
|
82
|
+
* Test a set of training data and calculate the MSE
|
83
|
+
*/
|
84
|
+
FANN_EXTERNAL float FANN_API fann_test_data(struct fann *ann, struct fann_train_data *data)
|
85
|
+
{
|
86
|
+
unsigned int i;
|
87
|
+
|
88
|
+
fann_reset_MSE(ann);
|
89
|
+
|
90
|
+
for(i = 0; i != data->num_data; i++)
|
91
|
+
{
|
92
|
+
fann_test(ann, data->input[i], data->output[i]);
|
93
|
+
}
|
94
|
+
|
95
|
+
return fann_get_MSE(ann);
|
96
|
+
}
|
97
|
+
|
98
|
+
/*
|
99
|
+
* Creates training data from a callback function.
|
100
|
+
*/
|
101
|
+
FANN_EXTERNAL struct fann_train_data * FANN_API fann_create_train_from_callback(unsigned int num_data,
|
102
|
+
unsigned int num_input,
|
103
|
+
unsigned int num_output,
|
104
|
+
void (FANN_API *user_function)( unsigned int,
|
105
|
+
unsigned int,
|
106
|
+
unsigned int,
|
107
|
+
fann_type * ,
|
108
|
+
fann_type * ))
|
109
|
+
{
|
110
|
+
unsigned int i;
|
111
|
+
fann_type *data_input, *data_output;
|
112
|
+
struct fann_train_data *data = (struct fann_train_data *)
|
113
|
+
malloc(sizeof(struct fann_train_data));
|
114
|
+
|
115
|
+
if(data == NULL){
|
116
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
117
|
+
return NULL;
|
118
|
+
}
|
119
|
+
|
120
|
+
fann_init_error_data((struct fann_error *) data);
|
121
|
+
|
122
|
+
data->num_data = num_data;
|
123
|
+
data->num_input = num_input;
|
124
|
+
data->num_output = num_output;
|
125
|
+
|
126
|
+
data->input = (fann_type **) calloc(num_data, sizeof(fann_type *));
|
127
|
+
if(data->input == NULL)
|
128
|
+
{
|
129
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
130
|
+
fann_destroy_train(data);
|
131
|
+
return NULL;
|
132
|
+
}
|
133
|
+
|
134
|
+
data->output = (fann_type **) calloc(num_data, sizeof(fann_type *));
|
135
|
+
if(data->output == NULL)
|
136
|
+
{
|
137
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
138
|
+
fann_destroy_train(data);
|
139
|
+
return NULL;
|
140
|
+
}
|
141
|
+
|
142
|
+
data_input = (fann_type *) calloc(num_input * num_data, sizeof(fann_type));
|
143
|
+
if(data_input == NULL)
|
144
|
+
{
|
145
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
146
|
+
fann_destroy_train(data);
|
147
|
+
return NULL;
|
148
|
+
}
|
149
|
+
|
150
|
+
data_output = (fann_type *) calloc(num_output * num_data, sizeof(fann_type));
|
151
|
+
if(data_output == NULL)
|
152
|
+
{
|
153
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
154
|
+
fann_destroy_train(data);
|
155
|
+
return NULL;
|
156
|
+
}
|
157
|
+
|
158
|
+
for( i = 0; i != num_data; i++)
|
159
|
+
{
|
160
|
+
data->input[i] = data_input;
|
161
|
+
data_input += num_input;
|
162
|
+
|
163
|
+
data->output[i] = data_output;
|
164
|
+
data_output += num_output;
|
165
|
+
|
166
|
+
(*user_function)(i, num_input, num_output, data->input[i],data->output[i] );
|
167
|
+
}
|
168
|
+
|
169
|
+
return data;
|
170
|
+
}
|
171
|
+
|
172
|
+
#ifndef FIXEDFANN
|
173
|
+
|
174
|
+
/*
|
175
|
+
* Internal train function
|
176
|
+
*/
|
177
|
+
float fann_train_epoch_quickprop(struct fann *ann, struct fann_train_data *data)
|
178
|
+
{
|
179
|
+
unsigned int i;
|
180
|
+
|
181
|
+
if(ann->prev_train_slopes == NULL)
|
182
|
+
{
|
183
|
+
fann_clear_train_arrays(ann);
|
184
|
+
}
|
185
|
+
|
186
|
+
fann_reset_MSE(ann);
|
187
|
+
|
188
|
+
for(i = 0; i < data->num_data; i++)
|
189
|
+
{
|
190
|
+
fann_run(ann, data->input[i]);
|
191
|
+
fann_compute_MSE(ann, data->output[i]);
|
192
|
+
fann_backpropagate_MSE(ann);
|
193
|
+
fann_update_slopes_batch(ann, ann->first_layer + 1, ann->last_layer - 1);
|
194
|
+
}
|
195
|
+
fann_update_weights_quickprop(ann, data->num_data, 0, ann->total_connections);
|
196
|
+
|
197
|
+
return fann_get_MSE(ann);
|
198
|
+
}
|
199
|
+
|
200
|
+
/*
|
201
|
+
* Internal train function
|
202
|
+
*/
|
203
|
+
float fann_train_epoch_irpropm(struct fann *ann, struct fann_train_data *data)
|
204
|
+
{
|
205
|
+
unsigned int i;
|
206
|
+
|
207
|
+
if(ann->prev_train_slopes == NULL)
|
208
|
+
{
|
209
|
+
fann_clear_train_arrays(ann);
|
210
|
+
}
|
211
|
+
|
212
|
+
fann_reset_MSE(ann);
|
213
|
+
|
214
|
+
for(i = 0; i < data->num_data; i++)
|
215
|
+
{
|
216
|
+
fann_run(ann, data->input[i]);
|
217
|
+
fann_compute_MSE(ann, data->output[i]);
|
218
|
+
fann_backpropagate_MSE(ann);
|
219
|
+
fann_update_slopes_batch(ann, ann->first_layer + 1, ann->last_layer - 1);
|
220
|
+
}
|
221
|
+
|
222
|
+
fann_update_weights_irpropm(ann, 0, ann->total_connections);
|
223
|
+
|
224
|
+
return fann_get_MSE(ann);
|
225
|
+
}
|
226
|
+
|
227
|
+
/*
|
228
|
+
* Internal train function
|
229
|
+
*/
|
230
|
+
float fann_train_epoch_batch(struct fann *ann, struct fann_train_data *data)
|
231
|
+
{
|
232
|
+
unsigned int i;
|
233
|
+
|
234
|
+
fann_reset_MSE(ann);
|
235
|
+
|
236
|
+
for(i = 0; i < data->num_data; i++)
|
237
|
+
{
|
238
|
+
fann_run(ann, data->input[i]);
|
239
|
+
fann_compute_MSE(ann, data->output[i]);
|
240
|
+
fann_backpropagate_MSE(ann);
|
241
|
+
fann_update_slopes_batch(ann, ann->first_layer + 1, ann->last_layer - 1);
|
242
|
+
}
|
243
|
+
|
244
|
+
fann_update_weights_batch(ann, data->num_data, 0, ann->total_connections);
|
245
|
+
|
246
|
+
return fann_get_MSE(ann);
|
247
|
+
}
|
248
|
+
|
249
|
+
/*
|
250
|
+
* Internal train function
|
251
|
+
*/
|
252
|
+
