ring-native 0.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (261) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +9 -0
  3. data/Gemfile +3 -0
  4. data/README.md +22 -0
  5. data/Rakefile +1 -0
  6. data/ext/ring/extconf.rb +29 -0
  7. data/lib/ring/native.rb +8 -0
  8. data/lib/ring/native/version.rb +5 -0
  9. data/ring-native.gemspec +25 -0
  10. data/vendor/ring/BUILDING.md +40 -0
  11. data/vendor/ring/Cargo.toml +43 -0
  12. data/vendor/ring/LICENSE +185 -0
  13. data/vendor/ring/Makefile +35 -0
  14. data/vendor/ring/PORTING.md +163 -0
  15. data/vendor/ring/README.md +113 -0
  16. data/vendor/ring/STYLE.md +197 -0
  17. data/vendor/ring/appveyor.yml +27 -0
  18. data/vendor/ring/build.rs +108 -0
  19. data/vendor/ring/crypto/aes/aes.c +1142 -0
  20. data/vendor/ring/crypto/aes/aes_test.Windows.vcxproj +25 -0
  21. data/vendor/ring/crypto/aes/aes_test.cc +93 -0
  22. data/vendor/ring/crypto/aes/asm/aes-586.pl +2368 -0
  23. data/vendor/ring/crypto/aes/asm/aes-armv4.pl +1249 -0
  24. data/vendor/ring/crypto/aes/asm/aes-x86_64.pl +2246 -0
  25. data/vendor/ring/crypto/aes/asm/aesni-x86.pl +1318 -0
  26. data/vendor/ring/crypto/aes/asm/aesni-x86_64.pl +2084 -0
  27. data/vendor/ring/crypto/aes/asm/aesv8-armx.pl +675 -0
  28. data/vendor/ring/crypto/aes/asm/bsaes-armv7.pl +1364 -0
  29. data/vendor/ring/crypto/aes/asm/bsaes-x86_64.pl +1565 -0
  30. data/vendor/ring/crypto/aes/asm/vpaes-x86.pl +841 -0
  31. data/vendor/ring/crypto/aes/asm/vpaes-x86_64.pl +1116 -0
  32. data/vendor/ring/crypto/aes/internal.h +87 -0
  33. data/vendor/ring/crypto/aes/mode_wrappers.c +61 -0
  34. data/vendor/ring/crypto/bn/add.c +394 -0
  35. data/vendor/ring/crypto/bn/asm/armv4-mont.pl +694 -0
  36. data/vendor/ring/crypto/bn/asm/armv8-mont.pl +1503 -0
  37. data/vendor/ring/crypto/bn/asm/bn-586.pl +774 -0
  38. data/vendor/ring/crypto/bn/asm/co-586.pl +287 -0
  39. data/vendor/ring/crypto/bn/asm/rsaz-avx2.pl +1882 -0
  40. data/vendor/ring/crypto/bn/asm/x86-mont.pl +592 -0
  41. data/vendor/ring/crypto/bn/asm/x86_64-gcc.c +599 -0
  42. data/vendor/ring/crypto/bn/asm/x86_64-mont.pl +1393 -0
  43. data/vendor/ring/crypto/bn/asm/x86_64-mont5.pl +3507 -0
  44. data/vendor/ring/crypto/bn/bn.c +352 -0
  45. data/vendor/ring/crypto/bn/bn_asn1.c +74 -0
  46. data/vendor/ring/crypto/bn/bn_test.Windows.vcxproj +25 -0
  47. data/vendor/ring/crypto/bn/bn_test.cc +1696 -0
  48. data/vendor/ring/crypto/bn/cmp.c +200 -0
  49. data/vendor/ring/crypto/bn/convert.c +433 -0
  50. data/vendor/ring/crypto/bn/ctx.c +311 -0
  51. data/vendor/ring/crypto/bn/div.c +594 -0
  52. data/vendor/ring/crypto/bn/exponentiation.c +1335 -0
  53. data/vendor/ring/crypto/bn/gcd.c +711 -0
  54. data/vendor/ring/crypto/bn/generic.c +1019 -0
  55. data/vendor/ring/crypto/bn/internal.h +316 -0
  56. data/vendor/ring/crypto/bn/montgomery.c +516 -0
  57. data/vendor/ring/crypto/bn/mul.c +888 -0
  58. data/vendor/ring/crypto/bn/prime.c +829 -0
  59. data/vendor/ring/crypto/bn/random.c +334 -0
  60. data/vendor/ring/crypto/bn/rsaz_exp.c +262 -0
  61. data/vendor/ring/crypto/bn/rsaz_exp.h +53 -0
  62. data/vendor/ring/crypto/bn/shift.c +276 -0
  63. data/vendor/ring/crypto/bytestring/bytestring_test.Windows.vcxproj +25 -0
  64. data/vendor/ring/crypto/bytestring/bytestring_test.cc +421 -0
  65. data/vendor/ring/crypto/bytestring/cbb.c +399 -0
  66. data/vendor/ring/crypto/bytestring/cbs.c +227 -0
  67. data/vendor/ring/crypto/bytestring/internal.h +46 -0
  68. data/vendor/ring/crypto/chacha/chacha_generic.c +140 -0
  69. data/vendor/ring/crypto/chacha/chacha_vec.c +323 -0
  70. data/vendor/ring/crypto/chacha/chacha_vec_arm.S +1447 -0
