ruby-fann 0.7.10 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +6 -1
- data/License.txt +1 -1
- data/Manifest.txt +22 -1
- data/README.txt +0 -1
- data/Rakefile +0 -0
- data/config/hoe.rb +0 -0
- data/config/requirements.rb +0 -0
- data/ext/ruby_fann/MANIFEST +0 -0
- data/ext/ruby_fann/Makefile +36 -28
- data/ext/ruby_fann/doublefann.c +30 -0
- data/ext/ruby_fann/doublefann.h +33 -0
- data/ext/ruby_fann/extconf.rb +9 -5
- data/ext/ruby_fann/fann.c +1552 -0
- data/ext/ruby_fann/fann_activation.h +144 -0
- data/ext/ruby_fann/fann_augment.h +0 -0
- data/ext/ruby_fann/fann_cascade.c +1031 -0
- data/ext/ruby_fann/fann_cascade.h +503 -0
- data/ext/ruby_fann/fann_data.h +799 -0
- data/ext/ruby_fann/fann_error.c +204 -0
- data/ext/ruby_fann/fann_error.h +161 -0
- data/ext/ruby_fann/fann_internal.h +148 -0
- data/ext/ruby_fann/fann_io.c +762 -0
- data/ext/ruby_fann/fann_io.h +100 -0
- data/ext/ruby_fann/fann_train.c +962 -0
- data/ext/ruby_fann/fann_train.h +1203 -0
- data/ext/ruby_fann/fann_train_data.c +1231 -0
- data/ext/ruby_fann/neural_network.c +0 -0
- data/lib/ruby_fann/neurotica.rb +0 -0
- data/lib/ruby_fann/version.rb +3 -3
- data/lib/ruby_fann.rb +0 -0
- data/neurotica1.png +0 -0
- data/neurotica2.vrml +18 -18
- data/setup.rb +0 -0
- data/tasks/deployment.rake +0 -0
- data/tasks/environment.rake +0 -0
- data/tasks/website.rake +0 -0
- data/test/test.train +0 -0
- data/test/test_helper.rb +0 -0
- data/test/test_neurotica.rb +0 -0
- data/test/test_ruby_fann.rb +0 -0
- data/test/test_ruby_fann_functional.rb +0 -0
- data/verify.train +0 -0
- data/website/index.html +42 -92
- data/website/index.txt +0 -0
- data/website/javascripts/rounded_corners_lite.inc.js +0 -0
- data/website/stylesheets/screen.css +0 -0
- data/website/template.rhtml +0 -0
- data/xor.train +0 -0
- data/xor_cascade.net +2 -2
- data/xor_float.net +1 -1
- metadata +22 -6
- data/log/debug.log +0 -0
@@ -0,0 +1,503 @@
|
|
1
|
+
/*
|
2
|
+
Fast Artificial Neural Network Library (fann)
|
3
|
+
Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)
|
4
|
+
|
5
|
+
This library is free software; you can redistribute it and/or
|
6
|
+
modify it under the terms of the GNU Lesser General Public
|
7
|
+
License as published by the Free Software Foundation; either
|
8
|
+
version 2.1 of the License, or (at your option) any later version.
|
9
|
+
|
10
|
+
This library is distributed in the hope that it will be useful,
|
11
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13
|
+
Lesser General Public License for more details.
|
14
|
+
|
15
|
+
You should have received a copy of the GNU Lesser General Public
|
16
|
+
License along with this library; if not, write to the Free Software
|
17
|
+
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18
|
+
*/
|
19
|
+
|
20
|
+
#ifndef __fann_cascade_h__
|
21
|
+
#define __fann_cascade_h__
|
22
|
+
|
23
|
+
/* Section: FANN Cascade Training
|
24
|
+
Cascade training differs from ordinary training in the sense that it starts with an empty neural network
|
25
|
+
and then adds neurons one by one, while it trains the neural network. The main benefit of this approach,
|
26
|
+
is that you do not have to guess the number of hidden layers and neurons prior to training, but cascade
|
27
|
+
training have also proved better at solving some problems.
