ring-native 0.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +9 -0
- data/Gemfile +3 -0
- data/README.md +22 -0
- data/Rakefile +1 -0
- data/ext/ring/extconf.rb +29 -0
- data/lib/ring/native.rb +8 -0
- data/lib/ring/native/version.rb +5 -0
- data/ring-native.gemspec +25 -0
- data/vendor/ring/BUILDING.md +40 -0
- data/vendor/ring/Cargo.toml +43 -0
- data/vendor/ring/LICENSE +185 -0
- data/vendor/ring/Makefile +35 -0
- data/vendor/ring/PORTING.md +163 -0
- data/vendor/ring/README.md +113 -0
- data/vendor/ring/STYLE.md +197 -0
- data/vendor/ring/appveyor.yml +27 -0
- data/vendor/ring/build.rs +108 -0
- data/vendor/ring/crypto/aes/aes.c +1142 -0
- data/vendor/ring/crypto/aes/aes_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/aes/aes_test.cc +93 -0
- data/vendor/ring/crypto/aes/asm/aes-586.pl +2368 -0
- data/vendor/ring/crypto/aes/asm/aes-armv4.pl +1249 -0
- data/vendor/ring/crypto/aes/asm/aes-x86_64.pl +2246 -0
- data/vendor/ring/crypto/aes/asm/aesni-x86.pl +1318 -0
- data/vendor/ring/crypto/aes/asm/aesni-x86_64.pl +2084 -0
- data/vendor/ring/crypto/aes/asm/aesv8-armx.pl +675 -0
- data/vendor/ring/crypto/aes/asm/bsaes-armv7.pl +1364 -0
- data/vendor/ring/crypto/aes/asm/bsaes-x86_64.pl +1565 -0
- data/vendor/ring/crypto/aes/asm/vpaes-x86.pl +841 -0
- data/vendor/ring/crypto/aes/asm/vpaes-x86_64.pl +1116 -0
- data/vendor/ring/crypto/aes/internal.h +87 -0
- data/vendor/ring/crypto/aes/mode_wrappers.c +61 -0
- data/vendor/ring/crypto/bn/add.c +394 -0
- data/vendor/ring/crypto/bn/asm/armv4-mont.pl +694 -0
- data/vendor/ring/crypto/bn/asm/armv8-mont.pl +1503 -0
- data/vendor/ring/crypto/bn/asm/bn-586.pl +774 -0
- data/vendor/ring/crypto/bn/asm/co-586.pl +287 -0
- data/vendor/ring/crypto/bn/asm/rsaz-avx2.pl +1882 -0
- data/vendor/ring/crypto/bn/asm/x86-mont.pl +592 -0
- data/vendor/ring/crypto/bn/asm/x86_64-gcc.c +599 -0
- data/vendor/ring/crypto/bn/asm/x86_64-mont.pl +1393 -0
- data/vendor/ring/crypto/bn/asm/x86_64-mont5.pl +3507 -0
- data/vendor/ring/crypto/bn/bn.c +352 -0
- data/vendor/ring/crypto/bn/bn_asn1.c +74 -0
- data/vendor/ring/crypto/bn/bn_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/bn/bn_test.cc +1696 -0
- data/vendor/ring/crypto/bn/cmp.c +200 -0
- data/vendor/ring/crypto/bn/convert.c +433 -0
- data/vendor/ring/crypto/bn/ctx.c +311 -0
- data/vendor/ring/crypto/bn/div.c +594 -0
- data/vendor/ring/crypto/bn/exponentiation.c +1335 -0
- data/vendor/ring/crypto/bn/gcd.c +711 -0
- data/vendor/ring/crypto/bn/generic.c +1019 -0
- data/vendor/ring/crypto/bn/internal.h +316 -0
- data/vendor/ring/crypto/bn/montgomery.c +516 -0
- data/vendor/ring/crypto/bn/mul.c +888 -0
- data/vendor/ring/crypto/bn/prime.c +829 -0
- data/vendor/ring/crypto/bn/random.c +334 -0
- data/vendor/ring/crypto/bn/rsaz_exp.c +262 -0
- data/vendor/ring/crypto/bn/rsaz_exp.h +53 -0
- data/vendor/ring/crypto/bn/shift.c +276 -0
- data/vendor/ring/crypto/bytestring/bytestring_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/bytestring/bytestring_test.cc +421 -0
- data/vendor/ring/crypto/bytestring/cbb.c +399 -0
- data/vendor/ring/crypto/bytestring/cbs.c +227 -0
- data/vendor/ring/crypto/bytestring/internal.h +46 -0
- data/vendor/ring/crypto/chacha/chacha_generic.c +140 -0
- data/vendor/ring/crypto/chacha/chacha_vec.c +323 -0
- data/vendor/ring/crypto/chacha/chacha_vec_arm.S +1447 -0
- data/vendor/ring/crypto/chacha/chacha_vec_arm_generate.go +153 -0
- data/vendor/ring/crypto/cipher/cipher_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/cipher/e_aes.c +390 -0
- data/vendor/ring/crypto/cipher/e_chacha20poly1305.c +208 -0
- data/vendor/ring/crypto/cipher/internal.h +173 -0
- data/vendor/ring/crypto/cipher/test/aes_128_gcm_tests.txt +543 -0
- data/vendor/ring/crypto/cipher/test/aes_128_key_wrap_tests.txt +9 -0
- data/vendor/ring/crypto/cipher/test/aes_256_gcm_tests.txt +475 -0
- data/vendor/ring/crypto/cipher/test/aes_256_key_wrap_tests.txt +23 -0
- data/vendor/ring/crypto/cipher/test/chacha20_poly1305_old_tests.txt +422 -0
- data/vendor/ring/crypto/cipher/test/chacha20_poly1305_tests.txt +484 -0
- data/vendor/ring/crypto/cipher/test/cipher_test.txt +100 -0
- data/vendor/ring/crypto/constant_time_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/constant_time_test.c +304 -0
- data/vendor/ring/crypto/cpu-arm-asm.S +32 -0
- data/vendor/ring/crypto/cpu-arm.c +199 -0
- data/vendor/ring/crypto/cpu-intel.c +261 -0
- data/vendor/ring/crypto/crypto.c +151 -0
- data/vendor/ring/crypto/curve25519/asm/x25519-arm.S +2118 -0
- data/vendor/ring/crypto/curve25519/curve25519.c +4888 -0
- data/vendor/ring/crypto/curve25519/x25519_test.cc +128 -0
- data/vendor/ring/crypto/digest/md32_common.h +181 -0
- data/vendor/ring/crypto/ec/asm/p256-x86_64-asm.pl +2725 -0
- data/vendor/ring/crypto/ec/ec.c +193 -0
- data/vendor/ring/crypto/ec/ec_curves.c +61 -0
- data/vendor/ring/crypto/ec/ec_key.c +228 -0
- data/vendor/ring/crypto/ec/ec_montgomery.c +114 -0
- data/vendor/ring/crypto/ec/example_mul.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/ec/internal.h +243 -0
- data/vendor/ring/crypto/ec/oct.c +253 -0
- data/vendor/ring/crypto/ec/p256-64.c +1794 -0
- data/vendor/ring/crypto/ec/p256-x86_64-table.h +9548 -0
- data/vendor/ring/crypto/ec/p256-x86_64.c +509 -0
- data/vendor/ring/crypto/ec/simple.c +1007 -0
- data/vendor/ring/crypto/ec/util-64.c +183 -0
- data/vendor/ring/crypto/ec/wnaf.c +508 -0
- data/vendor/ring/crypto/ecdh/ecdh.c +155 -0
- data/vendor/ring/crypto/ecdsa/ecdsa.c +304 -0
- data/vendor/ring/crypto/ecdsa/ecdsa_asn1.c +193 -0
- data/vendor/ring/crypto/ecdsa/ecdsa_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/ecdsa/ecdsa_test.cc +327 -0
- data/vendor/ring/crypto/header_removed.h +17 -0
- data/vendor/ring/crypto/internal.h +495 -0
- data/vendor/ring/crypto/libring.Windows.vcxproj +101 -0
- data/vendor/ring/crypto/mem.c +98 -0
- data/vendor/ring/crypto/modes/asm/aesni-gcm-x86_64.pl +1045 -0
- data/vendor/ring/crypto/modes/asm/ghash-armv4.pl +517 -0
- data/vendor/ring/crypto/modes/asm/ghash-x86.pl +1393 -0
- data/vendor/ring/crypto/modes/asm/ghash-x86_64.pl +1741 -0
- data/vendor/ring/crypto/modes/asm/ghashv8-armx.pl +422 -0
- data/vendor/ring/crypto/modes/ctr.c +226 -0
- data/vendor/ring/crypto/modes/gcm.c +1206 -0
- data/vendor/ring/crypto/modes/gcm_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/modes/gcm_test.c +348 -0
- data/vendor/ring/crypto/modes/internal.h +299 -0
- data/vendor/ring/crypto/perlasm/arm-xlate.pl +170 -0
- data/vendor/ring/crypto/perlasm/readme +100 -0
- data/vendor/ring/crypto/perlasm/x86_64-xlate.pl +1164 -0
- data/vendor/ring/crypto/perlasm/x86asm.pl +292 -0
- data/vendor/ring/crypto/perlasm/x86gas.pl +263 -0
- data/vendor/ring/crypto/perlasm/x86masm.pl +200 -0
- data/vendor/ring/crypto/perlasm/x86nasm.pl +187 -0
- data/vendor/ring/crypto/poly1305/poly1305.c +331 -0
- data/vendor/ring/crypto/poly1305/poly1305_arm.c +301 -0
- data/vendor/ring/crypto/poly1305/poly1305_arm_asm.S +2015 -0
- data/vendor/ring/crypto/poly1305/poly1305_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/poly1305/poly1305_test.cc +80 -0
- data/vendor/ring/crypto/poly1305/poly1305_test.txt +52 -0
- data/vendor/ring/crypto/poly1305/poly1305_vec.c +892 -0
- data/vendor/ring/crypto/rand/asm/rdrand-x86_64.pl +75 -0
- data/vendor/ring/crypto/rand/internal.h +32 -0
- data/vendor/ring/crypto/rand/rand.c +189 -0
- data/vendor/ring/crypto/rand/urandom.c +219 -0
- data/vendor/ring/crypto/rand/windows.c +56 -0
- data/vendor/ring/crypto/refcount_c11.c +66 -0
- data/vendor/ring/crypto/refcount_lock.c +53 -0
- data/vendor/ring/crypto/refcount_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/refcount_test.c +58 -0
- data/vendor/ring/crypto/rsa/blinding.c +462 -0
- data/vendor/ring/crypto/rsa/internal.h +108 -0
- data/vendor/ring/crypto/rsa/padding.c +300 -0
- data/vendor/ring/crypto/rsa/rsa.c +450 -0
- data/vendor/ring/crypto/rsa/rsa_asn1.c +261 -0
- data/vendor/ring/crypto/rsa/rsa_impl.c +944 -0
- data/vendor/ring/crypto/rsa/rsa_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/rsa/rsa_test.cc +437 -0
- data/vendor/ring/crypto/sha/asm/sha-armv8.pl +436 -0
- data/vendor/ring/crypto/sha/asm/sha-x86_64.pl +2390 -0
- data/vendor/ring/crypto/sha/asm/sha256-586.pl +1275 -0
- data/vendor/ring/crypto/sha/asm/sha256-armv4.pl +735 -0
- data/vendor/ring/crypto/sha/asm/sha256-armv8.pl +14 -0
- data/vendor/ring/crypto/sha/asm/sha256-x86_64.pl +14 -0
- data/vendor/ring/crypto/sha/asm/sha512-586.pl +911 -0
- data/vendor/ring/crypto/sha/asm/sha512-armv4.pl +666 -0
- data/vendor/ring/crypto/sha/asm/sha512-armv8.pl +14 -0
- data/vendor/ring/crypto/sha/asm/sha512-x86_64.pl +14 -0
- data/vendor/ring/crypto/sha/sha1.c +271 -0
- data/vendor/ring/crypto/sha/sha256.c +204 -0
- data/vendor/ring/crypto/sha/sha512.c +355 -0
- data/vendor/ring/crypto/test/file_test.cc +326 -0
- data/vendor/ring/crypto/test/file_test.h +181 -0
- data/vendor/ring/crypto/test/malloc.cc +150 -0
- data/vendor/ring/crypto/test/scoped_types.h +95 -0
- data/vendor/ring/crypto/test/test.Windows.vcxproj +35 -0
- data/vendor/ring/crypto/test/test_util.cc +46 -0
- data/vendor/ring/crypto/test/test_util.h +41 -0
- data/vendor/ring/crypto/thread_none.c +55 -0
- data/vendor/ring/crypto/thread_pthread.c +165 -0
- data/vendor/ring/crypto/thread_test.Windows.vcxproj +25 -0
- data/vendor/ring/crypto/thread_test.c +200 -0
- data/vendor/ring/crypto/thread_win.c +282 -0
- data/vendor/ring/examples/checkdigest.rs +103 -0
- data/vendor/ring/include/openssl/aes.h +121 -0
- data/vendor/ring/include/openssl/arm_arch.h +129 -0
- data/vendor/ring/include/openssl/base.h +156 -0
- data/vendor/ring/include/openssl/bn.h +794 -0
- data/vendor/ring/include/openssl/buffer.h +18 -0
- data/vendor/ring/include/openssl/bytestring.h +235 -0
- data/vendor/ring/include/openssl/chacha.h +37 -0
- data/vendor/ring/include/openssl/cmac.h +76 -0
- data/vendor/ring/include/openssl/cpu.h +184 -0
- data/vendor/ring/include/openssl/crypto.h +43 -0
- data/vendor/ring/include/openssl/curve25519.h +88 -0
- data/vendor/ring/include/openssl/ec.h +225 -0
- data/vendor/ring/include/openssl/ec_key.h +129 -0
- data/vendor/ring/include/openssl/ecdh.h +110 -0
- data/vendor/ring/include/openssl/ecdsa.h +156 -0
- data/vendor/ring/include/openssl/err.h +201 -0
- data/vendor/ring/include/openssl/mem.h +101 -0
- data/vendor/ring/include/openssl/obj_mac.h +71 -0
- data/vendor/ring/include/openssl/opensslfeatures.h +68 -0
