ring-native 0.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +9 -0
- data/Gemfile +3 -0
- data/README.md +22 -0
- data/Rakefile +1 -0
- data/ext/ring/extconf.rb +29 -0
- data/lib/ring/native.rb +8 -0
- data/lib/ring/native/version.rb +5 -0
- data/ring-native.gemspec +25 -0
- data/vendor/ring/BUILDING.md +40 -0
- data/vendor/ring/Cargo.toml +43 -0
- data/vendor/ring/LICENSE +185 -0
- data/vendor/ring/Makefile +35 -0
- data/vendor/ring/PORTING.md +163 -0
- data/vendor/ring/README.md +113 -0
- data/vendor/ring/STYLE.md +197 -0
- data/vendor/ring/appveyor.yml +27 -0
- data/vendor/ring/build.rs +108 -0
- data/vendor/ring/crypto/aes/aes.c +1142 -0
- data/vendor/ring/crypto/aes/aes_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/aes/aes_test.cc +93 -0
- data/vendor/ring/crypto/aes/asm/aes-586.pl +2368 -0
- data/vendor/ring/crypto/aes/asm/aes-armv4.pl +1249 -0
- data/vendor/ring/crypto/aes/asm/aes-x86_64.pl +2246 -0
- data/vendor/ring/crypto/aes/asm/aesni-x86.pl +1318 -0
- data/vendor/ring/crypto/aes/asm/aesni-x86_64.pl +2084 -0
- data/vendor/ring/crypto/aes/asm/aesv8-armx.pl +675 -0
- data/vendor/ring/crypto/aes/asm/bsaes-armv7.pl +1364 -0
- data/vendor/ring/crypto/aes/asm/bsaes-x86_64.pl +1565 -0
- data/vendor/ring/crypto/aes/asm/vpaes-x86.pl +841 -0
- data/vendor/ring/crypto/aes/asm/vpaes-x86_64.pl +1116 -0
- data/vendor/ring/crypto/aes/internal.h +87 -0
- data/vendor/ring/crypto/aes/mode_wrappers.c +61 -0
- data/vendor/ring/crypto/bn/add.c +394 -0
- data/vendor/ring/crypto/bn/asm/armv4-mont.pl +694 -0
- data/vendor/ring/crypto/bn/asm/armv8-mont.pl +1503 -0
- data/vendor/ring/crypto/bn/asm/bn-586.pl +774 -0
- data/vendor/ring/crypto/bn/asm/co-586.pl +287 -0
- data/vendor/ring/crypto/bn/asm/rsaz-avx2.pl +1882 -0
- data/vendor/ring/crypto/bn/asm/x86-mont.pl +592 -0
- data/vendor/ring/crypto/bn/asm/x86_64-gcc.c +599 -0
- data/vendor/ring/crypto/bn/asm/x86_64-mont.pl +1393 -0
- data/vendor/ring/crypto/bn/asm/x86_64-mont5.pl +3507 -0
- data/vendor/ring/crypto/bn/bn.c +352 -0
- data/vendor/ring/crypto/bn/bn_asn1.c +74 -0
- data/vendor/ring/crypto/bn/bn_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/bn/bn_test.cc +1696 -0
- data/vendor/ring/crypto/bn/cmp.c +200 -0
- data/vendor/ring/crypto/bn/convert.c +433 -0
- data/vendor/ring/crypto/bn/ctx.c +311 -0
- data/vendor/ring/crypto/bn/div.c +594 -0
- data/vendor/ring/crypto/bn/exponentiation.c +1335 -0
- data/vendor/ring/crypto/bn/gcd.c +711 -0
- data/vendor/ring/crypto/bn/generic.c +1019 -0
- data/vendor/ring/crypto/bn/internal.h +316 -0
- data/vendor/ring/crypto/bn/montgomery.c +516 -0
- data/vendor/ring/crypto/bn/mul.c +888 -0
- data/vendor/ring/crypto/bn/prime.c +829 -0
- data/vendor/ring/crypto/bn/random.c +334 -0
- data/vendor/ring/crypto/bn/rsaz_exp.c +262 -0
- data/vendor/ring/crypto/bn/rsaz_exp.h +53 -0
- data/vendor/ring/crypto/bn/shift.c +276 -0
- data/vendor/ring/crypto/bytestring/bytestring_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/bytestring/bytestring_test.cc +421 -0
- data/vendor/ring/crypto/bytestring/cbb.c +399 -0
- data/vendor/ring/crypto/bytestring/cbs.c +227 -0
- data/vendor/ring/crypto/bytestring/internal.h +46 -0
- data/vendor/ring/crypto/chacha/chacha_generic.c +140 -0
- data/vendor/ring/crypto/chacha/chacha_vec.c +323 -0
- data/vendor/ring/crypto/chacha/chacha_vec_arm.S +1447 -0
- data/vendor/ring/crypto/chacha/chacha_vec_arm_generate.go +153 -0
- data/vendor/ring/crypto/cipher/cipher_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/cipher/e_aes.c +390 -0
- data/vendor/ring/crypto/cipher/e_chacha20poly1305.c +208 -0
- data/vendor/ring/crypto/cipher/internal.h +173 -0
- data/vendor/ring/crypto/cipher/test/aes_128_gcm_tests.txt +543 -0
- data/vendor/ring/crypto/cipher/test/aes_128_key_wrap_tests.txt +9 -0
- data/vendor/ring/crypto/cipher/test/aes_256_gcm_tests.txt +475 -0
- data/vendor/ring/crypto/cipher/test/aes_256_key_wrap_tests.txt +23 -0
- data/vendor/ring/crypto/cipher/test/chacha20_poly1305_old_tests.txt +422 -0
- data/vendor/ring/crypto/cipher/test/chacha20_poly1305_tests.txt +484 -0
- data/vendor/ring/crypto/cipher/test/cipher_test.txt +100 -0
- data/vendor/ring/crypto/constant_time_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/constant_time_test.c +304 -0
- data/vendor/ring/crypto/cpu-arm-asm.S +32 -0
- data/vendor/ring/crypto/cpu-arm.c +199 -0
- data/vendor/ring/crypto/cpu-intel.c +261 -0
- data/vendor/ring/crypto/crypto.c +151 -0
- data/vendor/ring/crypto/curve25519/asm/x25519-arm.S +2118 -0
- data/vendor/ring/crypto/curve25519/curve25519.c +4888 -0
- data/vendor/ring/crypto/curve25519/x25519_test.cc +128 -0
- data/vendor/ring/crypto/digest/md32_common.h +181 -0
- data/vendor/ring/crypto/ec/asm/p256-x86_64-asm.pl +2725 -0
- data/vendor/ring/crypto/ec/ec.c +193 -0
- data/vendor/ring/crypto/ec/ec_curves.c +61 -0
- data/vendor/ring/crypto/ec/ec_key.c +228 -0
- data/vendor/ring/crypto/ec/ec_montgomery.c +114 -0
- data/vendor/ring/crypto/ec/example_mul.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/ec/internal.h +243 -0
- data/vendor/ring/crypto/ec/oct.c +253 -0
- data/vendor/ring/crypto/ec/p256-64.c +1794 -0
- data/vendor/ring/crypto/ec/p256-x86_64-table.h +9548 -0
- data/vendor/ring/crypto/ec/p256-x86_64.c +509 -0
- data/vendor/ring/crypto/ec/simple.c +1007 -0
- data/vendor/ring/crypto/ec/util-64.c +183 -0
- data/vendor/ring/crypto/ec/wnaf.c +508 -0
- data/vendor/ring/crypto/ecdh/ecdh.c +155 -0
- data/vendor/ring/crypto/ecdsa/ecdsa.c +304 -0
- data/vendor/ring/crypto/ecdsa/ecdsa_asn1.c +193 -0
- data/vendor/ring/crypto/ecdsa/ecdsa_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/ecdsa/ecdsa_test.cc +327 -0
- data/vendor/ring/crypto/header_removed.h +17 -0
- data/vendor/ring/crypto/internal.h +495 -0
- data/vendor/ring/crypto/libring.Windows.vcxproj +101 -0
- data/vendor/ring/crypto/mem.c +98 -0
- data/vendor/ring/crypto/modes/asm/aesni-gcm-x86_64.pl +1045 -0
- data/vendor/ring/crypto/modes/asm/ghash-armv4.pl +517 -0
- data/vendor/ring/crypto/modes/asm/ghash-x86.pl +1393 -0
- data/vendor/ring/crypto/modes/asm/ghash-x86_64.pl +1741 -0
- data/vendor/ring/crypto/modes/asm/ghashv8-armx.pl +422 -0
- data/vendor/ring/crypto/modes/ctr.c +226 -0
- data/vendor/ring/crypto/modes/gcm.c +1206 -0
- data/vendor/ring/crypto/modes/gcm_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/modes/gcm_test.c +348 -0
- data/vendor/ring/crypto/modes/internal.h +299 -0
- data/vendor/ring/crypto/perlasm/arm-xlate.pl +170 -0
- data/vendor/ring/crypto/perlasm/readme +100 -0
- data/vendor/ring/crypto/perlasm/x86_64-xlate.pl +1164 -0
- data/vendor/ring/crypto/perlasm/x86asm.pl +292 -0
- data/vendor/ring/crypto/perlasm/x86gas.pl +263 -0
- data/vendor/ring/crypto/perlasm/x86masm.pl +200 -0
- data/vendor/ring/crypto/perlasm/x86nasm.pl +187 -0
