ruby-fann 0.7.10 → 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. data/History.txt +6 -1
  2. data/License.txt +1 -1
  3. data/Manifest.txt +22 -1
  4. data/README.txt +0 -1
  5. data/Rakefile +0 -0
  6. data/config/hoe.rb +0 -0
  7. data/config/requirements.rb +0 -0
  8. data/ext/ruby_fann/MANIFEST +0 -0
  9. data/ext/ruby_fann/Makefile +36 -28
  10. data/ext/ruby_fann/doublefann.c +30 -0
  11. data/ext/ruby_fann/doublefann.h +33 -0
  12. data/ext/ruby_fann/extconf.rb +9 -5
  13. data/ext/ruby_fann/fann.c +1552 -0
  14. data/ext/ruby_fann/fann_activation.h +144 -0
  15. data/ext/ruby_fann/fann_augment.h +0 -0
  16. data/ext/ruby_fann/fann_cascade.c +1031 -0
  17. data/ext/ruby_fann/fann_cascade.h +503 -0
  18. data/ext/ruby_fann/fann_data.h +799 -0
  19. data/ext/ruby_fann/fann_error.c +204 -0
  20. data/ext/ruby_fann/fann_error.h +161 -0
  21. data/ext/ruby_fann/fann_internal.h +148 -0
  22. data/ext/ruby_fann/fann_io.c +762 -0
  23. data/ext/ruby_fann/fann_io.h +100 -0
  24. data/ext/ruby_fann/fann_train.c +962 -0
  25. data/ext/ruby_fann/fann_train.h +1203 -0
  26. data/ext/ruby_fann/fann_train_data.c +1231 -0
  27. data/ext/ruby_fann/neural_network.c +0 -0
  28. data/lib/ruby_fann/neurotica.rb +0 -0
  29. data/lib/ruby_fann/version.rb +3 -3
  30. data/lib/ruby_fann.rb +0 -0
  31. data/neurotica1.png +0 -0
  32. data/neurotica2.vrml +18 -18
  33. data/setup.rb +0 -0
  34. data/tasks/deployment.rake +0 -0
  35. data/tasks/environment.rake +0 -0
  36. data/tasks/website.rake +0 -0
  37. data/test/test.train +0 -0
  38. data/test/test_helper.rb +0 -0
  39. data/test/test_neurotica.rb +0 -0
  40. data/test/test_ruby_fann.rb +0 -0
  41. data/test/test_ruby_fann_functional.rb +0 -0
  42. data/verify.train +0 -0
  43. data/website/index.html +42 -92
  44. data/website/index.txt +0 -0
  45. data/website/javascripts/rounded_corners_lite.inc.js +0 -0
  46. data/website/stylesheets/screen.css +0 -0
  47. data/website/template.rhtml +0 -0
  48. data/xor.train +0 -0
  49. data/xor_cascade.net +2 -2
  50. data/xor_float.net +1 -1
  51. metadata +22 -6
  52. data/log/debug.log +0 -0
@@ -0,0 +1,799 @@
1
+ /*
2
+ Fast Artificial Neural Network Library (fann)
3
+ Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)
4
+
5
+ This library is free software; you can redistribute it and/or
6
+ modify it under the terms of the GNU Lesser General Public
7
+ License as published by the Free Software Foundation; either
8
+ version 2.1 of the License, or (at your option) any later version.
9
+
10
+ This library is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13
+ Lesser General Public License for more details.
14
+
15
+ You should have received a copy of the GNU Lesser General Public
16
+ License along with this library; if not, write to the Free Software
17
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
+ */
19
+
20
+ #ifndef __fann_data_h__
21
+ #define __fann_data_h__
22
+
23
+ #include <stdio.h>
24
+
25
+ /* Section: FANN Datatypes
26
+
27
+ The two main datatypes used in the fann library is <struct fann>,
28
+ which represents an artificial neural network, and <struct fann_train_data>,
29
+ which represent training data.
30
+ */
31
+
32
+
33
+ /* Type: fann_type
34
+ fann_type is the type used for the weights, inputs and outputs of the neural network.
35
+
36
+ fann_type is defined as a:
37
+ float - if you include fann.h or floatfann.h
38
+ double - if you include doublefann.h
39
+ int - if you include fixedfann.h (please be aware that fixed point usage is
40
+ only to be used during execution, and not during training).