|
28
|
+
|
29
|
+
The basic idea of cascade training is that a number of candidate neurons are trained separate from the
|
30
|
+
real network, then the most promissing of these candidate neurons is inserted into the neural network.
|
31
|
+
Then the output connections are trained and new candidate neurons is prepared. The candidate neurons are
|
32
|
+
created as shorcut connected neurons in a new hidden layer, which means that the final neural network
|
33
|
+
will consist of a number of hidden layers with one shorcut connected neuron in each.
|
34
|
+
*/
|
35
|
+
|
36
|
+
/* Group: Cascade Training */
|
37
|
+
|
38
|
+
/* Function: fann_cascadetrain_on_data
|
39
|
+
|
40
|
+
Trains on an entire dataset, for a period of time using the Cascade2 training algorithm.
|
41
|
+
This algorithm adds neurons to the neural network while training, which means that it
|
42
|
+
needs to start with an ANN without any hidden layers. The neural network should also use
|
43
|
+
shortcut connections, so <fann_create_shortcut> should be used to create the ANN like this:
|
44
|
+
>struct fann *ann = fann_create_shortcut(2, fann_num_input_train_data(train_data), fann_num_output_train_data(train_data));
|
45
|
+
|
46
|
+
This training uses the parameters set using the fann_set_cascade_..., but it also uses another
|
47
|
+
training algorithm as it's internal training algorithm. This algorithm can be set to either
|
48
|
+
FANN_TRAIN_RPROP or FANN_TRAIN_QUICKPROP by <fann_set_training_algorithm>, and the parameters
|
49
|
+
set for these training algorithms will also affect the cascade training.
|
50
|
+
|
51
|
+
Parameters:
|
52
|
+
ann - The neural network
|
53
|
+
data - The data, which should be used during training
|
54
|
+
max_neuron - The maximum number of neurons to be added to neural network
|
55
|
+
neurons_between_reports - The number of neurons between printing a status report to stdout.
|
56
|
+
A value of zero means no reports should be printed.
|
57
|
+
desired_error - The desired <fann_get_MSE> or <fann_get_bit_fail>, depending on which stop function
|
58
|
+
is chosen by <fann_set_train_stop_function>.
|
59
|
+
|
60
|
+
Instead of printing out reports every neurons_between_reports, a callback function can be called
|
61
|
+
(see <fann_set_callback>).
|
62
|
+
|
63
|
+
See also:
|
64
|
+
<fann_train_on_data>, <fann_cascadetrain_on_file>, <Parameters>
|
65
|
+
|
66
|
+
This function appears in FANN >= 2.0.0.
|
67
|
+
*/
|
68
|
+
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_data(struct fann *ann,
|
69
|
+
struct fann_train_data *data,
|
70
|
+
unsigned int max_neurons,
|
71
|
+
unsigned int neurons_between_reports,
|
72
|
+
float desired_error);
|
73
|
+
|
74
|
+
/* Function: fann_cascadetrain_on_file
|
75
|
+
|
76
|
+
Does the same as <fann_cascadetrain_on_data>, but reads the training data directly from a file.
|
77
|
+
|
78
|
+
See also:
|
79
|
+
<fann_cascadetrain_on_data>
|
80
|
+
|
81
|
+
This function appears in FANN >= 2.0.0.
|
82
|
+
*/
|
83
|
+
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_file(struct fann *ann, const char *filename,
|
84
|
+
unsigned int max_neurons,
|
85
|
+
unsigned int neurons_between_reports,
|
86
|
+
float desired_error);
|
87
|
+
|
88
|
+
/* Group: Parameters */
|
89
|
+
|
90
|
+
/* Function: fann_get_cascade_output_change_fraction
|
91
|
+
|
92
|
+
The cascade output change fraction is a number between 0 and 1 determining how large a fraction
|
93
|
+
the <fann_get_MSE> value should change within <fann_get_cascade_output_stagnation_epochs> during
|
94
|
+
training of the output connections, in order for the training not to stagnate. If the training
|
95
|
+
stagnates, the training of the output connections will be ended and new candidates will be prepared.