float fann_train_epoch_incremental(struct fann *ann, struct fann_train_data *data)
|
253
|
+
{
|
254
|
+
unsigned int i;
|
255
|
+
|
256
|
+
fann_reset_MSE(ann);
|
257
|
+
|
258
|
+
for(i = 0; i != data->num_data; i++)
|
259
|
+
{
|
260
|
+
fann_train(ann, data->input[i], data->output[i]);
|
261
|
+
}
|
262
|
+
|
263
|
+
return fann_get_MSE(ann);
|
264
|
+
}
|
265
|
+
|
266
|
+
/*
|
267
|
+
* Train for one epoch with the selected training algorithm
|
268
|
+
*/
|
269
|
+
FANN_EXTERNAL float FANN_API fann_train_epoch(struct fann *ann, struct fann_train_data *data)
|
270
|
+
{
|
271
|
+
switch (ann->training_algorithm)
|
272
|
+
{
|
273
|
+
case FANN_TRAIN_QUICKPROP:
|
274
|
+
return fann_train_epoch_quickprop(ann, data);
|
275
|
+
case FANN_TRAIN_RPROP:
|
276
|
+
return fann_train_epoch_irpropm(ann, data);
|
277
|
+
case FANN_TRAIN_BATCH:
|
278
|
+
return fann_train_epoch_batch(ann, data);
|
279
|
+
case FANN_TRAIN_INCREMENTAL:
|
280
|
+
return fann_train_epoch_incremental(ann, data);
|
281
|
+
}
|
282
|
+
return 0;
|
283
|
+
}
|
284
|
+
|
285
|
+
FANN_EXTERNAL void FANN_API fann_train_on_data(struct fann *ann, struct fann_train_data *data,
|
286
|
+
unsigned int max_epochs,
|
287
|
+
unsigned int epochs_between_reports,
|
288
|
+
float desired_error)
|
289
|
+
{
|
290
|
+
float error;
|
291
|
+
unsigned int i;
|
292
|
+
int desired_error_reached;
|
293
|
+
|
294
|
+
#ifdef DEBUG
|
295
|
+
printf("Training with %s\n", FANN_TRAIN_NAMES[ann->training_algorithm]);
|
296
|
+
#endif
|
297
|
+
|
298
|
+
if(epochs_between_reports && ann->callback == NULL)
|
299
|
+
{
|
300
|
+
printf("Max epochs %8d. Desired error: %.10f.\n", max_epochs, desired_error);
|
301
|
+
}
|
302
|
+
|
303
|
+
for(i = 1; i <= max_epochs; i++)
|
304
|
+
{
|
305
|
+
/*
|
306
|
+
* train
|
307
|
+
*/
|
308
|
+
error = fann_train_epoch(ann, data);
|
309
|
+
desired_error_reached = fann_desired_error_reached(ann, desired_error);
|
310
|
+
|
311
|
+
/*
|
312
|
+
* print current output
|
313
|
+
*/
|
314
|
+
if(epochs_between_reports &&
|
315
|
+
(i % epochs_between_reports == 0 || i == max_epochs || i == 1 ||
|
316
|
+
desired_error_reached == 0))
|
317
|
+
{
|
318
|
+
if(ann->callback == NULL)
|
319
|
+
{
|
320
|
+
printf("Epochs %8d. Current error: %.10f. Bit fail %d.\n", i, error,
|
321
|
+
ann->num_bit_fail);
|
322
|
+
}
|
323
|
+
else if(((*ann->callback)(ann, data, max_epochs, epochs_between_reports,
|
324
|
+
desired_error, i)) == -1)
|
325
|
+
{
|
326
|
+
/*
|
327
|
+
* you can break the training by returning -1
|
328
|
+
*/
|
329
|
+
break;
|
330
|
+
}
|
331
|
+
}
|
332
|
+
|
333
|
+
if(desired_error_reached == 0)
|
334
|
+
break;
|
335
|
+
}
|
336
|
+
}
|
337
|
+
|
338
|
+
FANN_EXTERNAL void FANN_API fann_train_on_file(struct fann *ann, const char *filename,
|
339
|
+
unsigned int max_epochs,
|
340
|
+
unsigned int epochs_between_reports,
|
341
|
+
float desired_error)
|
342
|
+
{
|
343
|
+
struct fann_train_data *data = fann_read_train_from_file(filename);
|
344
|
+
|
345
|
+
if(data == NULL)
|
346
|
+
{
|
347
|
+
return;
|
348
|
+
}
|
349
|
+
fann_train_on_data(ann, data, max_epochs, epochs_between_reports, desired_error);
|
350
|
+
fann_destroy_train(data);
|
351
|
+
}
|
352
|
+
|
353
|
+
#endif
|
354
|
+
|
355
|
+
/*
|
356
|
+
* shuffles training data, randomizing the order
|
357
|
+
*/
|
358
|
+
FANN_EXTERNAL void FANN_API fann_shuffle_train_data(struct fann_train_data *train_data)
|
359
|
+
{
|
360
|
+
unsigned int dat = 0, elem, swap;
|
361
|
+
fann_type temp;
|
362
|
+
|
363
|
+
for(; dat < train_data->num_data; dat++)
|
364
|
+
{
|
365
|
+
swap = (unsigned int) (rand() % train_data->num_data);
|
366
|
+
if(swap != dat)
|
367
|
+
{
|
368
|
+
for(elem = 0; elem < train_data->num_input; elem++)
|
369
|
+
{
|
370
|
+
temp = train_data->input[dat][elem];
|
371
|
+
train_data->input[dat][elem] = train_data->input[swap][elem];
|
372
|
+
train_data->input[swap][elem] = temp;
|
373
|
+
}
|
374
|
+
for(elem = 0; elem < train_data->num_output; elem++)
|
375
|
+
{
|
376
|
+
temp = train_data->output[dat][elem];
|
377
|
+
train_data->output[dat][elem] = train_data->output[swap][elem];
|
378
|
+
train_data->output[swap][elem] = temp;
|
379
|
+
}
|
380
|
+
}
|
381
|
+
}
|
382
|
+
}
|
383
|
+
|
384
|
+
/*
|
385
|
+
* INTERNAL FUNCTION Scales data to a specific range
|
386
|
+
*/
|
387
|
+
void fann_scale_data(fann_type ** data, unsigned int num_data, unsigned int num_elem,
|
388
|
+
fann_type new_min, fann_type new_max)
|
389
|
+
{
|
390
|
+
unsigned int dat, elem;
|
391
|
+
fann_type old_min, old_max, temp, old_span, new_span, factor;
|
392
|
+
|
393
|
+
old_min = old_max = data[0][0];
|
394
|
+
|
395
|
+
/*
|
396
|
+
* first calculate min and max
|
397
|
+
*/
|
398
|
+
for(dat = 0; dat < num_data; dat++)
|
399
|
+
{
|
400
|
+
for(elem = 0; elem < num_elem; elem++)
|
401
|
+
{
|
402
|
+
temp = data[dat][elem];
|
403
|
+
if(temp < old_min)
|
404
|
+
old_min = temp;
|
405
|
+
else if(temp > old_max)
|
406
|
+
old_max = temp;
|
407
|
+
}
|
408
|
+
}
|
409
|
+
|
410
|
+
old_span = old_max - old_min;
|
411
|
+
new_span = new_max - new_min;
|
412
|
+
factor = new_span / old_span;
|
413
|
+
/*printf("max %f, min %f, factor %f\n", old_max, old_min, factor);*/
|
414
|
+
|
415
|
+
for(dat = 0; dat < num_data; dat++)
|
416
|
+
{
|
417
|
+