  71. data/vendor/ring/crypto/chacha/chacha_vec_arm_generate.go +153 -0
  72. data/vendor/ring/crypto/cipher/cipher_test.Windows.vcxproj +25 -0
  73. data/vendor/ring/crypto/cipher/e_aes.c +390 -0
  74. data/vendor/ring/crypto/cipher/e_chacha20poly1305.c +208 -0
  75. data/vendor/ring/crypto/cipher/internal.h +173 -0
  76. data/vendor/ring/crypto/cipher/test/aes_128_gcm_tests.txt +543 -0
  77. data/vendor/ring/crypto/cipher/test/aes_128_key_wrap_tests.txt +9 -0
  78. data/vendor/ring/crypto/cipher/test/aes_256_gcm_tests.txt +475 -0
  79. data/vendor/ring/crypto/cipher/test/aes_256_key_wrap_tests.txt +23 -0
  80. data/vendor/ring/crypto/cipher/test/chacha20_poly1305_old_tests.txt +422 -0
  81. data/vendor/ring/crypto/cipher/test/chacha20_poly1305_tests.txt +484 -0
  82. data/vendor/ring/crypto/cipher/test/cipher_test.txt +100 -0
  83. data/vendor/ring/crypto/constant_time_test.Windows.vcxproj +25 -0
  84. data/vendor/ring/crypto/constant_time_test.c +304 -0
  85. data/vendor/ring/crypto/cpu-arm-asm.S +32 -0
  86. data/vendor/ring/crypto/cpu-arm.c +199 -0
  87. data/vendor/ring/crypto/cpu-intel.c +261 -0
  88. data/vendor/ring/crypto/crypto.c +151 -0
  89. data/vendor/ring/crypto/curve25519/asm/x25519-arm.S +2118 -0
  90. data/vendor/ring/crypto/curve25519/curve25519.c +4888 -0
  91. data/vendor/ring/crypto/curve25519/x25519_test.cc +128 -0
  92. data/vendor/ring/crypto/digest/md32_common.h +181 -0
  93. data/vendor/ring/crypto/ec/asm/p256-x86_64-asm.pl +2725 -0
  94. data/vendor/ring/crypto/ec/ec.c +193 -0
  95. data/vendor/ring/crypto/ec/ec_curves.c +61 -0
  96. data/vendor/ring/crypto/ec/ec_key.c +228 -0
  97. data/vendor/ring/crypto/ec/ec_montgomery.c +114 -0
  98. data/vendor/ring/crypto/ec/example_mul.Windows.vcxproj +25 -0
  99. data/vendor/ring/crypto/ec/internal.h +243 -0
  100. data/vendor/ring/crypto/ec/oct.c +253 -0
  101. data/vendor/ring/crypto/ec/p256-64.c +1794 -0
  102. data/vendor/ring/crypto/ec/p256-x86_64-table.h +9548 -0
  103. data/vendor/ring/crypto/ec/p256-x86_64.c +509 -0
  104. data/vendor/ring/crypto/ec/simple.c +1007 -0
  105. data/vendor/ring/crypto/ec/util-64.c +183 -0
  106. data/vendor/ring/crypto/ec/wnaf.c +508 -0
  107. data/vendor/ring/crypto/ecdh/ecdh.c +155 -0
  108. data/vendor/ring/crypto/ecdsa/ecdsa.c +304 -0
  109. data/vendor/ring/crypto/ecdsa/ecdsa_asn1.c +193 -0
  110. data/vendor/ring/crypto/ecdsa/ecdsa_test.Windows.vcxproj +25 -0
  111. data/vendor/ring/crypto/ecdsa/ecdsa_test.cc +327 -0
  112. data/vendor/ring/crypto/header_removed.h +17 -0
  113. data/vendor/ring/crypto/internal.h +495 -0
  114. data/vendor/ring/crypto/libring.Windows.vcxproj +101 -0
  115. data/vendor/ring/crypto/mem.c +98 -0
  116. data/vendor/ring/crypto/modes/asm/aesni-gcm-x86_64.pl +1045 -0
  117. data/vendor/ring/crypto/modes/asm/ghash-armv4.pl +517 -0
  118. data/vendor/ring/crypto/modes/asm/ghash-x86.pl +1393 -0
  119. data/vendor/ring/crypto/modes/asm/ghash-x86_64.pl +1741 -0
  120. data/vendor/ring/crypto/modes/asm/ghashv8-armx.pl +422 -0
  121. data/vendor/ring/crypto/modes/ctr.c +226 -0
  122. data/vendor/ring/crypto/modes/gcm.c +1206 -0
  123. data/vendor/ring/crypto/modes/gcm_test.Windows.vcxproj +25 -0
  124. data/vendor/ring/crypto/modes/gcm_test.c +348 -0
  125. data/vendor/ring/crypto/modes/internal.h +299 -0
  126. data/vendor/ring/crypto/perlasm/arm-xlate.pl +170 -0
  127. data/vendor/ring/crypto/perlasm/readme +100 -0
  128. data/vendor/ring/crypto/perlasm/x86_64-xlate.pl +1164 -0
  129. data/vendor/ring/crypto/perlasm/x86asm.pl +292 -0
  130. data/vendor/ring/crypto/perlasm/x86gas.pl +263 -0
  131. data/vendor/ring/crypto/perlasm/x86masm.pl +200 -0
  132. data/vendor/ring/crypto/perlasm/x86nasm.pl +187 -0