41
+ */
42
+
43
+ /* Enum: fann_train_enum
44
+ The Training algorithms used when training on <struct fann_train_data> with functions like
45
+ <fann_train_on_data> or <fann_train_on_file>. The incremental training looks alters the weights
46
+ after each time it is presented an input pattern, while batch only alters the weights once after
47
+ it has been presented to all the patterns.
48
+
49
+ FANN_TRAIN_INCREMENTAL - Standard backpropagation algorithm, where the weights are
50
+ updated after each training pattern. This means that the weights are updated many
51
+ times during a single epoch. For this reason some problems, will train very fast with
52
+ this algorithm, while other more advanced problems will not train very well.
53
+ FANN_TRAIN_BATCH - Standard backpropagation algorithm, where the weights are updated after
54
+ calculating the mean square error for the whole training set. This means that the weights
55
+ are only updated once during a epoch. For this reason some problems, will train slower with
56
+ this algorithm. But since the mean square error is calculated more correctly than in
57
+ incremental training, some problems will reach a better solutions with this algorithm.
58
+ FANN_TRAIN_RPROP - A more advanced batch training algorithm which achieves good results
59
+ for many problems. The RPROP training algorithm is adaptive, and does therefore not
60
+ use the learning_rate. Some other parameters can however be set to change the way the
61
+ RPROP algorithm works, but it is only recommended for users with insight in how the RPROP
62
+ training algorithm works. The RPROP training algorithm is described by
63
+ [Riedmiller and Braun, 1993], but the actual learning algorithm used here is the
64
+ iRPROP- training algorithm which is described by [Igel and Husken, 2000] which
65
+ is an variety of the standard RPROP training algorithm.
66
+ FANN_TRAIN_QUICKPROP - A more advanced batch training algorithm which achieves good results
67
+ for many problems. The quickprop training algorithm uses the learning_rate parameter
68
+ along with other more advanced parameters, but it is only recommended to change these
69
+ advanced parameters, for users with insight in how the quickprop training algorithm works.
70
+ The quickprop training algorithm is described by [Fahlman, 1988].
71
+
72
+ See also:
73
+ <fann_set_training_algorithm>, <fann_get_training_algorithm>
74
+ */
75
+ enum fann_train_enum
76
+ {
77
+ FANN_TRAIN_INCREMENTAL = 0,
78
+ FANN_TRAIN_BATCH,
79
+ FANN_TRAIN_RPROP,
80
+ FANN_TRAIN_QUICKPROP
81
+ };
82
+
83
+ /* Constant: FANN_TRAIN_NAMES
84
+
85
+ Constant array consisting of the names for the training algorithms, so that the name of an
86
+ training function can be received by:
87
+ (code)
88
+ char *name = FANN_TRAIN_NAMES[train_function];
89
+ (end)
90
+
91
+ See Also:
92
+ <fann_train_enum>
93
+ */
94
+ static char const *const FANN_TRAIN_NAMES[] = {
95
+ "FANN_TRAIN_INCREMENTAL",
96
+ "FANN_TRAIN_BATCH",
97
+ "FANN_TRAIN_RPROP",
98
+ "FANN_TRAIN_QUICKPROP"
99
+ };
100
+
101
+ /* Enums: fann_activationfunc_enum
102
+
103
+ The activation functions used for the neurons during training. The activation functions
104
+ can either be defined for a group of neurons by <fann_set_activation_function_hidden> and
105
+ <fann_set_activation_function_output> or it can be defined for a single neuron by <fann_set_activation_function>.
106
+
107
+ The steepness of an activation function is defined in the same way by
108
+ <fann_set_activation_steepness_hidden>, <fann_set_activation_steepness_output> and <fann_set_activation_steepness>.
109
+
110
+ The functions are described with functions where:
111
+ * x is the input to the activation function,
112
+ * y is the output,
113
+ * s is the steepness and
114
+ * d is the derivation.
115
+
116
+ FANN_LINEAR - Linear activation function.
117
+ * span: -inf < y < inf
118
+ * y = x*s, d = 1*s
119
+ * Can NOT be used in fixed point.
120
+
121
+ FANN_THRESHOLD - Threshold activation function.
122
+ * x < 0 -> y = 0, x >= 0 -> y = 1
123
+ * Can NOT be used during training.
124
+
125
+ FANN_THRESHOLD_SYMMETRIC - Threshold activation function.
126
+ * x < 0 -> y = 0, x >= 0 -> y = 1
127
+ * Can NOT be used during training.