for(elem = 0; elem < num_elem; elem++)
|
418
|
+
{
|
419
|
+
temp = (data[dat][elem] - old_min) * factor + new_min;
|
420
|
+
if(temp < new_min)
|
421
|
+
{
|
422
|
+
data[dat][elem] = new_min;
|
423
|
+
/*
|
424
|
+
* printf("error %f < %f\n", temp, new_min);
|
425
|
+
*/
|
426
|
+
}
|
427
|
+
else if(temp > new_max)
|
428
|
+
{
|
429
|
+
data[dat][elem] = new_max;
|
430
|
+
/*
|
431
|
+
* printf("error %f > %f\n", temp, new_max);
|
432
|
+
*/
|
433
|
+
}
|
434
|
+
else
|
435
|
+
{
|
436
|
+
data[dat][elem] = temp;
|
437
|
+
}
|
438
|
+
}
|
439
|
+
}
|
440
|
+
}
|
441
|
+
|
442
|
+
/*
|
443
|
+
* Scales the inputs in the training data to the specified range
|
444
|
+
*/
|
445
|
+
FANN_EXTERNAL void FANN_API fann_scale_input_train_data(struct fann_train_data *train_data,
|
446
|
+
fann_type new_min, fann_type new_max)
|
447
|
+
{
|
448
|
+
fann_scale_data(train_data->input, train_data->num_data, train_data->num_input, new_min,
|
449
|
+
new_max);
|
450
|
+
}
|
451
|
+
|
452
|
+
/*
|
453
|
+
* Scales the inputs in the training data to the specified range
|
454
|
+
*/
|
455
|
+
FANN_EXTERNAL void FANN_API fann_scale_output_train_data(struct fann_train_data *train_data,
|
456
|
+
fann_type new_min, fann_type new_max)
|
457
|
+
{
|
458
|
+
fann_scale_data(train_data->output, train_data->num_data, train_data->num_output, new_min,
|
459
|
+
new_max);
|
460
|
+
}
|
461
|
+
|
462
|
+
/*
|
463
|
+
* Scales the inputs in the training data to the specified range
|
464
|
+
*/
|
465
|
+
FANN_EXTERNAL void FANN_API fann_scale_train_data(struct fann_train_data *train_data,
|
466
|
+
fann_type new_min, fann_type new_max)
|
467
|
+
{
|
468
|
+
fann_scale_data(train_data->input, train_data->num_data, train_data->num_input, new_min,
|
469
|
+
new_max);
|
470
|
+
fann_scale_data(train_data->output, train_data->num_data, train_data->num_output, new_min,
|
471
|
+
new_max);
|
472
|
+
}
|
473
|
+
|
474
|
+
/*
|
475
|
+
* merges training data into a single struct.
|
476
|
+
*/
|
477
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_merge_train_data(struct fann_train_data *data1,
|
478
|
+
struct fann_train_data *data2)
|
479
|
+
{
|
480
|
+
unsigned int i;
|
481
|
+
fann_type *data_input, *data_output;
|
482
|
+
struct fann_train_data *dest =
|
483
|
+
(struct fann_train_data *) malloc(sizeof(struct fann_train_data));
|
484
|
+
|
485
|
+
if(dest == NULL)
|
486
|
+
{
|
487
|
+
fann_error((struct fann_error*)data1, FANN_E_CANT_ALLOCATE_MEM);
|
488
|
+
return NULL;
|
489
|
+
}
|
490
|
+
|
491
|
+
if((data1->num_input != data2->num_input) || (data1->num_output != data2->num_output))
|
492
|
+
{
|
493
|
+
fann_error((struct fann_error*)data1, FANN_E_TRAIN_DATA_MISMATCH);
|
494
|
+
return NULL;
|
495
|
+
}
|
496
|
+
|
497
|
+
fann_init_error_data((struct fann_error *) dest);
|
498
|
+
dest->error_log = data1->error_log;
|
499
|
+
|
500
|
+
dest->num_data = data1->num_data+data2->num_data;
|
501
|
+
dest->num_input = data1->num_input;
|
502
|
+
dest->num_output = data1->num_output;
|
503
|
+
dest->input = (fann_type **) calloc(dest->num_data, sizeof(fann_type *));
|
504
|
+
if(dest->input == NULL)
|
505
|
+
{
|
506
|
+
fann_error((struct fann_error*)data1, FANN_E_CANT_ALLOCATE_MEM);
|
507
|
+
fann_destroy_train(dest);
|
508
|
+
return NULL;
|
509
|
+
}
|
510
|
+
|
511
|
+
dest->output = (fann_type **) calloc(dest->num_data, sizeof(fann_type *));
|
512
|
+
if(dest->output == NULL)
|
513
|
+
{
|
514
|
+
fann_error((struct fann_error*)data1, FANN_E_CANT_ALLOCATE_MEM);
|
515
|
+
fann_destroy_train(dest);
|
516
|
+
return NULL;
|
517
|
+
}
|
518
|
+
|
519
|
+
data_input = (fann_type *) calloc(dest->num_input * dest->num_data, sizeof(fann_type));
|
520
|
+
if(data_input == NULL)
|
521
|
+
{
|
522
|
+
fann_error((struct fann_error*)data1, FANN_E_CANT_ALLOCATE_MEM);
|
523
|
+
fann_destroy_train(dest);
|
524
|
+
return NULL;
|
525
|
+
}
|
526
|
+
memcpy(data_input, data1->input[0], dest->num_input * data1->num_data * sizeof(fann_type));
|
527
|
+
memcpy(data_input + (dest->num_input*data1->num_data),
|
528
|
+
data2->input[0], dest->num_input * data2->num_data * sizeof(fann_type));
|
529
|
+
|
530
|
+
data_output = (fann_type *) calloc(dest->num_output * dest->num_data, sizeof(fann_type));
|
531
|
+
if(data_output == NULL)
|
532
|
+
{
|
533
|
+
fann_error((struct fann_error*)data1, FANN_E_CANT_ALLOCATE_MEM);
|
534
|
+
fann_destroy_train(dest);
|
535
|
+
return NULL;
|
536
|
+
}
|
537
|
+
memcpy(data_output, data1->output[0], dest->num_output * data1->num_data * sizeof(fann_type));
|
538
|
+
memcpy(data_output + (dest->num_output*data1->num_data),
|
539
|
+
data2->output[0], dest->num_output * data2->num_data * sizeof(fann_type));
|
540
|
+
|
541
|
+
for(i = 0; i != dest->num_data; i++)
|
542
|
+
{
|
543
|
+
dest->input[i] = data_input;
|
544
|
+
data_input += dest->num_input;
|
545
|
+
dest->output[i] = data_output;
|
546
|
+
data_output += dest->num_output;
|
547
|
+
}
|
548
|
+
return dest;
|
549
|
+
}
|
550
|
+
|
551
|
+
/*
|
552
|
+
* return a copy of a fann_train_data struct
|
553
|
+
*/
|
554
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_duplicate_train_data(struct fann_train_data
|
555
|
+
*data)
|
556
|
+
{
|
557
|
+
unsigned int i;
|
558
|
+
fann_type *data_input, *data_output;
|
559
|
+