- data/vendor/ring/include/openssl/opensslv.h +18 -0
- data/vendor/ring/include/openssl/ossl_typ.h +18 -0
- data/vendor/ring/include/openssl/poly1305.h +51 -0
- data/vendor/ring/include/openssl/rand.h +70 -0
- data/vendor/ring/include/openssl/rsa.h +399 -0
- data/vendor/ring/include/openssl/thread.h +133 -0
- data/vendor/ring/include/openssl/type_check.h +71 -0
- data/vendor/ring/mk/Common.props +63 -0
- data/vendor/ring/mk/Windows.props +42 -0
- data/vendor/ring/mk/WindowsTest.props +18 -0
- data/vendor/ring/mk/appveyor.bat +62 -0
- data/vendor/ring/mk/bottom_of_makefile.mk +54 -0
- data/vendor/ring/mk/ring.mk +266 -0
- data/vendor/ring/mk/top_of_makefile.mk +214 -0
- data/vendor/ring/mk/travis.sh +40 -0
- data/vendor/ring/mk/update-travis-yml.py +229 -0
- data/vendor/ring/ring.sln +153 -0
- data/vendor/ring/src/aead.rs +682 -0
- data/vendor/ring/src/agreement.rs +248 -0
- data/vendor/ring/src/c.rs +129 -0
- data/vendor/ring/src/constant_time.rs +37 -0
- data/vendor/ring/src/der.rs +96 -0
- data/vendor/ring/src/digest.rs +690 -0
- data/vendor/ring/src/digest_tests.txt +57 -0
- data/vendor/ring/src/ecc.rs +28 -0
- data/vendor/ring/src/ecc_build.rs +279 -0
- data/vendor/ring/src/ecc_curves.rs +117 -0
- data/vendor/ring/src/ed25519_tests.txt +2579 -0
- data/vendor/ring/src/exe_tests.rs +46 -0
- data/vendor/ring/src/ffi.rs +29 -0
- data/vendor/ring/src/file_test.rs +187 -0
- data/vendor/ring/src/hkdf.rs +153 -0
- data/vendor/ring/src/hkdf_tests.txt +59 -0
- data/vendor/ring/src/hmac.rs +414 -0
- data/vendor/ring/src/hmac_tests.txt +97 -0
- data/vendor/ring/src/input.rs +312 -0
- data/vendor/ring/src/lib.rs +41 -0
- data/vendor/ring/src/pbkdf2.rs +265 -0
- data/vendor/ring/src/pbkdf2_tests.txt +113 -0
- data/vendor/ring/src/polyfill.rs +57 -0
- data/vendor/ring/src/rand.rs +28 -0
- data/vendor/ring/src/signature.rs +314 -0
- data/vendor/ring/third-party/NIST/README.md +9 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA1LongMsg.rsp +263 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA1Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA1ShortMsg.rsp +267 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA224LongMsg.rsp +263 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA224Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA224ShortMsg.rsp +267 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA256LongMsg.rsp +263 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA256Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA256ShortMsg.rsp +267 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA384LongMsg.rsp +519 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA384Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA384ShortMsg.rsp +523 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA512LongMsg.rsp +519 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA512Monte.rsp +309 -0
- data/vendor/ring/third-party/NIST/SHAVS/SHA512ShortMsg.rsp +523 -0
- data/vendor/ring/third-party/NIST/sha256sums.txt +1 -0
- metadata +333 -0
@@ -0,0 +1,1794 @@
|
|
1
|
+
/* Copyright (c) 2015, Google Inc.
|
2
|
+
*
|
3
|
+
* Permission to use, copy, modify, and/or distribute this software for any
|
4
|
+
* purpose with or without fee is hereby granted, provided that the above
|
5
|
+
* copyright notice and this permission notice appear in all copies.
|
6
|
+
*
|
7
|
+
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
8
|
+
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
9
|
+
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
10
|
+
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
11
|
+
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
12
|
+
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
13
|
+
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
14
|
+
|
15
|
+
/* A 64-bit implementation of the NIST P-256 elliptic curve point
|
16
|
+
* multiplication
|
17
|
+
*
|
18
|
+
* OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
|
19
|
+
* Otherwise based on Emilia's P224 work, which was inspired by my curve25519
|
20
|
+
* work which got its smarts from Daniel J. Bernstein's work on the same. */
|
21
|
+
|
22
|
+
#include <openssl/base.h>
|
23
|
+
|
24
|
+
#if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS)
|
25
|
+
|
26
|
+
#include <openssl/bn.h>
|
27
|
+
#include <openssl/ec.h>
|
28
|
+
#include <openssl/err.h>
|
29
|
+
#include <openssl/mem.h>
|
30
|
+
#include <openssl/obj_mac.h>
|
31
|
+
|
32
|
+
#include <assert.h>
|
33
|
+
#include <string.h>
|
34
|
+
|
35
|
+
#include "internal.h"
|
36
|
+
|
37
|
+
|
38
|
+
typedef uint8_t u8;
|
39
|
+
typedef uint64_t u64;
|
40
|
+
typedef int64_t s64;
|
41
|
+
typedef __uint128_t uint128_t;
|
42
|
+
typedef __int128_t int128_t;
|
43
|
+
|
44
|
+
/* The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
|
45
|
+
* can serialise an element of this field into 32 bytes. We call this an
|
46
|
+
* felem_bytearray. */
|
47
|
+
typedef u8 felem_bytearray[32];
|
48
|
+
|
49
|
+
|
50
|
+
/* The representation of field elements.
|
51
|
+
* ------------------------------------
|
52
|
+
*
|
53
|
+
* We represent field elements with either four 128-bit values, eight 128-bit
|
54
|
+
* values, or four 64-bit values. The field element represented is:
|
55
|
+
* v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
|
56
|
+
* or:
|
57
|
+
* v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
|
58
|
+
*
|
59
|
+
* 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
|
60
|
+
* apart, but are 128-bits wide, the most significant bits of each limb overlap
|
61
|
+
* with the least significant bits of the next.
|
62
|
+
*
|
63
|
+
* A field element with four limbs is an 'felem'. One with eight limbs is a
|
64
|
+
* 'longfelem'
|
65
|
+
*
|
66
|
+
* A field element with four, 64-bit values is called a 'smallfelem'. Small
|
67
|
+
* values are used as intermediate values before multiplication. */
|
68
|
+
|
69
|
+
#define NLIMBS 4
|
70
|
+
|
71
|
+
typedef uint128_t limb;
|
72
|
+
typedef limb felem[NLIMBS];
|
73
|
+
typedef limb longfelem[NLIMBS * 2];
|
74
|
+
typedef u64 smallfelem[NLIMBS];
|
75
|
+
|
76
|
+
/* This is the value of the prime as four 64-bit words, little-endian. */
|
77
|
+
static const u64 kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0,
|
78
|
+
0xffffffff00000001ul};
|
79
|
+
static const u64 bottom63bits = 0x7ffffffffffffffful;
|
80
|
+
|
81
|
+
/* bin32_to_felem takes a little-endian byte array and converts it into felem
|
82
|
+
* form. This assumes that the CPU is little-endian. */
|
83
|
+
static void bin32_to_felem(felem out, const u8 in[32]) {
|
84
|
+
out[0] = *((u64 *)&in[0]);
|
85
|
+
out[1] = *((u64 *)&in[8]);
|
86
|
+
out[2] = *((u64 *)&in[16]);
|
87
|
+
out[3] = *((u64 *)&in[24]);
|
88
|
+
}
|
89
|
+
|
90
|
+
/* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
|
91
|
+
* 32 byte array. This assumes that the CPU is little-endian. */
|
92
|
+
static void smallfelem_to_bin32(u8 out[32], const smallfelem in) {
|
93
|
+
*((u64 *)&out[0]) = in[0];
|
94
|
+
*((u64 *)&out[8]) = in[1];
|
95
|
+
*((u64 *)&out[16]) = in[2];
|
96
|
+
*((u64 *)&out[24]) = in[3];
|
97
|
+
}
|
98
|
+
|
99
|
+
/* To preserve endianness when using BN_bn2bin and BN_bin2bn. */
|
100
|
+
static void flip_endian(u8 *out, const u8 *in, unsigned len) {
|
101
|
+
unsigned i;
|
102
|
+
for (i = 0; i < len; ++i) {
|
103
|
+
out[i] = in[len - 1 - i];
|
104
|
+
}
|
105
|
+
}
|
106
|
+
|
107
|
+
/* BN_to_felem converts an OpenSSL BIGNUM into an felem. */
|
108
|
+
static int BN_to_felem(felem out, const BIGNUM *bn) {
|
109
|
+
if (BN_is_negative(bn)) {
|
110
|
+
OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
|
111
|
+
return 0;
|
112
|
+
}
|
113
|
+
|
114
|
+
felem_bytearray b_out;
|
115
|
+
/* BN_bn2bin eats leading zeroes */
|
116
|
+
memset(b_out, 0, sizeof(b_out));
|
117
|
+
unsigned num_bytes = BN_num_bytes(bn);
|
118
|
+
if (num_bytes > sizeof(b_out)) {
|
119
|
+
OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
|
120
|
+
return 0;
|
121
|
+
}
|
122
|
+
|
123
|
+
felem_bytearray b_in;
|
124
|
+
num_bytes = BN_bn2bin(bn, b_in);
|
125
|
+
flip_endian(b_out, b_in, num_bytes);
|
126
|
+
bin32_to_felem(out, b_out);
|
127
|
+
return 1;
|
128
|
+
}
|
129
|
+
|
130
|
+
/* felem_to_BN converts an felem into an OpenSSL BIGNUM. */
|
131
|
+
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) {
|
132
|
+
felem_bytearray b_in, b_out;
|
133
|
+
smallfelem_to_bin32(b_in, in);
|
134
|
+
flip_endian(b_out, b_in, sizeof(b_out));
|
135
|
+
return BN_bin2bn(b_out, sizeof(b_out), out);
|
136
|
+
}
|
137
|
+
|
138
|
+
/* Field operations. */
|
139
|
+
|
140
|
+
static void smallfelem_one(smallfelem out) {
|
141
|
+
out[0] = 1;
|
142
|
+
out[1] = 0;
|
143
|
+
out[2] = 0;
|
144
|
+
out[3] = 0;
|
145
|
+
}
|
146
|
+
|
147
|
+
static void smallfelem_assign(smallfelem out, const smallfelem in) {
|
148
|
+
out[0] = in[0];
|
149
|
+
out[1] = in[1];
|
150
|
+
out[2] = in[2];
|
151
|
+
out[3] = in[3];
|
152
|
+
}
|
153
|
+
|
154
|
+
static void felem_assign(felem out, const felem in) {
|
155
|
+
out[0] = in[0];
|
156
|
+
out[1] = in[1];
|
157
|
+
out[2] = in[2];
|
158
|
+
out[3] = in[3];
|
159
|
+
}
|
160
|
+
|
161
|
+
/* felem_sum sets out = out + in. */
|
162
|
+
static void felem_sum(felem out, const felem in) {
|
163
|
+
out[0] += in[0];
|
164
|
+
out[1] += in[1];
|
165
|
+
out[2] += in[2];
|
166
|
+
out[3] += in[3];
|
167
|
+
}
|
168
|
+
|
169
|
+
/* felem_small_sum sets out = out + in. */
|
170
|
+
static void felem_small_sum(felem out, const smallfelem in) {
|
171
|
+
out[0] += in[0];
|
172
|
+
out[1] += in[1];
|
173
|
+
out[2] += in[2];
|
174
|
+
out[3] += in[3];
|
175
|
+
}
|
176
|
+
|
177
|
+
/* felem_scalar sets out = out * scalar */
|
178
|
+
static void felem_scalar(felem out, const u64 scalar) {
|
179
|
+
out[0] *= scalar;
|
180
|
+
out[1] *= scalar;
|
181
|
+
out[2] *= scalar;
|
182
|
+
out[3] *= scalar;
|
183
|
+
}
|
184
|
+
|
185
|
+
/* longfelem_scalar sets out = out * scalar */
|
186
|
+
static void longfelem_scalar(longfelem out, const u64 scalar) {
|
187
|
+
out[0] *= scalar;
|
188
|
+
out[1] *= scalar;
|
189
|
+
out[2] *= scalar;
|
190
|
+
out[3] *= scalar;
|
191
|
+
out[4] *= scalar;
|
192
|
+
out[5] *= scalar;
|
193
|
+
out[6] *= scalar;
|
194
|
+
out[7] *= scalar;
|
195
|
+
}
|
196
|
+
|
197
|
+
#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
|
198
|
+
#define two105 (((limb)1) << 105)