  133. data/vendor/ring/crypto/poly1305/poly1305.c +331 -0
  134. data/vendor/ring/crypto/poly1305/poly1305_arm.c +301 -0
  135. data/vendor/ring/crypto/poly1305/poly1305_arm_asm.S +2015 -0
  136. data/vendor/ring/crypto/poly1305/poly1305_test.Windows.vcxproj +25 -0
  137. data/vendor/ring/crypto/poly1305/poly1305_test.cc +80 -0
  138. data/vendor/ring/crypto/poly1305/poly1305_test.txt +52 -0
  139. data/vendor/ring/crypto/poly1305/poly1305_vec.c +892 -0
  140. data/vendor/ring/crypto/rand/asm/rdrand-x86_64.pl +75 -0
  141. data/vendor/ring/crypto/rand/internal.h +32 -0
  142. data/vendor/ring/crypto/rand/rand.c +189 -0
  143. data/vendor/ring/crypto/rand/urandom.c +219 -0
  144. data/vendor/ring/crypto/rand/windows.c +56 -0
  145. data/vendor/ring/crypto/refcount_c11.c +66 -0
  146. data/vendor/ring/crypto/refcount_lock.c +53 -0
  147. data/vendor/ring/crypto/refcount_test.Windows.vcxproj +25 -0
  148. data/vendor/ring/crypto/refcount_test.c +58 -0
  149. data/vendor/ring/crypto/rsa/blinding.c +462 -0
  150. data/vendor/ring/crypto/rsa/internal.h +108 -0
  151. data/vendor/ring/crypto/rsa/padding.c +300 -0
  152. data/vendor/ring/crypto/rsa/rsa.c +450 -0
  153. data/vendor/ring/crypto/rsa/rsa_asn1.c +261 -0
  154. data/vendor/ring/crypto/rsa/rsa_impl.c +944 -0
  155. data/vendor/ring/crypto/rsa/rsa_test.Windows.vcxproj +25 -0
  156. data/vendor/ring/crypto/rsa/rsa_test.cc +437 -0
  157. data/vendor/ring/crypto/sha/asm/sha-armv8.pl +436 -0
  158. data/vendor/ring/crypto/sha/asm/sha-x86_64.pl +2390 -0
  159. data/vendor/ring/crypto/sha/asm/sha256-586.pl +1275 -0
  160. data/vendor/ring/crypto/sha/asm/sha256-armv4.pl +735 -0
  161. data/vendor/ring/crypto/sha/asm/sha256-armv8.pl +14 -0
  162. data/vendor/ring/crypto/sha/asm/sha256-x86_64.pl +14 -0
  163. data/vendor/ring/crypto/sha/asm/sha512-586.pl +911 -0
  164. data/vendor/ring/crypto/sha/asm/sha512-armv4.pl +666 -0
  165. data/vendor/ring/crypto/sha/asm/sha512-armv8.pl +14 -0
  166. data/vendor/ring/crypto/sha/asm/sha512-x86_64.pl +14 -0
  167. data/vendor/ring/crypto/sha/sha1.c +271 -0
  168. data/vendor/ring/crypto/sha/sha256.c +204 -0
  169. data/vendor/ring/crypto/sha/sha512.c +355 -0
  170. data/vendor/ring/crypto/test/file_test.cc +326 -0
  171. data/vendor/ring/crypto/test/file_test.h +181 -0
  172. data/vendor/ring/crypto/test/malloc.cc +150 -0
  173. data/vendor/ring/crypto/test/scoped_types.h +95 -0
  174. data/vendor/ring/crypto/test/test.Windows.vcxproj +35 -0
  175. data/vendor/ring/crypto/test/test_util.cc +46 -0
  176. data/vendor/ring/crypto/test/test_util.h +41 -0
  177. data/vendor/ring/crypto/thread_none.c +55 -0
  178. data/vendor/ring/crypto/thread_pthread.c +165 -0
  179. data/vendor/ring/crypto/thread_test.Windows.vcxproj +25 -0
  180. data/vendor/ring/crypto/thread_test.c +200 -0
  181. data/vendor/ring/crypto/thread_win.c +282 -0
  182. data/vendor/ring/examples/checkdigest.rs +103 -0
  183. data/vendor/ring/include/openssl/aes.h +121 -0
  184. data/vendor/ring/include/openssl/arm_arch.h +129 -0
  185. data/vendor/ring/include/openssl/base.h +156 -0
  186. data/vendor/ring/include/openssl/bn.h +794 -0
  187. data/vendor/ring/include/openssl/buffer.h +18 -0
  188. data/vendor/ring/include/openssl/bytestring.h +235 -0
  189. data/vendor/ring/include/openssl/chacha.h +37 -0
  190. data/vendor/ring/include/openssl/cmac.h +76 -0
  191. data/vendor/ring/include/openssl/cpu.h +184 -0
  192. data/vendor/ring/include/openssl/crypto.h +43 -0
  193. data/vendor/ring/include/openssl/curve25519.h +88 -0
  194. data/vendor/ring/include/openssl/ec.h +225 -0
  195. data/vendor/ring/include/openssl/ec_key.h +129 -0