- data/vendor/ring/crypto/poly1305/poly1305.c +331 -0
- data/vendor/ring/crypto/poly1305/poly1305_arm.c +301 -0
- data/vendor/ring/crypto/poly1305/poly1305_arm_asm.S +2015 -0
- data/vendor/ring/crypto/poly1305/poly1305_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/poly1305/poly1305_test.cc +80 -0
- data/vendor/ring/crypto/poly1305/poly1305_test.txt +52 -0
- data/vendor/ring/crypto/poly1305/poly1305_vec.c +892 -0
- data/vendor/ring/crypto/rand/asm/rdrand-x86_64.pl +75 -0
- data/vendor/ring/crypto/rand/internal.h +32 -0
- data/vendor/ring/crypto/rand/rand.c +189 -0
- data/vendor/ring/crypto/rand/urandom.c +219 -0
- data/vendor/ring/crypto/rand/windows.c +56 -0
- data/vendor/ring/crypto/refcount_c11.c +66 -0
- data/vendor/ring/crypto/refcount_lock.c +53 -0
- data/vendor/ring/crypto/refcount_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/refcount_test.c +58 -0
- data/vendor/ring/crypto/rsa/blinding.c +462 -0
- data/vendor/ring/crypto/rsa/internal.h +108 -0
- data/vendor/ring/crypto/rsa/padding.c +300 -0
- data/vendor/ring/crypto/rsa/rsa.c +450 -0
- data/vendor/ring/crypto/rsa/rsa_asn1.c +261 -0
- data/vendor/ring/crypto/rsa/rsa_impl.c +944 -0
- data/vendor/ring/crypto/rsa/rsa_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/rsa/rsa_test.cc +437 -0
- data/vendor/ring/crypto/sha/asm/sha-armv8.pl +436 -0
- data/vendor/ring/crypto/sha/asm/sha-x86_64.pl +2390 -0
- data/vendor/ring/crypto/sha/asm/sha256-586.pl +1275 -0
- data/vendor/ring/crypto/sha/asm/sha256-armv4.pl +735 -0
- data/vendor/ring/crypto/sha/asm/sha256-armv8.pl +14 -0
- data/vendor/ring/crypto/sha/asm/sha256-x86_64.pl +14 -0
- data/vendor/ring/crypto/sha/asm/sha512-586.pl +911 -0
- data/vendor/ring/crypto/sha/asm/sha512-armv4.pl +666 -0
- data/vendor/ring/crypto/sha/asm/sha512-armv8.pl +14 -0
- data/vendor/ring/crypto/sha/asm/sha512-x86_64.pl +14 -0
- data/vendor/ring/crypto/sha/sha1.c +271 -0
- data/vendor/ring/crypto/sha/sha256.c +204 -0
- data/vendor/ring/crypto/sha/sha512.c +355 -0
- data/vendor/ring/crypto/test/file_test.cc +326 -0
- data/vendor/ring/crypto/test/file_test.h +181 -0
- data/vendor/ring/crypto/test/malloc.cc +150 -0
- data/vendor/ring/crypto/test/scoped_types.h +95 -0
- data/vendor/ring/crypto/test/test.Windows.vcxproj +35 -0
- data/vendor/ring/crypto/test/test_util.cc +46 -0
- data/vendor/ring/crypto/test/test_util.h +41 -0
- data/vendor/ring/crypto/thread_none.c +55 -0
- data/vendor/ring/crypto/thread_pthread.c +165 -0
- data/vendor/ring/crypto/thread_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/thread_test.c +200 -0
- data/vendor/ring/crypto/thread_win.c +282 -0
- data/vendor/ring/examples/checkdigest.rs +103 -0
- data/vendor/ring/include/openssl/aes.h +121 -0
- data/vendor/ring/include/openssl/arm_arch.h +129 -0
- data/vendor/ring/include/openssl/base.h +156 -0
- data/vendor/ring/include/openssl/bn.h +794 -0
- data/vendor/ring/include/openssl/buffer.h +18 -0
- data/vendor/ring/include/openssl/bytestring.h +235 -0
- data/vendor/ring/include/openssl/chacha.h +37 -0
- data/vendor/ring/include/openssl/cmac.h +76 -0
- data/vendor/ring/include/openssl/cpu.h +184 -0
- data/vendor/ring/include/openssl/crypto.h +43 -0
- data/vendor/ring/include/openssl/curve25519.h +88 -0
- data/vendor/ring/include/openssl/ec.h +225 -0
- data/vendor/ring/include/openssl/ec_key.h +129 -0
- data/vendor/ring/include/openssl/ecdh.h +110 -0
- data/vendor/ring/include/openssl/ecdsa.h +156 -0
- data/vendor/ring/include/openssl/err.h +201 -0
- data/vendor/ring/include/openssl/mem.h +101 -0
- data/vendor/ring/include/openssl/obj_mac.h +71 -0
- data/vendor/ring/include/openssl/opensslfeatures.h +68 -0
- data/vendor/ring/include/openssl/opensslv.h +18 -0
- data/vendor/ring/include/openssl/ossl_typ.h +18 -0
- data/vendor/ring/include/openssl/poly1305.h +51 -0
- data/vendor/ring/include/openssl/rand.h +70 -0
- data/vendor/ring/include/openssl/rsa.h +399 -0
- data/vendor/ring/include/openssl/thread.h +133 -0
- data/vendor/ring/include/openssl/type_check.h +71 -0
- data/vendor/ring/mk/Common.props +63 -0
- data/vendor/ring/mk/Windows.props +42 -0
- data/vendor/ring/mk/WindowsTest.props +18 -0
- data/vendor/ring/mk/appveyor.bat +62 -0
- data/vendor/ring/mk/bottom_of_makefile.mk +54 -0
- data/vendor/ring/mk/ring.mk +266 -0
- data/vendor/ring/mk/top_of_makefile.mk +214 -0
- data/vendor/ring/mk/travis.sh +40 -0
- data/vendor/ring/mk/update-travis-yml.py +229 -0
- data/vendor/ring/ring.sln +153 -0
- data/vendor/ring/src/aead.rs +682 -0
- data/vendor/ring/src/agreement.rs +248 -0
- data/vendor/ring/src/c.rs +129 -0
- data/vendor/ring/src/constant_time.rs +37 -0
- data/vendor/ring/src/der.rs +96 -0
- data/vendor/ring/src/digest.rs +690 -0
- data/vendor/ring/src/digest_tests.txt +57 -0
- data/vendor/ring/src/ecc.rs +28 -0
- data/vendor/ring/src/ecc_build.rs +279 -0
- data/vendor/ring/src/ecc_curves.rs +117 -0
- data/vendor/ring/src/ed25519_tests.txt +2579 -0
- data/vendor/ring/src/exe_tests.rs +46 -0
- data/vendor/ring/src/ffi.rs +29 -0
- data/vendor/ring/src/file_test.rs +187 -0
- data/vendor/ring/src/hkdf.rs +153 -0
- data/vendor/ring/src/hkdf_tests.txt +59 -0
- data/vendor/ring/src/hmac.rs +414 -0
- data/vendor/ring/src/hmac_tests.txt +97 -0
- data/vendor/ring/src/input.rs +312 -0
- data/vendor/ring/src/lib.rs +41 -0
- data/vendor/ring/src/pbkdf2.rs +265 -0
- data/vendor/ring/src/pbkdf2_tests.txt +113 -0
- data/vendor/ring/src/polyfill.rs +57 -0
- data/vendor/ring/src/rand.rs +28 -0
- data/vendor/ring/src/signature.rs +314 -0
- data/vendor/ring/third-party/NIST/README.md +9 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA1LongMsg.rsp +263 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA1Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA1ShortMsg.rsp +267 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA224LongMsg.rsp +263 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA224Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA224ShortMsg.rsp +267 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA256LongMsg.rsp +263 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA256Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA256ShortMsg.rsp +267 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA384LongMsg.rsp +519 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA384Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA384ShortMsg.rsp +523 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA512LongMsg.rsp +519 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA512Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA512ShortMsg.rsp +523 -0
- data/vendor/ring/third-party/NIST/sha256sums.txt +1 -0
- metadata +333 -0
@@ -0,0 +1,1007 @@
|
|
1
|
+
/* Originally written by Bodo Moeller for the OpenSSL project.