|
96
|
+
|
97
|
+
This means:
|
98
|
+
If the MSE does not change by a fraction of <fann_get_cascade_output_change_fraction> during a
|
99
|
+
period of <fann_get_cascade_output_stagnation_epochs>, the training of the output connections
|
100
|
+
is stopped because the training has stagnated.
|
101
|
+
|
102
|
+
If the cascade output change fraction is low, the output connections will be trained more and if the
|
103
|
+
fraction is high they will be trained less.
|
104
|
+
|
105
|
+
The default cascade output change fraction is 0.01, which is equalent to a 1% change in MSE.
|
106
|
+
|
107
|
+
See also:
|
108
|
+
<fann_set_cascade_output_change_fraction>, <fann_get_MSE>, <fann_get_cascade_output_stagnation_epochs>
|
109
|
+
|
110
|
+
This function appears in FANN >= 2.0.0.
|
111
|
+
*/
|
112
|
+
FANN_EXTERNAL float FANN_API fann_get_cascade_output_change_fraction(struct fann *ann);
|
113
|
+
|
114
|
+
|
115
|
+
/* Function: fann_set_cascade_output_change_fraction
|
116
|
+
|
117
|
+
Sets the cascade output change fraction.
|
118
|
+
|
119
|
+
See also:
|
120
|
+
<fann_get_cascade_output_change_fraction>
|
121
|
+
|
122
|
+
This function appears in FANN >= 2.0.0.
|
123
|
+
*/
|
124
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_output_change_fraction(struct fann *ann,
|
125
|
+
float cascade_output_change_fraction);
|
126
|
+
|
127
|
+
/* Function: fann_get_cascade_output_stagnation_epochs
|
128
|
+
|
129
|
+
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
130
|
+
continue without changing the MSE by a fraction of <fann_get_cascade_output_change_fraction>.
|
131
|
+
|
132
|
+
See more info about this parameter in <fann_get_cascade_output_change_fraction>.
|
133
|
+
|
134
|
+
The default number of cascade output stagnation epochs is 12.
|
135
|
+
|
136
|
+
See also:
|
137
|
+
<fann_set_cascade_output_stagnation_epochs>, <fann_get_cascade_output_change_fraction>
|
138
|
+
|
139
|
+
This function appears in FANN >= 2.0.0.
|
140
|
+
*/
|
141
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_output_stagnation_epochs(struct fann *ann);
|
142
|
+
|
143
|
+
|
144
|
+
/* Function: fann_set_cascade_output_stagnation_epochs
|
145
|
+
|
146
|
+
Sets the number of cascade output stagnation epochs.
|
147
|
+
|
148
|
+
See also:
|
149
|
+
<fann_get_cascade_output_stagnation_epochs>
|
150
|
+
|
151
|
+
This function appears in FANN >= 2.0.0.
|
152
|
+
*/
|
153
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_output_stagnation_epochs(struct fann *ann,
|
154
|
+
unsigned int cascade_output_stagnation_epochs);
|
155
|
+
|
156
|
+
|
157
|
+
/* Function: fann_get_cascade_candidate_change_fraction
|
158
|
+
|
159
|
+
The cascade candidate change fraction is a number between 0 and 1 determining how large a fraction
|
160
|
+
the <fann_get_MSE> value should change within <fann_get_cascade_candidate_stagnation_epochs> during
|
161
|
+
training of the candidate neurons, in order for the training not to stagnate. If the training
|
162
|
+
stagnates, the training of the candidate neurons will be ended and the best candidate will be selected.
|
163
|
+
|
164
|
+
This means:
|
165
|
+
If the MSE does not change by a fraction of <fann_get_cascade_candidate_change_fraction> during a
|
166
|
+
period of <fann_get_cascade_candidate_stagnation_epochs>, the training of the candidate neurons
|
167
|
+
is stopped because the training has stagnated.
|
168
|
+
|
169
|
+
If the cascade candidate change fraction is low, the candidate neurons will be trained more and if the
|
170
|
+
fraction is high they will be trained less.
|
171
|
+
|
172
|
+
The default cascade candidate change fraction is 0.01, which is equalent to a 1% change in MSE.