|
199
|
+
#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
|
200
|
+
|
201
|
+
/* zero105 is 0 mod p */
|
202
|
+
static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9};
|
203
|
+
|
204
|
+
/* smallfelem_neg sets |out| to |-small|
|
205
|
+
* On exit:
|
206
|
+
* out[i] < out[i] + 2^105 */
|
207
|
+
static void smallfelem_neg(felem out, const smallfelem small) {
|
208
|
+
/* In order to prevent underflow, we subtract from 0 mod p. */
|
209
|
+
out[0] = zero105[0] - small[0];
|
210
|
+
out[1] = zero105[1] - small[1];
|
211
|
+
out[2] = zero105[2] - small[2];
|
212
|
+
out[3] = zero105[3] - small[3];
|
213
|
+
}
|
214
|
+
|
215
|
+
/* felem_diff subtracts |in| from |out|
|
216
|
+
* On entry:
|
217
|
+
* in[i] < 2^104
|
218
|
+
* On exit:
|
219
|
+
* out[i] < out[i] + 2^105. */
|
220
|
+
static void felem_diff(felem out, const felem in) {
|
221
|
+
/* In order to prevent underflow, we add 0 mod p before subtracting. */
|
222
|
+
out[0] += zero105[0];
|
223
|
+
out[1] += zero105[1];
|
224
|
+
out[2] += zero105[2];
|
225
|
+
out[3] += zero105[3];
|
226
|
+
|
227
|
+
out[0] -= in[0];
|
228
|
+
out[1] -= in[1];
|
229
|
+
out[2] -= in[2];
|
230
|
+
out[3] -= in[3];
|
231
|
+
}
|
232
|
+
|
233
|
+
#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
|
234
|
+
#define two107 (((limb)1) << 107)
|
235
|
+
#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
|
236
|
+
|
237
|
+
/* zero107 is 0 mod p */
|
238
|
+
static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11};
|
239
|
+
|
240
|
+
/* An alternative felem_diff for larger inputs |in|
|
241
|
+
* felem_diff_zero107 subtracts |in| from |out|
|
242
|
+
* On entry:
|
243
|
+
* in[i] < 2^106
|
244
|
+
* On exit:
|
245
|
+
* out[i] < out[i] + 2^107. */
|
246
|
+
static void felem_diff_zero107(felem out, const felem in) {
|
247
|
+
/* In order to prevent underflow, we add 0 mod p before subtracting. */
|
248
|
+
out[0] += zero107[0];
|
249
|
+
out[1] += zero107[1];
|
250
|
+
out[2] += zero107[2];
|
251
|
+
out[3] += zero107[3];
|
252
|
+
|
253
|
+
out[0] -= in[0];
|
254
|
+
out[1] -= in[1];
|
255
|
+
out[2] -= in[2];
|
256
|
+
out[3] -= in[3];
|
257
|
+
}
|
258
|
+
|
259
|
+
/* longfelem_diff subtracts |in| from |out|
|
260
|
+
* On entry:
|
261
|
+
* in[i] < 7*2^67
|
262
|
+
* On exit:
|
263
|
+
* out[i] < out[i] + 2^70 + 2^40. */
|
264
|
+
static void longfelem_diff(longfelem out, const longfelem in) {
|
265
|
+
static const limb two70m8p6 =
|
266
|
+
(((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
|
267
|
+
static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
|
268
|
+
static const limb two70 = (((limb)1) << 70);
|
269
|
+
static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) -
|
270
|
+
(((limb)1) << 38) + (((limb)1) << 6);
|
271
|
+
static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
|
272
|
+
|
273
|
+
/* add 0 mod p to avoid underflow */
|
274
|
+
out[0] += two70m8p6;
|
275
|
+
out[1] += two70p40;
|
276
|
+
out[2] += two70;
|
277
|
+
out[3] += two70m40m38p6;
|
278
|
+
out[4] += two70m6;
|
279
|
+
out[5] += two70m6;
|
280
|
+
out[6] += two70m6;
|
281
|
+
out[7] += two70m6;
|
282
|
+
|
283
|
+
/* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
|
284
|
+
out[0] -= in[0];
|
285
|
+
out[1] -= in[1];
|
286
|
+
out[2] -= in[2];
|
287
|
+
out[3] -= in[3];
|
288
|
+
out[4] -= in[4];
|
289
|
+
out[5] -= in[5];
|
290
|
+
out[6] -= in[6];
|
291
|
+
out[7] -= in[7];
|
292
|
+
}
|
293
|
+
|
294
|
+
#define two64m0 (((limb)1) << 64) - 1
|
295
|
+
#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
|
296
|
+
#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
|
297
|
+
#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
|
298
|
+
|
299
|
+
/* zero110 is 0 mod p. */
|
300
|
+
static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32};
|
301
|
+
|
302
|
+
/* felem_shrink converts an felem into a smallfelem. The result isn't quite
|
303
|
+
* minimal as the value may be greater than p.
|
304
|
+
*
|
305
|
+
* On entry:
|
306
|
+
* in[i] < 2^109
|
307
|
+
* On exit:
|
308
|
+
* out[i] < 2^64. */
|
309
|
+
static void felem_shrink(smallfelem out, const felem in) {
|
310
|
+
felem tmp;
|
311
|
+
u64 a, b, mask;
|
312
|
+
s64 high, low;
|
313
|
+
static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
|
314
|
+
|
315
|
+
/* Carry 2->3 */
|
316
|
+
tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
|
317
|
+
/* tmp[3] < 2^110 */
|
318
|
+
|
319
|
+
tmp[2] = zero110[2] + (u64)in[2];
|
320
|
+
tmp[0] = zero110[0] + in[0];
|
321
|
+
tmp[1] = zero110[1] + in[1];
|
322
|
+
/* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
|
323
|
+
|
324
|
+
/* We perform two partial reductions where we eliminate the high-word of
|
325
|
+
* tmp[3]. We don't update the other words till the end. */
|
326
|
+
a = tmp[3] >> 64; /* a < 2^46 */
|
327
|
+
tmp[3] = (u64)tmp[3];
|
328
|
+
tmp[3] -= a;
|
329
|
+
tmp[3] += ((limb)a) << 32;
|
330
|
+
/* tmp[3] < 2^79 */
|
331
|
+
|
332
|
+
b = a;
|
333
|
+
a = tmp[3] >> 64; /* a < 2^15 */
|
334
|
+
b += a; /* b < 2^46 + 2^15 < 2^47 */
|
335
|
+
tmp[3] = (u64)tmp[3];
|
336
|
+
tmp[3] -= a;
|
337
|
+
tmp[3] += ((limb)a) << 32;
|
338
|
+
/* tmp[3] < 2^64 + 2^47 */
|
339
|
+
|
340
|
+
/* This adjusts the other two words to complete the two partial
|
341
|
+
* reductions. */
|
342
|
+
tmp[0] += b;
|
343
|
+
tmp[1] -= (((limb)b) << 32);
|
344
|
+
|
345
|
+
/* In order to make space in tmp[3] for the carry from 2 -> 3, we
|
346
|
+
* conditionally subtract kPrime if tmp[3] is large enough. */
|
347
|
+
high = tmp[3] >> 64;
|
348
|
+
/* As tmp[3] < 2^65, high is either 1 or 0 */
|
349
|
+
high <<= 63;
|
350
|
+
high >>= 63;
|
351
|
+
/* high is:
|
352
|
+
* all ones if the high word of tmp[3] is 1
|
353
|
+
* all zeros if the high word of tmp[3] if 0 */
|
354
|
+
low = tmp[3];
|
355
|
+
mask = low >> 63;
|
356
|
+
/* mask is:
|
357
|
+
* all ones if the MSB of low is 1
|
358
|
+
* all zeros if the MSB of low if 0 */
|
359
|
+
low &= bottom63bits;
|
360
|
+
low -= kPrime3Test;
|
361
|
+
/* if low was greater than kPrime3Test then the MSB is zero */
|
362
|
+
low = ~low;
|
363
|
+
low >>= 63;
|
364
|
+
/* low is:
|
365
|
+
* all ones if low was > kPrime3Test
|
366
|
+
* all zeros if low was <= kPrime3Test */
|
367
|
+
mask = (mask & low) | high;
|
368
|
+
tmp[0] -= mask & kPrime[0];
|
369
|
+
tmp[1] -= mask & kPrime[1];
|
370
|
+
/* kPrime[2] is zero, so omitted */
|
371
|
+
tmp[3] -= mask & kPrime[3];
|
372
|
+
/* tmp[3] < 2**64 - 2**32 + 1 */
|
373
|
+
|
374
|
+
tmp[1] += ((u64)(tmp[0] >> 64));
|
375
|
+
tmp[0] = (u64)tmp[0];
|
376
|
+
tmp[2] += ((u64)(tmp[1] >> 64));
|
377
|
+
tmp[1] = (u64)tmp[1];
|
378
|
+
tmp[3] += ((u64)(tmp[2] >> 64));
|
379
|
+
tmp[2] = (u64)tmp[2];
|
380
|
+
/* tmp[i] < 2^64 */
|
381
|
+
|
382
|
+
out[0] = tmp[0];
|
383
|
+
out[1] = tmp[1];
|
384
|
+
out[2] = tmp[2];
|
385
|
+
out[3] = tmp[3];
|
386
|
+
}
|
387
|
+
|
388
|
+
/* smallfelem_expand converts a smallfelem to an felem */
|
389
|
+
static void smallfelem_expand(felem out, const smallfelem in) {
|
390
|
+
out[0] = in[0];
|
391
|
+
out[1] = in[1];
|
392
|
+
out[2] = in[2];
|
393
|
+
out[3] = in[3];
|
394
|
+
}
|
395
|
+
|
396
|
+
/* smallfelem_square sets |out| = |small|^2
|
397
|
+
* On entry:
|
398
|
+
* small[i] < 2^64
|
399
|
+
* On exit:
|
400
|
+
* out[i] < 7 * 2^64 < 2^67 */
|
401
|
+
static void smallfelem_square(longfelem out, const smallfelem small) {
|
402
|
+
limb a;
|
403
|
+
u64 high, low;
|
404
|
+
|
405
|
+
a = ((uint128_t)small[0]) * small[0];
|
406
|
+
low = a;
|
407
|
+
high = a >> 64;
|
408
|
+
out[0] = low;
|
409
|
+
out[1] = high;
|
410
|
+
|
411
|
+
a = ((uint128_t)small[0]) * small[1];
|
412
|
+
low = a;
|
413
|
+
high = a >> 64;
|
414
|
+
out[1] += low;
|
415
|
+
out[1] += low;
|
416
|
+
out[2] = high;
|
417
|
+
|
418
|
+
a = ((uint128_t)small[0]) * small[2];
|
419
|
+
low = a;
|
420
|
+
high = a >> 64;
|
421
|
+
out[2] += low;
|
422
|
+
out[2] *= 2;
|
423
|
+
out[3] = high;
|
424
|
+
|
425
|
+
a = ((uint128_t)small[0]) * small[3];
|
426
|
+
low = a;
|
427
|
+
high = a >> 64;
|
428
|
+
out[3] += low;
|
429
|
+
out[4] = high;
|
430
|
+
|
431
|
+
a = ((uint128_t)small[1]) * small[2];
|
432
|
+
low = a;
|
433
|
+
high = a >> 64;
|
434
|
+
out[3] += low;
|
435
|
+
out[3] *= 2;
|
436
|
+
out[4] += high;
|
437
|
+
|
438
|
+
a = ((uint128_t)small[1]) * small[1];
|
439
|
+
low = a;
|
440
|
+
high = a >> 64;
|
441
|
+
out[2] += low;
|
442
|
+
out[3] += high;
|
443
|
+
|
444
|
+
a = ((uint128_t)small[1]) * small[3];
|
445
|
+
low = a;
|
446
|
+
high = a >> 64;
|
447
|
+
out[4] += low;
|
448
|
+
out[4] *= 2;
|
449
|
+
out[5] = high;
|
450
|
+
|
451
|
+
a = ((uint128_t)small[2]) * small[3];
|
452
|
+
low = a;
|
453
|
+
high = a >> 64;
|
454
|
+
out[5] += low;
|
455
|
+
out[5] *= 2;
|
456
|
+
out[6] = high;
|
457
|
+
out[6] += high;
|
458
|
+
|
459
|
+
a = ((uint128_t)small[2]) * small[2];
|
460
|
+
low = a;
|
461
|
+
high = a >> 64;
|
462
|
+
out[4] += low;
|
463
|
+
out[5] += high;
|
464
|
+
|
465
|
+
a = ((uint128_t)small[3]) * small[3];
|
466
|
+
low = a;
|
467
|
+
high = a >> 64;
|
468
|
+
out[6] += low;
|
469
|
+
out[7] = high;
|
470
|
+
}
|
471
|
+
|
472
|
+
/*felem_square sets |out| = |in|^2
|
473
|
+
* On entry:
|
474
|
+
* in[i] < 2^109
|
475
|
+
* On exit:
|
476
|
+
* out[i] < 7 * 2^64 < 2^67. */
|
477
|
+
static void felem_square(longfelem out, const felem in) {
|
478
|
+
u64 small[4];
|
479
|
+
felem_shrink(small, in);
|
480
|
+
smallfelem_square(out, small);
|
481
|
+
}
|
482
|
+
|
483
|
+
/* smallfelem_mul sets |out| = |small1| * |small2|
|
484
|
+
* On entry:
|
485
|
+
* small1[i] < 2^64
|
486
|
+
* small2[i] < 2^64
|
487
|
+
* On exit:
|
488
|
+
* out[i] < 7 * 2^64 < 2^67. */
|
489
|
+
static void smallfelem_mul(longfelem out, const smallfelem small1,
|
490
|
+
const smallfelem small2) {
|
491
|
+
limb a;
|
492
|
+
u64 high, low;
|
493
|
+
|
494
|
+
a = ((uint128_t)small1[0]) * small2[0];
|
495
|
+
low = a;
|
496
|
+
high = a >> 64;
|
497
|
+
out[0] = low;
|
498
|
+
out[1] = high;
|
499
|
+
|
500
|
+
a = ((uint128_t)small1[0]) * small2[1];
|
501
|
+
low = a;
|
502
|
+
high = a >> 64;
|
503
|
+
out[1] += low;
|
504
|
+
out[2] = high;
|
505
|
+
|
506
|
+
a = ((uint128_t)small1[1]) * small2[0];
|
507
|
+
low = a;
|
508
|
+
high = a >> 64;
|
509
|
+
out[1] += low;
|
510
|
+
out[2] += high;
|
511
|
+
|
512
|
+
a = ((uint128_t)small1[0]) * small2[2];
|
513
|
+
