ruby-fann 0.7.10 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +6 -1
- data/License.txt +1 -1
- data/Manifest.txt +22 -1
- data/README.txt +0 -1
- data/Rakefile +0 -0
- data/config/hoe.rb +0 -0
- data/config/requirements.rb +0 -0
- data/ext/ruby_fann/MANIFEST +0 -0
- data/ext/ruby_fann/Makefile +36 -28
- data/ext/ruby_fann/doublefann.c +30 -0
- data/ext/ruby_fann/doublefann.h +33 -0
- data/ext/ruby_fann/extconf.rb +9 -5
- data/ext/ruby_fann/fann.c +1552 -0
- data/ext/ruby_fann/fann_activation.h +144 -0
- data/ext/ruby_fann/fann_augment.h +0 -0
- data/ext/ruby_fann/fann_cascade.c +1031 -0
- data/ext/ruby_fann/fann_cascade.h +503 -0
- data/ext/ruby_fann/fann_data.h +799 -0
- data/ext/ruby_fann/fann_error.c +204 -0
- data/ext/ruby_fann/fann_error.h +161 -0
- data/ext/ruby_fann/fann_internal.h +148 -0
- data/ext/ruby_fann/fann_io.c +762 -0
- data/ext/ruby_fann/fann_io.h +100 -0
- data/ext/ruby_fann/fann_train.c +962 -0
- data/ext/ruby_fann/fann_train.h +1203 -0
- data/ext/ruby_fann/fann_train_data.c +1231 -0
- data/ext/ruby_fann/neural_network.c +0 -0
- data/lib/ruby_fann/neurotica.rb +0 -0
- data/lib/ruby_fann/version.rb +3 -3
- data/lib/ruby_fann.rb +0 -0
- data/neurotica1.png +0 -0
- data/neurotica2.vrml +18 -18
- data/setup.rb +0 -0
- data/tasks/deployment.rake +0 -0
- data/tasks/environment.rake +0 -0
- data/tasks/website.rake +0 -0
- data/test/test.train +0 -0
- data/test/test_helper.rb +0 -0
- data/test/test_neurotica.rb +0 -0
- data/test/test_ruby_fann.rb +0 -0
- data/test/test_ruby_fann_functional.rb +0 -0
- data/verify.train +0 -0
- data/website/index.html +42 -92
- data/website/index.txt +0 -0
- data/website/javascripts/rounded_corners_lite.inc.js +0 -0
- data/website/stylesheets/screen.css +0 -0
- data/website/template.rhtml +0 -0
- data/xor.train +0 -0
- data/xor_cascade.net +2 -2
- data/xor_float.net +1 -1
- metadata +22 -6
- data/log/debug.log +0 -0
@@ -0,0 +1,1203 @@
|
|
1
|
+
/*
|
2
|
+
Fast Artificial Neural Network Library (fann)
|
3
|
+
Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)
|
4
|
+
|
5
|
+
This library is free software; you can redistribute it and/or
|
6
|
+
modify it under the terms of the GNU Lesser General Public
|
7
|
+
License as published by the Free Software Foundation; either
|
8
|
+
version 2.1 of the License, or (at your option) any later version.
|
9
|
+
|
10
|
+
This library is distributed in the hope that it will be useful,
|
11
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13
|
+
Lesser General Public License for more details.
|
14
|
+
|
15
|
+
You should have received a copy of the GNU Lesser General Public
|
16
|
+
License along with this library; if not, write to the Free Software
|
17
|
+
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18
|
+
*/
|
19
|
+
|
20
|
+
#ifndef __fann_train_h__
|
21
|
+
#define __fann_train_h__
|
22
|
+
|
23
|
+
/* Section: FANN Training
|
24
|
+
|
25
|
+
There are many different ways of training neural networks and the FANN library supports
|
26
|
+
a number of different approaches.
|
27
|
+
|
28
|
+
Two fundementally different approaches are the most commonly used:
|
29
|
+
|
30
|
+
Fixed topology training - The size and topology of the ANN is determined in advance
|
31
|
+
and the training alters the weights in order to minimize the difference between
|
32
|
+
the desired output values and the actual output values. This kind of training is
|
33
|
+
supported by <fann_train_on_data>.
|
34
|
+
|
35
|
+
Evolving topology training - The training start out with an empty ANN, only consisting
|
36
|
+
of input and output neurons. Hidden neurons and connections is the added during training,
|
37
|
+
in order to reach the same goal as for fixed topology training. This kind of training
|
38
|
+
is supported by <FANN Cascade Training>.
|
39
|
+
*/
|
40
|
+
|
41
|
+
/* Struct: struct fann_train_data
|
42
|
+
Structure used to store data, for use with training.
|
43
|
+
|
44
|
+
The data inside this structure should never be manipulated directly, but should use some
|
45
|
+
of the supplied functions in <Training Data Manipulation>.
|
46
|
+
|
47
|
+
The training data structure is very usefull for storing data during training and testing of a
|
48
|
+
neural network.
|
49
|
+
|
50
|
+
See also:
|
51
|
+
<fann_read_train_from_file>, <fann_train_on_data>, <fann_destroy_train>
|
52
|
+
*/
|
53
|
+
struct fann_train_data
|
54
|
+
{
|
55
|
+
enum fann_errno_enum errno_f;
|
56
|
+
FILE *error_log;
|
57
|
+
char *errstr;
|
58
|
+
|
59
|
+
unsigned int num_data;
|
60
|
+
unsigned int num_input;
|
61
|
+
unsigned int num_output;
|
62
|
+
fann_type **input;
|
63
|
+
fann_type **output;
|
64
|
+
};
|
65
|
+
|
66
|
+
/* Section: FANN Training */
|
67
|
+
|
68
|
+
/* Group: Training */
|
69
|
+
|
70
|
+
#ifndef FIXEDFANN
|
71
|
+
/* Function: fann_train
|
72
|
+
|
73
|
+
Train one iteration with a set of inputs, and a set of desired outputs.
|
74
|
+
This training is always incremental training (see <fann_train_enum>), since
|
75
|
+
only one pattern is presented.
|
76
|
+
|
77
|
+
Parameters:
|
78
|
+
ann - The neural network structure
|
79
|
+
input - an array of inputs. This array must be exactly <fann_get_num_input> long.
|
80
|
+
desired_output - an array of desired outputs. This array must be exactly <fann_get_num_output> long.
|
81
|
+
|
82
|
+
See also:
|
83
|
+
<fann_train_on_data>, <fann_train_epoch>
|
84
|
+
|
85
|
+
This function appears in FANN >= 1.0.0.
|
86
|
+
*/
|
87
|
+
FANN_EXTERNAL void FANN_API fann_train(struct fann *ann, fann_type * input,
|
88
|
+
fann_type * desired_output);
|
89
|
+
|
90
|
+
#endif /* NOT FIXEDFANN */
|
91
|
+
|
92
|
+
/* Function: fann_test
|
93
|
+
Test with a set of inputs, and a set of desired outputs.
|
94
|
+
This operation updates the mean square error, but does not
|
95
|
+
change the network in any way.
|
96
|
+
|
97
|
+
See also:
|
98
|
+
<fann_test_data>, <fann_train>
|
99
|
+
|
100
|
+
This function appears in FANN >= 1.0.0.
|
101
|
+
*/
|
102
|
+
FANN_EXTERNAL fann_type * FANN_API fann_test(struct fann *ann, fann_type * input,
|
103
|
+
fann_type * desired_output);
|
104
|
+
|
105
|
+
/* Function: fann_get_MSE
|
106
|
+
Reads the mean square error from the network.