|
173
|
+
|
174
|
+
See also:
|
175
|
+
<fann_set_cascade_candidate_change_fraction>, <fann_get_MSE>, <fann_get_cascade_candidate_stagnation_epochs>
|
176
|
+
|
177
|
+
This function appears in FANN >= 2.0.0.
|
178
|
+
*/
|
179
|
+
FANN_EXTERNAL float FANN_API fann_get_cascade_candidate_change_fraction(struct fann *ann);
|
180
|
+
|
181
|
+
|
182
|
+
/* Function: fann_set_cascade_candidate_change_fraction
|
183
|
+
|
184
|
+
Sets the cascade candidate change fraction.
|
185
|
+
|
186
|
+
See also:
|
187
|
+
<fann_get_cascade_candidate_change_fraction>
|
188
|
+
|
189
|
+
This function appears in FANN >= 2.0.0.
|
190
|
+
*/
|
191
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_candidate_change_fraction(struct fann *ann,
|
192
|
+
float cascade_candidate_change_fraction);
|
193
|
+
|
194
|
+
/* Function: fann_get_cascade_candidate_stagnation_epochs
|
195
|
+
|
196
|
+
The number of cascade candidate stagnation epochs determines the number of epochs training is allowed to
|
197
|
+
continue without changing the MSE by a fraction of <fann_get_cascade_candidate_change_fraction>.
|
198
|
+
|
199
|
+
See more info about this parameter in <fann_get_cascade_candidate_change_fraction>.
|
200
|
+
|
201
|
+
The default number of cascade candidate stagnation epochs is 12.
|
202
|
+
|
203
|
+
See also:
|
204
|
+
<fann_set_cascade_candidate_stagnation_epochs>, <fann_get_cascade_candidate_change_fraction>
|
205
|
+
|
206
|
+
This function appears in FANN >= 2.0.0.
|
207
|
+
*/
|
208
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_candidate_stagnation_epochs(struct fann *ann);
|
209
|
+
|
210
|
+
|
211
|
+
/* Function: fann_set_cascade_candidate_stagnation_epochs
|
212
|
+
|
213
|
+
Sets the number of cascade candidate stagnation epochs.
|
214
|
+
|
215
|
+
See also:
|
216
|
+
<fann_get_cascade_candidate_stagnation_epochs>
|
217
|
+
|
218
|
+
This function appears in FANN >= 2.0.0.
|
219
|
+
*/
|
220
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_candidate_stagnation_epochs(struct fann *ann,
|
221
|
+
unsigned int cascade_candidate_stagnation_epochs);
|
222
|
+
|
223
|
+
|
224
|
+
/* Function: fann_get_cascade_weight_multiplier
|
225
|
+
|
226
|
+
The weight multiplier is a parameter which is used to multiply the weights from the candidate neuron
|
227
|
+
before adding the neuron to the neural network. This parameter is usually between 0 and 1, and is used
|
228
|
+
to make the training a bit less aggressive.
|
229
|
+
|
230
|
+
The default weight multiplier is 0.4
|
231
|
+
|
232
|
+
See also:
|
233
|
+
<fann_set_cascade_weight_multiplier>
|
234
|
+
|
235
|
+
This function appears in FANN >= 2.0.0.
|
236
|
+
*/
|
237
|
+
FANN_EXTERNAL fann_type FANN_API fann_get_cascade_weight_multiplier(struct fann *ann);
|
238
|
+
|
239
|
+
|
240
|
+
/* Function: fann_set_cascade_weight_multiplier
|
241
|
+
|
242
|
+
Sets the weight multiplier.
|
243
|
+
|
244
|
+
See also:
|
245
|
+
<fann_get_cascade_weight_multiplier>
|
246
|
+
|
247
|
+
This function appears in FANN >= 2.0.0.
|
248
|
+
*/
|
249
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_weight_multiplier(struct fann *ann,
|
250
|
+
fann_type cascade_weight_multiplier);
|
251
|
+
|
252
|
+
|
253
|
+
/* Function: fann_get_cascade_candidate_limit
|
254
|
+
|
255
|
+
The candidate limit is a limit for how much the candidate neuron may be trained.