struct fann_train_data *dest =
|
560
|
+
(struct fann_train_data *) malloc(sizeof(struct fann_train_data));
|
561
|
+
|
562
|
+
if(dest == NULL)
|
563
|
+
{
|
564
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
565
|
+
return NULL;
|
566
|
+
}
|
567
|
+
|
568
|
+
fann_init_error_data((struct fann_error *) dest);
|
569
|
+
dest->error_log = data->error_log;
|
570
|
+
|
571
|
+
dest->num_data = data->num_data;
|
572
|
+
dest->num_input = data->num_input;
|
573
|
+
dest->num_output = data->num_output;
|
574
|
+
dest->input = (fann_type **) calloc(dest->num_data, sizeof(fann_type *));
|
575
|
+
if(dest->input == NULL)
|
576
|
+
{
|
577
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
578
|
+
fann_destroy_train(dest);
|
579
|
+
return NULL;
|
580
|
+
}
|
581
|
+
|
582
|
+
dest->output = (fann_type **) calloc(dest->num_data, sizeof(fann_type *));
|
583
|
+
if(dest->output == NULL)
|
584
|
+
{
|
585
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
586
|
+
fann_destroy_train(dest);
|
587
|
+
return NULL;
|
588
|
+
}
|
589
|
+
|
590
|
+
data_input = (fann_type *) calloc(dest->num_input * dest->num_data, sizeof(fann_type));
|
591
|
+
if(data_input == NULL)
|
592
|
+
{
|
593
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
594
|
+
fann_destroy_train(dest);
|
595
|
+
return NULL;
|
596
|
+
}
|
597
|
+
memcpy(data_input, data->input[0], dest->num_input * dest->num_data * sizeof(fann_type));
|
598
|
+
|
599
|
+
data_output = (fann_type *) calloc(dest->num_output * dest->num_data, sizeof(fann_type));
|
600
|
+
if(data_output == NULL)
|
601
|
+
{
|
602
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
603
|
+
fann_destroy_train(dest);
|
604
|
+
return NULL;
|
605
|
+
}
|
606
|
+
memcpy(data_output, data->output[0], dest->num_output * dest->num_data * sizeof(fann_type));
|
607
|
+
|
608
|
+
for(i = 0; i != dest->num_data; i++)
|
609
|
+
{
|
610
|
+
dest->input[i] = data_input;
|
611
|
+
data_input += dest->num_input;
|
612
|
+
dest->output[i] = data_output;
|
613
|
+
data_output += dest->num_output;
|
614
|
+
}
|
615
|
+
return dest;
|
616
|
+
}
|
617
|
+
|
618
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_subset_train_data(struct fann_train_data
|
619
|
+
*data, unsigned int pos,
|
620
|
+
unsigned int length)
|
621
|
+
{
|
622
|
+
unsigned int i;
|
623
|
+
fann_type *data_input, *data_output;
|
624
|
+
struct fann_train_data *dest =
|
625
|
+
(struct fann_train_data *) malloc(sizeof(struct fann_train_data));
|
626
|
+
|
627
|
+
if(dest == NULL)
|
628
|
+
{
|
629
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
630
|
+
return NULL;
|
631
|
+
}
|
632
|
+
|
633
|
+
if(pos > data->num_data || pos+length > data->num_data)
|
634
|
+
{
|
635
|
+
fann_error((struct fann_error*)data, FANN_E_TRAIN_DATA_SUBSET, pos, length, data->num_data);
|
636
|
+
return NULL;
|
637
|
+
}
|
638
|
+
|
639
|
+
fann_init_error_data((struct fann_error *) dest);
|
640
|
+
dest->error_log = data->error_log;
|
641
|
+
|
642
|
+
dest->num_data = length;
|
643
|
+
dest->num_input = data->num_input;
|
644
|
+
dest->num_output = data->num_output;
|
645
|
+
dest->input = (fann_type **) calloc(dest->num_data, sizeof(fann_type *));
|
646
|
+
if(dest->input == NULL)
|
647
|
+
{
|
648
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
649
|
+
fann_destroy_train(dest);
|
650
|
+
return NULL;
|
651
|
+
}
|
652
|
+
|
653
|
+
dest->output = (fann_type **) calloc(dest->num_data, sizeof(fann_type *));
|
654
|
+
if(dest->output == NULL)
|
655
|
+
{
|
656
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
657
|
+
fann_destroy_train(dest);
|
658
|
+
return NULL;
|
659
|
+
}
|
660
|
+
|
661
|
+
data_input = (fann_type *) calloc(dest->num_input * dest->num_data, sizeof(fann_type));
|
662
|
+
if(data_input == NULL)
|
663
|
+
{
|
664
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
665
|
+
fann_destroy_train(dest);
|
666
|
+
return NULL;
|
667
|
+
}
|
668
|
+
memcpy(data_input, data->input[pos], dest->num_input * dest->num_data * sizeof(fann_type));
|
669
|
+
|
670
|
+
data_output = (fann_type *) calloc(dest->num_output * dest->num_data, sizeof(fann_type));
|
671
|
+
if(data_output == NULL)
|
672
|
+
{
|
673
|
+
fann_error((struct fann_error*)data, FANN_E_CANT_ALLOCATE_MEM);
|
674
|
+
fann_destroy_train(dest);
|
675
|
+
return NULL;
|
676
|
+
}
|
677
|
+
memcpy(data_output, data->output[pos], dest->num_output * dest->num_data * sizeof(fann_type));
|
678
|
+
|
679
|
+
for(i = 0; i != dest->num_data; i++)
|
680
|
+
{
|
681
|
+
dest->input[i] = data_input;
|
682
|
+
data_input += dest->num_input;
|
683
|
+
dest->output[i] = data_output;
|
684
|
+
data_output += dest->num_output;
|
685
|
+
}
|
686
|
+
return dest;
|
687
|
+
}
|
688
|
+
|
689
|
+
FANN_EXTERNAL unsigned int FANN_API fann_length_train_data(struct fann_train_data *data)
|
690
|
+
{
|
691
|
+
return data->num_data;
|
692
|
+
}
|
693
|
+
|
694
|
+
FANN_EXTERNAL unsigned int FANN_API fann_num_input_train_data(struct fann_train_data *data)
|
695
|
+
{
|
696
|
+
return data->num_input;
|
697
|
+
}
|
698
|
+
|
699
|
+
FANN_EXTERNAL unsigned int FANN_API fann_num_output_train_data(struct fann_train_data *data)
|
700
|
+
{
|
701
|
+
return data->num_output;
|
702
|
+
}
|
703
|
+
|
704
|
+
/* INTERNAL FUNCTION
|
705
|
+
Save the train data structure.