  196. data/vendor/ring/include/openssl/ecdh.h +110 -0
  197. data/vendor/ring/include/openssl/ecdsa.h +156 -0
  198. data/vendor/ring/include/openssl/err.h +201 -0
  199. data/vendor/ring/include/openssl/mem.h +101 -0
  200. data/vendor/ring/include/openssl/obj_mac.h +71 -0
  201. data/vendor/ring/include/openssl/opensslfeatures.h +68 -0
  202. data/vendor/ring/include/openssl/opensslv.h +18 -0
  203. data/vendor/ring/include/openssl/ossl_typ.h +18 -0
  204. data/vendor/ring/include/openssl/poly1305.h +51 -0
  205. data/vendor/ring/include/openssl/rand.h +70 -0
  206. data/vendor/ring/include/openssl/rsa.h +399 -0
  207. data/vendor/ring/include/openssl/thread.h +133 -0
  208. data/vendor/ring/include/openssl/type_check.h +71 -0
  209. data/vendor/ring/mk/Common.props +63 -0
  210. data/vendor/ring/mk/Windows.props +42 -0
  211. data/vendor/ring/mk/WindowsTest.props +18 -0
  212. data/vendor/ring/mk/appveyor.bat +62 -0
  213. data/vendor/ring/mk/bottom_of_makefile.mk +54 -0
  214. data/vendor/ring/mk/ring.mk +266 -0
  215. data/vendor/ring/mk/top_of_makefile.mk +214 -0
  216. data/vendor/ring/mk/travis.sh +40 -0
  217. data/vendor/ring/mk/update-travis-yml.py +229 -0
  218. data/vendor/ring/ring.sln +153 -0
  219. data/vendor/ring/src/aead.rs +682 -0
  220. data/vendor/ring/src/agreement.rs +248 -0
  221. data/vendor/ring/src/c.rs +129 -0
  222. data/vendor/ring/src/constant_time.rs +37 -0
  223. data/vendor/ring/src/der.rs +96 -0
  224. data/vendor/ring/src/digest.rs +690 -0
  225. data/vendor/ring/src/digest_tests.txt +57 -0
  226. data/vendor/ring/src/ecc.rs +28 -0
  227. data/vendor/ring/src/ecc_build.rs +279 -0
  228. data/vendor/ring/src/ecc_curves.rs +117 -0
  229. data/vendor/ring/src/ed25519_tests.txt +2579 -0
  230. data/vendor/ring/src/exe_tests.rs +46 -0
  231. data/vendor/ring/src/ffi.rs +29 -0
  232. data/vendor/ring/src/file_test.rs +187 -0
  233. data/vendor/ring/src/hkdf.rs +153 -0
  234. data/vendor/ring/src/hkdf_tests.txt +59 -0
  235. data/vendor/ring/src/hmac.rs +414 -0
  236. data/vendor/ring/src/hmac_tests.txt +97 -0
  237. data/vendor/ring/src/input.rs +312 -0
  238. data/vendor/ring/src/lib.rs +41 -0
  239. data/vendor/ring/src/pbkdf2.rs +265 -0
  240. data/vendor/ring/src/pbkdf2_tests.txt +113 -0
  241. data/vendor/ring/src/polyfill.rs +57 -0
  242. data/vendor/ring/src/rand.rs +28 -0
  243. data/vendor/ring/src/signature.rs +314 -0
  244. data/vendor/ring/third-party/NIST/README.md +9 -0
  245. data/vendor/ring/third-party/NIST/SHAVS/SHA1LongMsg.rsp +263 -0
  246. data/vendor/ring/third-party/NIST/SHAVS/SHA1Monte.rsp +309 -0
  247. data/vendor/ring/third-party/NIST/SHAVS/SHA1ShortMsg.rsp +267 -0
  248. data/vendor/ring/third-party/NIST/SHAVS/SHA224LongMsg.rsp +263 -0
  249. data/vendor/ring/third-party/NIST/SHAVS/SHA224Monte.rsp +309 -0
  250. data/vendor/ring/third-party/NIST/SHAVS/SHA224ShortMsg.rsp +267 -0
  251. data/vendor/ring/third-party/NIST/SHAVS/SHA256LongMsg.rsp +263 -0
  252. data/vendor/ring/third-party/NIST/SHAVS/SHA256Monte.rsp +309 -0
  253. data/vendor/ring/third-party/NIST/SHAVS/SHA256ShortMsg.rsp +267 -0
  254. data/vendor/ring/third-party/NIST/SHAVS/SHA384LongMsg.rsp +519 -0
  255. data/vendor/ring/third-party/NIST/SHAVS/SHA384Monte.rsp +309 -0
  256. data/vendor/ring/third-party/NIST/SHAVS/SHA384ShortMsg.rsp +523 -0
  257. data/vendor/ring/third-party/NIST/SHAVS/SHA512LongMsg.rsp +519 -0
  258. data/vendor/ring/third-party/NIST/SHAVS/SHA512Monte.rsp +309 -0
  259. data/vendor/ring/third-party/NIST/SHAVS/SHA512ShortMsg.rsp +523 -0
  260. data/vendor/ring/third-party/NIST/sha256sums.txt +1 -0
  261. metadata +333 -0
@@ -0,0 +1,1794 @@
1
+ /* Copyright (c) 2015, Google Inc.