|
256
|
+
The limit is a limit on the proportion between the MSE and candidate score.
|
257
|
+
|
258
|
+
Set this to a lower value to avoid overfitting and to a higher if overfitting is
|
259
|
+
not a problem.
|
260
|
+
|
261
|
+
The default candidate limit is 1000.0
|
262
|
+
|
263
|
+
See also:
|
264
|
+
<fann_set_cascade_candidate_limit>
|
265
|
+
|
266
|
+
This function appears in FANN >= 2.0.0.
|
267
|
+
*/
|
268
|
+
FANN_EXTERNAL fann_type FANN_API fann_get_cascade_candidate_limit(struct fann *ann);
|
269
|
+
|
270
|
+
|
271
|
+
/* Function: fann_set_cascade_candidate_limit
|
272
|
+
|
273
|
+
Sets the candidate limit.
|
274
|
+
|
275
|
+
See also:
|
276
|
+
<fann_get_cascade_candidate_limit>
|
277
|
+
|
278
|
+
This function appears in FANN >= 2.0.0.
|
279
|
+
*/
|
280
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_candidate_limit(struct fann *ann,
|
281
|
+
fann_type cascade_candidate_limit);
|
282
|
+
|
283
|
+
|
284
|
+
/* Function: fann_get_cascade_max_out_epochs
|
285
|
+
|
286
|
+
The maximum out epochs determines the maximum number of epochs the output connections
|
287
|
+
may be trained after adding a new candidate neuron.
|
288
|
+
|
289
|
+
The default max out epochs is 150
|
290
|
+
|
291
|
+
See also:
|
292
|
+
<fann_set_cascade_max_out_epochs>
|
293
|
+
|
294
|
+
This function appears in FANN >= 2.0.0.
|
295
|
+
*/
|
296
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_max_out_epochs(struct fann *ann);
|
297
|
+
|
298
|
+
|
299
|
+
/* Function: fann_set_cascade_max_out_epochs
|
300
|
+
|
301
|
+
Sets the maximum out epochs.
|
302
|
+
|
303
|
+
See also:
|
304
|
+
<fann_get_cascade_max_out_epochs>
|
305
|
+
|
306
|
+
This function appears in FANN >= 2.0.0.
|
307
|
+
*/
|
308
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_max_out_epochs(struct fann *ann,
|
309
|
+
unsigned int cascade_max_out_epochs);
|
310
|
+
|
311
|
+
|
312
|
+
/* Function: fann_get_cascade_max_cand_epochs
|
313
|
+
|
314
|
+
The maximum candidate epochs determines the maximum number of epochs the input
|
315
|
+
connections to the candidates may be trained before adding a new candidate neuron.
|
316
|
+
|
317
|
+
The default max candidate epochs is 150
|
318
|
+
|
319
|
+
See also:
|
320
|
+
<fann_set_cascade_max_cand_epochs>
|
321
|
+
|
322
|
+
This function appears in FANN >= 2.0.0.
|
323
|
+
*/
|
324
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_max_cand_epochs(struct fann *ann);
|
325
|
+
|
326
|
+
|
327
|
+
/* Function: fann_set_cascade_max_cand_epochs
|
328
|
+
|
329
|
+
Sets the max candidate epochs.
|
330
|
+
|
331
|
+
See also:
|
332
|
+
<fann_get_cascade_max_cand_epochs>
|
333
|
+
|
334
|
+
This function appears in FANN >= 2.0.0.
|
335
|
+
*/
|
336
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_max_cand_epochs(struct fann *ann,
|
337
|
+
unsigned int cascade_max_cand_epochs);
|
338
|
+
|
339
|
+
|
340
|
+
/* Function: fann_get_cascade_num_candidates
|
341
|
+
|
342
|
+
The number of candidates used during training (calculated by multiplying <fann_get_cascade_activation_functions_count>,
|
343
|
+
<fann_get_cascade_activation_steepnesses_count> and <fann_get_cascade_num_candidate_groups>).