128
+
129
+ FANN_SIGMOID - Sigmoid activation function.
130
+ * One of the most used activation functions.
131
+ * span: 0 < y < 1
132
+ * y = 1/(1 + exp(-2*s*x))
133
+ * d = 2*s*y*(1 - y)
134
+
135
+ FANN_SIGMOID_STEPWISE - Stepwise linear approximation to sigmoid.
136
+ * Faster than sigmoid but a bit less precise.
137
+
138
+ FANN_SIGMOID_SYMMETRIC - Symmetric sigmoid activation function, aka. tanh.
139
+ * One of the most used activation functions.
140
+ * span: -1 < y < 1
141
+ * y = tanh(s*x) = 2/(1 + exp(-2*s*x)) - 1
142
+ * d = s*(1-(y*y))
143
+
144
+ FANN_SIGMOID_SYMMETRIC - Stepwise linear approximation to symmetric sigmoid.
145
+ * Faster than symmetric sigmoid but a bit less precise.
146
+
147
+ FANN_GAUSSIAN - Gaussian activation function.
148
+ * 0 when x = -inf, 1 when x = 0 and 0 when x = inf
149
+ * span: 0 < y < 1
150
+ * y = exp(-x*s*x*s)
151
+ * d = -2*x*s*y*s
152
+
153
+ FANN_GAUSSIAN_SYMMETRIC - Symmetric gaussian activation function.
154
+ * -1 when x = -inf, 1 when x = 0 and 0 when x = inf
155
+ * span: -1 < y < 1
156
+ * y = exp(-x*s*x*s)*2-1
157
+ * d = -2*x*s*(y+1)*s
158
+
159
+ FANN_ELLIOT - Fast (sigmoid like) activation function defined by David Elliott
160
+ * span: 0 < y < 1
161
+ * y = ((x*s) / 2) / (1 + |x*s|) + 0.5
162
+ * d = s*1/(2*(1+|x*s|)*(1+|x*s|))
163
+
164
+ FANN_ELLIOT_SYMMETRIC - Fast (symmetric sigmoid like) activation function defined by David Elliott
165
+ * span: -1 < y < 1
166
+ * y = (x*s) / (1 + |x*s|)
167
+ * d = s*1/((1+|x*s|)*(1+|x*s|))
168
+
169
+ FANN_LINEAR_PIECE - Bounded linear activation function.
170
+ * span: 0 <= y <= 1
171
+ * y = x*s, d = 1*s
172
+
173
+ FANN_LINEAR_PIECE_SYMMETRIC - Bounded linear activation function.
174
+ * span: -1 <= y <= 1
175
+ * y = x*s, d = 1*s
176
+
177
+ FANN_SIN_SYMMETRIC - Periodical sinus activation function.
178
+ * span: -1 <= y <= 1
179
+ * y = sin(x*s)
180
+ * d = s*cos(x*s)
181
+
182
+ FANN_COS_SYMMETRIC - Periodical cosinus activation function.
183
+ * span: -1 <= y <= 1
184
+ * y = cos(x*s)
185
+ * d = s*-sin(x*s)
186
+
187
+ FANN_SIN - Periodical sinus activation function.
188
+ * span: 0 <= y <= 1
189
+ * y = sin(x*s)/2+0.5
190
+ * d = s*cos(x*s)/2
191
+
192
+ FANN_COS - Periodical cosinus activation function.
193
+ * span: 0 <= y <= 1
194
+ * y = cos(x*s)/2+0.5
195
+ * d = s*-sin(x*s)/2
196
+
197
+ See also:
198
+ <fann_set_activation_function_layer>, <fann_set_activation_function_hidden>,
199
+ <fann_set_activation_function_output>, <fann_set_activation_steepness>,
200
+ <fann_set_activation_function>
201
+ */
202
+ enum fann_activationfunc_enum
203
+ {
204
+ FANN_LINEAR = 0,
205
+ FANN_THRESHOLD,
206
+ FANN_THRESHOLD_SYMMETRIC,
207
+ FANN_SIGMOID,
208
+ FANN_SIGMOID_STEPWISE,
209
+ FANN_SIGMOID_SYMMETRIC,
210
+ FANN_SIGMOID_SYMMETRIC_STEPWISE,
211
+ FANN_GAUSSIAN,
212
+ FANN_GAUSSIAN_SYMMETRIC,
213
+ /* Stepwise linear approximation to gaussian.
214
+ * Faster than gaussian but a bit less precise.