|
706
|
+
*/
|
707
|
+
int fann_save_train_internal(struct fann_train_data *data, const char *filename,
|
708
|
+
unsigned int save_as_fixed, unsigned int decimal_point)
|
709
|
+
{
|
710
|
+
int retval = 0;
|
711
|
+
FILE *file = fopen(filename, "w");
|
712
|
+
|
713
|
+
if(!file)
|
714
|
+
{
|
715
|
+
fann_error((struct fann_error *) data, FANN_E_CANT_OPEN_TD_W, filename);
|
716
|
+
return -1;
|
717
|
+
}
|
718
|
+
retval = fann_save_train_internal_fd(data, file, filename, save_as_fixed, decimal_point);
|
719
|
+
fclose(file);
|
720
|
+
|
721
|
+
return retval;
|
722
|
+
}
|
723
|
+
|
724
|
+
/* INTERNAL FUNCTION
|
725
|
+
Save the train data structure.
|
726
|
+
*/
|
727
|
+
int fann_save_train_internal_fd(struct fann_train_data *data, FILE * file, const char *filename,
|
728
|
+
unsigned int save_as_fixed, unsigned int decimal_point)
|
729
|
+
{
|
730
|
+
unsigned int num_data = data->num_data;
|
731
|
+
unsigned int num_input = data->num_input;
|
732
|
+
unsigned int num_output = data->num_output;
|
733
|
+
unsigned int i, j;
|
734
|
+
int retval = 0;
|
735
|
+
|
736
|
+
#ifndef FIXEDFANN
|
737
|
+
unsigned int multiplier = 1 << decimal_point;
|
738
|
+
#endif
|
739
|
+
|
740
|
+
fprintf(file, "%u %u %u\n", data->num_data, data->num_input, data->num_output);
|
741
|
+
|
742
|
+
for(i = 0; i < num_data; i++)
|
743
|
+
{
|
744
|
+
for(j = 0; j < num_input; j++)
|
745
|
+
{
|
746
|
+
#ifndef FIXEDFANN
|
747
|
+
if(save_as_fixed)
|
748
|
+
{
|
749
|
+
fprintf(file, "%d ", (int) (data->input[i][j] * multiplier));
|
750
|
+
}
|
751
|
+
else
|
752
|
+
{
|
753
|
+
if(((int) floor(data->input[i][j] + 0.5) * 1000000) ==
|
754
|
+
((int) floor(data->input[i][j] * 1000000.0 + 0.5)))
|
755
|
+
{
|
756
|
+
fprintf(file, "%d ", (int) data->input[i][j]);
|
757
|
+
}
|
758
|
+
else
|
759
|
+
{
|
760
|
+
fprintf(file, "%f ", data->input[i][j]);
|
761
|
+
}
|
762
|
+
}
|
763
|
+
#else
|
764
|
+
fprintf(file, FANNPRINTF " ", data->input[i][j]);
|
765
|
+
#endif
|
766
|
+
}
|
767
|
+
fprintf(file, "\n");
|
768
|
+
|
769
|
+
for(j = 0; j < num_output; j++)
|
770
|
+
{
|
771
|
+
#ifndef FIXEDFANN
|
772
|
+
if(save_as_fixed)
|
773
|
+
{
|
774
|
+
fprintf(file, "%d ", (int) (data->output[i][j] * multiplier));
|
775
|
+
}
|
776
|
+
else
|
777
|
+
{
|
778
|
+
if(((int) floor(data->output[i][j] + 0.5) * 1000000) ==
|
779
|
+
((int) floor(data->output[i][j] * 1000000.0 + 0.5)))
|
780
|
+
{
|
781
|
+
fprintf(file, "%d ", (int) data->output[i][j]);
|
782
|
+
}
|
783
|
+
else
|
784
|
+
{
|
785
|
+
fprintf(file, "%f ", data->output[i][j]);
|
786
|
+
}
|
787
|
+
}
|
788
|
+
#else
|
789
|
+
fprintf(file, FANNPRINTF " ", data->output[i][j]);
|
790
|
+
#endif
|
791
|
+
}
|
792
|
+
fprintf(file, "\n");
|
793
|
+
}
|
794
|
+
|
795
|
+
return retval;
|
796
|
+
}
|
797
|
+
|
798
|
+
|
799
|
+
/*
|
800
|
+
* INTERNAL FUNCTION Reads training data from a file descriptor.