|
344
|
+
|
345
|
+
The actual candidates is defined by the <fann_get_cascade_activation_functions> and
|
346
|
+
<fann_get_cascade_activation_steepnesses> arrays. These arrays define the activation functions
|
347
|
+
and activation steepnesses used for the candidate neurons. If there are 2 activation functions
|
348
|
+
in the activation function array and 3 steepnesses in the steepness array, then there will be
|
349
|
+
2x3=6 different candidates which will be trained. These 6 different candidates can be copied into
|
350
|
+
several candidate groups, where the only difference between these groups is the initial weights.
|
351
|
+
If the number of groups is set to 2, then the number of candidate neurons will be 2x3x2=12. The
|
352
|
+
number of candidate groups is defined by <fann_set_cascade_num_candidate_groups>.
|
353
|
+
|
354
|
+
The default number of candidates is 6x4x2 = 48
|
355
|
+
|
356
|
+
See also:
|
357
|
+
<fann_get_cascade_activation_functions>, <fann_get_cascade_activation_functions_count>,
|
358
|
+
<fann_get_cascade_activation_steepnesses>, <fann_get_cascade_activation_steepnesses_count>,
|
359
|
+
<fann_get_cascade_num_candidate_groups>
|
360
|
+
|
361
|
+
This function appears in FANN >= 2.0.0.
|
362
|
+
*/
|
363
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_num_candidates(struct fann *ann);
|
364
|
+
|
365
|
+
/* Function: fann_get_cascade_activation_functions_count
|
366
|
+
|
367
|
+
The number of activation functions in the <fann_get_cascade_activation_functions> array.
|
368
|
+
|
369
|
+
The default number of activation functions is 6.
|
370
|
+
|
371
|
+
See also:
|
372
|
+
<fann_get_cascade_activation_functions>, <fann_set_cascade_activation_functions>
|
373
|
+
|
374
|
+
This function appears in FANN >= 2.0.0.
|
375
|
+
*/
|
376
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_activation_functions_count(struct fann *ann);
|
377
|
+
|
378
|
+
|
379
|
+
/* Function: fann_get_cascade_activation_functions
|
380
|
+
|
381
|
+
The cascade activation functions array is an array of the different activation functions used by
|
382
|
+
the candidates.
|
383
|
+
|
384
|
+
See <fann_get_cascade_num_candidates> for a description of which candidate neurons will be
|
385
|
+
generated by this array.
|
386
|
+
|
387
|
+
The default activation functions is {FANN_SIGMOID, FANN_SIGMOID_SYMMETRIC, FANN_GAUSSIAN, FANN_GAUSSIAN_SYMMETRIC, FANN_ELLIOT, FANN_ELLIOT_SYMMETRIC}
|
388
|
+
|
389
|
+
See also:
|
390
|
+
<fann_get_cascade_activation_functions_count>, <fann_set_cascade_activation_functions>,
|
391
|
+
<fann_activationfunc_enum>
|
392
|
+
|
393
|
+
This function appears in FANN >= 2.0.0.
|
394
|
+
*/
|
395
|
+
FANN_EXTERNAL enum fann_activationfunc_enum * FANN_API fann_get_cascade_activation_functions(
|
396
|
+
struct fann *ann);
|
397
|
+
|
398
|
+
|
399
|
+
/* Function: fann_set_cascade_activation_functions
|
400
|
+
|
401
|
+
Sets the array of cascade candidate activation functions. The array must be just as long
|
402
|
+
as defined by the count.
|
403
|
+
|
404
|
+
See <fann_get_cascade_num_candidates> for a description of which candidate neurons will be
|
405
|
+
generated by this array.
|
406
|
+
|
407
|
+
See also:
|
408
|
+
<fann_get_cascade_activation_steepnesses_count>, <fann_get_cascade_activation_steepnesses>
|
409
|
+
|
410
|
+
This function appears in FANN >= 2.0.0.
|
411
|
+
*/
|
412
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_activation_functions(struct fann *ann,
|
413
|
+
enum fann_activationfunc_enum *
|
414
|
+
cascade_activation_functions,
|
415
|
+
unsigned int
|
416
|
+
cascade_activation_functions_count);
|
417
|
+
|
418
|
+
|
419
|
+
/* Function: fann_get_cascade_activation_steepnesses_count
|
420
|
+
|
421
|
+
The number of activation steepnesses in the <fann_get_cascade_activation_functions> array.