215
+ * NOT implemented yet.
216
+ */
217
+ FANN_GAUSSIAN_STEPWISE,
218
+ FANN_ELLIOT,
219
+ FANN_ELLIOT_SYMMETRIC,
220
+ FANN_LINEAR_PIECE,
221
+ FANN_LINEAR_PIECE_SYMMETRIC,
222
+ FANN_SIN_SYMMETRIC,
223
+ FANN_COS_SYMMETRIC,
224
+ FANN_SIN,
225
+ FANN_COS
226
+ };
227
+
228
+ /* Constant: FANN_ACTIVATIONFUNC_NAMES
229
+
230
+ Constant array consisting of the names for the activation function, so that the name of an
231
+ activation function can be received by:
232
+ (code)
233
+ char *name = FANN_ACTIVATIONFUNC_NAMES[activation_function];
234
+ (end)
235
+
236
+ See Also:
237
+ <fann_activationfunc_enum>
238
+ */
239
+ static char const *const FANN_ACTIVATIONFUNC_NAMES[] = {
240
+ "FANN_LINEAR",
241
+ "FANN_THRESHOLD",
242
+ "FANN_THRESHOLD_SYMMETRIC",
243
+ "FANN_SIGMOID",
244
+ "FANN_SIGMOID_STEPWISE",
245
+ "FANN_SIGMOID_SYMMETRIC",
246
+ "FANN_SIGMOID_SYMMETRIC_STEPWISE",
247
+ "FANN_GAUSSIAN",
248
+ "FANN_GAUSSIAN_SYMMETRIC",
249
+ "FANN_GAUSSIAN_STEPWISE",
250
+ "FANN_ELLIOT",
251
+ "FANN_ELLIOT_SYMMETRIC",
252
+ "FANN_LINEAR_PIECE",
253
+ "FANN_LINEAR_PIECE_SYMMETRIC",
254
+ "FANN_SIN_SYMMETRIC",
255
+ "FANN_COS_SYMMETRIC",
256
+ "FANN_SIN",
257
+ "FANN_COS"
258
+ };
259
+
260
+ /* Enum: fann_errorfunc_enum
261
+ Error function used during training.
262
+
263
+ FANN_ERRORFUNC_LINEAR - Standard linear error function.
264
+ FANN_ERRORFUNC_TANH - Tanh error function, usually better
265
+ but can require a lower learning rate. This error function agressively targets outputs that
266
+ differ much from the desired, while not targetting outputs that only differ a little that much.
267
+ This activation function is not recommended for cascade training and incremental training.
268
+
269
+ See also:
270
+ <fann_set_train_error_function>, <fann_get_train_error_function>
271
+ */
272
+ enum fann_errorfunc_enum
273
+ {
274
+ FANN_ERRORFUNC_LINEAR = 0,
275
+ FANN_ERRORFUNC_TANH
276
+ };
277
+
278
+ /* Constant: FANN_ERRORFUNC_NAMES
279
+
280
+ Constant array consisting of the names for the training error functions, so that the name of an
281
+ error function can be received by:
282
+ (code)
283
+ char *name = FANN_ERRORFUNC_NAMES[error_function];
284
+ (end)
285
+
286
+ See Also:
287
+ <fann_errorfunc_enum>
288
+ */
289
+ static char const *const FANN_ERRORFUNC_NAMES[] = {
290
+ "FANN_ERRORFUNC_LINEAR",
291
+ "FANN_ERRORFUNC_TANH"
292
+ };
293
+
294
+ /* Enum: fann_stopfunc_enum
295
+ Stop criteria used during training.
296
+
297
+ FANN_STOPFUNC_MSE - Stop criteria is Mean Square Error (MSE) value.
298
+ FANN_STOPFUNC_BIT - Stop criteria is number of bits that fail. The number of bits; means the
299
+ number of output neurons which differ more than the bit fail limit
300
+ (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
301
+ The bits are counted in all of the training data, so this number can be higher than
302
+ the number of training data.