|
107
|
+
|
108
|
+
Reads the mean square error from the network. This value is calculated during
|
109
|
+
training or testing, and can therefore sometimes be a bit off if the weights
|
110
|
+
have been changed since the last calculation of the value.
|
111
|
+
|
112
|
+
See also:
|
113
|
+
<fann_test_data>
|
114
|
+
|
115
|
+
This function appears in FANN >= 1.1.0.
|
116
|
+
*/
|
117
|
+
FANN_EXTERNAL float FANN_API fann_get_MSE(struct fann *ann);
|
118
|
+
|
119
|
+
/* Function: fann_get_bit_fail
|
120
|
+
|
121
|
+
The number of fail bits; means the number of output neurons which differ more
|
122
|
+
than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
|
123
|
+
The bits are counted in all of the training data, so this number can be higher than
|
124
|
+
the number of training data.
|
125
|
+
|
126
|
+
This value is reset by <fann_reset_MSE> and updated by all the same functions which also
|
127
|
+
updates the MSE value (e.g. <fann_test_data>, <fann_train_epoch>)
|
128
|
+
|
129
|
+
See also:
|
130
|
+
<fann_stopfunc_enum>, <fann_get_MSE>
|
131
|
+
|
132
|
+
This function appears in FANN >= 2.0.0
|
133
|
+
*/
|
134
|
+
FANN_EXTERNAL unsigned int FANN_API fann_get_bit_fail(struct fann *ann);
|
135
|
+
|
136
|
+
/* Function: fann_reset_MSE
|
137
|
+
Resets the mean square error from the network.
|
138
|
+
|
139
|
+
This function also resets the number of bits that fail.
|
140
|
+
|
141
|
+
See also:
|
142
|
+
<fann_get_MSE>, <fann_get_bit_fail_limit>
|
143
|
+
|
144
|
+
This function appears in FANN >= 1.1.0
|
145
|
+
*/
|
146
|
+
FANN_EXTERNAL void FANN_API fann_reset_MSE(struct fann *ann);
|
147
|
+
|
148
|
+
/* Group: Training Data Training */
|
149
|
+
|
150
|
+
#ifndef FIXEDFANN
|
151
|
+
|
152
|
+
/* Function: fann_train_on_data
|
153
|
+
|
154
|
+
Trains on an entire dataset, for a period of time.
|
155
|
+
|
156
|
+
This training uses the training algorithm chosen by <fann_set_training_algorithm>,
|
157
|
+
and the parameters set for these training algorithms.
|
158
|
+
|
159
|
+
Parameters:
|
160
|
+
ann - The neural network
|
161
|
+
data - The data, which should be used during training
|
162
|
+
max_epochs - The maximum number of epochs the training should continue
|
163
|
+
epochs_between_reports - The number of epochs between printing a status report to stdout.
|
164
|
+
A value of zero means no reports should be printed.
|
165
|
+
desired_error - The desired <fann_get_MSE> or <fann_get_bit_fail>, depending on which stop function
|
166
|
+
is chosen by <fann_set_train_stop_function>.
|
167
|
+
|
168
|
+
Instead of printing out reports every epochs_between_reports, a callback function can be called
|
169
|
+
(see <fann_set_callback>).
|
170
|
+
|
171
|
+
See also:
|
172
|
+
<fann_train_on_file>, <fann_train_epoch>, <Parameters>
|
173
|
+
|
174
|
+
This function appears in FANN >= 1.0.0.
|
175
|
+
*/
|
176
|
+
FANN_EXTERNAL void FANN_API fann_train_on_data(struct fann *ann, struct fann_train_data *data,
|
177
|
+
unsigned int max_epochs,
|
178
|
+
unsigned int epochs_between_reports,
|
179
|
+
float desired_error);
|
180
|
+
|
181
|
+
/* Function: fann_train_on_file
|
182
|
+
|
183
|
+
Does the same as <fann_train_on_data>, but reads the training data directly from a file.
|
184
|
+
|
185
|
+
See also:
|
186
|
+
<fann_train_on_data>
|
187
|
+
|
188
|
+
This function appears in FANN >= 1.0.0.
|
189
|
+
*/
|
190
|
+
FANN_EXTERNAL void FANN_API fann_train_on_file(struct fann *ann, const char *filename,
|
191
|
+
unsigned int max_epochs,
|
192
|
+
unsigned int epochs_between_reports,
|
193
|
+
float desired_error);
|
194
|
+
|
195
|
+
/* Function: fann_train_epoch
|
196
|
+
Train one epoch with a set of training data.
|
197
|
+
|
198
|
+
Train one epoch with the training data stored in data. One epoch is where all of
|
199
|
+
the training data is considered exactly once.
|
200
|
+
|
201
|
+
This function returns the MSE error as it is calculated either before or during
|
202
|
+
the actual training. This is not the actual MSE after the training epoch, but since
|
203
|
+
calculating this will require to go through the entire training set once more, it is
|
204
|
+
more than adequate to use this value during training.
|
205
|
+
|
206
|
+
The training algorithm used by this function is chosen by the <fann_set_training_algorithm>
|
207
|
+
function.
|
208
|
+
|
209
|
+
See also:
|
210
|
+
<fann_train_on_data>, <fann_test_data>
|
211
|
+
|
212
|
+
This function appears in FANN >= 1.2.0.
|
213
|
+
*/
|
214
|
+
FANN_EXTERNAL float FANN_API fann_train_epoch(struct fann *ann, struct fann_train_data *data);
|
215
|
+
#endif /* NOT FIXEDFANN */
|
216
|
+
|
217
|
+
/* Function: fann_test_data
|
218
|
+
|
219
|
+
Test a set of training data and calculates the MSE for the training data.
|
220
|
+
|
221
|
+
This function updates the MSE and the bit fail values.
|
222
|
+
|
223
|
+
See also:
|
224
|
+
<fann_test>, <fann_get_MSE>, <fann_get_bit_fail>
|
225
|
+
|
226
|
+
This function appears in FANN >= 1.2.0.
|
227
|
+
*/
|
228
|
+
FANN_EXTERNAL float FANN_API fann_test_data(struct fann *ann, struct fann_train_data *data);
|
229
|
+
|
230
|
+
/* Group: Training Data Manipulation */
|
231
|
+
|
232
|
+
/* Function: fann_read_train_from_file
|
233
|
+
Reads a file that stores training data.
|
234
|
+
|
235
|
+
The file must be formatted like:
|
236
|
+
>num_train_data num_input num_output
|
237
|
+
>inputdata seperated by space
|
238
|
+
>outputdata seperated by space
|
239
|
+
>
|
240
|
+
>.
|
241
|
+
>.
|
242
|
+
>.
|
243
|
+
>
|
244
|
+
>inputdata seperated by space
|
245
|
+
>outputdata seperated by space
|
246
|
+
|
247
|
+
See also:
|
248
|
+
<fann_train_on_data>, <fann_destroy_train>, <fann_save_train>
|
249
|
+
|
250
|
+
This function appears in FANN >= 1.0.0
|
251
|
+
*/
|
252
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_read_train_from_file(const char *filename);
|
253
|
+
|
254
|
+
|
255
|
+
/* Function: fann_create_train_from_callback
|
256
|
+
Creates the training data struct from a user supplied function.
|
257
|
+
As the training data are numerable (data 1, data 2...), the user must write
|
258
|
+
a function that receives the number of the training data set (input,output)
|
259
|
+
and returns the set.