low = a;
|
514
|
+
high = a >> 64;
|
515
|
+
out[2] += low;
|
516
|
+
out[3] = high;
|
517
|
+
|
518
|
+
a = ((uint128_t)small1[1]) * small2[1];
|
519
|
+
low = a;
|
520
|
+
high = a >> 64;
|
521
|
+
out[2] += low;
|
522
|
+
out[3] += high;
|
523
|
+
|
524
|
+
a = ((uint128_t)small1[2]) * small2[0];
|
525
|
+
low = a;
|
526
|
+
high = a >> 64;
|
527
|
+
out[2] += low;
|
528
|
+
out[3] += high;
|
529
|
+
|
530
|
+
a = ((uint128_t)small1[0]) * small2[3];
|
531
|
+
low = a;
|
532
|
+
high = a >> 64;
|
533
|
+
out[3] += low;
|
534
|
+
out[4] = high;
|
535
|
+
|
536
|
+
a = ((uint128_t)small1[1]) * small2[2];
|
537
|
+
low = a;
|
538
|
+
high = a >> 64;
|
539
|
+
out[3] += low;
|
540
|
+
out[4] += high;
|
541
|
+
|
542
|
+
a = ((uint128_t)small1[2]) * small2[1];
|
543
|
+
low = a;
|
544
|
+
high = a >> 64;
|
545
|
+
out[3] += low;
|
546
|
+
out[4] += high;
|
547
|
+
|
548
|
+
a = ((uint128_t)small1[3]) * small2[0];
|
549
|
+
low = a;
|
550
|
+
high = a >> 64;
|
551
|
+
out[3] += low;
|
552
|
+
out[4] += high;
|
553
|
+
|
554
|
+
a = ((uint128_t)small1[1]) * small2[3];
|
555
|
+
low = a;
|
556
|
+
high = a >> 64;
|
557
|
+
out[4] += low;
|
558
|
+
out[5] = high;
|
559
|
+
|
560
|
+
a = ((uint128_t)small1[2]) * small2[2];
|
561
|
+
low = a;
|
562
|
+
high = a >> 64;
|
563
|
+
out[4] += low;
|
564
|
+
out[5] += high;
|
565
|
+
|
566
|
+
a = ((uint128_t)small1[3]) * small2[1];
|
567
|
+
low = a;
|
568
|
+
high = a >> 64;
|
569
|
+
out[4] += low;
|
570
|
+
out[5] += high;
|
571
|
+
|
572
|
+
a = ((uint128_t)small1[2]) * small2[3];
|
573
|
+
low = a;
|
574
|
+
high = a >> 64;
|
575
|
+
out[5] += low;
|
576
|
+
out[6] = high;
|
577
|
+
|
578
|
+
a = ((uint128_t)small1[3]) * small2[2];
|
579
|
+
low = a;
|
580
|
+
high = a >> 64;
|
581
|
+
out[5] += low;
|
582
|
+
out[6] += high;
|
583
|
+
|
584
|
+
a = ((uint128_t)small1[3]) * small2[3];
|
585
|
+
low = a;
|
586
|
+
high = a >> 64;
|
587
|
+
out[6] += low;
|
588
|
+
out[7] = high;
|
589
|
+
}
|
590
|
+
|
591
|
+
/* felem_mul sets |out| = |in1| * |in2|
|
592
|
+
* On entry:
|
593
|
+
* in1[i] < 2^109
|
594
|
+
* in2[i] < 2^109
|
595
|
+
* On exit:
|
596
|
+
* out[i] < 7 * 2^64 < 2^67 */
|
597
|
+
static void felem_mul(longfelem out, const felem in1, const felem in2) {
|
598
|
+
smallfelem small1, small2;
|
599
|
+
felem_shrink(small1, in1);
|
600
|
+
felem_shrink(small2, in2);
|
601
|
+
smallfelem_mul(out, small1, small2);
|
602
|
+
}
|
603
|
+
|
604
|
+
/* felem_small_mul sets |out| = |small1| * |in2|
|
605
|
+
* On entry:
|
606
|
+
* small1[i] < 2^64
|
607
|
+
* in2[i] < 2^109
|
608
|
+
* On exit:
|
609
|
+
* out[i] < 7 * 2^64 < 2^67 */
|
610
|
+
static void felem_small_mul(longfelem out, const smallfelem small1,
|
611
|
+
const felem in2) {
|
612
|
+
smallfelem small2;
|
613
|
+
felem_shrink(small2, in2);
|
614
|
+
smallfelem_mul(out, small1, small2);
|
615
|
+
}
|
616
|
+
|
617
|
+
#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
|
618
|
+
#define two100 (((limb)1) << 100)
|
619
|
+
#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
|
620
|
+
|
621
|
+
/* zero100 is 0 mod p */
|
622
|
+
static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4};
|
623
|
+
|
624
|
+
/* Internal function for the different flavours of felem_reduce.
|
625
|
+
* felem_reduce_ reduces the higher coefficients in[4]-in[7].
|
626
|
+
* On entry:
|
627
|
+
* out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
|
628
|
+
* out[1] >= in[7] + 2^32*in[4]
|
629
|
+
* out[2] >= in[5] + 2^32*in[5]
|
630
|
+
* out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
|
631
|
+
* On exit:
|
632
|
+
* out[0] <= out[0] + in[4] + 2^32*in[5]
|
633
|
+
* out[1] <= out[1] + in[5] + 2^33*in[6]
|
634
|
+
* out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
|
635
|
+
* out[3] <= out[3] + 2^32*in[4] + 3*in[7] */
|
636
|
+
static void felem_reduce_(felem out, const longfelem in) {
|
637
|
+
int128_t c;
|
638
|
+
/* combine common terms from below */
|
639
|
+
c = in[4] + (in[5] << 32);
|
640
|
+
out[0] += c;
|
641
|
+
out[3] -= c;
|
642
|
+
|
643
|
+
c = in[5] - in[7];
|
644
|
+
out[1] += c;
|
645
|
+
out[2] -= c;
|
646
|
+
|
647
|
+
/* the remaining terms */
|
648
|
+
/* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
|
649
|
+
out[1] -= (in[4] << 32);
|
650
|
+
out[3] += (in[4] << 32);
|
651
|
+
|
652
|
+
/* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
|
653
|
+
out[2] -= (in[5] << 32);
|
654
|
+
|
655
|
+
/* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
|
656
|
+
out[0] -= in[6];
|
657
|
+
out[0] -= (in[6] << 32);
|
658
|
+
out[1] += (in[6] << 33);
|
659
|
+
out[2] += (in[6] * 2);
|
660
|
+
out[3] -= (in[6] << 32);
|
661
|
+
|
662
|
+
/* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
|
663
|
+
out[0] -= in[7];
|
664
|
+
out[0] -= (in[7] << 32);
|
665
|
+
out[2] += (in[7] << 33);
|
666
|
+
out[3] += (in[7] * 3);
|
667
|
+
}
|
668
|
+
|
669
|
+
/* felem_reduce converts a longfelem into an felem.
|
670
|
+
* To be called directly after felem_square or felem_mul.
|
671
|
+
* On entry:
|
672
|
+
* in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
|
673
|
+
* in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
|
674
|
+
* On exit:
|
675
|
+
* out[i] < 2^101 */
|
676
|
+
static void felem_reduce(felem out, const longfelem in) {
|
677
|
+
out[0] = zero100[0] + in[0];
|
678
|
+
out[1] = zero100[1] + in[1];
|
679
|
+
out[2] = zero100[2] + in[2];
|
680
|
+
out[3] = zero100[3] + in[3];
|
681
|
+
|
682
|
+
felem_reduce_(out, in);
|
683
|
+
|
684
|
+
/* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
|
685
|
+
* out[1] > 2^100 - 2^64 - 7*2^96 > 0
|
686
|
+
* out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
|
687
|
+
* out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
|
688
|
+
*
|
689
|
+
* out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
|
690
|
+
* out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
|
691
|
+
* out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
|
692
|
+
* out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 */
|
693
|
+
}
|
694
|
+
|
695
|
+
/* felem_reduce_zero105 converts a larger longfelem into an felem.
|
696
|
+
* On entry:
|
697
|
+
* in[0] < 2^71
|
698
|
+
* On exit:
|
699
|
+
* out[i] < 2^106 */
|
700
|
+
static void felem_reduce_zero105(felem out, const longfelem in) {
|
701
|
+
out[0] = zero105[0] + in[0];
|
702
|
+
out[1] = zero105[1] + in[1];
|
703
|
+
out[2] = zero105[2] + in[2];
|
704
|
+
out[3] = zero105[3] + in[3];
|
705
|
+
|
706
|
+
felem_reduce_(out, in);
|
707
|
+
|
708
|
+
/* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
|
709
|
+
* out[1] > 2^105 - 2^71 - 2^103 > 0
|
710
|
+
* out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
|
711
|
+
* out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
|
712
|
+
*
|
713
|
+
* out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
|
714
|
+
* out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
|
715
|
+
* out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
|
716
|
+
* out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 */
|
717
|
+
}
|
718
|
+
|
719
|
+
/* subtract_u64 sets *result = *result - v and *carry to one if the
|
720
|
+
* subtraction underflowed. */
|
721
|
+
static void subtract_u64(u64 *result, u64 *carry, u64 v) {
|
722
|
+
uint128_t r = *result;
|
723
|
+
r -= v;
|
724
|
+
*carry = (r >> 64) & 1;
|
725
|
+
*result = (u64)r;
|
726
|
+
}
|
727
|
+
|
728
|
+
/* felem_contract converts |in| to its unique, minimal representation. On
|
729
|
+
* entry: in[i] < 2^109. */
|
730
|
+
static void felem_contract(smallfelem out, const felem in) {
|
731
|
+
u64 all_equal_so_far = 0, result = 0;
|
732
|
+
|
733
|
+
felem_shrink(out, in);
|
734
|
+
/* small is minimal except that the value might be > p */
|
735
|
+
|
736
|
+
all_equal_so_far--;
|
737
|
+
/* We are doing a constant time test if out >= kPrime. We need to compare
|
738
|
+
* each u64, from most-significant to least significant. For each one, if
|
739
|
+
* all words so far have been equal (m is all ones) then a non-equal
|
740
|
+
* result is the answer. Otherwise we continue. */
|
741
|
+
unsigned i;
|
742
|
+
for (i = 3; i < 4; i--) {
|
743
|
+
u64 equal;
|
744
|
+
uint128_t a = ((uint128_t)kPrime[i]) - out[i];
|
745
|
+
/* if out[i] > kPrime[i] then a will underflow and the high 64-bits
|
746
|
+
* will all be set. */
|
747
|
+
result |= all_equal_so_far & ((u64)(a >> 64));
|
748
|
+
|
749
|
+
/* if kPrime[i] == out[i] then |equal| will be all zeros and the
|
750
|
+
* decrement will make it all ones. */
|
751
|
+
equal = kPrime[i] ^ out[i];
|
752
|
+
equal--;
|
753
|
+
equal &= equal << 32;
|
754
|
+
equal &= equal << 16;
|
755
|
+
equal &= equal << 8;
|
756
|
+
equal &= equal << 4;
|
757
|
+
equal &= equal << 2;
|
758
|
+
equal &= equal << 1;
|
759
|
+
equal = ((s64)equal) >> 63;
|
760
|
+
|
761
|
+
all_equal_so_far &= equal;
|
762
|
+
}
|
763
|
+
|
764
|
+
/* if all_equal_so_far is still all ones then the two values are equal
|
765
|
+
* and so out >= kPrime is true. */
|
766
|
+
result |= all_equal_so_far;
|
767
|
+
|
768
|
+
/* if out >= kPrime then we subtract kPrime. */
|
769
|
+
u64 carry;
|
770
|
+
subtract_u64(&out[0], &carry, result & kPrime[0]);
|
771
|
+
subtract_u64(&out[1], &carry, carry);
|
772
|
+
subtract_u64(&out[2], &carry, carry);
|
773
|
+
subtract_u64(&out[3], &carry, carry);
|
774
|
+
|
775
|
+
subtract_u64(&out[1], &carry, result & kPrime[1]);
|
776
|
+
subtract_u64(&out[2], &carry, carry);
|
777
|
+
subtract_u64(&out[3], &carry, carry);
|
778
|
+
|
779
|
+
subtract_u64(&out[2], &carry, result & kPrime[2]);
|
780
|
+
subtract_u64(&out[3], &carry, carry);
|
781
|
+
|
782
|
+
subtract_u64(&out[3], &carry, result & kPrime[3]);
|
783
|
+
}
|
784
|
+
|
785
|
+
static void smallfelem_square_contract(smallfelem out, const smallfelem in) {
|
786
|
+
longfelem longtmp;
|
787
|
+
felem tmp;
|
788
|
+
|
789
|
+
smallfelem_square(longtmp, in);
|
790
|
+
felem_reduce(tmp, longtmp);
|
791
|
+
felem_contract(out, tmp);
|
792
|
+
}
|
793
|
+
|
794
|
+
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
|
795
|
+
const smallfelem in2) {
|
796
|
+
longfelem longtmp;
|
797
|
+
felem tmp;
|
798
|
+
|
799
|
+
smallfelem_mul(longtmp, in1, in2);
|
800
|
+
felem_reduce(tmp, longtmp);
|
801
|
+
felem_contract(out, tmp);
|
802
|
+
}
|
803
|
+
|
804
|
+
/* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
|
805
|
+
* otherwise.