303
+
304
+ See also:
305
+ <fann_set_train_stop_function>, <fann_get_train_stop_function>
306
+ */
307
+ enum fann_stopfunc_enum
308
+ {
309
+ FANN_STOPFUNC_MSE = 0,
310
+ FANN_STOPFUNC_BIT
311
+ };
312
+
313
+ /* Constant: FANN_STOPFUNC_NAMES
314
+
315
+ Constant array consisting of the names for the training stop functions, so that the name of a
316
+ stop function can be received by:
317
+ (code)
318
+ char *name = FANN_STOPFUNC_NAMES[stop_function];
319
+ (end)
320
+
321
+ See Also:
322
+ <fann_stopfunc_enum>
323
+ */
324
+ static char const *const FANN_STOPFUNC_NAMES[] = {
325
+ "FANN_STOPFUNC_MSE",
326
+ "FANN_STOPFUNC_BIT"
327
+ };
328
+
329
+ /* Enum: fann_network_type_enum
330
+
331
+ Definition of network types used by <fann_get_network_type>
332
+
333
+ FANN_NETTYPE_LAYER - Each layer only has connections to the next layer
334
+ FANN_NETTYPE_SHORTCUT - Each layer has connections to all following layers
335
+
336
+ See Also:
337
+ <fann_get_network_type>
338
+
339
+ This enumeration appears in FANN >= 2.1.0
340
+ */
341
+ enum fann_nettype_enum
342
+ {
343
+ FANN_NETTYPE_LAYER = 0, /* Each layer only has connections to the next layer */
344
+ FANN_NETTYPE_SHORTCUT /* Each layer has connections to all following layers */
345
+ };
346
+
347
+ /* Constant: FANN_NETWORK_TYPE_NAMES
348
+
349
+ Constant array consisting of the names for the network types, so that the name of an
350
+ network type can be received by:
351
+ (code)
352
+ char *network_type_name = FANN_NETWORK_TYPE_NAMES[fann_get_network_type(ann)];
353
+ (end)
354
+
355
+ See Also:
356
+ <fann_get_network_type>
357
+
358
+ This constant appears in FANN >= 2.1.0
359
+ */
360
+ static char const *const FANN_NETTYPE_NAMES[] = {
361
+ "FANN_NETTYPE_LAYER",
362
+ "FANN_NETTYPE_SHORTCUT"
363
+ };
364
+
365
+
366
+ /* forward declarations for use with the callback */
367
+ struct fann;
368
+ struct fann_train_data;
369
+ /* Type: fann_callback_type
370
+ This callback function can be called during training when using <fann_train_on_data>,
371
+ <fann_train_on_file> or <fann_cascadetrain_on_data>.
372
+
373
+ >typedef int (FANN_API * fann_callback_type) (struct fann *ann, struct fann_train_data *train,
374
+ > unsigned int max_epochs,
375
+ > unsigned int epochs_between_reports,
376
+ > float desired_error, unsigned int epochs);
377
+
378
+ The callback can be set by using <fann_set_callback> and is very usefull for doing custom
379
+ things during training. It is recommended to use this function when implementing custom
380
+ training procedures, or when visualizing the training in a GUI etc. The parameters which the
381
+ callback function takes is the parameters given to the <fann_train_on_data>, plus an epochs
382
+ parameter which tells how many epochs the training have taken so far.
383
+
384
+ The callback function should return an integer, if the callback function returns -1, the training
385
+ will terminate.
386
+
387
+ Example of a callback function:
388
+ >int FANN_API test_callback(struct fann *ann, struct fann_train_data *train,
389
+ > unsigned int max_epochs, unsigned int epochs_between_reports,
390
+ > float desired_error, unsigned int epochs)
391
+ >{
392
+ > printf("Epochs %8d. MSE: %.5f. Desired-MSE: %.5f\n", epochs, fann_get_MSE(ann), desired_error);
393
+ > return 0;
394
+ >}
395
+
396
+ See also:
397
+ <fann_set_callback>, <fann_train_on_data>
398
+ */
399
+ FANN_EXTERNAL typedef int (FANN_API * fann_callback_type) (struct fann *ann, struct fann_train_data *train,
400
+ unsigned int max_epochs,
401
+ unsigned int epochs_between_reports,
402
+ float desired_error, unsigned int epochs);
403
+
404
+
405
+ /* ----- Data structures -----
406
+ * No data within these structures should be altered directly by the user.
407
+ */
408
+
409
+ struct fann_neuron
410
+ {
411
+ /* Index to the first and last connection
412
+ * (actually the last is a past end index)
413
+ */
414
+ unsigned int first_con;
415
+ unsigned int last_con;
416
+ /* The sum of the inputs multiplied with the weights */
417
+ fann_type sum;
418
+ /* The value of the activation function applied to the sum */
419
+ fann_type value;
420
+ /* The steepness of the activation function */
421
+ fann_type activation_steepness;
422
+ /* Used to choose which activation function to use */
423
+ enum fann_activationfunc_enum activation_function;
424
+ #ifdef __GNUC__
425
+ } __attribute__ ((packed));
426
+ #else
427
+ };
428
+ #endif
429
+
430
+ /* A single layer in the neural network.