2
+ *
3
+ * Permission to use, copy, modify, and/or distribute this software for any
4
+ * purpose with or without fee is hereby granted, provided that the above
5
+ * copyright notice and this permission notice appear in all copies.
6
+ *
7
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
+
15
+ /* A 64-bit implementation of the NIST P-256 elliptic curve point
16
+ * multiplication
17
+ *
18
+ * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
19
+ * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
20
+ * work which got its smarts from Daniel J. Bernstein's work on the same. */
21
+
22
+ #include <openssl/base.h>
23
+
24
+ #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS)
25
+
26
+ #include <openssl/bn.h>
27
+ #include <openssl/ec.h>
28
+ #include <openssl/err.h>
29
+ #include <openssl/mem.h>
30
+ #include <openssl/obj_mac.h>
31
+
32
+ #include <assert.h>
33
+ #include <string.h>
34
+
35
+ #include "internal.h"
36
+
37
+
38
+ typedef uint8_t u8;
39
+ typedef uint64_t u64;
40
+ typedef int64_t s64;
41
+ typedef __uint128_t uint128_t;
42
+ typedef __int128_t int128_t;
43
+
44
+ /* The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
45
+ * can serialise an element of this field into 32 bytes. We call this an
46
+ * felem_bytearray. */
47
+ typedef u8 felem_bytearray[32];
48
+
49
+
50
+ /* The representation of field elements.
51
+ * ------------------------------------
52
+ *
53
+ * We represent field elements with either four 128-bit values, eight 128-bit
54
+ * values, or four 64-bit values. The field element represented is:
55
+ * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
56
+ * or:
57
+ * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
58
+ *
59
+ * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
60
+ * apart, but are 128-bits wide, the most significant bits of each limb overlap
61
+ * with the least significant bits of the next.
62
+ *
63
+ * A field element with four limbs is an 'felem'. One with eight limbs is a
64
+ * 'longfelem'
65
+ *
66
+ * A field element with four, 64-bit values is called a 'smallfelem'. Small
67
+ * values are used as intermediate values before multiplication. */
68
+
69
+ #define NLIMBS 4
70
+
71
+ typedef uint128_t limb;
72
+ typedef limb felem[NLIMBS];
73
+ typedef limb longfelem[NLIMBS * 2];
74
+ typedef u64 smallfelem[NLIMBS];
75
+
76
+ /* This is the value of the prime as four 64-bit words, little-endian. */
77
+ static const u64 kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0,
78
+ 0xffffffff00000001ul};
79
+ static const u64 bottom63bits = 0x7ffffffffffffffful;
80
+
81
+ /* bin32_to_felem takes a little-endian byte array and converts it into felem
82
+ * form. This assumes that the CPU is little-endian. */
83
+ static void bin32_to_felem(felem out, const u8 in[32]) {
84
+ out[0] = *((u64 *)&in[0]);
85
+ out[1] = *((u64 *)&in[8]);
86
+ out[2] = *((u64 *)&in[16]);
87
+ out[3] = *((u64 *)&in[24]);
88
+ }
89
+
90
+ /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
91
+ * 32 byte array. This assumes that the CPU is little-endian. */
92
+ static void smallfelem_to_bin32(u8 out[32], const smallfelem in) {
93
+ *((u64 *)&out[0]) = in[0];
94
+ *((u64 *)&out[8]) = in[1];
95
+ *((u64 *)&out[16]) = in[2];
96
+ *((u64 *)&out[24]) = in[3];
97
+ }
98
+
99
+ /* To preserve endianness when using BN_bn2bin and BN_bin2bn. */
100
+ static void flip_endian(u8 *out, const u8 *in, unsigned len) {
101
+ unsigned i;
102
+ for (i = 0; i < len; ++i) {
103
+ out[i] = in[len - 1 - i];
104
+ }
105
+ }
106
+
107
+ /* BN_to_felem converts an OpenSSL BIGNUM into an felem. */
108
+ static int BN_to_felem(felem out, const BIGNUM *bn) {
109
+ if (BN_is_negative(bn)) {
110
+ OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
111
+ return 0;
112
+ }
113
+
114
+ felem_bytearray b_out;
115
+ /* BN_bn2bin eats leading zeroes */
116