|
806
|
+
* On entry:
|
807
|
+
* small[i] < 2^64 */
|
808
|
+
static limb smallfelem_is_zero(const smallfelem small) {
|
809
|
+
limb result;
|
810
|
+
u64 is_p;
|
811
|
+
|
812
|
+
u64 is_zero = small[0] | small[1] | small[2] | small[3];
|
813
|
+
is_zero--;
|
814
|
+
is_zero &= is_zero << 32;
|
815
|
+
is_zero &= is_zero << 16;
|
816
|
+
is_zero &= is_zero << 8;
|
817
|
+
is_zero &= is_zero << 4;
|
818
|
+
is_zero &= is_zero << 2;
|
819
|
+
is_zero &= is_zero << 1;
|
820
|
+
is_zero = ((s64)is_zero) >> 63;
|
821
|
+
|
822
|
+
is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) |
|
823
|
+
(small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
|
824
|
+
is_p--;
|
825
|
+
is_p &= is_p << 32;
|
826
|
+
is_p &= is_p << 16;
|
827
|
+
is_p &= is_p << 8;
|
828
|
+
is_p &= is_p << 4;
|
829
|
+
is_p &= is_p << 2;
|
830
|
+
is_p &= is_p << 1;
|
831
|
+
is_p = ((s64)is_p) >> 63;
|
832
|
+
|
833
|
+
is_zero |= is_p;
|
834
|
+
|
835
|
+
result = is_zero;
|
836
|
+
result |= ((limb)is_zero) << 64;
|
837
|
+
return result;
|
838
|
+
}
|
839
|
+
|
840
|
+
static int smallfelem_is_zero_int(const smallfelem small) {
|
841
|
+
return (int)(smallfelem_is_zero(small) & ((limb)1));
|
842
|
+
}
|
843
|
+
|
844
|
+
/* felem_inv calculates |out| = |in|^{-1}
|
845
|
+
*
|
846
|
+
* Based on Fermat's Little Theorem:
|
847
|
+
* a^p = a (mod p)
|
848
|
+
* a^{p-1} = 1 (mod p)
|
849
|
+
* a^{p-2} = a^{-1} (mod p) */
|
850
|
+
static void felem_inv(felem out, const felem in) {
|
851
|
+
felem ftmp, ftmp2;
|
852
|
+
/* each e_I will hold |in|^{2^I - 1} */
|
853
|
+
felem e2, e4, e8, e16, e32, e64;
|
854
|
+
longfelem tmp;
|
855
|
+
unsigned i;
|
856
|
+
|
857
|
+
felem_square(tmp, in);
|
858
|
+
felem_reduce(ftmp, tmp); /* 2^1 */
|
859
|
+
felem_mul(tmp, in, ftmp);
|
860
|
+
felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
|
861
|
+
felem_assign(e2, ftmp);
|
862
|
+
felem_square(tmp, ftmp);
|
863
|
+
felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
|
864
|
+
felem_square(tmp, ftmp);
|
865
|
+
felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
|
866
|
+
felem_mul(tmp, ftmp, e2);
|
867
|
+
felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
|
868
|
+
felem_assign(e4, ftmp);
|
869
|
+
felem_square(tmp, ftmp);
|
870
|
+
felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
|
871
|
+
felem_square(tmp, ftmp);
|
872
|
+
felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
|
873
|
+
felem_square(tmp, ftmp);
|
874
|
+
felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
|
875
|
+
felem_square(tmp, ftmp);
|
876
|
+
felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
|
877
|
+
felem_mul(tmp, ftmp, e4);
|
878
|
+
felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
|
879
|
+
felem_assign(e8, ftmp);
|
880
|
+
for (i = 0; i < 8; i++) {
|
881
|
+
felem_square(tmp, ftmp);
|
882
|
+
felem_reduce(ftmp, tmp);
|
883
|
+
} /* 2^16 - 2^8 */
|
884
|
+
felem_mul(tmp, ftmp, e8);
|
885
|
+
felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
|
886
|
+
felem_assign(e16, ftmp);
|
887
|
+
for (i = 0; i < 16; i++) {
|
888
|
+
felem_square(tmp, ftmp);
|
889
|
+
felem_reduce(ftmp, tmp);
|
890
|
+
} /* 2^32 - 2^16 */
|
891
|
+
felem_mul(tmp, ftmp, e16);
|
892
|
+
felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
|
893
|
+
felem_assign(e32, ftmp);
|
894
|
+
for (i = 0; i < 32; i++) {
|
895
|
+
felem_square(tmp, ftmp);
|
896
|
+
felem_reduce(ftmp, tmp);
|
897
|
+
} /* 2^64 - 2^32 */
|
898
|
+
felem_assign(e64, ftmp);
|
899
|
+
felem_mul(tmp, ftmp, in);
|
900
|
+
felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
|
901
|
+
for (i = 0; i < 192; i++) {
|
902
|
+
felem_square(tmp, ftmp);
|
903
|
+
felem_reduce(ftmp, tmp);
|
904
|
+
} /* 2^256 - 2^224 + 2^192 */
|
905
|
+
|
906
|
+
felem_mul(tmp, e64, e32);
|
907
|
+
felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
|
908
|
+
for (i = 0; i < 16; i++) {
|
909
|
+
felem_square(tmp, ftmp2);
|
910
|
+
felem_reduce(ftmp2, tmp);
|
911
|
+
} /* 2^80 - 2^16 */
|
912
|
+
felem_mul(tmp, ftmp2, e16);
|
913
|
+
felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
|
914
|
+
for (i = 0; i < 8; i++) {
|
915
|
+
felem_square(tmp, ftmp2);
|
916
|
+
felem_reduce(ftmp2, tmp);
|
917
|
+
} /* 2^88 - 2^8 */
|
918
|
+
felem_mul(tmp, ftmp2, e8);
|
919
|
+
felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
|
920
|
+
for (i = 0; i < 4; i++) {
|
921
|
+
felem_square(tmp, ftmp2);
|
922
|
+
felem_reduce(ftmp2, tmp);
|
923
|
+
} /* 2^92 - 2^4 */
|
924
|
+
felem_mul(tmp, ftmp2, e4);
|
925
|
+
felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
|
926
|
+
felem_square(tmp, ftmp2);
|
927
|
+
felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
|
928
|
+
felem_square(tmp, ftmp2);
|
929
|
+
felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
|
930
|
+
felem_mul(tmp, ftmp2, e2);
|
931
|
+
felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
|
932
|
+
felem_square(tmp, ftmp2);
|
933
|
+
felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
|
934
|
+
felem_square(tmp, ftmp2);
|
935
|
+
felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
|
936
|
+
felem_mul(tmp, ftmp2, in);
|
937
|
+
felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
|
938
|
+
|
939
|
+
felem_mul(tmp, ftmp2, ftmp);
|
940
|
+
felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
|
941
|
+
}
|
942
|
+
|
943
|
+
static void smallfelem_inv_contract(smallfelem out, const smallfelem in) {
|
944
|
+
felem tmp;
|
945
|
+
|
946
|
+
smallfelem_expand(tmp, in);
|
947
|
+
felem_inv(tmp, tmp);
|
948
|
+
felem_contract(out, tmp);
|
949
|
+
}
|
950
|
+
|
951
|
+
/* Group operations
|
952
|
+
* ----------------
|
953
|
+
*
|
954
|
+
* Building on top of the field operations we have the operations on the
|
955
|
+
* elliptic curve group itself. Points on the curve are represented in Jacobian
|
956
|
+
* coordinates. */
|
957
|
+
|
958
|
+
/* point_double calculates 2*(x_in, y_in, z_in)
|
959
|
+
*
|
960
|
+
* The method is taken from:
|
961
|
+
* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
|
962
|
+
*
|
963
|
+
* Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
|
964
|
+
* while x_out == y_in is not (maybe this works, but it's not tested). */
|
965
|
+
static void point_double(felem x_out, felem y_out, felem z_out,
|
966
|
+
const felem x_in, const felem y_in, const felem z_in) {
|
967
|
+
longfelem tmp, tmp2;
|
968
|
+
felem delta, gamma, beta, alpha, ftmp, ftmp2;
|
969
|
+
smallfelem small1, small2;
|
970
|
+
|
971
|
+
felem_assign(ftmp, x_in);
|
972
|
+
/* ftmp[i] < 2^106 */
|
973
|
+
felem_assign(ftmp2, x_in);
|
974
|
+
/* ftmp2[i] < 2^106 */
|
975
|
+
|
976
|
+
/* delta = z^2 */
|
977
|
+
felem_square(tmp, z_in);
|
978
|
+
felem_reduce(delta, tmp);
|
979
|
+
/* delta[i] < 2^101 */
|
980
|
+
|
981
|
+
/* gamma = y^2 */
|
982
|
+
felem_square(tmp, y_in);
|
983
|
+
felem_reduce(gamma, tmp);
|
984
|
+
/* gamma[i] < 2^101 */
|
985
|
+
felem_shrink(small1, gamma);
|
986
|
+
|
987
|
+
/* beta = x*gamma */
|
988
|
+
felem_small_mul(tmp, small1, x_in);
|
989
|
+
felem_reduce(beta, tmp);
|
990
|
+
/* beta[i] < 2^101 */
|
991
|
+
|
992
|
+
/* alpha = 3*(x-delta)*(x+delta) */
|
993
|
+
felem_diff(ftmp, delta);
|
994
|
+
/* ftmp[i] < 2^105 + 2^106 < 2^107 */
|
995
|
+
felem_sum(ftmp2, delta);
|
996
|
+
/* ftmp2[i] < 2^105 + 2^106 < 2^107 */
|
997
|
+
felem_scalar(ftmp2, 3);
|
998
|
+
/* ftmp2[i] < 3 * 2^107 < 2^109 */
|
999
|
+
felem_mul(tmp, ftmp, ftmp2);
|
1000
|
+
felem_reduce(alpha, tmp);
|
1001
|
+
/* alpha[i] < 2^101 */
|
1002
|
+
felem_shrink(small2, alpha);
|
1003
|
+
|
1004
|
+
/* x' = alpha^2 - 8*beta */
|
1005
|
+
smallfelem_square(tmp, small2);
|
1006
|
+
felem_reduce(x_out, tmp);
|
1007
|
+
felem_assign(ftmp, beta);
|
1008
|
+
felem_scalar(ftmp, 8);
|
1009
|
+
/* ftmp[i] < 8 * 2^101 = 2^104 */
|
1010
|
+
felem_diff(x_out, ftmp);
|
1011
|
+
/* x_out[i] < 2^105 + 2^101 < 2^106 */
|
1012
|
+
|
1013
|
+
/* z' = (y + z)^2 - gamma - delta */
|
1014
|
+
felem_sum(delta, gamma);
|
1015
|
+
/* delta[i] < 2^101 + 2^101 = 2^102 */
|
1016
|
+
felem_assign(ftmp, y_in);
|
1017
|
+
felem_sum(ftmp, z_in);
|
1018
|
+
/* ftmp[i] < 2^106 + 2^106 = 2^107 */
|
1019
|
+
felem_square(tmp, ftmp);
|
1020
|
+
felem_reduce(z_out, tmp);
|
1021
|
+
felem_diff(z_out, delta);
|
1022
|
+
/* z_out[i] < 2^105 + 2^101 < 2^106 */
|
1023
|
+
|
1024
|
+
/* y' = alpha*(4*beta - x') - 8*gamma^2 */
|
1025
|
+
felem_scalar(beta, 4);
|
1026
|
+
/* beta[i] < 4 * 2^101 = 2^103 */
|
1027
|
+
felem_diff_zero107(beta, x_out);
|
1028
|
+
/* beta[i] < 2^107 + 2^103 < 2^108 */
|
1029
|
+
felem_small_mul(tmp, small2, beta);
|
1030
|
+
/* tmp[i] < 7 * 2^64 < 2^67 */
|
1031
|
+
smallfelem_square(tmp2, small1);
|
1032
|
+
/* tmp2[i] < 7 * 2^64 */
|
1033
|
+
longfelem_scalar(tmp2, 8);
|
1034
|
+
/* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
|
1035
|
+
longfelem_diff(tmp, tmp2);
|
1036
|
+
/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
|
1037
|
+
felem_reduce_zero105(y_out, tmp);
|
1038
|