|
260
|
+
|
261
|
+
Parameters:
|
262
|
+
num_data - The number of training data
|
263
|
+
num_input - The number of inputs per training data
|
264
|
+
num_output - The number of ouputs per training data
|
265
|
+
user_function - The user suplied function
|
266
|
+
|
267
|
+
Parameters for the user function:
|
268
|
+
num - The number of the training data set
|
269
|
+
num_input - The number of inputs per training data
|
270
|
+
num_output - The number of ouputs per training data
|
271
|
+
input - The set of inputs
|
272
|
+
output - The set of desired outputs
|
273
|
+
|
274
|
+
See also:
|
275
|
+
<fann_read_train_from_file>, <fann_train_on_data>, <fann_destroy_train>,
|
276
|
+
<fann_save_train>
|
277
|
+
|
278
|
+
This function appears in FANN >= 2.1.0
|
279
|
+
*/
|
280
|
+
FANN_EXTERNAL struct fann_train_data * FANN_API fann_create_train_from_callback(unsigned int num_data,
|
281
|
+
unsigned int num_input,
|
282
|
+
unsigned int num_output,
|
283
|
+
void (FANN_API *user_function)( unsigned int,
|
284
|
+
unsigned int,
|
285
|
+
unsigned int,
|
286
|
+
fann_type * ,
|
287
|
+
fann_type * ));
|
288
|
+
|
289
|
+
/* Function: fann_destroy_train
|
290
|
+
Destructs the training data and properly deallocates all of the associated data.
|
291
|
+
Be sure to call this function after finished using the training data.
|
292
|
+
|
293
|
+
This function appears in FANN >= 1.0.0
|
294
|
+
*/
|
295
|
+
FANN_EXTERNAL void FANN_API fann_destroy_train(struct fann_train_data *train_data);
|
296
|
+
|
297
|
+
|
298
|
+
/* Function: fann_shuffle_train_data
|
299
|
+
|
300
|
+
Shuffles training data, randomizing the order.
|
301
|
+
This is recommended for incremental training, while it have no influence during batch training.
|
302
|
+
|
303
|
+
This function appears in FANN >= 1.1.0.
|
304
|
+
*/
|
305
|
+
FANN_EXTERNAL void FANN_API fann_shuffle_train_data(struct fann_train_data *train_data);
|
306
|
+
|
307
|
+
#ifndef FIXEDFANN
|
308
|
+
/* Function: fann_scale_train
|
309
|
+
|
310
|
+
Scale input and output data based on previously calculated parameters.
|
311
|
+
|
312
|
+
Parameters:
|
313
|
+
ann - ann for which were calculated trained parameters before
|
314
|
+
data - training data that needs to be scaled
|
315
|
+
|
316
|
+
See also:
|
317
|
+
<fann_descale_train>, <fann_set_scaling_params>
|
318
|
+
|
319
|
+
This function appears in FANN >= 2.1.0
|
320
|
+
*/
|
321
|
+
FANN_EXTERNAL void FANN_API fann_scale_train( struct fann *ann, struct fann_train_data *data );
|
322
|
+
|
323
|
+
/* Function: fann_descale_train
|
324
|
+
|
325
|
+
Descale input and output data based on previously calculated parameters.
|
326
|
+
|
327
|
+
Parameters:
|
328
|
+
ann - ann for which were calculated trained parameters before
|
329
|
+
data - training data that needs to be descaled
|
330
|
+
|
331
|
+
See also:
|
332
|
+
<fann_scale_train>, <fann_set_scaling_params>
|
333
|
+
|
334
|
+
This function appears in FANN >= 2.1.0
|
335
|
+
*/
|
336
|
+
FANN_EXTERNAL void FANN_API fann_descale_train( struct fann *ann, struct fann_train_data *data );
|
337
|
+
|
338
|
+
/* Function: fann_set_input_scaling_params
|
339
|
+
|
340
|
+
Calculate input scaling parameters for future use based on training data.
|
341
|
+
|
342
|
+
Parameters:
|
343
|
+
ann - ann for wgich parameters needs to be calculated
|
344
|
+
data - training data that will be used to calculate scaling parameters
|
345
|
+
new_input_min - desired lower bound in input data after scaling (not strictly followed)
|
346
|
+
new_input_max - desired upper bound in input data after scaling (not strictly followed)
|
347
|
+
|
348
|
+
See also:
|
349
|
+
<fann_set_output_scaling_params>
|
350
|
+
|
351
|
+
This function appears in FANN >= 2.1.0
|
352
|
+
*/
|
353
|
+
FANN_EXTERNAL int FANN_API fann_set_input_scaling_params(
|
354
|
+
struct fann *ann,
|
355
|
+
const struct fann_train_data *data,
|
356
|
+
float new_input_min,
|
357
|
+
float new_input_max);
|
358
|
+
|
359
|
+
/* Function: fann_set_output_scaling_params
|
360
|
+
|
361
|
+
Calculate output scaling parameters for future use based on training data.
|
362
|
+
|
363
|
+
Parameters:
|
364
|
+
ann - ann for wgich parameters needs to be calculated
|
365
|
+
data - training data that will be used to calculate scaling parameters
|
366
|
+
new_output_min - desired lower bound in input data after scaling (not strictly followed)
|
367
|
+
new_output_max - desired upper bound in input data after scaling (not strictly followed)
|
368
|
+
|
369
|
+
See also:
|
370
|
+
<fann_set_input_scaling_params>
|
371
|
+
|
372
|
+
This function appears in FANN >= 2.1.0
|
373
|
+
*/
|
374
|
+
FANN_EXTERNAL int FANN_API fann_set_output_scaling_params(
|
375
|
+
struct fann *ann,
|
376
|
+
const struct fann_train_data *data,
|
377
|
+
float new_output_min,
|
378
|
+
float new_output_max);
|
379
|
+
|
380
|
+
/* Function: fann_set_scaling_params
|
381
|
+
|
382
|
+
Calculate input and output scaling parameters for future use based on training data.
|
383
|
+
|
384
|
+
Parameters:
|
385
|
+
ann - ann for wgich parameters needs to be calculated
|
386
|
+
data - training data that will be used to calculate scaling parameters
|
387
|
+
new_input_min - desired lower bound in input data after scaling (not strictly followed)
|
388
|
+
new_input_max - desired upper bound in input data after scaling (not strictly followed)
|
389
|
+
new_output_min - desired lower bound in input data after scaling (not strictly followed)
|
390
|
+
new_output_max - desired upper bound in input data after scaling (not strictly followed)
|
391
|
+
|
392
|
+
See also:
|
393
|
+
<fann_set_input_scaling_params>, <fann_set_output_scaling_params>
|
394
|
+
|
395
|
+
This function appears in FANN >= 2.1.0
|
396
|
+
*/
|
397
|
+
FANN_EXTERNAL int FANN_API fann_set_scaling_params(
|
398
|
+
struct fann *ann,
|
399
|
+
const struct fann_train_data *data,
|
400
|
+
float new_input_min,
|
401
|
+
float new_input_max,
|
402
|
+
float new_output_min,
|
403
|
+
float new_output_max);
|
404
|
+
|
405
|
+
/* Function: fann_clear_scaling_params
|
406
|
+
|
407
|
+
Clears scaling parameters.
|
408
|
+
|
409
|
+
Parameters:
|
410
|
+
ann - ann for which to clear scaling parameters
|
411
|
+
|
412
|
+
This function appears in FANN >= 2.1.0
|
413
|
+
*/
|
414
|
+
FANN_EXTERNAL int FANN_API fann_clear_scaling_params(struct fann *ann);
|
415
|
+
|
416
|
+
/* Function: fann_scale_input
|
417
|
+
|
418
|
+
Scale data in input vector before feed it to ann based on previously calculated parameters.