+ memset(b_out, 0, sizeof(b_out));
117
+ unsigned num_bytes = BN_num_bytes(bn);
118
+ if (num_bytes > sizeof(b_out)) {
119
+ OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
120
+ return 0;
121
+ }
122
+
123
+ felem_bytearray b_in;
124
+ num_bytes = BN_bn2bin(bn, b_in);
125
+ flip_endian(b_out, b_in, num_bytes);
126
+ bin32_to_felem(out, b_out);
127
+ return 1;
128
+ }
129
+
130
+ /* felem_to_BN converts an felem into an OpenSSL BIGNUM. */
131
+ static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) {
132
+ felem_bytearray b_in, b_out;
133
+ smallfelem_to_bin32(b_in, in);
134
+ flip_endian(b_out, b_in, sizeof(b_out));
135
+ return BN_bin2bn(b_out, sizeof(b_out), out);
136
+ }
137
+
138
+ /* Field operations. */
139
+
140
+ static void smallfelem_one(smallfelem out) {
141
+ out[0] = 1;
142
+ out[1] = 0;
143
+ out[2] = 0;
144
+ out[3] = 0;
145
+ }
146
+
147
+ static void smallfelem_assign(smallfelem out, const smallfelem in) {
148
+ out[0] = in[0];
149
+ out[1] = in[1];
150
+ out[2] = in[2];
151
+ out[3] = in[3];
152
+ }
153
+
154
+ static void felem_assign(felem out, const felem in) {
155
+ out[0] = in[0];
156
+ out[1] = in[1];
157
+ out[2] = in[2];
158
+ out[3] = in[3];
159
+ }
160
+
161
+ /* felem_sum sets out = out + in. */
162
+ static void felem_sum(felem out, const felem in) {
163
+ out[0] += in[0];
164
+ out[1] += in[1];
165
+ out[2] += in[2];
166
+ out[3] += in[3];
167
+ }
168
+
169
+ /* felem_small_sum sets out = out + in. */
170
+ static void felem_small_sum(felem out, const smallfelem in) {
171
+ out[0] += in[0];
172
+ out[1] += in[1];
173
+ out[2] += in[2];
174
+ out[3] += in[3];
175
+ }
176
+
177
+ /* felem_scalar sets out = out * scalar */
178
+ static void felem_scalar(felem out, const u64 scalar) {
179
+ out[0] *= scalar;
180
+ out[1] *= scalar;
181
+ out[2] *= scalar;
182
+ out[3] *= scalar;
183
+ }
184
+
185
+ /* longfelem_scalar sets out = out * scalar */
186
+ static void longfelem_scalar(longfelem out, const u64 scalar) {
187
+ out[0] *= scalar;
188
+ out[1] *= scalar;
189
+ out[2] *= scalar;
190
+ out[3] *= scalar;
191
+ out[4] *= scalar;
192
+ out[5] *= scalar;
193
+ out[6] *= scalar;
194
+ out[7] *= scalar;
195
+ }
196
+
197
+ #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
198
+ #define two105 (((limb)1) << 105)
199
+ #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
200
+
201
+ /* zero105 is 0 mod p */
202
+ static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9};
203
+
204
+ /* smallfelem_neg sets |out| to |-small|
205
+ * On exit:
206
+ * out[i] < out[i] + 2^105 */
207
+ static void smallfelem_neg(felem out, const smallfelem small) {
208
+ /* In order to prevent underflow, we subtract from 0 mod p. */
209
+ out[0] = zero105[0] - small[0];
210
+ out[1] = zero105[1] - small[1];
211
+ out[2] = zero105[2] - small[2];
212
+ out[3] = zero105[3] - small[3];
213
+ }
214
+
215
+ /* felem_diff subtracts |in| from |out|
216
+ * On entry:
217
+ * in[i] < 2^104
218
+ * On exit:
219
+ * out[i] < out[i] + 2^105. */
220
+ static void felem_diff(felem out, const felem in) {
221
+ /* In order to prevent underflow, we add 0 mod p before subtracting. */
222
+ out[0] += zero105[0];
223
+ out[1] += zero105[1];
224
+ out[2] += zero105[2];
225
+ out[3] += zero105[3];
226
+
227
+ out[0] -= in[0];
228
+ out[1] -= in[1];
229
+ out[2] -= in[2];
230
+ out[3] -= in[3];
231
+ }
232
+
233
+ #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
234
+ #define two107 (((limb)1) << 107)
235
+ #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
236
+
237
+ /* zero107 is 0 mod p */
238
+ static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11};
239
+
240
+ /* An alternative felem_diff for larger inputs |in|
241
+ * felem_diff_zero107 subtracts |in| from |out|
242
+ * On entry:
243
+ * in[i] < 2^106
244
+ * On exit:
245
+ * out[i] < out[i] + 2^107. */
246