+
/* y_out[i] < 2^106 */
|
1039
|
+
}
|
1040
|
+
|
1041
|
+
/* point_double_small is the same as point_double, except that it operates on
|
1042
|
+
* smallfelems. */
|
1043
|
+
static void point_double_small(smallfelem x_out, smallfelem y_out,
|
1044
|
+
smallfelem z_out, const smallfelem x_in,
|
1045
|
+
const smallfelem y_in, const smallfelem z_in) {
|
1046
|
+
felem felem_x_out, felem_y_out, felem_z_out;
|
1047
|
+
felem felem_x_in, felem_y_in, felem_z_in;
|
1048
|
+
|
1049
|
+
smallfelem_expand(felem_x_in, x_in);
|
1050
|
+
smallfelem_expand(felem_y_in, y_in);
|
1051
|
+
smallfelem_expand(felem_z_in, z_in);
|
1052
|
+
point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in,
|
1053
|
+
felem_z_in);
|
1054
|
+
felem_shrink(x_out, felem_x_out);
|
1055
|
+
felem_shrink(y_out, felem_y_out);
|
1056
|
+
felem_shrink(z_out, felem_z_out);
|
1057
|
+
}
|
1058
|
+
|
1059
|
+
/* copy_conditional copies in to out iff mask is all ones. */
|
1060
|
+
static void copy_conditional(felem out, const felem in, limb mask) {
|
1061
|
+
unsigned i;
|
1062
|
+
for (i = 0; i < NLIMBS; ++i) {
|
1063
|
+
const limb tmp = mask & (in[i] ^ out[i]);
|
1064
|
+
out[i] ^= tmp;
|
1065
|
+
}
|
1066
|
+
}
|
1067
|
+
|
1068
|
+
/* copy_small_conditional copies in to out iff mask is all ones. */
|
1069
|
+
static void copy_small_conditional(felem out, const smallfelem in, limb mask) {
|
1070
|
+
unsigned i;
|
1071
|
+
const u64 mask64 = mask;
|
1072
|
+
for (i = 0; i < NLIMBS; ++i) {
|
1073
|
+
out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask);
|
1074
|
+
}
|
1075
|
+
}
|
1076
|
+
|
1077
|
+
/* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
|
1078
|
+
*
|
1079
|
+
* The method is taken from:
|
1080
|
+
* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
|
1081
|
+
* adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
|
1082
|
+
*
|
1083
|
+
* This function includes a branch for checking whether the two input points
|
1084
|
+
* are equal, (while not equal to the point at infinity). This case never
|
1085
|
+
* happens during single point multiplication, so there is no timing leak for
|
1086
|
+
* ECDH or ECDSA signing. */
|
1087
|
+
static void point_add(felem x3, felem y3, felem z3, const felem x1,
|
1088
|
+
const felem y1, const felem z1, const int mixed,
|
1089
|
+
const smallfelem x2, const smallfelem y2,
|
1090
|
+
const smallfelem z2) {
|
1091
|
+
felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
|
1092
|
+
longfelem tmp, tmp2;
|
1093
|
+
smallfelem small1, small2, small3, small4, small5;
|
1094
|
+
limb x_equal, y_equal, z1_is_zero, z2_is_zero;
|
1095
|
+
|
1096
|
+
felem_shrink(small3, z1);
|
1097
|
+
|
1098
|
+
z1_is_zero = smallfelem_is_zero(small3);
|
1099
|
+
z2_is_zero = smallfelem_is_zero(z2);
|
1100
|
+
|
1101
|
+
/* ftmp = z1z1 = z1**2 */
|
1102
|
+
smallfelem_square(tmp, small3);
|
1103
|
+
felem_reduce(ftmp, tmp);
|
1104
|
+
/* ftmp[i] < 2^101 */
|
1105
|
+
felem_shrink(small1, ftmp);
|
1106
|
+
|
1107
|
+
if (!mixed) {
|
1108
|
+
/* ftmp2 = z2z2 = z2**2 */
|
1109
|
+
smallfelem_square(tmp, z2);
|
1110
|
+
felem_reduce(ftmp2, tmp);
|
1111
|
+
/* ftmp2[i] < 2^101 */
|
1112
|
+
felem_shrink(small2, ftmp2);
|
1113
|
+
|
1114
|
+
felem_shrink(small5, x1);
|
1115
|
+
|
1116
|
+
/* u1 = ftmp3 = x1*z2z2 */
|
1117
|
+
smallfelem_mul(tmp, small5, small2);
|
1118
|
+
felem_reduce(ftmp3, tmp);
|
1119
|
+
/* ftmp3[i] < 2^101 */
|
1120
|
+
|
1121
|
+
/* ftmp5 = z1 + z2 */
|
1122
|
+
felem_assign(ftmp5, z1);
|
1123
|
+
felem_small_sum(ftmp5, z2);
|
1124
|
+
/* ftmp5[i] < 2^107 */
|
1125
|
+
|
1126
|
+
/* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
|
1127
|
+
felem_square(tmp, ftmp5);
|
1128
|
+
felem_reduce(ftmp5, tmp);
|
1129
|
+
/* ftmp2 = z2z2 + z1z1 */
|
1130
|
+
felem_sum(ftmp2, ftmp);
|
1131
|
+
/* ftmp2[i] < 2^101 + 2^101 = 2^102 */
|
1132
|
+
felem_diff(ftmp5, ftmp2);
|
1133
|
+
/* ftmp5[i] < 2^105 + 2^101 < 2^106 */
|
1134
|
+
|
1135
|
+
/* ftmp2 = z2 * z2z2 */
|
1136
|
+
smallfelem_mul(tmp, small2, z2);
|
1137
|
+
felem_reduce(ftmp2, tmp);
|
1138
|
+
|
1139
|
+
/* s1 = ftmp2 = y1 * z2**3 */
|
1140
|
+
felem_mul(tmp, y1, ftmp2);
|
1141
|
+
felem_reduce(ftmp6, tmp);
|
1142
|
+
/* ftmp6[i] < 2^101 */
|
1143
|
+
} else {
|
1144
|
+
/* We'll assume z2 = 1 (special case z2 = 0 is handled later). */
|
1145
|
+
|
1146
|
+
/* u1 = ftmp3 = x1*z2z2 */
|
1147
|
+
felem_assign(ftmp3, x1);
|
1148
|
+
/* ftmp3[i] < 2^106 */
|
1149
|
+
|
1150
|
+
/* ftmp5 = 2z1z2 */
|
1151
|
+
felem_assign(ftmp5, z1);
|
1152
|
+
felem_scalar(ftmp5, 2);
|
1153
|
+
/* ftmp5[i] < 2*2^106 = 2^107 */
|
1154
|
+
|
1155
|
+
/* s1 = ftmp2 = y1 * z2**3 */
|
1156
|
+
felem_assign(ftmp6, y1);
|
1157
|
+
/* ftmp6[i] < 2^106 */
|
1158
|
+
}
|
1159
|
+
|
1160
|
+
/* u2 = x2*z1z1 */
|
1161
|
+
smallfelem_mul(tmp, x2, small1);
|
1162
|
+
felem_reduce(ftmp4, tmp);
|
1163
|
+
|
1164
|
+
/* h = ftmp4 = u2 - u1 */
|
1165
|
+
felem_diff_zero107(ftmp4, ftmp3);
|
1166
|
+
/* ftmp4[i] < 2^107 + 2^101 < 2^108 */
|
1167
|
+
felem_shrink(small4, ftmp4);
|
1168
|
+
|
1169
|
+
x_equal = smallfelem_is_zero(small4);
|
1170
|
+
|
1171
|
+
/* z_out = ftmp5 * h */
|
1172
|
+
felem_small_mul(tmp, small4, ftmp5);
|
1173
|
+
felem_reduce(z_out, tmp);
|
1174
|
+
/* z_out[i] < 2^101 */
|
1175
|
+
|
1176
|
+
/* ftmp = z1 * z1z1 */
|
1177
|
+
smallfelem_mul(tmp, small1, small3);
|
1178
|
+
felem_reduce(ftmp, tmp);
|
1179
|
+
|
1180
|
+
/* s2 = tmp = y2 * z1**3 */
|
1181
|
+
felem_small_mul(tmp, y2, ftmp);
|
1182
|
+
felem_reduce(ftmp5, tmp);
|
1183
|
+
|
1184
|
+
/* r = ftmp5 = (s2 - s1)*2 */
|
1185
|
+
felem_diff_zero107(ftmp5, ftmp6);
|
1186
|
+
/* ftmp5[i] < 2^107 + 2^107 = 2^108 */
|
1187
|
+
felem_scalar(ftmp5, 2);
|
1188
|
+
/* ftmp5[i] < 2^109 */
|
1189
|
+
felem_shrink(small1, ftmp5);
|
1190
|
+
y_equal = smallfelem_is_zero(small1);
|
1191
|
+
|
1192
|
+
if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
|
1193
|
+
point_double(x3, y3, z3, x1, y1, z1);
|
1194
|
+
return;
|
1195
|
+
}
|
1196
|
+
|
1197
|
+
/* I = ftmp = (2h)**2 */
|
1198
|
+
felem_assign(ftmp, ftmp4);
|
1199
|
+
felem_scalar(ftmp, 2);
|
1200
|
+
/* ftmp[i] < 2*2^108 = 2^109 */
|
1201
|
+
felem_square(tmp, ftmp);
|
1202
|
+
felem_reduce(ftmp, tmp);
|
1203
|
+
|
1204
|
+
/* J = ftmp2 = h * I */
|
1205
|
+
felem_mul(tmp, ftmp4, ftmp);
|
1206
|
+
felem_reduce(ftmp2, tmp);
|
1207
|
+
|
1208
|
+
/* V = ftmp4 = U1 * I */
|
1209
|
+
felem_mul(tmp, ftmp3, ftmp);
|
1210
|
+
felem_reduce(ftmp4, tmp);
|
1211
|
+
|
1212
|
+
/* x_out = r**2 - J - 2V */
|
1213
|
+
smallfelem_square(tmp, small1);
|
1214
|
+
felem_reduce(x_out, tmp);
|
1215
|
+
felem_assign(ftmp3, ftmp4);
|
1216
|
+
felem_scalar(ftmp4, 2);
|
1217
|
+
felem_sum(ftmp4, ftmp2);
|
1218
|
+
/* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
|
1219
|
+
felem_diff(x_out, ftmp4);
|
1220
|
+
/* x_out[i] < 2^105 + 2^101 */
|
1221
|
+
|
1222
|
+
/* y_out = r(V-x_out) - 2 * s1 * J */
|
1223
|
+
felem_diff_zero107(ftmp3, x_out);
|
1224
|
+
/* ftmp3[i] < 2^107 + 2^101 < 2^108 */
|
1225
|
+
felem_small_mul(tmp, small1, ftmp3);
|
1226
|
+
felem_mul(tmp2, ftmp6, ftmp2);
|
1227
|
+
longfelem_scalar(tmp2, 2);
|
1228
|
+
/* tmp2[i] < 2*2^67 = 2^68 */
|
1229
|
+
longfelem_diff(tmp, tmp2);
|
1230
|
+
/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
|
1231
|
+
felem_reduce_zero105(y_out, tmp);
|
1232
|
+
/* y_out[i] < 2^106 */
|
1233
|
+
|
1234
|
+
copy_small_conditional(x_out, x2, z1_is_zero);
|
1235
|
+
copy_conditional(x_out, x1, z2_is_zero);
|
1236
|
+
copy_small_conditional(y_out, y2, z1_is_zero);
|
1237
|
+
copy_conditional(y_out, y1, z2_is_zero);
|
1238
|
+
copy_small_conditional(z_out, z2, z1_is_zero);
|
1239
|
+
copy_conditional(z_out, z1, z2_is_zero);
|
1240
|
+
felem_assign(x3, x_out);
|
1241
|
+
felem_assign(y3, y_out);
|
1242
|
+
felem_assign(z3, z_out);
|
1243
|
+
}
|
1244
|
+
|
1245
|
+
/* point_add_small is the same as point_add, except that it operates on
|
1246
|
+
* smallfelems. */
|
1247
|
+
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
|
1248
|
+
smallfelem x1, smallfelem y1, smallfelem z1,
|
1249
|
+
smallfelem x2, smallfelem y2, smallfelem z2) {
|
1250
|
+
felem felem_x3, felem_y3, felem_z3;
|
1251
|
+
felem felem_x1, felem_y1, felem_z1;
|
1252
|
+
smallfelem_expand(felem_x1, x1);
|
1253
|
+
smallfelem_expand(felem_y1, y1);
|
1254
|
+
smallfelem_expand(felem_z1, z1);
|
1255
|
+
point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2,
|
1256
|
+
y2, z2);
|
1257
|
+
felem_shrink(x3, felem_x3);
|
1258
|
+
felem_shrink(y3, felem_y3);
|
1259
|
+
felem_shrink(z3, felem_z3);
|
1260
|
+
}
|
1261
|
+
|
1262
|
+
/* Base point pre computation
|
1263
|
+
* --------------------------
|
1264
|
+
*
|
1265
|
+
* Two different sorts of precomputed tables are used in the following code.
|
1266
|
+
* Each contain various points on the curve, where each point is three field
|
1267
|
+
* elements (x, y, z).
|
1268
|
+
*
|
1269
|
+
* For the base point table, z is usually 1 (0 for the point at infinity).