|
801
|
+
*/
|
802
|
+
struct fann_train_data *fann_read_train_from_fd(FILE * file, const char *filename)
|
803
|
+
{
|
804
|
+
unsigned int num_input, num_output, num_data, i, j;
|
805
|
+
unsigned int line = 1;
|
806
|
+
fann_type *data_input, *data_output;
|
807
|
+
struct fann_train_data *data =
|
808
|
+
(struct fann_train_data *) malloc(sizeof(struct fann_train_data));
|
809
|
+
|
810
|
+
if(data == NULL)
|
811
|
+
{
|
812
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
813
|
+
return NULL;
|
814
|
+
}
|
815
|
+
|
816
|
+
if(fscanf(file, "%u %u %u\n", &num_data, &num_input, &num_output) != 3)
|
817
|
+
{
|
818
|
+
fann_error(NULL, FANN_E_CANT_READ_TD, filename, line);
|
819
|
+
fann_destroy_train(data);
|
820
|
+
return NULL;
|
821
|
+
}
|
822
|
+
line++;
|
823
|
+
|
824
|
+
fann_init_error_data((struct fann_error *) data);
|
825
|
+
|
826
|
+
data->num_data = num_data;
|
827
|
+
data->num_input = num_input;
|
828
|
+
data->num_output = num_output;
|
829
|
+
data->input = (fann_type **) calloc(num_data, sizeof(fann_type *));
|
830
|
+
if(data->input == NULL)
|
831
|
+
{
|
832
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
833
|
+
fann_destroy_train(data);
|
834
|
+
return NULL;
|
835
|
+
}
|
836
|
+
|
837
|
+
data->output = (fann_type **) calloc(num_data, sizeof(fann_type *));
|
838
|
+
if(data->output == NULL)
|
839
|
+
{
|
840
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
841
|
+
fann_destroy_train(data);
|
842
|
+
return NULL;
|
843
|
+
}
|
844
|
+
|
845
|
+
data_input = (fann_type *) calloc(num_input * num_data, sizeof(fann_type));
|
846
|
+
if(data_input == NULL)
|
847
|
+
{
|
848
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
849
|
+
fann_destroy_train(data);
|
850
|
+
return NULL;
|
851
|
+
}
|
852
|
+
|
853
|
+
data_output = (fann_type *) calloc(num_output * num_data, sizeof(fann_type));
|
854
|
+
if(data_output == NULL)
|
855
|
+
{
|
856
|
+
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
857
|
+
fann_destroy_train(data);
|
858
|
+
return NULL;
|
859
|
+
}
|
860
|
+
|
861
|
+
for(i = 0; i != num_data; i++)
|
862
|
+
{
|
863
|
+
data->input[i] = data_input;
|
864
|
+
data_input += num_input;
|
865
|
+
|
866
|
+
for(j = 0; j != num_input; j++)
|
867
|
+
{
|
868
|
+
if(fscanf(file, FANNSCANF " ", &data->input[i][j]) != 1)
|
869
|
+
{
|
870
|
+
fann_error(NULL, FANN_E_CANT_READ_TD, filename, line);
|
871
|
+
fann_destroy_train(data);
|
872
|
+
return NULL;
|
873
|
+
}
|
874
|
+
}
|
875
|
+
line++;
|
876
|
+
|
877
|
+
data->output[i] = data_output;
|
878
|
+
data_output += num_output;
|
879
|
+
|
880
|
+
for(j = 0; j != num_output; j++)
|
881
|
+
{
|
882
|
+
if(fscanf(file, FANNSCANF " ", &data->output[i][j]) != 1)
|
883
|
+
{
|
884
|
+
fann_error(NULL, FANN_E_CANT_READ_TD, filename, line);
|
885
|
+
fann_destroy_train(data);
|
886
|
+
return NULL;
|
887
|
+
}
|
888
|
+
}
|
889
|
+
line++;
|
890
|
+
}
|
891
|
+
return data;
|
892
|
+
}
|
893
|
+
|
894
|
+
/*
|
895
|
+
* INTERNAL FUNCTION returns 0 if the desired error is reached and -1 if it is not reached
|
896
|
+
*/
|
897
|
+
int fann_desired_error_reached(struct fann *ann, float desired_error)
|
898
|
+
{
|
899
|
+
switch (ann->train_stop_function)
|
900
|
+
{
|
901
|
+
case FANN_STOPFUNC_MSE:
|
902
|
+
if(fann_get_MSE(ann) <= desired_error)
|
903
|
+
return 0;
|
904
|
+
break;
|
905
|
+
case FANN_STOPFUNC_BIT:
|
906
|
+
if(ann->num_bit_fail <= (unsigned int)desired_error)
|
907
|
+
return 0;
|
908
|
+
break;
|
909
|
+
}
|
910
|
+
return -1;
|
911
|
+
}
|
912
|
+
|
913
|
+
#ifndef FIXEDFANN
|
914
|
+
/*
|
915
|
+
* Scale data in input vector before feed it to ann based on previously calculated parameters.
|
916
|
+
*/
|
917
|
+
FANN_EXTERNAL void FANN_API fann_scale_input( struct fann *ann, fann_type *input_vector )
|
918
|
+
{
|
919
|
+
unsigned cur_neuron;
|
920
|
+
if(ann->scale_mean_in == NULL)
|
921
|
+
{
|
922
|
+
fann_error( (struct fann_error *) ann, FANN_E_SCALE_NOT_PRESENT );
|
923
|
+
return;
|
924
|
+
}
|
925
|
+
|
926
|
+
for( cur_neuron = 0; cur_neuron < ann->num_input; cur_neuron++ )
|
927
|
+
input_vector[ cur_neuron ] =
|
928
|
+
(
|
929
|
+
( input_vector[ cur_neuron ] - ann->scale_mean_in[ cur_neuron ] )
|
930
|
+
/ ann->scale_deviation_in[ cur_neuron ]
|
931
|
+
- ( -1.0 ) /* This is old_min */
|
932
|
+
)
|
933
|
+
* ann->scale_factor_in[ cur_neuron ]
|
934
|
+
+ ann->scale_new_min_in[ cur_neuron ];
|
935
|
+
}
|
936
|
+
|
937
|
+
/*
|
938
|
+
* Scale data in output vector before feed it to ann based on previously calculated parameters.
|
939
|
+
*/
|
940
|
+
FANN_EXTERNAL void FANN_API fann_scale_output( struct fann *ann, fann_type *output_vector )
|
941
|
+
{
|
942
|
+
unsigned cur_neuron;
|
943
|
+
if(ann->scale_mean_in == NULL)
|
944
|
+
{
|
945
|
+
fann_error( (struct fann_error *) ann, FANN_E_SCALE_NOT_PRESENT );
|
946
|
+
return;
|
947
|
+
}
|
948
|
+
|
949
|
+
for( cur_neuron = 0; cur_neuron < ann->num_output; cur_neuron++ )
|
950
|
+
output_vector[ cur_neuron ] =
|
951
|
+
(
|
952
|
+
( output_vector[ cur_neuron ] - ann->scale_mean_out[ cur_neuron ] )
|
953
|
+
/ ann->scale_deviation_out[ cur_neuron ]
|
954
|
+
- ( -1.0 ) /* This is old_min */
|
955
|
+
)
|
956
|
+
* ann->scale_factor_out[ cur_neuron ]
|
957
|
+
+ ann->scale_new_min_out[ cur_neuron ];
|
958
|
+
}
|
959
|
+
|
960
|
+
/*
|
961
|
+
* Descale data in input vector after based on previously calculated parameters.