|
419
|
+
|
420
|
+
Parameters:
|
421
|
+
ann - for which scaling parameters were calculated
|
422
|
+
input_vector - input vector that will be scaled
|
423
|
+
|
424
|
+
See also:
|
425
|
+
<fann_descale_input>, <fann_scale_output>
|
426
|
+
|
427
|
+
This function appears in FANN >= 2.1.0
|
428
|
+
*/
|
429
|
+
FANN_EXTERNAL void FANN_API fann_scale_input( struct fann *ann, fann_type *input_vector );
|
430
|
+
|
431
|
+
/* Function: fann_scale_output
|
432
|
+
|
433
|
+
Scale data in output vector before feed it to ann based on previously calculated parameters.
|
434
|
+
|
435
|
+
Parameters:
|
436
|
+
ann - for which scaling parameters were calculated
|
437
|
+
output_vector - output vector that will be scaled
|
438
|
+
|
439
|
+
See also:
|
440
|
+
<fann_descale_output>, <fann_scale_input>
|
441
|
+
|
442
|
+
This function appears in FANN >= 2.1.0
|
443
|
+
*/
|
444
|
+
FANN_EXTERNAL void FANN_API fann_scale_output( struct fann *ann, fann_type *output_vector );
|
445
|
+
|
446
|
+
/* Function: fann_descale_input
|
447
|
+
|
448
|
+
Scale data in input vector after get it from ann based on previously calculated parameters.
|
449
|
+
|
450
|
+
Parameters:
|
451
|
+
ann - for which scaling parameters were calculated
|
452
|
+
input_vector - input vector that will be descaled
|
453
|
+
|
454
|
+
See also:
|
455
|
+
<fann_scale_input>, <fann_descale_output>
|
456
|
+
|
457
|
+
This function appears in FANN >= 2.1.0
|
458
|
+
*/
|
459
|
+
FANN_EXTERNAL void FANN_API fann_descale_input( struct fann *ann, fann_type *input_vector );
|
460
|
+
|
461
|
+
/* Function: fann_descale_output
|
462
|
+
|
463
|
+
Scale data in output vector after get it from ann based on previously calculated parameters.
|
464
|
+
|
465
|
+
Parameters:
|
466
|
+
ann - for which scaling parameters were calculated
|
467
|
+
output_vector - output vector that will be descaled
|
468
|
+
|
469
|
+
See also:
|
470
|
+
<fann_scale_output>, <fann_descale_input>
|
471
|
+
|
472
|
+
This function appears in FANN >= 2.1.0
|
473
|
+
*/
|
474
|
+
FANN_EXTERNAL void FANN_API fann_descale_output( struct fann *ann, fann_type *output_vector );
|
475
|
+
|
476
|
+
#endif
|
477
|
+
|
478
|
+
/* Function: fann_scale_input_train_data
|
479
|
+
|
480
|
+
Scales the inputs in the training data to the specified range.
|
481
|
+
|
482
|
+
See also:
|
483
|
+
<fann_scale_output_train_data>, <fann_scale_train_data>
|
484
|
+
|
485
|
+
This function appears in FANN >= 2.0.0.
|
486
|
+
*/
|
487
|
+
FANN_EXTERNAL void FANN_API fann_scale_input_train_data(struct fann_train_data *train_data,
|
488
|
+
fann_type new_min, fann_type new_max);
|
489
|
+
|
490
|
+
|
491
|
+
/* Function: fann_scale_output_train_data
|
492
|
+
|
493
|
+
Scales the outputs in the training data to the specified range.
|
494
|
+
|
495
|
+
See also:
|
496
|
+
<fann_scale_input_train_data>, <fann_scale_train_data>
|
497
|
+
|
498
|
+
This function appears in FANN >= 2.0.0.
|
499
|
+
*/
|
500
|
+
FANN_EXTERNAL void FANN_API fann_scale_output_train_data(struct fann_train_data *train_data,
|
501
|
+
fann_type new_min, fann_type new_max);
|
502
|
+
|
503
|
+
|
504
|
+
/* Function: fann_scale_train_data
|
505
|
+
|
506
|
+
Scales the inputs and outputs in the training data to the specified range.
|
507
|
+
|
508
|
+
See also:
|
509
|
+
<fann_scale_output_train_data>, <fann_scale_input_train_data>
|
510
|
+
|
511
|
+
This function appears in FANN >= 2.0.0.
|
512
|
+
*/
|
513
|
+
FANN_EXTERNAL void FANN_API fann_scale_train_data(struct fann_train_data *train_data,
|
514
|
+
fann_type new_min, fann_type new_max);
|
515
|
+
|
516
|
+
|
517
|
+
/* Function: fann_merge_train_data
|
518
|
+
|
519
|
+
Merges the data from *data1* and *data2* into a new <struct fann_train_data>.
|
520
|
+
|
521
|
+
This function appears in FANN >= 1.1.0.
|
522
|
+
*/
|
523
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_merge_train_data(struct fann_train_data *data1,
|
524
|
+
struct fann_train_data *data2);
|
525
|
+
|
526
|
+
|
527
|
+
/* Function: fann_duplicate_train_data
|
528
|
+
|
529
|
+
Returns an exact copy of a <struct fann_train_data>.
|
530
|
+
|
531
|
+
This function appears in FANN >= 1.1.0.
|
532
|
+
*/
|
533
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_duplicate_train_data(struct fann_train_data
|
534
|
+
*data);
|
535
|
+
|
536
|
+
/* Function: fann_subset_train_data
|
537
|
+
|
538
|
+
Returns an copy of a subset of the <struct fann_train_data>, starting at position *pos*
|
539
|
+
and *length* elements forward.
|
540
|
+
|
541
|
+
>fann_subset_train_data(train_data, 0, fann_length_train_data(train_data))
|
542
|
+
|
543
|
+
Will do the same as <fann_duplicate_train_data>.
|
544
|
+
|
545
|
+
See also:
|
546
|
+
<fann_length_train_data>
|
547
|
+
|
548
|
+
This function appears in FANN >= 2.0.0.
|
549
|
+
*/
|
550
|
+
FANN_EXTERNAL struct fann_train_data *FANN_API fann_subset_train_data(struct fann_train_data
|
551
|
+
*data, unsigned int pos,
|
552
|
+
unsigned int length);
|
553
|
+
|
554
|
+
/* Function: fann_length_train_data
|
555
|
+
|
556
|
+
Returns the number of training patterns in the <struct fann_train_data>.
|
557
|
+
|
558
|
+
This function appears in FANN >= 2.0.0.
|
559
|
+
*/
|
560
|
+
FANN_EXTERNAL unsigned int FANN_API fann_length_train_data(struct fann_train_data *data);
|
561
|
+
|
562
|
+
/* Function: fann_num_input_train_data
|
563
|
+
|
564
|
+
Returns the number of inputs in each of the training patterns in the <struct fann_train_data>.
|
565
|
+
|
566
|
+
See also:
|
567
|
+
<fann_num_train_data>, <fann_num_output_train_data>
|
568
|
+
|
569
|
+
This function appears in FANN >= 2.0.0.
|
570
|
+
*/
|
571
|
+
FANN_EXTERNAL unsigned int FANN_API fann_num_input_train_data(struct fann_train_data *data);
|
572
|
+
|
573
|
+
/* Function: fann_num_output_train_data
|
574
|
+
|
575
|
+
Returns the number of outputs in each of the training patterns in the <struct fann_train_data>.
|
576
|
+
|
577
|
+
See also:
|
578
|
+
<fann_num_train_data>, <fann_num_input_train_data>
|
579
|
+
|
580
|
+
This function appears in FANN >= 2.0.0.