|
1270
|
+
* This table has 2 * 16 elements, starting with the following:
|
1271
|
+
* index | bits | point
|
1272
|
+
* ------+---------+------------------------------
|
1273
|
+
* 0 | 0 0 0 0 | 0G
|
1274
|
+
* 1 | 0 0 0 1 | 1G
|
1275
|
+
* 2 | 0 0 1 0 | 2^64G
|
1276
|
+
* 3 | 0 0 1 1 | (2^64 + 1)G
|
1277
|
+
* 4 | 0 1 0 0 | 2^128G
|
1278
|
+
* 5 | 0 1 0 1 | (2^128 + 1)G
|
1279
|
+
* 6 | 0 1 1 0 | (2^128 + 2^64)G
|
1280
|
+
* 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
|
1281
|
+
* 8 | 1 0 0 0 | 2^192G
|
1282
|
+
* 9 | 1 0 0 1 | (2^192 + 1)G
|
1283
|
+
* 10 | 1 0 1 0 | (2^192 + 2^64)G
|
1284
|
+
* 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
|
1285
|
+
* 12 | 1 1 0 0 | (2^192 + 2^128)G
|
1286
|
+
* 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
|
1287
|
+
* 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
|
1288
|
+
* 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
|
1289
|
+
* followed by a copy of this with each element multiplied by 2^32.
|
1290
|
+
*
|
1291
|
+
* The reason for this is so that we can clock bits into four different
|
1292
|
+
* locations when doing simple scalar multiplies against the base point,
|
1293
|
+
* and then another four locations using the second 16 elements.
|
1294
|
+
*
|
1295
|
+
* Tables for other points have table[i] = iG for i in 0 .. 16. */
|
1296
|
+
|
1297
|
+
/* g_pre_comp is the table of precomputed base points */
|
1298
|
+
static const smallfelem g_pre_comp[2][16][3] = {
|
1299
|
+
{{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
|
1300
|
+
{{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
|
1301
|
+
0x6b17d1f2e12c4247},
|
1302
|
+
{0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
|
1303
|
+
0x4fe342e2fe1a7f9b},
|
1304
|
+
{1, 0, 0, 0}},
|
1305
|
+
{{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
|
1306
|
+
0x0fa822bc2811aaa5},
|
1307
|
+
{0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
|
1308
|
+
0xbff44ae8f5dba80d},
|
1309
|
+
{1, 0, 0, 0}},
|
1310
|
+
{{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
|
1311
|
+
0x300a4bbc89d6726f},
|
1312
|
+
{0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
|
1313
|
+
0x72aac7e0d09b4644},
|
1314
|
+
{1, 0, 0, 0}},
|
1315
|
+
{{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
|
1316
|
+
0x447d739beedb5e67},
|
1317
|
+
{0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
|
1318
|
+
0x2d4825ab834131ee},
|
1319
|
+
{1, 0, 0, 0}},
|
1320
|
+
{{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
|
1321
|
+
0xef9519328a9c72ff},
|
1322
|
+
{0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
|
1323
|
+
0x611e9fc37dbb2c9b},
|
1324
|
+
{1, 0, 0, 0}},
|
1325
|
+
{{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
|
1326
|
+
0x550663797b51f5d8},
|
1327
|
+
{0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
|
1328
|
+
0x157164848aecb851},
|
1329
|
+
{1, 0, 0, 0}},
|
1330
|
+
{{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
|
1331
|
+
0xeb5d7745b21141ea},
|
1332
|
+
{0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
|
1333
|
+
0xeafd72ebdbecc17b},
|
1334
|
+
{1, 0, 0, 0}},
|
1335
|
+
{{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
|
1336
|
+
0xa6d39677a7849276},
|
1337
|
+
{0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
|
1338
|
+
0x674f84749b0b8816},
|
1339
|
+
{1, 0, 0, 0}},
|
1340
|
+
{{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
|
1341
|
+
0x4e769e7672c9ddad},
|
1342
|
+
{0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
|
1343
|
+
0x42b99082de830663},
|
1344
|
+
{1, 0, 0, 0}},
|
1345
|
+
{{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
|
1346
|
+
0x78878ef61c6ce04d},
|
1347
|
+
{0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
|
1348
|
+
0xb6cb3f5d7b72c321},
|
1349
|
+
{1, 0, 0, 0}},
|
1350
|
+
{{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
|
1351
|
+
0x0c88bc4d716b1287},
|
1352
|
+
{0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
|
1353
|
+
0xdd5ddea3f3901dc6},
|
1354
|
+
{1, 0, 0, 0}},
|
1355
|
+
{{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
|
1356
|
+
0x68f344af6b317466},
|
1357
|
+
{0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
|
1358
|
+
0x31b9c405f8540a20},
|
1359
|
+
{1, 0, 0, 0}},
|
1360
|
+
{{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
|
1361
|
+
0x4052bf4b6f461db9},
|
1362
|
+
{0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
|
1363
|
+
0xfecf4d5190b0fc61},
|
1364
|
+
{1, 0, 0, 0}},
|
1365
|
+
{{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
|
1366
|
+
0x1eddbae2c802e41a},
|
1367
|
+
{0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
|
1368
|
+
0x43104d86560ebcfc},
|
1369
|
+
{1, 0, 0, 0}},
|
1370
|
+
{{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
|
1371
|
+
0xb48e26b484f7a21c},
|
1372
|
+
{0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
|
1373
|
+
0xfac015404d4d3dab},
|
1374
|
+
{1, 0, 0, 0}}},
|
1375
|
+
{{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
|
1376
|
+
{{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
|
1377
|
+
0x7fe36b40af22af89},
|
1378
|
+
{0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
|
1379
|
+
0xe697d45825b63624},
|
1380
|
+
{1, 0, 0, 0}},
|
1381
|
+
{{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
|
1382
|
+
0x4a5b506612a677a6},
|
1383
|
+
{0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
|
1384
|
+
0xeb13461ceac089f1},
|
1385
|
+
{1, 0, 0, 0}},
|
1386
|
+
{{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
|
1387
|
+
0x0781b8291c6a220a},
|
1388
|
+
{0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
|
1389
|
+
0x690cde8df0151593},
|
1390
|
+
{1, 0, 0, 0}},
|
1391
|
+
{{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
|
1392
|
+
0x8a535f566ec73617},
|
1393
|
+
{0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
|
1394
|
+
0x0455c08468b08bd7},
|
1395
|
+
{1, 0, 0, 0}},
|
1396
|
+
{{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
|
1397
|
+
0x06bada7ab77f8276},
|
1398
|
+
{0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
|
1399
|
+
0x5b476dfd0e6cb18a},
|
1400
|
+
{1, 0, 0, 0}},
|
1401
|
+
{{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
|
1402
|
+
0x3e29864e8a2ec908},
|
1403
|
+
{0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
|
1404
|
+
0x239b90ea3dc31e7e},
|
1405
|
+
{1, 0, 0, 0}},
|
1406
|
+
{{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
|
1407
|
+
0x820f4dd949f72ff7},
|
1408
|
+
{0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
|
1409
|
+
0x140406ec783a05ec},
|
1410
|
+
{1, 0, 0, 0}},
|
1411
|
+
{{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
|
1412
|
+
0x68f6b8542783dfee},
|
1413
|
+
{0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
|
1414
|
+
0xcbe1feba92e40ce6},
|
1415
|
+
{1, 0, 0, 0}},
|
1416
|
+
{{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
|
1417
|
+
0xd0b2f94d2f420109},
|
1418
|
+
{0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
|
1419
|
+
0x971459828b0719e5},
|
1420
|
+
{1, 0, 0, 0}},
|
1421
|
+
{{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
|
1422
|
+
0x961610004a866aba},
|
1423
|
+
{0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
|
1424
|
+
0x7acb9fadcee75e44},
|
1425
|
+
{1, 0, 0, 0}},
|
1426
|
+
{{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
|
1427
|
+
0x24eb9acca333bf5b},
|
1428
|
+
{0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
|
1429
|
+
0x69f891c5acd079cc},
|
1430
|
+
{1, 0, 0, 0}},
|
1431
|
+
{{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
|
1432
|
+
0xe51f547c5972a107},
|
1433
|
+
{0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
|
1434
|
+
0x1c309a2b25bb1387},
|
1435
|
+
{1, 0, 0, 0}},
|
1436
|
+
{{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
|
1437
|
+
0x20b87b8aa2c4e503},
|
1438
|
+
{0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
|
1439
|
+
0xf5c6fa49919776be},
|
1440
|
+
{1, 0, 0, 0}},
|
1441
|
+
{{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
|
1442
|
+
0x1ed7d1b9332010b9},
|
1443
|
+
{0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
|
1444
|
+
0x3a2b03f03217257a},
|
1445
|
+
{1, 0, 0, 0}},
|
1446
|
+
{{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
|
1447
|
+
0x15fee545c78dd9f6},
|
1448
|
+
{0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
|
1449
|
+
0x4ab5b6b2b8753f81},
|
1450
|
+
{1, 0, 0, 0}}}};
|
1451
|
+
|
1452
|
+
/* select_point selects the |idx|th point from a precomputation table and
|
1453
|
+
* copies it to out. */
|
1454
|
+
static void select_point(const u64 idx, unsigned int size,
|
1455
|
+
const smallfelem pre_comp[16][3], smallfelem out[3]) {
|
1456
|
+
unsigned i, j;
|
1457
|
+
u64 *outlimbs = &out[0][0];
|
1458
|
+
memset(outlimbs, 0, 3 * sizeof(smallfelem));
|
1459
|
+
|
1460
|
+
for (i = 0; i < size; i++) {
|
1461
|
+
const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
|
1462
|
+
u64 mask = i ^ idx;
|
1463
|
+
mask |= mask >> 4;
|
1464
|
+
mask |= mask >> 2;
|
1465
|
+
mask |= mask >> 1;
|
1466
|
+
mask &= 1;
|
1467
|
+
mask--;
|
1468
|
+
for (j = 0; j < NLIMBS * 3; j++) {
|
1469
|
+
outlimbs[j] |= inlimbs[j] & mask;
|
1470
|
+
}
|
1471
|
+
}
|
1472
|
+
}
|
1473
|
+
|
1474
|
+
/* get_bit returns the |i|th bit in |in| */
|
1475
|
+
static char get_bit(const felem_bytearray in, int i) {
|
1476
|
+
if (i < 0 || i >= 256) {
|
1477
|
+
return 0;
|
1478
|
+
}
|
1479
|
+
return (in[i >> 3] >> (i & 7)) & 1;
|
1480
|
+
}
|
1481
|
+
|
1482
|
+
/* Interleaved point multiplication using precomputed point multiples: The
|
1483
|
+
* small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
|
1484
|
+
* in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
|
1485
|
+
* generator, using certain (large) precomputed multiples in g_pre_comp.