|
2
|
+
* ====================================================================
|
3
|
+
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
4
|
+
*
|
5
|
+
* Redistribution and use in source and binary forms, with or without
|
6
|
+
* modification, are permitted provided that the following conditions
|
7
|
+
* are met:
|
8
|
+
*
|
9
|
+
* 1. Redistributions of source code must retain the above copyright
|
10
|
+
* notice, this list of conditions and the following disclaimer.
|
11
|
+
*
|
12
|
+
* 2. Redistributions in binary form must reproduce the above copyright
|
13
|
+
* notice, this list of conditions and the following disclaimer in
|
14
|
+
* the documentation and/or other materials provided with the
|
15
|
+
* distribution.
|
16
|
+
*
|
17
|
+
* 3. All advertising materials mentioning features or use of this
|
18
|
+
* software must display the following acknowledgment:
|
19
|
+
* "This product includes software developed by the OpenSSL Project
|
20
|
+
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
21
|
+
*
|
22
|
+
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
23
|
+
* endorse or promote products derived from this software without
|
24
|
+
* prior written permission. For written permission, please contact
|
25
|
+
* openssl-core@openssl.org.
|
26
|
+
*
|
27
|
+
* 5. Products derived from this software may not be called "OpenSSL"
|
28
|
+
* nor may "OpenSSL" appear in their names without prior written
|
29
|
+
* permission of the OpenSSL Project.
|
30
|
+
*
|
31
|
+
* 6. Redistributions of any form whatsoever must retain the following
|
32
|
+
* acknowledgment:
|
33
|
+
* "This product includes software developed by the OpenSSL Project
|
34
|
+
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
35
|
+
*
|
36
|
+
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
37
|
+
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
38
|
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
39
|
+
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
40
|
+
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
41
|
+
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
42
|
+
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
43
|
+
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
44
|
+
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
45
|
+
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
46
|
+
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
47
|
+
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
48
|
+
* ====================================================================
|
49
|
+
*
|
50
|
+
* This product includes cryptographic software written by Eric Young
|
51
|
+
* (eay@cryptsoft.com). This product includes software written by Tim
|
52
|
+
* Hudson (tjh@cryptsoft.com).
|
53
|
+
*
|
54
|
+
*/
|
55
|
+
/* ====================================================================
|
56
|
+
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
57
|
+
*
|
58
|
+
* Portions of the attached software ("Contribution") are developed by
|
59
|
+
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
60
|
+
*
|
61
|
+
* The Contribution is licensed pursuant to the OpenSSL open source
|
62
|
+
* license provided above.
|
63
|
+
*
|
64
|
+
* The elliptic curve binary polynomial software is originally written by
|
65
|
+
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
66
|
+
* Laboratories. */
|
67
|
+
|
68
|
+
#include <openssl/ec.h>
|
69
|
+
|
70
|
+
#include <assert.h>
|
71
|
+
#include <string.h>
|
72
|
+
|
73
|
+
#include <openssl/bn.h>
|
74
|
+
#include <openssl/err.h>
|
75
|
+
#include <openssl/mem.h>
|
76
|
+
|
77
|
+
#include "internal.h"
|
78
|
+
|
79
|
+
|
80
|
+
/* Most method functions in this file are designed to work with non-trivial
|
81
|
+
* representations of field elements if necessary (see ecp_mont.c): while
|
82
|
+
* standard modular addition and subtraction are used, the field_mul and
|
83
|
+
* field_sqr methods will be used for multiplication, and field_encode and
|
84
|
+
* field_decode (if defined) will be used for converting between
|
85
|
+
* representations.
|
86
|
+
|
87
|
+
* Functions ec_GFp_simple_points_make_affine() and
|
88
|
+
* ec_GFp_simple_point_get_affine_coordinates() specifically assume that if a
|
89
|
+
* non-trivial representation is used, it is a Montgomery representation (i.e.