431
+ */
432
+ struct fann_layer
433
+ {
434
+ /* A pointer to the first neuron in the layer
435
+ * When allocated, all the neurons in all the layers are actually
436
+ * in one long array, this is because we wan't to easily clear all
437
+ * the neurons at once.
438
+ */
439
+ struct fann_neuron *first_neuron;
440
+
441
+ /* A pointer to the neuron past the last neuron in the layer */
442
+ /* the number of neurons is last_neuron - first_neuron */
443
+ struct fann_neuron *last_neuron;
444
+ };
445
+
446
+ /* Struct: struct fann_error
447
+
448
+ Structure used to store error-related information, both
449
+ <struct fann> and <struct fann_train_data> can be casted to this type.
450
+
451
+ See also:
452
+ <fann_set_error_log>, <fann_get_errno>
453
+ */
454
+ struct fann_error
455
+ {
456
+ enum fann_errno_enum errno_f;
457
+ FILE *error_log;
458
+ char *errstr;
459
+ };
460
+
461
+
462
+ /* Struct: struct fann
463
+ The fast artificial neural network(fann) structure.
464
+
465
+ Data within this structure should never be accessed directly, but only by using the
466
+ *fann_get_...* and *fann_set_...* functions.
467
+
468
+ The fann structure is created using one of the *fann_create_...* functions and each of
469
+ the functions which operates on the structure takes *struct fann * ann* as the first parameter.
470
+
471
+ See also:
472
+ <fann_create_standard>, <fann_destroy>
473
+ */
474
+ struct fann
475
+ {
476
+ /* The type of error that last occured. */
477
+ enum fann_errno_enum errno_f;
478
+
479
+ /* Where to log error messages. */
480
+ FILE *error_log;
481
+
482
+ /* A string representation of the last error. */
483
+ char *errstr;
484
+
485
+ /* the learning rate of the network */
486
+ float learning_rate;
487
+
488
+ /* The learning momentum used for backpropagation algorithm. */
489
+ float learning_momentum;
490
+
491
+ /* the connection rate of the network
492
+ * between 0 and 1, 1 meaning fully connected
493
+ */
494
+ float connection_rate;
495
+
496
+ /* is 1 if shortcut connections are used in the ann otherwise 0
497
+ * Shortcut connections are connections that skip layers.
498
+ * A fully connected ann with shortcut connections are a ann where
499
+ * neurons have connections to all neurons in all later layers.
500
+ */
501
+ enum fann_nettype_enum network_type;
502
+
503
+ /* pointer to the first layer (input layer) in an array af all the layers,
504
+ * including the input and outputlayers
505
+ */
506
+ struct fann_layer *first_layer;
507
+
508
+ /* pointer to the layer past the last layer in an array af all the layers,
509
+ * including the input and outputlayers
510
+ */
511
+ struct fann_layer *last_layer;
512
+
513
+ /* Total number of neurons.
514
+ * very usefull, because the actual neurons are allocated in one long array
515
+ */
516
+ unsigned int total_neurons;
517
+
518
+ /* Number of input neurons (not calculating bias) */
519
+ unsigned int num_input;
520
+
521
+ /* Number of output neurons (not calculating bias) */
522
+ unsigned int num_output;
523
+
524
+ /* The weight array */
525
+ fann_type *weights;
526
+
527
+ /* The connection array */
528
+ struct fann_neuron **connections;
529
+
530
+ /* Used to contain the errors used during training
531
+ * Is allocated during first training session,
532
+ * which means that if we do not train, it is never allocated.
533
+ */
534
+ fann_type *train_errors;
535
+
536
+ /* Training algorithm used when calling fann_train_on_..
537
+ */
538
+ enum fann_train_enum training_algorithm;
539
+
540
+ #ifdef FIXEDFANN
541
+ /* the decimal_point, used for shifting the fix point
542
+ * in fixed point integer operatons.
543
+ */
544
+ unsigned int decimal_point;
545
+
546
+ /* the multiplier, used for multiplying the fix point
547
+ * in fixed point integer operatons.
548
+ * Only used in special cases, since the decimal_point is much faster.