|
581
|
+
*/
|
582
|
+
FANN_EXTERNAL unsigned int FANN_API fann_num_output_train_data(struct fann_train_data *data);
|
583
|
+
|
584
|
+
/* Function: fann_save_train
|
585
|
+
|
586
|
+
Save the training structure to a file, with the format as specified in <fann_read_train_from_file>
|
587
|
+
|
588
|
+
Return:
|
589
|
+
The function returns 0 on success and -1 on failure.
|
590
|
+
|
591
|
+
See also:
|
592
|
+
<fann_read_train_from_file>, <fann_save_train_to_fixed>
|
593
|
+
|
594
|
+
This function appears in FANN >= 1.0.0.
|
595
|
+
*/
|
596
|
+
FANN_EXTERNAL int FANN_API fann_save_train(struct fann_train_data *data, const char *filename);
|
597
|
+
|
598
|
+
|
599
|
+
/* Function: fann_save_train_to_fixed
|
600
|
+
|
601
|
+
Saves the training structure to a fixed point data file.
|
602
|
+
|
603
|
+
This function is very usefull for testing the quality of a fixed point network.
|
604
|
+
|
605
|
+
Return:
|
606
|
+
The function returns 0 on success and -1 on failure.
|
607
|
+
|
608
|
+
See also:
|
609
|
+
<fann_save_train>
|
610
|
+
|
611
|
+
This function appears in FANN >= 1.0.0.
|
612
|
+
*/
|
613
|
+
FANN_EXTERNAL int FANN_API fann_save_train_to_fixed(struct fann_train_data *data, const char *filename,
|
614
|
+
unsigned int decimal_point);
|
615
|
+
|
616
|
+
|
617
|
+
/* Group: Parameters */
|
618
|
+
|
619
|
+
/* Function: fann_get_training_algorithm
|
620
|
+
|
621
|
+
Return the training algorithm as described by <fann_train_enum>. This training algorithm
|
622
|
+
is used by <fann_train_on_data> and associated functions.
|
623
|
+
|
624
|
+
Note that this algorithm is also used during <fann_cascadetrain_on_data>, although only
|
625
|
+
FANN_TRAIN_RPROP and FANN_TRAIN_QUICKPROP is allowed during cascade training.
|
626
|
+
|
627
|
+
The default training algorithm is FANN_TRAIN_RPROP.
|
628
|
+
|
629
|
+
See also:
|
630
|
+
<fann_set_training_algorithm>, <fann_train_enum>
|
631
|
+
|
632
|
+
This function appears in FANN >= 1.0.0.
|
633
|
+
*/
|
634
|
+
FANN_EXTERNAL enum fann_train_enum FANN_API fann_get_training_algorithm(struct fann *ann);
|
635
|
+
|
636
|
+
|
637
|
+
/* Function: fann_set_training_algorithm
|
638
|
+
|
639
|
+
Set the training algorithm.
|
640
|
+
|
641
|
+
More info available in <fann_get_training_algorithm>
|
642
|
+
|
643
|
+
This function appears in FANN >= 1.0.0.
|
644
|
+
*/
|
645
|
+
FANN_EXTERNAL void FANN_API fann_set_training_algorithm(struct fann *ann,
|
646
|
+
enum fann_train_enum training_algorithm);
|
647
|
+
|
648
|
+
|
649
|
+
/* Function: fann_get_learning_rate
|
650
|
+
|
651
|
+
Return the learning rate.
|
652
|
+
|
653
|
+
The learning rate is used to determine how aggressive training should be for some of the
|
654
|
+
training algorithms (FANN_TRAIN_INCREMENTAL, FANN_TRAIN_BATCH, FANN_TRAIN_QUICKPROP).
|
655
|
+
Do however note that it is not used in FANN_TRAIN_RPROP.
|
656
|
+
|
657
|
+
The default learning rate is 0.7.
|
658
|
+
|
659
|
+
See also:
|
660
|
+
<fann_set_learning_rate>, <fann_set_training_algorithm>
|
661
|
+
|
662
|
+
This function appears in FANN >= 1.0.0.
|
663
|
+
*/
|
664
|
+
FANN_EXTERNAL float FANN_API fann_get_learning_rate(struct fann *ann);
|
665
|
+
|
666
|
+
|
667
|
+
/* Function: fann_set_learning_rate
|
668
|
+
|
669
|
+
Set the learning rate.
|
670
|
+
|
671
|
+
More info available in <fann_get_learning_rate>
|
672
|
+
|
673
|
+
This function appears in FANN >= 1.0.0.
|
674
|
+
*/
|
675
|
+
FANN_EXTERNAL void FANN_API fann_set_learning_rate(struct fann *ann, float learning_rate);
|
676
|
+
|
677
|
+
/* Function: fann_get_learning_momentum
|
678
|
+
|
679
|
+
Get the learning momentum.
|
680
|
+
|
681
|
+
The learning momentum can be used to speed up FANN_TRAIN_INCREMENTAL training.
|
682
|
+
A too high momentum will however not benefit training. Setting momentum to 0 will
|
683
|
+
be the same as not using the momentum parameter. The recommended value of this parameter
|
684
|
+
is between 0.0 and 1.0.
|
685
|
+
|
686
|
+
The default momentum is 0.
|
687
|
+
|
688
|
+
See also:
|
689
|
+
<fann_set_learning_momentum>, <fann_set_training_algorithm>
|
690
|
+
|
691
|
+
This function appears in FANN >= 2.0.0.
|
692
|
+
*/
|
693
|
+
FANN_EXTERNAL float FANN_API fann_get_learning_momentum(struct fann *ann);
|
694
|
+
|
695
|
+
|
696
|
+
/* Function: fann_set_learning_momentum
|
697
|
+
|
698
|
+
Set the learning momentum.
|
699
|
+
|
700
|
+
More info available in <fann_get_learning_momentum>
|
701
|
+
|
702
|
+
This function appears in FANN >= 2.0.0.
|
703
|
+
*/
|
704
|
+
FANN_EXTERNAL void FANN_API fann_set_learning_momentum(struct fann *ann, float learning_momentum);
|
705
|
+
|
706
|
+
|
707
|
+
/* Function: fann_get_activation_function
|
708
|
+
|
709
|
+
Get the activation function for neuron number *neuron* in layer number *layer*,
|
710
|
+
counting the input layer as layer 0.
|
711
|
+
|
712
|
+
It is not possible to get activation functions for the neurons in the input layer.
|
713
|
+
|
714
|
+
Information about the individual activation functions is available at <fann_activationfunc_enum>.
|
715
|
+
|
716
|
+
Returns:
|
717
|
+
The activation function for the neuron or -1 if the neuron is not defined in the neural network.
|
718
|
+
|
719
|
+
See also:
|
720
|
+
<fann_set_activation_function_layer>, <fann_set_activation_function_hidden>,
|
721
|
+
<fann_set_activation_function_output>, <fann_set_activation_steepness>,
|
722
|
+
<fann_set_activation_function>
|
723
|
+
|
724
|
+
This function appears in FANN >= 2.1.0
|
725
|
+
*/
|
726
|
+
FANN_EXTERNAL enum fann_activationfunc_enum FANN_API fann_get_activation_function(struct fann *ann,
|
727
|
+
int layer,
|
728
|
+
int neuron);
|
729
|
+
|
730
|
+
/* Function: fann_set_activation_function
|
731
|
+
|
732
|
+
Set the activation function for neuron number *neuron* in layer number *layer*,
|
733
|
+
counting the input layer as layer 0.
|
734
|
+
|
735
|
+
It is not possible to set activation functions for the neurons in the input layer.