|
90
|
+
* 'encoding' means multiplying by some factor R). */
|
91
|
+
|
92
|
+
unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) {
|
93
|
+
return BN_num_bits(&group->field);
|
94
|
+
}
|
95
|
+
|
96
|
+
int ec_GFp_simple_point_init(EC_POINT *point) {
|
97
|
+
BN_init(&point->X);
|
98
|
+
BN_init(&point->Y);
|
99
|
+
BN_init(&point->Z);
|
100
|
+
|
101
|
+
return 1;
|
102
|
+
}
|
103
|
+
|
104
|
+
void ec_GFp_simple_point_finish(EC_POINT *point) {
|
105
|
+
BN_free(&point->X);
|
106
|
+
BN_free(&point->Y);
|
107
|
+
BN_free(&point->Z);
|
108
|
+
}
|
109
|
+
|
110
|
+
void ec_GFp_simple_point_clear_finish(EC_POINT *point) {
|
111
|
+
BN_clear_free(&point->X);
|
112
|
+
BN_clear_free(&point->Y);
|
113
|
+
BN_clear_free(&point->Z);
|
114
|
+
}
|
115
|
+
|
116
|
+
int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) {
|
117
|
+
if (!BN_copy(&dest->X, &src->X) ||
|
118
|
+
!BN_copy(&dest->Y, &src->Y) ||
|
119
|
+
!BN_copy(&dest->Z, &src->Z)) {
|
120
|
+
return 0;
|
121
|
+
}
|
122
|
+
|
123
|
+
return 1;
|
124
|
+
}
|
125
|
+
|
126
|
+
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
|
127
|
+
EC_POINT *point) {
|
128
|
+
BN_zero(&point->Z);
|
129
|
+
return 1;
|
130
|
+
}
|
131
|
+
|
132
|
+
int ec_GFp_simple_set_Jprojective_coordinates_GFp(
|
133
|
+
const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y,
|
134
|
+
const BIGNUM *z, BN_CTX *ctx) {
|
135
|
+
BN_CTX *new_ctx = NULL;
|
136
|
+
int ret = 0;
|
137
|
+
|
138
|
+
if (ctx == NULL) {
|
139
|
+
ctx = new_ctx = BN_CTX_new();
|
140
|
+
if (ctx == NULL) {
|
141
|
+
return 0;
|
142
|
+
}
|
143
|
+
}
|
144
|
+
|
145
|
+
if (x != NULL) {
|
146
|
+
if (!BN_nnmod(&point->X, x, &group->field, ctx)) {
|
147
|
+
goto err;
|
148
|
+
}
|
149
|
+
if (group->meth->field_encode &&
|
150
|
+
!group->meth->field_encode(group, &point->X, &point->X, ctx)) {
|
151
|
+
goto err;
|
152
|
+
}
|
153
|
+
}
|
154
|
+
|
155
|
+
if (y != NULL) {
|
156
|
+
if (!BN_nnmod(&point->Y, y, &group->field, ctx)) {
|
157
|
+
goto err;
|
158
|
+
}
|
159
|
+
if (group->meth->field_encode &&
|
160
|
+
!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) {
|
161
|
+
goto err;
|
162
|
+
}
|
163
|
+
}
|
164
|
+
|
165
|
+
if (z != NULL) {
|
166
|
+
if (!BN_nnmod(&point->Z, z, &group->field, ctx)) {
|
167
|
+
goto err;
|
168
|
+
}
|
169
|
+
int Z_is_one = BN_is_one(&point->Z);
|
170
|
+
if (group->meth->field_encode) {
|
171
|
+
if (Z_is_one && (group->meth->field_set_to_one != 0)) {
|
172
|
+
if (!group->meth->field_set_to_one(group, &point->Z, ctx)) {
|
173
|
+
goto err;
|
174
|
+
}
|
175
|
+
} else if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) {
|
176
|
+
goto err;
|
177
|
+
}
|
178
|
+
}
|
179
|
+
}
|
180
|
+
|
181
|
+
ret = 1;
|
182
|
+
|
183
|
+
err:
|
184
|
+
BN_CTX_free(new_ctx);
|
185
|
+
return ret;
|
186
|
+
}
|
187
|
+
|
188
|
+
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
|
189
|
+
EC_POINT *point, const BIGNUM *x,
|
190
|
+
const BIGNUM *y, BN_CTX *ctx) {
|
191
|
+
if (x == NULL || y == NULL) {
|
192
|
+
/* unlike for projective coordinates, we do not tolerate this */
|
193
|
+
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
|
194
|
+
return 0;
|
195
|
+
}
|
196
|
+
|
197
|
+
if (!ec_point_set_Jprojective_coordinates_GFp(group, point, x, y,
|
198
|
+
BN_value_one(), ctx)) {
|
199
|
+
return 0;
|
200
|
+
}
|
201
|
+
|
202
|
+
if (!ec_GFp_simple_is_on_curve(group, point, ctx)) {
|
203
|
+
OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE);
|
204
|
+
return 0;
|
205
|
+
}
|
206
|
+
|
207
|
+
return 1;
|
208
|
+
}
|
209
|
+
|
210
|
+
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
|
211
|
+
const EC_POINT *point, BIGNUM *x,
|
212
|
+
BIGNUM *y, BN_CTX *ctx) {
|
213
|
+
BN_CTX *new_ctx = NULL;
|
214
|
+
BIGNUM *Z, *Z_1, *Z_2, *Z_3;
|
215
|
+
const BIGNUM *Z_;
|
216
|
+
int ret = 0;
|
217
|
+
|
218
|
+
if (EC_POINT_is_at_infinity(group, point)) {
|
219
|
+
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
|
220
|
+
return 0;
|
221
|
+
}
|
222
|
+
|
223
|
+
if (ctx == NULL) {
|
224
|
+
ctx = new_ctx = BN_CTX_new();
|
225
|
+
if (ctx == NULL) {
|
226
|
+
return 0;
|
227
|
+
}
|
228
|
+
}
|
229
|
+
|
230
|
+
BN_CTX_start(ctx);
|
231
|
+
Z = BN_CTX_get(ctx);
|
232
|
+
Z_1 = BN_CTX_get(ctx);
|
233
|
+
Z_2 = BN_CTX_get(ctx);
|
234
|
+
Z_3 = BN_CTX_get(ctx);
|
235
|
+
if (Z == NULL || Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) {
|
236
|
+
goto err;
|
237
|
+
}
|
238
|
+
|
239
|
+
/* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
|
240
|
+
|
241
|
+
if (group->meth->field_decode) {
|
242
|
+
if (!group->meth->field_decode(group, Z, &point->Z, ctx)) {
|
243
|
+
goto err;
|
244
|
+
}
|
245
|
+
Z_ = Z;
|
246
|
+
} else {
|
247
|
+
Z_ = &point->Z;
|
248
|
+
}
|
249
|
+
|
250
|
+
if (BN_is_one(Z_)) {
|
251
|
+
if (group->meth->field_decode) {
|
252
|
+
if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
|
253
|
+
goto err;
|
254
|
+
}
|
255
|
+
if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
|
256
|
+
goto err;
|
257
|
+
}
|
258
|
+
} else {
|
259
|
+
if (x != NULL && !BN_copy(x, &point->X)) {
|
260
|
+
goto err;
|
261
|
+
}
|
262
|
+
if (y != NULL && !BN_copy(y, &point->Y)) {
|
263
|
+
goto err;
|
264
|
+
}
|
265
|
+
}
|
266
|
+
} else {
|
267
|
+
if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
|
268
|
+
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
269
|
+
goto err;
|
270
|
+
}
|
271
|
+
|
272
|
+
if (group->meth->field_encode == 0) {
|
273
|
+
/* field_sqr works on standard representation */
|
274
|
+
if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) {
|
275
|
+
goto err;
|
276
|
+
}
|
277
|
+
} else if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) {
|
278
|
+
goto err;
|
279
|
+
}
|
280
|
+
|
281
|
+
/* in the Montgomery case, field_mul will cancel out Montgomery factor in
|
282
|
+
* X: */
|
283
|
+
if (x != NULL && !group->meth->field_mul(group, x, &point->X, Z_2, ctx)) {
|
284
|
+
goto err;
|
285
|
+
}
|
286
|
+
|
287
|
+
if (y != NULL) {
|
288
|
+
if (group->meth->field_encode == 0) {
|
289
|
+
/* field_mul works on standard representation */
|
290
|
+
if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) {
|
291
|
+
goto err;
|
292
|
+
}
|
293
|
+
} else if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) {
|
294
|
+
goto err;
|
295
|
+
}
|
296
|
+
|
297
|
+
/* in the Montgomery case, field_mul will cancel out Montgomery factor in
|
298
|
+
* Y: */
|
299
|
+
if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) {
|
300
|
+
goto err;
|
301
|
+
}
|
302
|
+
}
|
303
|
+
}
|
304
|
+
|
305
|
+
ret = 1;
|
306
|
+
|
307
|
+
err:
|
308
|
+
BN_CTX_end(ctx);
|
309
|
+
BN_CTX_free(new_ctx);
|
310
|
+
return ret;
|
311
|
+
}
|
312
|
+
|
313
|
+
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
314
|
+
const EC_POINT *b, BN_CTX *ctx) {
|
315
|
+
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
|
316
|
+
BN_CTX *);
|
317
|
+
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
318
|
+
const BIGNUM *p;
|
319
|
+
BN_CTX *new_ctx = NULL;
|
320
|
+
BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
|
321
|
+
int ret = 0;
|
322
|
+
|
323
|
+
if (a == b) {
|
324
|
+
return ec_GFp_simple_dbl(group, r, a, ctx);
|
325
|
+
}
|
326
|
+
if (EC_POINT_is_at_infinity(group, a)) {
|
327
|
+
return ec_GFp_simple_point_copy(r, b);
|
328
|
+
}
|
329
|
+
if (EC_POINT_is_at_infinity(group, b)) {
|
330
|
+
return ec_GFp_simple_point_copy(r, a);
|
331
|
+
}
|
332
|
+
|
333
|
+
field_mul = group->meth->field_mul;
|
334
|
+
field_sqr = group->meth->field_sqr;
|
335
|
+
p = &group->field;
|
336
|
+
|
337
|
+
if (ctx == NULL) {
|
338
|
+
ctx = new_ctx = BN_CTX_new();
|
339
|
+
if (ctx == NULL) {
|
340
|
+
return 0;
|
341
|
+
}
|
342
|
+
}
|
343
|
+
|
344
|
+
BN_CTX_start(ctx);
|
345
|
+
n0 = BN_CTX_get(ctx);
|
346
|
+
n1 = BN_CTX_get(ctx);
|
347
|
+
n2 = BN_CTX_get(ctx);
|
348
|
+
n3 = BN_CTX_get(ctx);
|
349
|
+
n4 = BN_CTX_get(ctx);
|
350
|
+
n5 = BN_CTX_get(ctx);
|
351
|
+
n6 = BN_CTX_get(ctx);
|
352
|
+
if (n6 == NULL) {
|
353
|
+
goto end;
|
354
|
+
}
|
355
|
+
|
356
|
+
/* Note that in this function we must not read components of 'a' or 'b'
|
357
|
+
* once we have written the corresponding components of 'r'.