549
+ */
550
+ unsigned int multiplier;
551
+
552
+ /* When in choosen (or in fixed point), the sigmoid function is
553
+ * calculated as a stepwise linear function. In the
554
+ * activation_results array, the result is saved, and in the
555
+ * two values arrays, the values that gives the results are saved.
556
+ */
557
+ fann_type sigmoid_results[6];
558
+ fann_type sigmoid_values[6];
559
+ fann_type sigmoid_symmetric_results[6];
560
+ fann_type sigmoid_symmetric_values[6];
561
+ #endif
562
+
563
+ /* Total number of connections.
564
+ * very usefull, because the actual connections
565
+ * are allocated in one long array
566
+ */
567
+ unsigned int total_connections;
568
+
569
+ /* used to store outputs in */
570
+ fann_type *output;
571
+
572
+ /* the number of data used to calculate the mean square error.
573
+ */
574
+ unsigned int num_MSE;
575
+
576
+ /* the total error value.
577
+ * the real mean square error is MSE_value/num_MSE
578
+ */
579
+ float MSE_value;
580
+
581
+ /* The number of outputs which would fail (only valid for classification problems)
582
+ */
583
+ unsigned int num_bit_fail;
584
+
585
+ /* The maximum difference between the actual output and the expected output
586
+ * which is accepted when counting the bit fails.
587
+ * This difference is multiplied by two when dealing with symmetric activation functions,
588
+ * so that symmetric and not symmetric activation functions can use the same limit.
589
+ */
590
+ fann_type bit_fail_limit;
591
+
592
+ /* The error function used during training. (default FANN_ERRORFUNC_TANH)
593
+ */
594
+ enum fann_errorfunc_enum train_error_function;
595
+
596
+ /* The stop function used during training. (default FANN_STOPFUNC_MSE)
597
+ */
598
+ enum fann_stopfunc_enum train_stop_function;
599
+
600
+ /* The callback function used during training. (default NULL)
601
+ */
602
+ fann_callback_type callback;
603
+
604
+ /* A pointer to user defined data. (default NULL)
605
+ */
606
+ void *user_data;
607
+
608
+ /* Variables for use with Cascade Correlation */
609
+
610
+ /* The error must change by at least this
611
+ * fraction of its old value to count as a
612
+ * significant change.
613
+ */
614
+ float cascade_output_change_fraction;
615
+
616
+ /* No change in this number of epochs will cause
617
+ * stagnation.
618
+ */
619
+ unsigned int cascade_output_stagnation_epochs;
620
+
621
+ /* The error must change by at least this
622
+ * fraction of its old value to count as a
623
+ * significant change.
624
+ */
625
+ float cascade_candidate_change_fraction;
626
+
627
+ /* No change in this number of epochs will cause
628
+ * stagnation.
629
+ */
630
+ unsigned int cascade_candidate_stagnation_epochs;
631
+
632
+ /* The current best candidate, which will be installed.
633
+ */
634
+ unsigned int cascade_best_candidate;
635
+
636
+ /* The upper limit for a candidate score
637
+ */
638
+ fann_type cascade_candidate_limit;
639
+
640
+ /* Scale of copied candidate output weights
641
+ */
642
+ fann_type cascade_weight_multiplier;
643
+
644
+ /* Maximum epochs to train the output neurons during cascade training
645
+ */
646
+ unsigned int cascade_max_out_epochs;
647
+
648
+ /* Maximum epochs to train the candidate neurons during cascade training
649
+ */
650
+ unsigned int cascade_max_cand_epochs;
651
+
652
+ /* An array consisting of the activation functions used when doing
653
+ * cascade training.
654
+ */
655
+ enum fann_activationfunc_enum *cascade_activation_functions;
656
+
657
+ /* The number of elements in the cascade_activation_functions array.
658
+ */
659
+ unsigned int cascade_activation_functions_count;
660
+
661
+ /* An array consisting of the steepnesses used during cascade training.
662
+ */
663
+ fann_type *cascade_activation_steepnesses;
664
+
665
+ /* The number of elements in the cascade_activation_steepnesses array.
666
+ */
667
+ unsigned int cascade_activation_steepnesses_count;
668
+
669
+ /* The number of candidates of each type that will be present.