|
736
|
+
|
737
|
+
When choosing an activation function it is important to note that the activation
|
738
|
+
functions have different range. FANN_SIGMOID is e.g. in the 0 - 1 range while
|
739
|
+
FANN_SIGMOID_SYMMETRIC is in the -1 - 1 range and FANN_LINEAR is unbound.
|
740
|
+
|
741
|
+
Information about the individual activation functions is available at <fann_activationfunc_enum>.
|
742
|
+
|
743
|
+
The default activation function is FANN_SIGMOID_STEPWISE.
|
744
|
+
|
745
|
+
See also:
|
746
|
+
<fann_set_activation_function_layer>, <fann_set_activation_function_hidden>,
|
747
|
+
<fann_set_activation_function_output>, <fann_set_activation_steepness>,
|
748
|
+
<fann_get_activation_function>
|
749
|
+
|
750
|
+
This function appears in FANN >= 2.0.0.
|
751
|
+
*/
|
752
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_function(struct fann *ann,
|
753
|
+
enum fann_activationfunc_enum
|
754
|
+
activation_function,
|
755
|
+
int layer,
|
756
|
+
int neuron);
|
757
|
+
|
758
|
+
/* Function: fann_set_activation_function_layer
|
759
|
+
|
760
|
+
Set the activation function for all the neurons in the layer number *layer*,
|
761
|
+
counting the input layer as layer 0.
|
762
|
+
|
763
|
+
It is not possible to set activation functions for the neurons in the input layer.
|
764
|
+
|
765
|
+
See also:
|
766
|
+
<fann_set_activation_function>, <fann_set_activation_function_hidden>,
|
767
|
+
<fann_set_activation_function_output>, <fann_set_activation_steepness_layer>
|
768
|
+
|
769
|
+
This function appears in FANN >= 2.0.0.
|
770
|
+
*/
|
771
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_function_layer(struct fann *ann,
|
772
|
+
enum fann_activationfunc_enum
|
773
|
+
activation_function,
|
774
|
+
int layer);
|
775
|
+
|
776
|
+
/* Function: fann_set_activation_function_hidden
|
777
|
+
|
778
|
+
Set the activation function for all of the hidden layers.
|
779
|
+
|
780
|
+
See also:
|
781
|
+
<fann_set_activation_function>, <fann_set_activation_function_layer>,
|
782
|
+
<fann_set_activation_function_output>, <fann_set_activation_steepness_hidden>
|
783
|
+
|
784
|
+
This function appears in FANN >= 1.0.0.
|
785
|
+
*/
|
786
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_function_hidden(struct fann *ann,
|
787
|
+
enum fann_activationfunc_enum
|
788
|
+
activation_function);
|
789
|
+
|
790
|
+
|
791
|
+
/* Function: fann_set_activation_function_output
|
792
|
+
|
793
|
+
Set the activation function for the output layer.
|
794
|
+
|
795
|
+
See also:
|
796
|
+
<fann_set_activation_function>, <fann_set_activation_function_layer>,
|
797
|
+
<fann_set_activation_function_hidden>, <fann_set_activation_steepness_output>
|
798
|
+
|
799
|
+
This function appears in FANN >= 1.0.0.
|
800
|
+
*/
|
801
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_function_output(struct fann *ann,
|
802
|
+
enum fann_activationfunc_enum
|
803
|
+
activation_function);
|
804
|
+
|
805
|
+
/* Function: fann_get_activation_steepness
|
806
|
+
|
807
|
+
Get the activation steepness for neuron number *neuron* in layer number *layer*,
|
808
|
+
counting the input layer as layer 0.
|
809
|
+
|
810
|
+
It is not possible to get activation steepness for the neurons in the input layer.
|
811
|
+
|
812
|
+
The steepness of an activation function says something about how fast the activation function
|
813
|
+
goes from the minimum to the maximum. A high value for the activation function will also
|
814
|
+
give a more agressive training.
|
815
|
+
|
816
|
+
When training neural networks where the output values should be at the extremes (usually 0 and 1,
|
817
|
+
depending on the activation function), a steep activation function can be used (e.g. 1.0).
|
818
|
+
|
819
|
+
The default activation steepness is 0.5.
|
820
|
+
|
821
|
+
Returns:
|
822
|
+
The activation steepness for the neuron or -1 if the neuron is not defined in the neural network.
|
823
|
+
|
824
|
+
See also:
|
825
|
+
<fann_set_activation_steepness_layer>, <fann_set_activation_steepness_hidden>,
|
826
|
+
<fann_set_activation_steepness_output>, <fann_set_activation_function>,
|
827
|
+
<fann_set_activation_steepness>
|
828
|
+
|
829
|
+
This function appears in FANN >= 2.1.0
|
830
|
+
*/
|
831
|
+
FANN_EXTERNAL fann_type FANN_API fann_get_activation_steepness(struct fann *ann,
|
832
|
+
int layer,
|
833
|
+
int neuron);
|
834
|
+
|
835
|
+
/* Function: fann_set_activation_steepness
|
836
|
+
|
837
|
+
Set the activation steepness for neuron number *neuron* in layer number *layer*,
|
838
|
+
counting the input layer as layer 0.
|
839
|
+
|
840
|
+
It is not possible to set activation steepness for the neurons in the input layer.
|
841
|
+
|
842
|
+
The steepness of an activation function says something about how fast the activation function
|
843
|
+
goes from the minimum to the maximum. A high value for the activation function will also
|
844
|
+
give a more agressive training.
|
845
|
+
|
846
|
+
When training neural networks where the output values should be at the extremes (usually 0 and 1,
|
847
|
+
depending on the activation function), a steep activation function can be used (e.g. 1.0).
|
848
|
+
|
849
|
+
The default activation steepness is 0.5.
|
850
|
+
|
851
|
+
See also:
|
852
|
+
<fann_set_activation_steepness_layer>, <fann_set_activation_steepness_hidden>,
|
853
|
+
<fann_set_activation_steepness_output>, <fann_set_activation_function>,
|
854
|
+
<fann_get_activation_steepness>
|
855
|
+
|
856
|
+
This function appears in FANN >= 2.0.0.
|
857
|
+
*/
|
858
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_steepness(struct fann *ann,
|
859
|
+
fann_type steepness,
|
860
|
+
int layer,
|
861
|
+
int neuron);
|
862
|
+
|
863
|
+
/* Function: fann_set_activation_steepness_layer
|
864
|
+
|
865
|
+
Set the activation steepness all of the neurons in layer number *layer*,
|
866
|
+
counting the input layer as layer 0.
|
867
|
+
|
868
|
+
It is not possible to set activation steepness for the neurons in the input layer.
|
869
|
+
|
870
|
+
See also:
|
871
|
+
<fann_set_activation_steepness>, <fann_set_activation_steepness_hidden>,
|
872
|
+
<fann_set_activation_steepness_output>, <fann_set_activation_function_layer>
|
873
|
+
|
874
|
+
This function appears in FANN >= 2.0.0.
|
875
|
+
*/
|
876
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_steepness_layer(struct fann *ann,
|
877
|
+
fann_type steepness,
|
878
|
+
int layer);
|
879
|
+
|
880
|
+
/* Function: fann_set_activation_steepness_hidden
|
881
|
+
|
882
|
+
Set the steepness of the activation steepness in all of the hidden layers.
|
883
|
+
|
884
|
+
See also:
|
885
|
+
<fann_set_activation_steepness>, <fann_set_activation_steepness_layer>,
|
886
|
+
<fann_set_activation_steepness_output>, <fann_set_activation_function_hidden>
|
887
|
+
|
888
|
+
This function appears in FANN >= 1.2.0.