|
962
|
+
*/
|
963
|
+
FANN_EXTERNAL void FANN_API fann_descale_input( struct fann *ann, fann_type *input_vector )
|
964
|
+
{
|
965
|
+
unsigned cur_neuron;
|
966
|
+
if(ann->scale_mean_in == NULL)
|
967
|
+
{
|
968
|
+
fann_error( (struct fann_error *) ann, FANN_E_SCALE_NOT_PRESENT );
|
969
|
+
return;
|
970
|
+
}
|
971
|
+
|
972
|
+
for( cur_neuron = 0; cur_neuron < ann->num_input; cur_neuron++ )
|
973
|
+
input_vector[ cur_neuron ] =
|
974
|
+
(
|
975
|
+
(
|
976
|
+
input_vector[ cur_neuron ]
|
977
|
+
- ann->scale_new_min_in[ cur_neuron ]
|
978
|
+
)
|
979
|
+
/ ann->scale_factor_in[ cur_neuron ]
|
980
|
+
+ ( -1.0 ) /* This is old_min */
|
981
|
+
)
|
982
|
+
* ann->scale_deviation_in[ cur_neuron ]
|
983
|
+
+ ann->scale_mean_in[ cur_neuron ];
|
984
|
+
}
|
985
|
+
|
986
|
+
/*
|
987
|
+
* Descale data in output vector after get it from ann based on previously calculated parameters.
|
988
|
+
*/
|
989
|
+
FANN_EXTERNAL void FANN_API fann_descale_output( struct fann *ann, fann_type *output_vector )
|
990
|
+
{
|
991
|
+
unsigned cur_neuron;
|
992
|
+
if(ann->scale_mean_in == NULL)
|
993
|
+
{
|
994
|
+
fann_error( (struct fann_error *) ann, FANN_E_SCALE_NOT_PRESENT );
|
995
|
+
return;
|
996
|
+
}
|
997
|
+
|
998
|
+
for( cur_neuron = 0; cur_neuron < ann->num_output; cur_neuron++ )
|
999
|
+
output_vector[ cur_neuron ] =
|
1000
|
+
(
|
1001
|
+
(
|
1002
|
+
output_vector[ cur_neuron ]
|
1003
|
+
- ann->scale_new_min_out[ cur_neuron ]
|
1004
|
+
)
|
1005
|
+
/ ann->scale_factor_out[ cur_neuron ]
|
1006
|
+
+ ( -1.0 ) /* This is old_min */
|
1007
|
+
)
|
1008
|
+
* ann->scale_deviation_out[ cur_neuron ]
|
1009
|
+
+ ann->scale_mean_out[ cur_neuron ];
|
1010
|
+
}
|
1011
|
+
|
1012
|
+
/*
|
1013
|
+
* Scale input and output data based on previously calculated parameters.
|
1014
|
+
*/
|
1015
|
+
FANN_EXTERNAL void FANN_API fann_scale_train( struct fann *ann, struct fann_train_data *data )
|
1016
|
+
{
|
1017
|
+
unsigned cur_sample;
|
1018
|
+
if(ann->scale_mean_in == NULL)
|
1019
|
+
{
|
1020
|
+
fann_error( (struct fann_error *) ann, FANN_E_SCALE_NOT_PRESENT );
|
1021
|
+
return;
|
1022
|
+
}
|
1023
|
+
/* Check that we have good training data. */
|
1024
|
+
/* No need for if( !params || !ann ) */
|
1025
|
+
if( data->num_input != ann->num_input
|
1026
|
+
|| data->num_output != ann->num_output
|
1027
|
+
)
|
1028
|
+
{
|
1029
|
+
fann_error( (struct fann_error *) ann, FANN_E_TRAIN_DATA_MISMATCH );
|
1030
|
+
return;
|
1031
|
+
}
|
1032
|
+
|
1033
|
+
for( cur_sample = 0; cur_sample < data->num_data; cur_sample++ )
|
1034
|
+
{
|
1035
|
+
fann_scale_input( ann, data->input[ cur_sample ] );
|
1036
|
+
fann_scale_output( ann, data->output[ cur_sample ] );
|
1037
|
+
}
|
1038
|
+
}
|
1039
|
+
|
1040
|
+
/*
|
1041
|
+
* Scale input and output data based on previously calculated parameters.
|
1042
|
+
*/
|
1043
|
+
FANN_EXTERNAL void FANN_API fann_descale_train( struct fann *ann, struct fann_train_data *data )
|
1044
|
+
{
|
1045
|
+
unsigned cur_sample;
|
1046
|
+
if(ann->scale_mean_in == NULL)
|
1047
|
+
{
|
1048
|
+
fann_error( (struct fann_error *) ann, FANN_E_SCALE_NOT_PRESENT );
|
1049
|
+
return;
|
1050
|
+
}
|
1051
|
+
/* Check that we have good training data. */
|
1052
|
+
/* No need for if( !params || !ann ) */
|
1053
|
+
if( data->num_input != ann->num_input
|
1054
|
+
|| data->num_output != ann->num_output
|
1055
|
+
)
|
1056
|
+
{
|
1057
|
+
fann_error( (struct fann_error *) ann, FANN_E_TRAIN_DATA_MISMATCH );
|
1058
|
+
return;
|
1059
|
+
}
|
1060
|
+
|
1061
|
+
for( cur_sample = 0; cur_sample < data->num_data; cur_sample++ )
|
1062
|
+
{
|
1063
|
+
fann_descale_input( ann, data->input[ cur_sample ] );
|
1064
|
+
fann_descale_output( ann, data->output[ cur_sample ] );
|
1065
|
+
}
|
1066
|
+
}
|
1067
|
+
|
1068
|
+
#define SCALE_RESET( what, where, default_value ) \
|
1069
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1070
|
+
ann->what##_##where[ cur_neuron ] = ( default_value );
|
1071
|
+
|
1072
|
+
#define SCALE_SET_PARAM( where ) \
|
1073
|
+
/* Calculate mean: sum(x)/length */ \
|
1074
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1075
|
+
ann->scale_mean_##where[ cur_neuron ] = 0.0; \
|
1076
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1077
|
+
for( cur_sample = 0; cur_sample < data->num_data; cur_sample++ ) \
|
1078
|
+
ann->scale_mean_##where[ cur_neuron ] += data->where##put[ cur_sample ][ cur_neuron ]; \
|
1079
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1080
|
+
ann->scale_mean_##where[ cur_neuron ] /= (float)data->num_data; \
|
1081
|
+
/* Calculate deviation: sqrt(sum((x-mean)^2)/length) */ \
|
1082
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1083
|
+
ann->scale_deviation_##where[ cur_neuron ] = 0.0; \
|
1084
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1085
|
+
for( cur_sample = 0; cur_sample < data->num_data; cur_sample++ ) \
|
1086
|
+
ann->scale_deviation_##where[ cur_neuron ] += \
|
1087
|
+
/* Another local variable in macro? Oh no! */ \