670
+ * The actual number of candidates is then
671
+ * cascade_activation_functions_count *
672
+ * cascade_activation_steepnesses_count *
673
+ * cascade_num_candidate_groups
674
+ */
675
+ unsigned int cascade_num_candidate_groups;
676
+
677
+ /* An array consisting of the score of the individual candidates,
678
+ * which is used to decide which candidate is the best
679
+ */
680
+ fann_type *cascade_candidate_scores;
681
+
682
+ /* The number of allocated neurons during cascade correlation algorithms.
683
+ * This number might be higher than the actual number of neurons to avoid
684
+ * allocating new space too often.
685
+ */
686
+ unsigned int total_neurons_allocated;
687
+
688
+ /* The number of allocated connections during cascade correlation algorithms.
689
+ * This number might be higher than the actual number of neurons to avoid
690
+ * allocating new space too often.
691
+ */
692
+ unsigned int total_connections_allocated;
693
+
694
+ /* Variables for use with Quickprop training */
695
+
696
+ /* Decay is used to make the weights not go so high */
697
+ float quickprop_decay;
698
+
699
+ /* Mu is a factor used to increase and decrease the stepsize */
700
+ float quickprop_mu;
701
+
702
+ /* Variables for use with with RPROP training */
703
+
704
+ /* Tells how much the stepsize should increase during learning */
705
+ float rprop_increase_factor;
706
+
707
+ /* Tells how much the stepsize should decrease during learning */
708
+ float rprop_decrease_factor;
709
+
710
+ /* The minimum stepsize */
711
+ float rprop_delta_min;
712
+
713
+ /* The maximum stepsize */
714
+ float rprop_delta_max;
715
+
716
+ /* The initial stepsize */
717
+ float rprop_delta_zero;
718
+
719
+ /* Used to contain the slope errors used during batch training
720
+ * Is allocated during first training session,
721
+ * which means that if we do not train, it is never allocated.
722
+ */
723
+ fann_type *train_slopes;
724
+
725
+ /* The previous step taken by the quickprop/rprop procedures.
726
+ * Not allocated if not used.
727
+ */
728
+ fann_type *prev_steps;
729
+
730
+ /* The slope values used by the quickprop/rprop procedures.
731
+ * Not allocated if not used.
732
+ */
733
+ fann_type *prev_train_slopes;
734
+
735
+ /* The last delta applied to a connection weight.
736
+ * This is used for the momentum term in the backpropagation algorithm.
737
+ * Not allocated if not used.
738
+ */
739
+ fann_type *prev_weights_deltas;
740
+
741
+ #ifndef FIXEDFANN
742
+ /* Arithmetic mean used to remove steady component in input data. */
743
+ float *scale_mean_in;
744
+
745
+ /* Standart deviation used to normalize input data (mostly to [-1;1]). */
746
+ float *scale_deviation_in;
747
+
748
+ /* User-defined new minimum for input data.
749
+ * Resulting data values may be less than user-defined minimum.
750
+ */
751
+ float *scale_new_min_in;
752
+
753
+ /* Used to scale data to user-defined new maximum for input data.
754
+ * Resulting data values may be greater than user-defined maximum.
755
+ */
756
+ float *scale_factor_in;
757
+
758
+ /* Arithmetic mean used to remove steady component in output data. */
759
+ float *scale_mean_out;
760
+
761
+ /* Standart deviation used to normalize output data (mostly to [-1;1]). */
762
+ float *scale_deviation_out;
763
+
764
+ /* User-defined new minimum for output data.
765
+ * Resulting data values may be less than user-defined minimum.
766
+ */
767
+ float *scale_new_min_out;
768
+
769
+ /* Used to scale data to user-defined new maximum for output data.
770
+ * Resulting data values may be greater than user-defined maximum.
771
+ */
772
+ float *scale_factor_out;
773
+ #endif
774
+ };
775
+
776
+ /* Type: fann_connection
777
+
778
+ Describes a connection between two neurons and its weight
779
+
780
+ from_neuron - Unique number used to identify source neuron
781
+ to_neuron - Unique number used to identify destination neuron
782
+ weight - The numerical value of the weight
783
+
784
+ See Also:
785
+ <fann_get_connection_array>, <fann_set_weight_array>
786
+
787
+ This structure appears in FANN >= 2.1.0
788
+ */
789
+ struct fann_connection
790
+ {
791
+ /* Unique number used to identify source neuron */
792
+ unsigned int from_neuron;
793
+ /* Unique number used to identify destination neuron */
794
+ unsigned int to_neuron;
795
+ /* The numerical value of the weight */
796
+ fann_type weight;
797
+ };
798
+
799
+ #endif