|
1486
|
+
* Output point (X, Y, Z) is stored in x_out, y_out, z_out. */
|
1487
|
+
static void batch_mul(felem x_out, felem y_out, felem z_out,
|
1488
|
+
const felem_bytearray scalars[],
|
1489
|
+
const unsigned num_points, const u8 *g_scalar,
|
1490
|
+
const int mixed, const smallfelem pre_comp[][17][3]) {
|
1491
|
+
int i, skip;
|
1492
|
+
unsigned num, gen_mul = (g_scalar != NULL);
|
1493
|
+
felem nq[3], ftmp;
|
1494
|
+
smallfelem tmp[3];
|
1495
|
+
u64 bits;
|
1496
|
+
u8 sign, digit;
|
1497
|
+
|
1498
|
+
/* set nq to the point at infinity */
|
1499
|
+
memset(nq, 0, 3 * sizeof(felem));
|
1500
|
+
|
1501
|
+
/* Loop over all scalars msb-to-lsb, interleaving additions of multiples
|
1502
|
+
* of the generator (two in each of the last 32 rounds) and additions of
|
1503
|
+
* other points multiples (every 5th round). */
|
1504
|
+
|
1505
|
+
skip = 1; /* save two point operations in the first
|
1506
|
+
* round */
|
1507
|
+
for (i = (num_points ? 255 : 31); i >= 0; --i) {
|
1508
|
+
/* double */
|
1509
|
+
if (!skip) {
|
1510
|
+
point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
|
1511
|
+
}
|
1512
|
+
|
1513
|
+
/* add multiples of the generator */
|
1514
|
+
if (gen_mul && i <= 31) {
|
1515
|
+
/* first, look 32 bits upwards */
|
1516
|
+
bits = get_bit(g_scalar, i + 224) << 3;
|
1517
|
+
bits |= get_bit(g_scalar, i + 160) << 2;
|
1518
|
+
bits |= get_bit(g_scalar, i + 96) << 1;
|
1519
|
+
bits |= get_bit(g_scalar, i + 32);
|
1520
|
+
/* select the point to add, in constant time */
|
1521
|
+
select_point(bits, 16, g_pre_comp[1], tmp);
|
1522
|
+
|
1523
|
+
if (!skip) {
|
1524
|
+
/* Arg 1 below is for "mixed" */
|
1525
|
+
point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1],
|
1526
|
+
tmp[2]);
|
1527
|
+
} else {
|
1528
|
+
smallfelem_expand(nq[0], tmp[0]);
|
1529
|
+
smallfelem_expand(nq[1], tmp[1]);
|
1530
|
+
smallfelem_expand(nq[2], tmp[2]);
|
1531
|
+
skip = 0;
|
1532
|
+
}
|
1533
|
+
|
1534
|
+
/* second, look at the current position */
|
1535
|
+
bits = get_bit(g_scalar, i + 192) << 3;
|
1536
|
+
bits |= get_bit(g_scalar, i + 128) << 2;
|
1537
|
+
bits |= get_bit(g_scalar, i + 64) << 1;
|
1538
|
+
bits |= get_bit(g_scalar, i);
|
1539
|
+
/* select the point to add, in constant time */
|
1540
|
+
select_point(bits, 16, g_pre_comp[0], tmp);
|
1541
|
+
/* Arg 1 below is for "mixed" */
|
1542
|
+
point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1],
|
1543
|
+
tmp[2]);
|
1544
|
+
}
|
1545
|
+
|
1546
|
+
/* do other additions every 5 doublings */
|
1547
|
+
if (num_points && (i % 5 == 0)) {
|
1548
|
+
/* loop over all scalars */
|
1549
|
+
for (num = 0; num < num_points; ++num) {
|
1550
|
+
bits = get_bit(scalars[num], i + 4) << 5;
|
1551
|
+
bits |= get_bit(scalars[num], i + 3) << 4;
|
1552
|
+
bits |= get_bit(scalars[num], i + 2) << 3;
|
1553
|
+
bits |= get_bit(scalars[num], i + 1) << 2;
|
1554
|
+
bits |= get_bit(scalars[num], i) << 1;
|
1555
|
+
bits |= get_bit(scalars[num], i - 1);
|
1556
|
+
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
|
1557
|
+
|
1558
|
+
/* select the point to add or subtract, in constant time. */
|
1559
|
+
select_point(digit, 17, pre_comp[num], tmp);
|
1560
|
+
smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
|
1561
|
+
* point */
|
1562
|
+
copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1));
|
1563
|
+
felem_contract(tmp[1], ftmp);
|
1564
|
+
|
1565
|
+
if (!skip) {
|
1566
|
+
point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0],
|
1567
|
+
tmp[1], tmp[2]);
|
1568
|
+
} else {
|
1569
|
+
smallfelem_expand(nq[0], tmp[0]);
|
1570
|
+
smallfelem_expand(nq[1], tmp[1]);
|
1571
|
+
smallfelem_expand(nq[2], tmp[2]);
|
1572
|
+
skip = 0;
|
1573
|
+
}
|
1574
|
+
}
|
1575
|
+
}
|
1576
|
+
}
|
1577
|
+
felem_assign(x_out, nq[0]);
|
1578
|
+
felem_assign(y_out, nq[1]);
|
1579
|
+
felem_assign(z_out, nq[2]);
|
1580
|
+
}
|
1581
|
+
|
1582
|
+
/******************************************************************************/
|
1583
|
+
/*
|
1584
|
+
* OPENSSL EC_METHOD FUNCTIONS
|
1585
|
+
*/
|
1586
|
+
|
1587
|
+
/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
|
1588
|
+
* (X/Z^2, Y/Z^3). */
|
1589
|
+
int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
|
1590
|
+
const EC_POINT *point,
|
1591
|
+
BIGNUM *x, BIGNUM *y,
|
1592
|
+
BN_CTX *ctx) {
|
1593
|
+
felem z1, z2, x_in, y_in;
|
1594
|
+
smallfelem x_out, y_out;
|
1595
|
+
longfelem tmp;
|
1596
|
+
|
1597
|
+
if (EC_POINT_is_at_infinity(group, point)) {
|
1598
|
+
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
|
1599
|
+
return 0;
|
1600
|
+
}
|
1601
|
+
if (!BN_to_felem(x_in, &point->X) ||
|
1602
|
+
!BN_to_felem(y_in, &point->Y) ||
|
1603
|
+
!BN_to_felem(z1, &point->Z)) {
|
1604
|
+
return 0;
|
1605
|
+
}
|
1606
|
+
felem_inv(z2, z1);
|
1607
|
+
felem_square(tmp, z2);
|
1608
|
+
felem_reduce(z1, tmp);
|
1609
|
+
felem_mul(tmp, x_in, z1);
|
1610
|
+
felem_reduce(x_in, tmp);
|
1611
|
+
felem_contract(x_out, x_in);
|
1612
|
+
if (x != NULL && !smallfelem_to_BN(x, x_out)) {
|
1613
|
+
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
1614
|
+
return 0;
|
1615
|
+
}
|
1616
|
+
felem_mul(tmp, z1, z2);
|
1617
|
+
felem_reduce(z1, tmp);
|
1618
|
+
felem_mul(tmp, y_in, z1);
|
1619
|
+
felem_reduce(y_in, tmp);
|
1620
|
+
felem_contract(y_out, y_in);
|
1621
|
+
if (y != NULL && !smallfelem_to_BN(y, y_out)) {
|
1622
|
+
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
1623
|
+
return 0;
|
1624
|
+
}
|
1625
|
+
return 1;
|
1626
|
+
}
|
1627
|
+
|
1628
|
+
/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
|
1629
|
+
static void make_points_affine(size_t num, smallfelem points[][3],
|
1630
|
+
smallfelem tmp_smallfelems[]) {
|
1631
|
+
/* Runs in constant time, unless an input is the point at infinity (which
|
1632
|
+
* normally shouldn't happen). */
|
1633
|
+
ec_GFp_nistp_points_make_affine_internal(
|
1634
|
+
num, points, sizeof(smallfelem), tmp_smallfelems,
|
1635
|
+
(void (*)(void *))smallfelem_one,
|
1636
|
+
(int (*)(const void *))smallfelem_is_zero_int,
|
1637
|
+
(void (*)(void *, const void *))smallfelem_assign,
|
1638
|
+
(void (*)(void *, const void *))smallfelem_square_contract,
|
1639
|
+
(void (*)(void *, const void *, const void *))smallfelem_mul_contract,
|
1640
|
+
(void (*)(void *, const void *))smallfelem_inv_contract,
|
1641
|
+
/* nothing to contract */
|
1642
|
+
(void (*)(void *, const void *))smallfelem_assign);
|
1643
|
+
}
|
1644
|
+
|
1645
|
+
int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
1646
|
+
const BIGNUM *g_scalar, const EC_POINT *p_,
|
1647
|
+
const BIGNUM *p_scalar_, BN_CTX *ctx) {
|
1648
|
+
/* TODO: This function used to take |points| and |scalars| as arrays of
|
1649
|
+
* |num| elements. The code below should be simplified to work in terms of |p|
|
1650
|
+
* and |p_scalar|. */
|
1651
|
+
size_t num = p_ != NULL ? 1 : 0;
|
1652
|
+
const EC_POINT **points = p_ != NULL ? &p_ : NULL;
|
1653
|
+
BIGNUM const *const *scalars = p_ != NULL ? &p_scalar_ : NULL;
|
1654
|
+
|
1655
|
+
int ret = 0;
|
1656
|
+
int j;
|
1657
|
+
int mixed = 0;
|
1658
|
+
BN_CTX *new_ctx = NULL;
|
1659
|
+
BIGNUM *x, *y, *z;
|
1660
|
+
felem_bytearray g_secret;
|
1661
|
+
felem_bytearray *secrets = NULL;
|
1662
|
+
smallfelem(*pre_comp)[17][3] = NULL;
|
1663
|
+
smallfelem *tmp_smallfelems = NULL;
|
1664
|
+
felem_bytearray tmp;
|
1665
|
+
unsigned i, num_bytes;
|
1666
|
+
size_t num_points = num;
|
1667
|
+
smallfelem x_in, y_in, z_in;
|
1668
|
+
felem x_out, y_out, z_out;
|
1669
|
+
const EC_POINT *p = NULL;
|
1670
|
+
const BIGNUM *p_scalar = NULL;
|
1671
|
+
|
1672
|
+
if (ctx == NULL) {
|
1673
|
+
ctx = new_ctx = BN_CTX_new();
|
1674
|
+
if (ctx == NULL) {
|
1675
|
+
return 0;
|
1676
|
+
}
|
1677
|
+
}
|
1678
|
+
|
1679
|
+
BN_CTX_start(ctx);
|
1680
|
+
if ((x = BN_CTX_get(ctx)) == NULL ||
|
1681
|
+
(y = BN_CTX_get(ctx)) == NULL ||
|
1682
|
+
(z = BN_CTX_get(ctx)) == NULL) {
|
1683
|
+
goto err;
|
1684
|
+
}
|
1685
|
+
|
1686
|
+
if (num_points > 0) {
|
1687
|
+
if (num_points >= 3) {
|
1688
|
+
/* unless we precompute multiples for just one or two points,
|
1689
|
+
* converting those into affine form is time well spent */
|
1690
|
+
mixed = 1;
|
1691
|
+
}
|
1692
|
+
secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
|
1693
|
+
pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem));
|
1694
|
+
if (mixed) {
|
1695
|
+
tmp_smallfelems =
|
1696
|
+
OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
|
1697
|
+
}
|
1698
|
+
if (secrets == NULL || pre_comp == NULL ||
|
1699
|
+
(mixed && tmp_smallfelems == NULL)) {
|
1700
|
+
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
1701
|
+
goto err;
|
1702
|
+
}
|
1703
|
+
|
1704
|
+
/* we treat NULL scalars as 0, and NULL points as points at infinity,
|
1705
|
+
* i.e., they contribute nothing to the linear combination. */
|
1706
|
+
memset(secrets, 0, num_points * sizeof(felem_bytearray));
|
1707
|
+
memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
|
1708
|
+
for (i = 0; i < num_points; ++i) {
|
1709
|
+
if (i == num) {
|
1710
|
+
/* we didn't have a valid precomputation, so we pick the generator. */
|
1711
|
+
p = EC_GROUP_get0_generator(group);
|
1712
|
+
p_scalar = g_scalar;
|
1713
|
+
} else {
|
1714
|
+
/* the i^th point */
|
1715
|
+
p = points[i];
|
1716
|
+
p_scalar = scalars[i];
|
1717
|
+
}
|
1718
|
+
if (p_scalar != NULL && p != NULL) {
|
1719
|
+
assert(BN_cmp(p_scalar, EC_GROUP_get0_order(group)) < 0);
|
1720
|
+
num_bytes = BN_bn2bin(p_scalar, tmp);
|
1721
|
+
flip_endian(secrets[i], tmp, num_bytes);
|
1722
|
+
|
1723
|
+
/* precompute multiples */
|
1724
|
+
if (!BN_to_felem(x_out, &p->X) ||
|
1725
|
+
!BN_to_felem(y_out, &p->Y) ||
|
1726
|
+
!BN_to_felem(z_out, &p->Z)) {
|
1727
|
+
goto err;
|
1728
|
+
}
|
1729
|
+
felem_shrink(pre_comp[i][1][0], x_out);
|
1730
|
+
felem_shrink(pre_comp[i][1][1], y_out);
|
1731
|
+
felem_shrink(pre_comp[i][1][2], z_out);
|
1732
|
+
for (j = 2; j <= 16; ++j) {
|
1733
|
+
if (j & 1) {
|
1734
|
+
point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
|
1735
|
+
pre_comp[i][j][2], pre_comp[i][1][0],
|
1736
|
+
pre_comp[i][1][1], pre_comp[i][1][2],
|
1737
|
+
pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
|
1738
|
+
pre_comp[i][j - 1][2]);
|
1739
|
+
} else {
|
1740
|
+
point_double_small(pre_comp[i][j][0], pre_comp[i][j][1],
|
1741
|
+
pre_comp[i][j][2], pre_comp[i][j / 2][0],
|
1742
|
+
pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
|
1743
|
+
}
|
1744
|
+
}
|
1745
|
+
}
|
1746
|
+
}
|
1747
|
+
if (mixed) {
|
1748
|
+
make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
|
1749
|
+
}
|
1750
|
+
}
|
1751
|
+
|
1752
|
+
if (g_scalar != NULL) {
|
1753
|
+
memset(g_secret, 0, sizeof(g_secret));
|
1754
|
+
assert(BN_cmp(g_scalar, EC_GROUP_get0_order(group)) < 0);
|
1755
|
+
num_bytes = BN_bn2bin(g_scalar, tmp);
|
1756
|
+
flip_endian(g_secret, tmp, num_bytes);
|
1757
|
+
}
|
1758
|
+
batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
|
1759
|
+
num_points, g_scalar != NULL ? g_secret : NULL, mixed,
|
1760
|
+
(const smallfelem(*)[17][3])pre_comp);
|
1761
|
+
|
1762
|
+
/* reduce the output to its unique minimal representation */
|
1763
|
+
felem_contract(x_in, x_out);
|
1764
|
+
felem_contract(y_in, y_out);
|
1765
|
+
felem_contract(z_in, z_out);
|
1766
|
+
if (!smallfelem_to_BN(x, x_in) ||
|
1767
|
+
!smallfelem_to_BN(y, y_in) ||
|
1768
|
+
!smallfelem_to_BN(z, z_in)) {
|
1769
|
+
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
1770
|
+
goto err;
|
1771
|
+
}
|
1772
|
+
ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
|
1773
|
+
|
1774
|
+
err:
|
1775
|
+
BN_CTX_end(ctx);
|
1776
|
+
BN_CTX_free(new_ctx);
|
1777
|
+
OPENSSL_free(secrets);
|
1778
|
+
OPENSSL_free(pre_comp);
|
1779
|
+
OPENSSL_free(tmp_smallfelems);
|
1780
|
+
return ret;
|
1781
|
+
}
|
1782
|
+
|
1783
|
+
const EC_METHOD EC_GFp_nistp256_method = {
|
1784
|
+
ec_GFp_nistp256_point_get_affine_coordinates,
|
1785
|
+
ec_GFp_nistp256_points_mul,
|
1786
|
+
ec_GFp_nistp256_points_mul,
|
1787
|
+
ec_GFp_simple_field_mul,
|
1788
|
+
ec_GFp_simple_field_sqr,
|
1789
|
+
NULL /* field_encode */,
|
1790
|
+
NULL /* field_decode */,
|
1791
|
+
NULL /* field_set_to_one */,
|
1792
|
+
};
|
1793
|
+
|
1794
|
+
#endif /* 64_BIT && !WINDOWS */
|