|
1088
|
+
( \
|
1089
|
+
data->where##put[ cur_sample ][ cur_neuron ] \
|
1090
|
+
- ann->scale_mean_##where[ cur_neuron ] \
|
1091
|
+
) \
|
1092
|
+
* \
|
1093
|
+
( \
|
1094
|
+
data->where##put[ cur_sample ][ cur_neuron ] \
|
1095
|
+
- ann->scale_mean_##where[ cur_neuron ] \
|
1096
|
+
); \
|
1097
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1098
|
+
ann->scale_deviation_##where[ cur_neuron ] = \
|
1099
|
+
sqrt( ann->scale_deviation_##where[ cur_neuron ] / (float)data->num_data ); \
|
1100
|
+
/* Calculate factor: (new_max-new_min)/(old_max(1)-old_min(-1)) */ \
|
1101
|
+
/* Looks like we dont need whole array of factors? */ \
|
1102
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1103
|
+
ann->scale_factor_##where[ cur_neuron ] = \
|
1104
|
+
( new_##where##put_max - new_##where##put_min ) \
|
1105
|
+
/ \
|
1106
|
+
( 1.0 - ( -1.0 ) ); \
|
1107
|
+
/* Copy new minimum. */ \
|
1108
|
+
/* Looks like we dont need whole array of new minimums? */ \
|
1109
|
+
for( cur_neuron = 0; cur_neuron < ann->num_##where##put; cur_neuron++ ) \
|
1110
|
+
ann->scale_new_min_##where[ cur_neuron ] = new_##where##put_min;
|
1111
|
+
|
1112
|
+
FANN_EXTERNAL int FANN_API fann_set_input_scaling_params(
|
1113
|
+
struct fann *ann,
|
1114
|
+
const struct fann_train_data *data,
|
1115
|
+
float new_input_min,
|
1116
|
+
float new_input_max)
|
1117
|
+
{
|
1118
|
+
unsigned cur_neuron, cur_sample;
|
1119
|
+
|
1120
|
+
/* Check that we have good training data. */
|
1121
|
+
/* No need for if( !params || !ann ) */
|
1122
|
+
if(data->num_input != ann->num_input
|
1123
|
+
|| data->num_output != ann->num_output)
|
1124
|
+
{
|
1125
|
+
fann_error( (struct fann_error *) ann, FANN_E_TRAIN_DATA_MISMATCH );
|
1126
|
+
return -1;
|
1127
|
+
}
|
1128
|
+
|
1129
|
+
if(ann->scale_mean_in == NULL)
|
1130
|
+
fann_allocate_scale(ann);
|
1131
|
+
|
1132
|
+
if(ann->scale_mean_in == NULL)
|
1133
|
+
return -1;
|
1134
|
+
|
1135
|
+
if( !data->num_data )
|
1136
|
+
{
|
1137
|
+
SCALE_RESET( scale_mean, in, 0.0 )
|
1138
|
+
SCALE_RESET( scale_deviation, in, 1.0 )
|
1139
|
+
SCALE_RESET( scale_new_min, in, -1.0 )
|
1140
|
+
SCALE_RESET( scale_factor, in, 1.0 )
|
1141
|
+
}
|
1142
|
+
else
|
1143
|
+
{
|
1144
|
+
SCALE_SET_PARAM( in );
|
1145
|
+
}
|
1146
|
+
|
1147
|
+
return 0;
|
1148
|
+
}
|
1149
|
+
|
1150
|
+
FANN_EXTERNAL int FANN_API fann_set_output_scaling_params(
|
1151
|
+
struct fann *ann,
|
1152
|
+
const struct fann_train_data *data,
|
1153
|
+
float new_output_min,
|
1154
|
+
float new_output_max)
|
1155
|
+
{
|
1156
|
+
unsigned cur_neuron, cur_sample;
|
1157
|
+
|
1158
|
+
/* Check that we have good training data. */
|
1159
|
+
/* No need for if( !params || !ann ) */
|
1160
|
+
if(data->num_input != ann->num_input
|
1161
|
+
|| data->num_output != ann->num_output)
|
1162
|
+
{
|
1163
|
+
fann_error( (struct fann_error *) ann, FANN_E_TRAIN_DATA_MISMATCH );
|
1164
|
+
return -1;
|
1165
|
+
}
|
1166
|
+
|
1167
|
+
if(ann->scale_mean_out == NULL)
|
1168
|
+
fann_allocate_scale(ann);
|
1169
|
+
|
1170
|
+
if(ann->scale_mean_out == NULL)
|
1171
|
+
return -1;
|
1172
|
+
|
1173
|
+
if( !data->num_data )
|
1174
|
+
{
|
1175
|
+
SCALE_RESET( scale_mean, out, 0.0 )
|
1176
|
+
SCALE_RESET( scale_deviation, out, 1.0 )
|
1177
|
+
SCALE_RESET( scale_new_min, out, -1.0 )
|
1178
|
+
SCALE_RESET( scale_factor, out, 1.0 )
|
1179
|
+
}
|
1180
|
+
else
|
1181
|
+
{
|
1182
|
+
SCALE_SET_PARAM( out );
|
1183
|
+
}
|
1184
|
+
|
1185
|
+
return 0;
|
1186
|
+
}
|
1187
|
+
|
1188
|
+
/*
|
1189
|
+
* Calculate scaling parameters for future use based on training data.
|
1190
|
+
*/
|
1191
|
+
FANN_EXTERNAL int FANN_API fann_set_scaling_params(
|
1192
|
+
struct fann *ann,
|
1193
|
+
const struct fann_train_data *data,
|
1194
|
+
float new_input_min,
|
1195
|
+
float new_input_max,
|
1196
|
+
float new_output_min,
|
1197
|
+
float new_output_max)
|
1198
|
+
{
|
1199
|
+
if(fann_set_input_scaling_params(ann, data, new_input_min, new_input_max) == 0)
|
1200
|
+
return fann_set_output_scaling_params(ann, data, new_output_min, new_output_max);
|
1201
|
+
else
|
1202
|
+
return -1;
|
1203
|
+
}
|
1204
|
+
|
1205
|
+
/*
|
1206
|
+
* Clears scaling parameters.
|
1207
|
+
*/
|
1208
|
+
FANN_EXTERNAL int FANN_API fann_clear_scaling_params(struct fann *ann)
|
1209
|
+
{
|
1210
|
+
unsigned cur_neuron;
|
1211
|
+
|
1212
|
+
if(ann->scale_mean_out == NULL)
|
1213
|
+
fann_allocate_scale(ann);
|
1214
|
+
|
1215
|
+
if(ann->scale_mean_out == NULL)
|
1216
|
+
return -1;
|
1217
|
+
|
1218
|
+
SCALE_RESET( scale_mean, in, 0.0 )
|
1219
|
+
SCALE_RESET( scale_deviation, in, 1.0 )
|
1220
|
+
SCALE_RESET( scale_new_min, in, -1.0 )
|
1221
|
+
SCALE_RESET( scale_factor, in, 1.0 )
|
1222
|
+
|
1223
|
+
SCALE_RESET( scale_mean, out, 0.0 )
|
1224
|
+
SCALE_RESET( scale_deviation, out, 1.0 )
|
1225
|
+
SCALE_RESET( scale_new_min, out, -1.0 )
|
1226
|
+
SCALE_RESET( scale_factor, out, 1.0 )
|
1227
|
+
|
1228
|
+
return 0;
|
1229
|
+
}
|
1230
|
+
|
1231
|
+
#endif
|