|
422
|
+
|
423
|
+
The default number of activation steepnesses is 4.
|
424
|
+
|
425
|
+
See also:
|
426
|
+
<fann_get_cascade_activation_steepnesses>, <fann_set_cascade_activation_functions>
|
427
|
+
|
428
|
+
This function appears in FANN >= 2.0.0.
|
429
|
+
*/
|
430
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_activation_steepnesses_count(struct fann *ann);
|
431
|
+
|
432
|
+
|
433
|
+
/* Function: fann_get_cascade_activation_steepnesses
|
434
|
+
|
435
|
+
The cascade activation steepnesses array is an array of the different activation functions used by
|
436
|
+
the candidates.
|
437
|
+
|
438
|
+
See <fann_get_cascade_num_candidates> for a description of which candidate neurons will be
|
439
|
+
generated by this array.
|
440
|
+
|
441
|
+
The default activation steepnesses is {0.25, 0.50, 0.75, 1.00}
|
442
|
+
|
443
|
+
See also:
|
444
|
+
<fann_set_cascade_activation_steepnesses>, <fann_get_cascade_activation_steepnesses_count>
|
445
|
+
|
446
|
+
This function appears in FANN >= 2.0.0.
|
447
|
+
*/
|
448
|
+
FANN_EXTERNAL fann_type * FANN_API fann_get_cascade_activation_steepnesses(struct fann *ann);
|
449
|
+
|
450
|
+
|
451
|
+
/* Function: fann_set_cascade_activation_steepnesses
|
452
|
+
|
453
|
+
Sets the array of cascade candidate activation steepnesses. The array must be just as long
|
454
|
+
as defined by the count.
|
455
|
+
|
456
|
+
See <fann_get_cascade_num_candidates> for a description of which candidate neurons will be
|
457
|
+
generated by this array.
|
458
|
+
|
459
|
+
See also:
|
460
|
+
<fann_get_cascade_activation_steepnesses>, <fann_get_cascade_activation_steepnesses_count>
|
461
|
+
|
462
|
+
This function appears in FANN >= 2.0.0.
|
463
|
+
*/
|
464
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_activation_steepnesses(struct fann *ann,
|
465
|
+
fann_type *
|
466
|
+
cascade_activation_steepnesses,
|
467
|
+
unsigned int
|
468
|
+
cascade_activation_steepnesses_count);
|
469
|
+
|
470
|
+
/* Function: fann_get_cascade_num_candidate_groups
|
471
|
+
|
472
|
+
The number of candidate groups is the number of groups of identical candidates which will be used
|
473
|
+
during training.
|
474
|
+
|
475
|
+
This number can be used to have more candidates without having to define new parameters for the candidates.
|
476
|
+
|
477
|
+
See <fann_get_cascade_num_candidates> for a description of which candidate neurons will be
|
478
|
+
generated by this parameter.
|
479
|
+
|
480
|
+
The default number of candidate groups is 2
|
481
|
+
|
482
|
+
See also:
|
483
|
+
<fann_set_cascade_num_candidate_groups>
|
484
|
+
|
485
|
+
This function appears in FANN >= 2.0.0.
|
486
|
+
*/
|
487
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_num_candidate_groups(struct fann *ann);
|
488
|
+
|
489
|
+
|
490
|
+
/* Function: fann_set_cascade_num_candidate_groups
|
491
|
+
|
492
|
+
Sets the number of candidate groups.
|
493
|
+
|
494
|
+
See also:
|
495
|
+
<fann_get_cascade_num_candidate_groups>
|
496
|
+
|
497
|
+
This function appears in FANN >= 2.0.0.
|
498
|
+
*/
|
499
|
+
FANN_EXTERNAL void FANN_API fann_set_cascade_num_candidate_groups(struct fann *ann,
|
500
|
+
unsigned int cascade_num_candidate_groups);
|
501
|
+
|
502
|
+
|
503
|
+
#endif
|