|
358
|
+
* ('r' might be one of 'a' or 'b'.)
|
359
|
+
*/
|
360
|
+
|
361
|
+
/* n1, n2 */
|
362
|
+
int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;
|
363
|
+
|
364
|
+
if (b_Z_is_one) {
|
365
|
+
if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) {
|
366
|
+
goto end;
|
367
|
+
}
|
368
|
+
/* n1 = X_a */
|
369
|
+
/* n2 = Y_a */
|
370
|
+
} else {
|
371
|
+
if (!field_sqr(group, n0, &b->Z, ctx) ||
|
372
|
+
!field_mul(group, n1, &a->X, n0, ctx)) {
|
373
|
+
goto end;
|
374
|
+
}
|
375
|
+
/* n1 = X_a * Z_b^2 */
|
376
|
+
|
377
|
+
if (!field_mul(group, n0, n0, &b->Z, ctx) ||
|
378
|
+
!field_mul(group, n2, &a->Y, n0, ctx)) {
|
379
|
+
goto end;
|
380
|
+
}
|
381
|
+
/* n2 = Y_a * Z_b^3 */
|
382
|
+
}
|
383
|
+
|
384
|
+
/* n3, n4 */
|
385
|
+
int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
|
386
|
+
if (a_Z_is_one) {
|
387
|
+
if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) {
|
388
|
+
goto end;
|
389
|
+
}
|
390
|
+
/* n3 = X_b */
|
391
|
+
/* n4 = Y_b */
|
392
|
+
} else {
|
393
|
+
if (!field_sqr(group, n0, &a->Z, ctx) ||
|
394
|
+
!field_mul(group, n3, &b->X, n0, ctx)) {
|
395
|
+
goto end;
|
396
|
+
}
|
397
|
+
/* n3 = X_b * Z_a^2 */
|
398
|
+
|
399
|
+
if (!field_mul(group, n0, n0, &a->Z, ctx) ||
|
400
|
+
!field_mul(group, n4, &b->Y, n0, ctx)) {
|
401
|
+
goto end;
|
402
|
+
}
|
403
|
+
/* n4 = Y_b * Z_a^3 */
|
404
|
+
}
|
405
|
+
|
406
|
+
/* n5, n6 */
|
407
|
+
if (!BN_mod_sub_quick(n5, n1, n3, p) ||
|
408
|
+
!BN_mod_sub_quick(n6, n2, n4, p)) {
|
409
|
+
goto end;
|
410
|
+
}
|
411
|
+
/* n5 = n1 - n3 */
|
412
|
+
/* n6 = n2 - n4 */
|
413
|
+
|
414
|
+
if (BN_is_zero(n5)) {
|
415
|
+
if (BN_is_zero(n6)) {
|
416
|
+
/* a is the same point as b */
|
417
|
+
BN_CTX_end(ctx);
|
418
|
+
ret = ec_GFp_simple_dbl(group, r, a, ctx);
|
419
|
+
ctx = NULL;
|
420
|
+
goto end;
|
421
|
+
} else {
|
422
|
+
/* a is the inverse of b */
|
423
|
+
BN_zero(&r->Z);
|
424
|
+
ret = 1;
|
425
|
+
goto end;
|
426
|
+
}
|
427
|
+
}
|
428
|
+
|
429
|
+
/* 'n7', 'n8' */
|
430
|
+
if (!BN_mod_add_quick(n1, n1, n3, p) ||
|
431
|
+
!BN_mod_add_quick(n2, n2, n4, p)) {
|
432
|
+
goto end;
|
433
|
+
}
|
434
|
+
/* 'n7' = n1 + n3 */
|
435
|
+
/* 'n8' = n2 + n4 */
|
436
|
+
|
437
|
+
/* Z_r */
|
438
|
+
if (a_Z_is_one && b_Z_is_one) {
|
439
|
+
if (!BN_copy(&r->Z, n5)) {
|
440
|
+
goto end;
|
441
|
+
}
|
442
|
+
} else {
|
443
|
+
if (a_Z_is_one) {
|
444
|
+
if (!BN_copy(n0, &b->Z)) {
|
445
|
+
goto end;
|
446
|
+
}
|
447
|
+
} else if (b_Z_is_one) {
|
448
|
+
if (!BN_copy(n0, &a->Z)) {
|
449
|
+
goto end;
|
450
|
+
}
|
451
|
+
} else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) {
|
452
|
+
goto end;
|
453
|
+
}
|
454
|
+
if (!field_mul(group, &r->Z, n0, n5, ctx)) {
|
455
|
+
goto end;
|
456
|
+
}
|
457
|
+
}
|
458
|
+
|
459
|
+
/* Z_r = Z_a * Z_b * n5 */
|
460
|
+
|
461
|
+
/* X_r */
|
462
|
+
if (!field_sqr(group, n0, n6, ctx) ||
|
463
|
+
!field_sqr(group, n4, n5, ctx) ||
|
464
|
+
!field_mul(group, n3, n1, n4, ctx) ||
|
465
|
+
!BN_mod_sub_quick(&r->X, n0, n3, p)) {
|
466
|
+
goto end;
|
467
|
+
}
|
468
|
+
/* X_r = n6^2 - n5^2 * 'n7' */
|
469
|
+
|
470
|
+
/* 'n9' */
|
471
|
+
if (!BN_mod_lshift1_quick(n0, &r->X, p) ||
|
472
|
+
!BN_mod_sub_quick(n0, n3, n0, p)) {
|
473
|
+
goto end;
|
474
|
+
}
|
475
|
+
/* n9 = n5^2 * 'n7' - 2 * X_r */
|
476
|
+
|
477
|
+
/* Y_r */
|
478
|
+
if (!field_mul(group, n0, n0, n6, ctx) ||
|
479
|
+
!field_mul(group, n5, n4, n5, ctx)) {
|
480
|
+
goto end; /* now n5 is n5^3 */
|
481
|
+
}
|
482
|
+
if (!field_mul(group, n1, n2, n5, ctx) ||
|
483
|
+
!BN_mod_sub_quick(n0, n0, n1, p)) {
|
484
|
+
goto end;
|
485
|
+
}
|
486
|
+
if (BN_is_odd(n0) && !BN_add(n0, n0, p)) {
|
487
|
+
goto end;
|
488
|
+
}
|
489
|
+
/* now 0 <= n0 < 2*p, and n0 is even */
|
490
|
+
if (!BN_rshift1(&r->Y, n0)) {
|
491
|
+
goto end;
|
492
|
+
}
|
493
|
+
/* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
|
494
|
+
|
495
|
+
ret = 1;
|
496
|
+
|
497
|
+
end:
|
498
|
+
if (ctx) {
|
499
|
+
/* otherwise we already called BN_CTX_end */
|
500
|
+
BN_CTX_end(ctx);
|
501
|
+
}
|
502
|
+
BN_CTX_free(new_ctx);
|
503
|
+
return ret;
|
504
|
+
}
|
505
|
+
|
506
|
+
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
507
|
+
BN_CTX *ctx) {
|
508
|
+
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
|
509
|
+
BN_CTX *);
|
510
|
+
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
511
|
+
const BIGNUM *p;
|
512
|
+
BN_CTX *new_ctx = NULL;
|
513
|
+
BIGNUM *n0, *n1, *n2, *n3;
|
514
|
+
int ret = 0;
|
515
|
+
|
516
|
+
if (EC_POINT_is_at_infinity(group, a)) {
|
517
|
+
BN_zero(&r->Z);