|
889
|
+
*/
|
890
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_steepness_hidden(struct fann *ann,
|
891
|
+
fann_type steepness);
|
892
|
+
|
893
|
+
|
894
|
+
/* Function: fann_set_activation_steepness_output
|
895
|
+
|
896
|
+
Set the steepness of the activation steepness in the output layer.
|
897
|
+
|
898
|
+
See also:
|
899
|
+
<fann_set_activation_steepness>, <fann_set_activation_steepness_layer>,
|
900
|
+
<fann_set_activation_steepness_hidden>, <fann_set_activation_function_output>
|
901
|
+
|
902
|
+
This function appears in FANN >= 1.2.0.
|
903
|
+
*/
|
904
|
+
FANN_EXTERNAL void FANN_API fann_set_activation_steepness_output(struct fann *ann,
|
905
|
+
fann_type steepness);
|
906
|
+
|
907
|
+
|
908
|
+
/* Function: fann_get_train_error_function
|
909
|
+
|
910
|
+
Returns the error function used during training.
|
911
|
+
|
912
|
+
The error functions is described further in <fann_errorfunc_enum>
|
913
|
+
|
914
|
+
The default error function is FANN_ERRORFUNC_TANH
|
915
|
+
|
916
|
+
See also:
|
917
|
+
<fann_set_train_error_function>
|
918
|
+
|
919
|
+
This function appears in FANN >= 1.2.0.
|
920
|
+
*/
|
921
|
+
FANN_EXTERNAL enum fann_errorfunc_enum FANN_API fann_get_train_error_function(struct fann *ann);
|
922
|
+
|
923
|
+
|
924
|
+
/* Function: fann_set_train_error_function
|
925
|
+
|
926
|
+
Set the error function used during training.
|
927
|
+
|
928
|
+
The error functions is described further in <fann_errorfunc_enum>
|
929
|
+
|
930
|
+
See also:
|
931
|
+
<fann_get_train_error_function>
|
932
|
+
|
933
|
+
This function appears in FANN >= 1.2.0.
|
934
|
+
*/
|
935
|
+
FANN_EXTERNAL void FANN_API fann_set_train_error_function(struct fann *ann,
|
936
|
+
enum fann_errorfunc_enum
|
937
|
+
train_error_function);
|
938
|
+
|
939
|
+
|
940
|
+
/* Function: fann_get_train_stop_function
|
941
|
+
|
942
|
+
Returns the the stop function used during training.
|
943
|
+
|
944
|
+
The stop function is described further in <fann_stopfunc_enum>
|
945
|
+
|
946
|
+
The default stop function is FANN_STOPFUNC_MSE
|
947
|
+
|
948
|
+
See also:
|
949
|
+
<fann_get_train_stop_function>, <fann_get_bit_fail_limit>
|
950
|
+
|
951
|
+
This function appears in FANN >= 2.0.0.
|
952
|
+
*/
|
953
|
+
FANN_EXTERNAL enum fann_stopfunc_enum FANN_API fann_get_train_stop_function(struct fann *ann);
|
954
|
+
|
955
|
+
|
956
|
+
/* Function: fann_set_train_stop_function
|
957
|
+
|
958
|
+
Set the stop function used during training.
|
959
|
+
|
960
|
+
Returns the the stop function used during training.
|
961
|
+
|
962
|
+
The stop function is described further in <fann_stopfunc_enum>
|
963
|
+
|
964
|
+
See also:
|
965
|
+
<fann_get_train_stop_function>
|
966
|
+
|
967
|
+
This function appears in FANN >= 2.0.0.
|
968
|
+
*/
|
969
|
+
FANN_EXTERNAL void FANN_API fann_set_train_stop_function(struct fann *ann,
|
970
|
+
enum fann_stopfunc_enum train_stop_function);
|
971
|
+
|
972
|
+
|
973
|
+
/* Function: fann_get_bit_fail_limit
|
974
|
+
|
975
|
+
Returns the bit fail limit used during training.
|
976
|
+
|
977
|
+
The bit fail limit is used during training where the <fann_stopfunc_enum> is set to FANN_STOPFUNC_BIT.
|
978
|
+
|
979
|
+
The limit is the maximum accepted difference between the desired output and the actual output during
|
980
|
+
training. Each output that diverges more than this limit is counted as an error bit.
|
981
|
+
This difference is divided by two when dealing with symmetric activation functions,
|
982
|
+
so that symmetric and not symmetric activation functions can use the same limit.
|
983
|
+
|
984
|
+
The default bit fail limit is 0.35.
|
985
|
+
|
986
|
+
See also:
|
987
|
+
<fann_set_bit_fail_limit>
|
988
|
+
|
989
|
+
This function appears in FANN >= 2.0.0.
|
990
|
+
*/
|
991
|
+
FANN_EXTERNAL fann_type FANN_API fann_get_bit_fail_limit(struct fann *ann);
|
992
|
+
|
993
|
+
/* Function: fann_set_bit_fail_limit
|
994
|
+
|
995
|
+
Set the bit fail limit used during training.
|
996
|
+
|
997
|
+
See also:
|
998
|
+
<fann_get_bit_fail_limit>
|
999
|
+
|
1000
|
+
This function appears in FANN >= 2.0.0.
|
1001
|
+
*/
|
1002
|
+
FANN_EXTERNAL void FANN_API fann_set_bit_fail_limit(struct fann *ann, fann_type bit_fail_limit);
|
1003
|
+
|
1004
|
+
/* Function: fann_set_callback
|
1005
|
+
|
1006
|
+
Sets the callback function for use during training.
|
1007
|
+
|
1008
|
+
See <fann_callback_type> for more information about the callback function.
|
1009
|
+
|
1010
|
+
The default callback function simply prints out some status information.
|
1011
|
+
|
1012
|
+
This function appears in FANN >= 2.0.0.
|
1013
|
+
*/
|
1014
|
+
FANN_EXTERNAL void FANN_API fann_set_callback(struct fann *ann, fann_callback_type callback);
|
1015
|
+
|
1016
|
+
/* Function: fann_get_quickprop_decay
|
1017
|
+
|
1018
|
+
The decay is a small negative valued number which is the factor that the weights
|
1019
|
+
should become smaller in each iteration during quickprop training. This is used
|
1020
|
+
to make sure that the weights do not become too high during training.
|
1021
|
+
|
1022
|
+
The default decay is -0.0001.
|
1023
|
+
|
1024
|
+
See also:
|
1025
|
+
<fann_set_quickprop_decay>
|
1026
|
+
|
1027
|
+
This function appears in FANN >= 1.2.0.
|
1028
|
+
*/
|
1029
|
+
FANN_EXTERNAL float FANN_API fann_get_quickprop_decay(struct fann *ann);
|
1030
|
+
|
1031
|
+
|
1032
|
+
/* Function: fann_set_quickprop_decay
|
1033
|
+
|
1034
|
+
Sets the quickprop decay factor.
|
1035
|
+
|
1036
|
+
See also:
|
1037
|
+
<fann_get_quickprop_decay>
|
1038
|
+
|
1039
|
+
This function appears in FANN >= 1.2.0.
|
1040
|
+
*/
|
1041
|
+
FANN_EXTERNAL void FANN_API fann_set_quickprop_decay(struct fann *ann, float quickprop_decay);
|
1042
|
+
|
1043
|
+
|
1044
|
+
/* Function: fann_get_quickprop_mu
|
1045
|
+
|
1046
|
+
The mu factor is used to increase and decrease the step-size during quickprop training.
|
1047
|
+
The mu factor should always be above 1, since it would otherwise decrease the step-size
|
1048
|
+
when it was suppose to increase it.