+ static void felem_diff_zero107(felem out, const felem in) {
247
+ /* In order to prevent underflow, we add 0 mod p before subtracting. */
248
+ out[0] += zero107[0];
249
+ out[1] += zero107[1];
250
+ out[2] += zero107[2];
251
+ out[3] += zero107[3];
252
+
253
+ out[0] -= in[0];
254
+ out[1] -= in[1];
255
+ out[2] -= in[2];
256
+ out[3] -= in[3];
257
+ }
258
+
259
+ /* longfelem_diff subtracts |in| from |out|
260
+ * On entry:
261
+ * in[i] < 7*2^67
262
+ * On exit:
263
+ * out[i] < out[i] + 2^70 + 2^40. */
264
+ static void longfelem_diff(longfelem out, const longfelem in) {
265
+ static const limb two70m8p6 =
266
+ (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
267
+ static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
268
+ static const limb two70 = (((limb)1) << 70);
269
+ static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) -
270
+ (((limb)1) << 38) + (((limb)1) << 6);
271
+ static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
272
+
273
+ /* add 0 mod p to avoid underflow */
274
+ out[0] += two70m8p6;
275
+ out[1] += two70p40;
276
+ out[2] += two70;
277
+ out[3] += two70m40m38p6;
278
+ out[4] += two70m6;
279
+ out[5] += two70m6;
280
+ out[6] += two70m6;
281
+ out[7] += two70m6;
282
+
283
+ /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
284
+ out[0] -= in[0];
285
+ out[1] -= in[1];
286
+ out[2] -= in[2];
287
+ out[3] -= in[3];
288
+ out[4] -= in[4];
289
+ out[5] -= in[5];
290
+ out[6] -= in[6];
291
+ out[7] -= in[7];
292
+ }
293
+
294
+ #define two64m0 (((limb)1) << 64) - 1
295
+ #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
296
+ #define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
297
+ #define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
298
+
299
+ /* zero110 is 0 mod p. */
300
+ static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32};
301
+
302
+ /* felem_shrink converts an felem into a smallfelem. The result isn't quite
303
+ * minimal as the value may be greater than p.
304
+ *
305
+ * On entry:
306
+ * in[i] < 2^109
307
+ * On exit:
308
+ * out[i] < 2^64. */
309
+ static void felem_shrink(smallfelem out, const felem in) {
310
+ felem tmp;
311
+ u64 a, b, mask;
312
+ s64 high, low;
313
+ static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
314
+
315
+ /* Carry 2->3 */
316
+ tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
317
+ /* tmp[3] < 2^110 */
318
+
319
+ tmp[2] = zero110[2] + (u64)in[2];
320
+ tmp[0] = zero110[0] + in[0];
321
+ tmp[1] = zero110[1] + in[1];
322
+ /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
323
+
324
+ /* We perform two partial reductions where we eliminate the high-word of
325
+ * tmp[3]. We don't update the other words till the end. */
326
+ a = tmp[3] >> 64; /* a < 2^46 */
327
+ tmp[3] = (u64)tmp[3];
328
+ tmp[3] -= a;
329
+ tmp[3] += ((limb)a) << 32;
330
+ /* tmp[3] < 2^79 */
331
+
332
+ b = a;
333
+ a = tmp[3] >> 64; /* a < 2^15 */
334
+ b += a; /* b < 2^46 + 2^15 < 2^47 */
335
+ tmp[3] = (u64)tmp[3];
336
+ tmp[3] -= a;
337
+ tmp[3] += ((limb)a) << 32;
338
+ /* tmp[3] < 2^64 + 2^47 */
339
+
340
+ /* This adjusts the other two words to complete the two partial
341
+ * reductions. */
342
+ tmp[0] += b;
343
+ tmp[1] -= (((limb)b) << 32);
344
+
345
+ /* In order to make space in tmp[3] for the carry from 2 -> 3, we
346
+ * conditionally subtract kPrime if tmp[3] is large enough. */
347
+ high = tmp[3] >> 64;
348
+ /* As tmp[3] < 2^65, high is either 1 or 0 */
349
+ high <<= 63;
350
+ high >>= 63;
351
+ /* high is:
352
+ * all ones if the high word of tmp[3] is 1
353
+ * all zeros if the high word of tmp[3] if 0 */
354
+ low = tmp[3];
355
+ mask = low >> 63;
356
+ /* mask is:
357
+ * all ones if the MSB of low is 1
358
+ * all zeros if the MSB of low if 0 */
359
+ low &= bottom63bits;
360
+ low -= kPrime3Test;
361
+ /* if low was greater than kPrime3Test then the MSB is zero */
362