|
518
|
+
return 1;
|
519
|
+
}
|
520
|
+
|
521
|
+
field_mul = group->meth->field_mul;
|
522
|
+
field_sqr = group->meth->field_sqr;
|
523
|
+
p = &group->field;
|
524
|
+
|
525
|
+
if (ctx == NULL) {
|
526
|
+
ctx = new_ctx = BN_CTX_new();
|
527
|
+
if (ctx == NULL) {
|
528
|
+
return 0;
|
529
|
+
}
|
530
|
+
}
|
531
|
+
|
532
|
+
BN_CTX_start(ctx);
|
533
|
+
n0 = BN_CTX_get(ctx);
|
534
|
+
n1 = BN_CTX_get(ctx);
|
535
|
+
n2 = BN_CTX_get(ctx);
|
536
|
+
n3 = BN_CTX_get(ctx);
|
537
|
+
if (n3 == NULL) {
|
538
|
+
goto err;
|
539
|
+
}
|
540
|
+
|
541
|
+
/* Note that in this function we must not read components of 'a'
|
542
|
+
* once we have written the corresponding components of 'r'.
|
543
|
+
* ('r' might the same as 'a'.)
|
544
|
+
*/
|
545
|
+
|
546
|
+
/* n1 */
|
547
|
+
if (BN_cmp(&a->Z, &group->one) == 0) {
|
548
|
+
if (!field_sqr(group, n0, &a->X, ctx) ||
|
549
|
+
!BN_mod_lshift1_quick(n1, n0, p) ||
|
550
|
+
!BN_mod_add_quick(n0, n0, n1, p) ||
|
551
|
+
!BN_mod_add_quick(n1, n0, &group->a, p)) {
|
552
|
+
goto err;
|
553
|
+
}
|
554
|
+
/* n1 = 3 * X_a^2 + a_curve */
|
555
|
+
} else {
|
556
|
+
/* ring: This assumes a == -3. */
|
557
|
+
if (!field_sqr(group, n1, &a->Z, ctx) ||
|
558
|
+
!BN_mod_add_quick(n0, &a->X, n1, p) ||
|
559
|
+
!BN_mod_sub_quick(n2, &a->X, n1, p) ||
|
560
|
+
!field_mul(group, n1, n0, n2, ctx) ||
|
561
|
+
!BN_mod_lshift1_quick(n0, n1, p) ||
|
562
|
+
!BN_mod_add_quick(n1, n0, n1, p)) {
|
563
|
+
goto err;
|
564
|
+
}
|
565
|
+
/* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
|
566
|
+
* = 3 * X_a^2 - 3 * Z_a^4 */
|
567
|
+
}
|
568
|
+
|
569
|
+
/* Z_r */
|
570
|
+
if (BN_cmp(&a->Z, &group->one) == 0) {
|
571
|
+
if (!BN_copy(n0, &a->Y)) {
|
572
|
+
goto err;
|
573
|
+
}
|
574
|
+
} else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
|
575
|
+
goto err;
|
576
|
+
}
|
577
|
+
if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
|
578
|
+
goto err;
|
579
|
+
}
|
580
|
+
/* Z_r = 2 * Y_a * Z_a */
|
581
|
+
|
582
|
+
/* n2 */
|
583
|
+
if (!field_sqr(group, n3, &a->Y, ctx) ||
|
584
|
+
!field_mul(group, n2, &a->X, n3, ctx) ||
|
585
|
+
!BN_mod_lshift_quick(n2, n2, 2, p)) {
|
586
|
+
goto err;
|
587
|
+
}
|
588
|
+
/* n2 = 4 * X_a * Y_a^2 */
|
589
|
+
|
590
|
+
/* X_r */
|
591
|
+
if (!BN_mod_lshift1_quick(n0, n2, p) ||
|
592
|
+
!field_sqr(group, &r->X, n1, ctx) ||
|
593
|
+
!BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
|
594
|
+
goto err;
|
595
|
+
}
|
596
|
+
/* X_r = n1^2 - 2 * n2 */
|
597
|
+
|
598
|
+
/* n3 */
|
599
|
+
if (!field_sqr(group, n0, n3, ctx) ||
|
600
|
+
!BN_mod_lshift_quick(n3, n0, 3, p)) {
|
601
|
+
goto err;
|
602
|
+
}
|
603
|
+
/* n3 = 8 * Y_a^4 */
|
604
|
+
|
605
|
+
/* Y_r */
|
606
|
+
if (!BN_mod_sub_quick(n0, n2, &r->X, p) ||
|
607
|
+
!field_mul(group, n0, n1, n0, ctx) ||
|
608
|
+
!BN_mod_sub_quick(&r->Y, n0, n3, p)) {
|
609
|
+
goto err;
|
610
|
+
}
|
611
|
+
/* Y_r = n1 * (n2 - X_r) - n3 */
|
612
|
+
|
613
|
+
ret = 1;
|
614
|
+
|
615
|
+
err:
|
616
|
+
BN_CTX_end(ctx);
|
617
|
+
BN_CTX_free(new_ctx);
|
618
|
+
return ret;
|
619
|
+
}
|
620
|
+
|
621
|
+
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) {
|
622
|
+
if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) {
|
623
|
+
/* point is its own inverse */
|
624
|
+
return 1;
|
625
|
+
}
|
626
|
+
|
627
|
+
return BN_usub(&point->Y, &group->field, &point->Y);
|
628
|
+
}
|
629
|
+
|
630
|
+
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
|
631
|
+
return BN_is_zero(&point->Z);
|
632
|
+
}
|
633
|
+
|
634
|
+
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
635
|
+
BN_CTX *ctx) {
|
636
|
+
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
|
637
|
+
BN_CTX *);
|
638
|
+
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
639
|
+
const BIGNUM *p;
|
640
|
+
BN_CTX *new_ctx = NULL;
|
641
|
+
BIGNUM *rh, *tmp, *Z4, *Z6;
|
642
|
+
int ret = -1;
|
643
|
+
|
644
|
+
if (EC_POINT_is_at_infinity(group, point)) {
|
645
|
+
return 1;
|
646
|
+
}
|
647
|
+
|
648
|
+
field_mul = group->meth->field_mul;
|
649
|
+
field_sqr = group->meth->field_sqr;
|
650
|
+
p = &group->field;
|
651
|
+
|
652
|
+
if (ctx == NULL) {
|
653
|
+
ctx = new_ctx = BN_CTX_new();
|
654
|
+
if (ctx == NULL) {
|
655
|
+
return -1;
|
656
|
+
}
|
657
|
+
}
|
658
|
+
|
659
|
+
BN_CTX_start(ctx);
|
660
|
+
rh = BN_CTX_get(ctx);
|
661
|
+
tmp = BN_CTX_get(ctx);
|
662
|
+
Z4 = BN_CTX_get(ctx);
|
663
|
+
Z6 = BN_CTX_get(ctx);
|
664
|
+
if (Z6 == NULL) {
|
665
|
+
goto err;
|
666
|
+
}
|
667
|
+
|
668
|
+
/* We have a curve defined by a Weierstrass equation
|
669
|
+
* y^2 = x^3 + a*x + b.