|
1049
|
+
|
1050
|
+
The default mu factor is 1.75.
|
1051
|
+
|
1052
|
+
See also:
|
1053
|
+
<fann_set_quickprop_mu>
|
1054
|
+
|
1055
|
+
This function appears in FANN >= 1.2.0.
|
1056
|
+
*/
|
1057
|
+
FANN_EXTERNAL float FANN_API fann_get_quickprop_mu(struct fann *ann);
|
1058
|
+
|
1059
|
+
|
1060
|
+
/* Function: fann_set_quickprop_mu
|
1061
|
+
|
1062
|
+
Sets the quickprop mu factor.
|
1063
|
+
|
1064
|
+
See also:
|
1065
|
+
<fann_get_quickprop_mu>
|
1066
|
+
|
1067
|
+
This function appears in FANN >= 1.2.0.
|
1068
|
+
*/
|
1069
|
+
FANN_EXTERNAL void FANN_API fann_set_quickprop_mu(struct fann *ann, float quickprop_mu);
|
1070
|
+
|
1071
|
+
|
1072
|
+
/* Function: fann_get_rprop_increase_factor
|
1073
|
+
|
1074
|
+
The increase factor is a value larger than 1, which is used to
|
1075
|
+
increase the step-size during RPROP training.
|
1076
|
+
|
1077
|
+
The default increase factor is 1.2.
|
1078
|
+
|
1079
|
+
See also:
|
1080
|
+
<fann_set_rprop_increase_factor>
|
1081
|
+
|
1082
|
+
This function appears in FANN >= 1.2.0.
|
1083
|
+
*/
|
1084
|
+
FANN_EXTERNAL float FANN_API fann_get_rprop_increase_factor(struct fann *ann);
|
1085
|
+
|
1086
|
+
|
1087
|
+
/* Function: fann_set_rprop_increase_factor
|
1088
|
+
|
1089
|
+
The increase factor used during RPROP training.
|
1090
|
+
|
1091
|
+
See also:
|
1092
|
+
<fann_get_rprop_increase_factor>
|
1093
|
+
|
1094
|
+
This function appears in FANN >= 1.2.0.
|
1095
|
+
*/
|
1096
|
+
FANN_EXTERNAL void FANN_API fann_set_rprop_increase_factor(struct fann *ann,
|
1097
|
+
float rprop_increase_factor);
|
1098
|
+
|
1099
|
+
|
1100
|
+
/* Function: fann_get_rprop_decrease_factor
|
1101
|
+
|
1102
|
+
The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.
|
1103
|
+
|
1104
|
+
The default decrease factor is 0.5.
|
1105
|
+
|
1106
|
+
See also:
|
1107
|
+
<fann_set_rprop_decrease_factor>
|
1108
|
+
|
1109
|
+
This function appears in FANN >= 1.2.0.
|
1110
|
+
*/
|
1111
|
+
FANN_EXTERNAL float FANN_API fann_get_rprop_decrease_factor(struct fann *ann);
|
1112
|
+
|
1113
|
+
|
1114
|
+
/* Function: fann_set_rprop_decrease_factor
|
1115
|
+
|
1116
|
+
The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.
|
1117
|
+
|
1118
|
+
See also:
|
1119
|
+
<fann_get_rprop_decrease_factor>
|
1120
|
+
|
1121
|
+
This function appears in FANN >= 1.2.0.
|
1122
|
+
*/
|
1123
|
+
FANN_EXTERNAL void FANN_API fann_set_rprop_decrease_factor(struct fann *ann,
|
1124
|
+
float rprop_decrease_factor);
|
1125
|
+
|
1126
|
+
|
1127
|
+
/* Function: fann_get_rprop_delta_min
|
1128
|
+
|
1129
|
+
The minimum step-size is a small positive number determining how small the minimum step-size may be.
|
1130
|
+
|
1131
|
+
The default value delta min is 0.0.
|
1132
|
+
|
1133
|
+
See also:
|
1134
|
+
<fann_set_rprop_delta_min>
|
1135
|
+
|
1136
|
+
This function appears in FANN >= 1.2.0.
|
1137
|
+
*/
|
1138
|
+
FANN_EXTERNAL float FANN_API fann_get_rprop_delta_min(struct fann *ann);
|
1139
|
+
|
1140
|
+
|
1141
|
+
/* Function: fann_set_rprop_delta_min
|
1142
|
+
|
1143
|
+
The minimum step-size is a small positive number determining how small the minimum step-size may be.
|
1144
|
+
|
1145
|
+
See also:
|
1146
|
+
<fann_get_rprop_delta_min>
|
1147
|
+
|
1148
|
+
This function appears in FANN >= 1.2.0.
|
1149
|
+
*/
|
1150
|
+
FANN_EXTERNAL void FANN_API fann_set_rprop_delta_min(struct fann *ann, float rprop_delta_min);
|
1151
|
+
|
1152
|
+
|
1153
|
+
/* Function: fann_get_rprop_delta_max
|
1154
|
+
|
1155
|
+
The maximum step-size is a positive number determining how large the maximum step-size may be.
|
1156
|
+
|
1157
|
+
The default delta max is 50.0.
|
1158
|
+
|
1159
|
+
See also:
|
1160
|
+
<fann_set_rprop_delta_max>, <fann_get_rprop_delta_min>
|
1161
|
+
|
1162
|
+
This function appears in FANN >= 1.2.0.
|
1163
|
+
*/
|
1164
|
+
FANN_EXTERNAL float FANN_API fann_get_rprop_delta_max(struct fann *ann);
|
1165
|
+
|
1166
|
+
|
1167
|
+
/* Function: fann_set_rprop_delta_max
|
1168
|
+
|
1169
|
+
The maximum step-size is a positive number determining how large the maximum step-size may be.
|
1170
|
+
|
1171
|
+
See also:
|
1172
|
+
<fann_get_rprop_delta_max>, <fann_get_rprop_delta_min>
|
1173
|
+
|
1174
|
+
This function appears in FANN >= 1.2.0.
|
1175
|
+
*/
|
1176
|
+
FANN_EXTERNAL void FANN_API fann_set_rprop_delta_max(struct fann *ann, float rprop_delta_max);
|
1177
|
+
|
1178
|
+
/* Function: fann_get_rprop_delta_zero
|
1179
|
+
|
1180
|
+
The initial step-size is a positive number determining the initial step size.
|
1181
|
+
|
1182
|
+
The default delta zero is 0.1.
|
1183
|
+
|
1184
|
+
See also:
|
1185
|
+
<fann_set_rprop_delta_zero>, <fann_get_rprop_delta_min>, <fann_get_rprop_delta_max>
|
1186
|
+
|
1187
|
+
This function appears in FANN >= 2.1.0.
|
1188
|
+
*/
|
1189
|
+
FANN_EXTERNAL float FANN_API fann_get_rprop_delta_zero(struct fann *ann);
|
1190
|
+
|
1191
|
+
|
1192
|
+
/* Function: fann_set_rprop_delta_zero
|
1193
|
+
|
1194
|
+
The initial step-size is a positive number determining the initial step size.
|
1195
|
+
|
1196
|
+
See also:
|
1197
|
+
<fann_get_rprop_delta_zero>, <fann_get_rprop_delta_zero>
|
1198
|
+
|
1199
|
+
This function appears in FANN >= 2.1.0.
|
1200
|
+
*/
|
1201
|
+
FANN_EXTERNAL void FANN_API fann_set_rprop_delta_zero(struct fann *ann, float rprop_delta_max);
|
1202
|
+
|
1203
|
+
#endif
|