|
670
|
+
* The point to consider is given in Jacobian projective coordinates
|
671
|
+
* where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
|
672
|
+
* Substituting this and multiplying by Z^6 transforms the above equation
|
673
|
+
* into
|
674
|
+
* Y^2 = X^3 + a*X*Z^4 + b*Z^6.
|
675
|
+
* To test this, we add up the right-hand side in 'rh'.
|
676
|
+
*/
|
677
|
+
|
678
|
+
/* rh := X^2 */
|
679
|
+
if (!field_sqr(group, rh, &point->X, ctx)) {
|
680
|
+
goto err;
|
681
|
+
}
|
682
|
+
|
683
|
+
if (BN_cmp(&point->Z, &group->one) != 0) {
|
684
|
+
if (!field_sqr(group, tmp, &point->Z, ctx) ||
|
685
|
+
!field_sqr(group, Z4, tmp, ctx) ||
|
686
|
+
!field_mul(group, Z6, Z4, tmp, ctx)) {
|
687
|
+
goto err;
|
688
|
+
}
|
689
|
+
|
690
|
+
/* rh := (rh + a*Z^4)*X */
|
691
|
+
/* ring: This assumes a == -3. */
|
692
|
+
if (!BN_mod_lshift1_quick(tmp, Z4, p) ||
|
693
|
+
!BN_mod_add_quick(tmp, tmp, Z4, p) ||
|
694
|
+
!BN_mod_sub_quick(rh, rh, tmp, p) ||
|
695
|
+
!field_mul(group, rh, rh, &point->X, ctx)) {
|
696
|
+
goto err;
|
697
|
+
}
|
698
|
+
|
699
|
+
/* rh := rh + b*Z^6 */
|
700
|
+
if (!field_mul(group, tmp, &group->b, Z6, ctx) ||
|
701
|
+
!BN_mod_add_quick(rh, rh, tmp, p)) {
|
702
|
+
goto err;
|
703
|
+
}
|
704
|
+
} else {
|
705
|
+
/* rh := (rh + a)*X */
|
706
|
+
if (!BN_mod_add_quick(rh, rh, &group->a, p) ||
|
707
|
+
!field_mul(group, rh, rh, &point->X, ctx)) {
|
708
|
+
goto err;
|
709
|
+
}
|
710
|
+
/* rh := rh + b */
|
711
|
+
if (!BN_mod_add_quick(rh, rh, &group->b, p)) {
|
712
|
+
goto err;
|
713
|
+
}
|
714
|
+
}
|
715
|
+
|
716
|
+
/* 'lh' := Y^2 */
|
717
|
+
if (!field_sqr(group, tmp, &point->Y, ctx)) {
|
718
|
+
goto err;
|
719
|
+
}
|
720
|
+
|
721
|
+
ret = (0 == BN_ucmp(tmp, rh));
|
722
|
+
|
723
|
+
err:
|
724
|
+
BN_CTX_end(ctx);
|
725
|
+
BN_CTX_free(new_ctx);
|
726
|
+
return ret;
|
727
|
+
}
|
728
|
+
|
729
|
+
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
|
730
|
+
const EC_POINT *b, BN_CTX *ctx) {
|
731
|
+
/* return values:
|
732
|
+
* -1 error
|
733
|
+
* 0 equal (in affine coordinates)
|
734
|
+
* 1 not equal
|
735
|
+
*/
|
736
|
+
|
737
|
+
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
|
738
|
+
BN_CTX *);
|
739
|
+
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
740
|
+
BN_CTX *new_ctx = NULL;
|
741
|
+
BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
|
742
|
+
const BIGNUM *tmp1_, *tmp2_;
|
743
|
+
int ret = -1;
|
744
|
+
|
745
|
+
if (EC_POINT_is_at_infinity(group, a)) {
|
746
|
+
return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
|
747
|
+
}
|
748
|
+
|
749
|
+
if (EC_POINT_is_at_infinity(group, b)) {
|
750
|
+
return 1;
|
751
|
+
}
|
752
|
+
|
753
|
+
int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
|
754
|
+
int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;
|
755
|
+
|
756
|
+
if (a_Z_is_one && b_Z_is_one) {
|
757
|
+
return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
|
758
|
+
}
|
759
|
+
|
760
|
+
field_mul = group->meth->field_mul;
|
761
|
+
field_sqr = group->meth->field_sqr;
|
762
|
+
|
763
|
+
if (ctx == NULL) {
|
764
|
+
ctx = new_ctx = BN_CTX_new();
|
765
|
+
if (ctx == NULL) {
|
766
|
+
return -1;
|
767
|
+
}
|
768
|
+
}
|
769
|
+
|
770
|
+
BN_CTX_start(ctx);
|
771
|
+
tmp1 = BN_CTX_get(ctx);
|
772
|
+
tmp2 = BN_CTX_get(ctx);
|
773
|
+
Za23 = BN_CTX_get(ctx);
|
774
|
+
Zb23 = BN_CTX_get(ctx);
|
775
|
+
if (Zb23 == NULL) {
|
776
|
+
goto end;
|
777
|
+
}
|
778
|
+
|
779
|
+
/* We have to decide whether
|
780
|
+
* (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
|
781
|
+
* or equivalently, whether
|
782
|
+
* (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
|
783
|
+
*/
|
784
|
+
|
785
|
+
if (!b_Z_is_one) {
|
786
|
+
if (!field_sqr(group, Zb23, &b->Z, ctx) ||
|
787
|
+
!field_mul(group, tmp1, &a->X, Zb23, ctx)) {
|
788
|
+
goto end;
|
789
|
+
}
|
790
|
+
tmp1_ = tmp1;
|
791
|
+
} else {
|
792
|
+
tmp1_ = &a->X;
|
793
|
+
}
|
794
|
+
if (!a_Z_is_one) {
|
795
|
+
if (!field_sqr(group, Za23, &a->Z, ctx) ||
|
796
|
+
!field_mul(group, tmp2, &b->X, Za23, ctx)) {
|
797
|
+
goto end;
|
798
|
+
}
|
799
|
+
tmp2_ = tmp2;
|
800
|
+
} else {
|
801
|
+
tmp2_ = &b->X;
|
802
|
+
}
|
803
|
+
|
804
|
+
/* compare X_a*Z_b^2 with X_b*Z_a^2 */
|
805
|
+
if (BN_cmp(tmp1_, tmp2_) != 0) {
|
806
|
+
ret = 1; /* points differ */
|
807
|
+
goto end;
|
808
|
+
}
|
809
|
+
|
810
|
+
|
811
|
+
if (!b_Z_is_one) {
|
812
|
+
if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) ||
|
813
|
+
!field_mul(group, tmp1, &a->Y, Zb23, ctx)) {
|
814
|
+
goto end;
|
815
|
+
}
|
816
|
+
/* tmp1_ = tmp1 */
|
817
|
+
} else {
|
818
|
+
tmp1_ = &a->Y;
|
819
|
+
}
|
820
|
+
if (!a_Z_is_one) {
|
821
|
+
if (!field_mul(group, Za23, Za23, &a->Z, ctx) ||
|
822
|
+
!field_mul(group, tmp2, &b->Y, Za23, ctx)) {
|
823
|
+
goto end;
|
824
|
+
}
|
825
|
+
/* tmp2_ = tmp2 */
|
826
|
+
} else {
|
827
|
+
tmp2_ = &b->Y;
|
828
|
+
}
|
829
|
+
|
830
|
+
/* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
|
831
|
+
if (BN_cmp(tmp1_, tmp2_) != 0) {
|
832
|
+
ret = 1; /* points differ */
|
833
|
+
goto end;
|
834
|
+
}
|
835
|
+
|
836
|
+
/* points are equal */
|
837
|
+
ret = 0;
|
838
|
+
|
839
|
+
end:
|
840
|
+
BN_CTX_end(ctx);
|
841
|
+
BN_CTX_free(new_ctx);
|
842
|
+
return ret;
|
843
|
+
}
|
844
|
+
|
845
|
+
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
846
|
+
EC_POINT *points[], BN_CTX *ctx) {
|
847
|
+
BN_CTX *new_ctx = NULL;
|
848
|
+
BIGNUM *tmp, *tmp_Z;
|
849
|
+
BIGNUM **prod_Z = NULL;
|
850
|
+
size_t i;
|
851
|
+
int ret = 0;
|
852
|
+
|
853
|
+
if (num == 0) {
|
854
|
+
return 1;
|
855
|
+
}
|
856
|
+
|
857
|
+
if (ctx == NULL) {
|
858
|
+
ctx = new_ctx = BN_CTX_new();
|
859
|
+
if (ctx == NULL) {
|
860
|
+
return 0;
|
861
|
+
}
|
862
|
+
}
|
863
|
+
|
864
|
+
BN_CTX_start(ctx);
|
865
|
+
tmp = BN_CTX_get(ctx);
|
866
|
+
tmp_Z = BN_CTX_get(ctx);
|
867
|
+
if (tmp == NULL || tmp_Z == NULL) {
|
868
|
+
goto err;
|
869
|
+
}
|
870
|
+
|
871
|
+
prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
|
872
|
+
if (prod_Z == NULL) {
|
873
|
+
goto err;
|
874
|
+
}
|
875
|
+
memset(prod_Z, 0, num * sizeof(prod_Z[0]));
|
876
|
+
for (i = 0; i < num; i++) {
|
877
|
+
prod_Z[i] = BN_new();
|
878
|
+
if (prod_Z[i] == NULL) {
|
879
|
+
goto err;
|
880
|
+
}
|
881
|
+
}
|
882
|
+
|
883
|
+
/* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
|
884
|
+
* skipping any zero-valued inputs (pretend that they're 1). */
|
885
|
+
|
886
|
+
if (!BN_is_zero(&points[0]->Z)) {
|
887
|
+
if (!BN_copy(prod_Z[0], &points[0]->Z)) {
|
888
|
+
goto err;
|
889
|
+
}
|
890
|
+
} else {
|
891
|
+
if (group->meth->field_set_to_one != 0) {
|
892
|
+
if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) {
|
893
|
+
goto err;
|
894
|
+
}
|
895
|
+
} else {
|
896
|
+
if (!BN_one(prod_Z[0])) {
|
897
|
+
goto err;
|
898
|
+
}
|
899
|
+
}
|
900
|
+
}
|
901
|
+
|
902
|
+
for (i = 1; i < num; i++) {
|
903
|
+
if (!BN_is_zero(&points[i]->Z)) {
|
904
|
+
if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
|
905
|
+
&points[i]->Z, ctx)) {
|
906
|
+
goto err;
|
907
|
+
}
|
908
|
+
} else {
|
909
|
+
if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
|
910
|
+
goto err;
|
911
|
+
}
|
912
|
+
}
|
913
|
+
}
|
914
|
+
|
915
|
+
/* Now use a single explicit inversion to replace every
|
916
|
+
* non-zero points[i]->Z by its inverse. */
|
917
|
+
|
918
|
+
if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) {
|
919
|
+
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
920
|
+
goto err;
|
921
|
+
}
|
922
|
+
|
923
|
+
if (group->meth->field_encode != NULL) {
|
924
|
+
/* In the Montgomery case, we just turned R*H (representing H)
|
925
|
+
* into 1/(R*H), but we need R*(1/H) (representing 1/H);
|
926
|
+
* i.e. we need to multiply by the Montgomery factor twice. */
|
927
|
+
if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
|
928
|
+
!group->meth->field_encode(group, tmp, tmp, ctx)) {
|
929
|
+
goto err;
|
930
|
+
}
|
931
|
+
}
|
932
|
+
|
933
|
+
for (i = num - 1; i > 0; --i) {
|
934
|
+
/* Loop invariant: tmp is the product of the inverses of
|
935
|
+
* points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
|
936
|
+
if (BN_is_zero(&points[i]->Z)) {
|
937
|
+
continue;
|
938
|
+
}
|
939
|
+
|
940
|
+
/* Set tmp_Z to the inverse of points[i]->Z (as product
|
941
|
+
* of Z inverses 0 .. i, Z values 0 .. i - 1). */
|
942
|
+
if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
|
943
|
+
/* Update tmp to satisfy the loop invariant for i - 1. */
|
944
|
+
!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
|
945
|
+
/* Replace points[i]->Z by its inverse. */
|
946
|
+
!BN_copy(&points[i]->Z, tmp_Z)) {
|
947
|
+
goto err;
|
948
|
+
}
|
949
|
+
}
|
950
|
+
|
951
|
+
/* Replace points[0]->Z by its inverse. */
|
952
|
+
if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
|
953
|
+
goto err;
|
954
|
+
}
|
955
|
+
|
956
|
+
/* Finally, fix up the X and Y coordinates for all points. */
|
957
|
+
for (i = 0; i < num; i++) {
|
958
|
+
EC_POINT *p = points[i];
|
959
|
+
|
960
|
+
if (!BN_is_zero(&p->Z)) {
|
961
|
+
/* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). */
|
962
|
+
if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
|
963
|
+
!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
|
964
|
+
!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
|
965
|
+
!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
|
966
|
+
goto err;
|
967
|
+
}
|
968
|
+
|
969
|
+
if (group->meth->field_set_to_one != NULL) {
|
970
|
+
if (!group->meth->field_set_to_one(group, &p->Z, ctx)) {
|
971
|
+
goto err;
|
972
|
+
}
|
973
|
+
} else {
|
974
|
+
if (!BN_one(&p->Z)) {
|
975
|
+
goto err;
|
976
|
+
}
|
977
|
+
}
|
978
|
+
}
|
979
|
+
}
|
980
|
+
|
981
|
+
ret = 1;
|
982
|
+
|
983
|
+
err:
|
984
|
+
BN_CTX_end(ctx);
|
985
|
+
BN_CTX_free(new_ctx);
|
986
|
+
if (prod_Z != NULL) {
|
987
|
+
for (i = 0; i < num; i++) {
|
988
|
+
if (prod_Z[i] == NULL) {
|
989
|
+
break;
|
990
|
+
}
|
991
|
+
BN_clear_free(prod_Z[i]);
|
992
|
+
}
|
993
|
+
OPENSSL_free(prod_Z);
|
994
|
+
}
|
995
|
+
|
996
|
+
return ret;
|
997
|
+
}
|
998
|
+
|
999
|
+
int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
1000
|
+
const BIGNUM *b, BN_CTX *ctx) {
|
1001
|
+
return BN_mod_mul(r, a, b, &group->field, ctx);
|
1002
|
+
}
|
1003
|
+
|
1004
|
+
int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
1005
|
+
BN_CTX *ctx) {
|
1006
|
+
return BN_mod_sqr(r, a, &group->field, ctx);
|
1007
|
+
}
|