+ low = ~low;
363
+ low >>= 63;
364
+ /* low is:
365
+ * all ones if low was > kPrime3Test
366
+ * all zeros if low was <= kPrime3Test */
367
+ mask = (mask & low) | high;
368
+ tmp[0] -= mask & kPrime[0];
369
+ tmp[1] -= mask & kPrime[1];
370
+ /* kPrime[2] is zero, so omitted */
371
+ tmp[3] -= mask & kPrime[3];
372
+ /* tmp[3] < 2**64 - 2**32 + 1 */
373
+
374
+ tmp[1] += ((u64)(tmp[0] >> 64));
375
+ tmp[0] = (u64)tmp[0];
376
+ tmp[2] += ((u64)(tmp[1] >> 64));
377
+ tmp[1] = (u64)tmp[1];
378
+ tmp[3] += ((u64)(tmp[2] >> 64));
379
+ tmp[2] = (u64)tmp[2];
380
+ /* tmp[i] < 2^64 */
381
+
382
+ out[0] = tmp[0];
383
+ out[1] = tmp[1];
384
+ out[2] = tmp[2];
385
+ out[3] = tmp[3];
386
+ }
387
+
388
+ /* smallfelem_expand converts a smallfelem to an felem */
389
+ static void smallfelem_expand(felem out, const smallfelem in) {
390
+ out[0] = in[0];
391
+ out[1] = in[1];
392
+ out[2] = in[2];
393
+ out[3] = in[3];
394
+ }
395
+
396
+ /* smallfelem_square sets |out| = |small|^2
397
+ * On entry:
398
+ * small[i] < 2^64
399
+ * On exit:
400
+ * out[i] < 7 * 2^64 < 2^67 */
401
+ static void smallfelem_square(longfelem out, const smallfelem small) {
402
+ limb a;
403
+ u64 high, low;
404
+
405
+ a = ((uint128_t)small[0]) * small[0];
406
+ low = a;
407
+ high = a >> 64;
408
+ out[0] = low;
409
+ out[1] = high;
410
+
411
+ a = ((uint128_t)small[0]) * small[1];
412
+ low = a;
413
+ high = a >> 64;
414
+ out[1] += low;
415
+ out[1] += low;
416
+ out[2] = high;
417
+
418
+ a = ((uint128_t)small[0]) * small[2];
419
+ low = a;
420
+ high = a >> 64;
421
+ out[2] += low;
422
+ out[2] *= 2;
423
+ out[3] = high;
424
+
425
+ a = ((uint128_t)small[0]) * small[3];
426
+ low = a;
427
+ high = a >> 64;
428
+ out[3] += low;
429
+ out[4] = high;
430
+
431
+ a = ((uint128_t)small[1]) * small[2];
432
+ low = a;
433
+ high = a >> 64;
434
+ out[3] += low;
435
+ out[3] *= 2;
436
+ out[4] += high;
437
+
438
+ a = ((uint128_t)small[1]) * small[1];
439
+ low = a;
440
+ high = a >> 64;
441
+ out[2] += low;
442
+ out[3] += high;
443
+
444
+ a = ((uint128_t)small[1]) * small[3];
445
+ low = a;
446
+ high = a >> 64;
447
+ out[4] += low;
448
+ out[4] *= 2;
449
+ out[5] = high;
450
+
451
+ a = ((uint128_t)small[2]) * small[3];
452
+ low = a;
453
+ high = a >> 64;
454
+ out[5] += low;
455
+ out[5] *= 2;
456
+ out[6] = high;
457
+ out[6] += high;
458
+
459
+ a = ((uint128_t)small[2]) * small[2];
460
+ low = a;
461
+ high = a >> 64;
462
+ out[4] += low;
463
+ out[5] += high;
464
+
465
+ a = ((uint128_t)small[3]) * small[3];
466
+ low = a;
467
+ high = a >> 64;
468
+ out[6] += low;
469
+ out[7] = high;
470
+ }
471
+
472
+ /*felem_square sets |out| = |in|^2
473
+ * On entry:
474
+ * in[i] < 2^109
475
+ * On exit:
476
+ * out[i] < 7 * 2^64 < 2^67. */
477
+ static void felem_square(longfelem out, const felem in) {
478
+ u64 small[4];
479
+ felem_shrink(small, in);
480
+ smallfelem_square(out, small);
481
+ }
482
+
483
+ /* smallfelem_mul sets |out| = |small1| * |small2|
484
+ * On entry:
485
+ * small1[i] < 2^64
486
+ * small2[i] < 2^64
487
+ * On exit:
488
+ * out[i] < 7 * 2^64 < 2^67. */
489
+ static void smallfelem_mul(longfelem out, const smallfelem small1,
490
+ const smallfelem small2) {
491
+ limb a;
492
+ u64 high, low;
493
+
494
+ a = ((uint128_t)small1[0]) * small2[0];
495
+ low = a;
496
+ high = a >> 64;
497
+ out[0] = low;
498
+ out[1] = high;
499
+
500
+ a = ((uint128_t)small1[0]) * small2[1];
501
+ low = a;
502
+ high = a >> 64;
503
+ out[1] += low;
504
+ out[2] = high;
505
+
506
+ a = ((uint128_t)small1[1]) * small2[0];
507
+ low = a;
508
+ high = a >> 64;
509
+ out[1] += low;
510
+ out[2] += high;
511
+
512
+ a = ((uint128_t)small1[0]) * small2[2];
513
+ low = a;
514
+ high = a >> 64;
515
+ out[2] += low;
516
+ out[3] = high;
517
+
518
+ a = ((uint128_t)small1[1]) * small2[1];
519
+ low = a;
520
+ high = a >> 64;
521
+ out[2] += low;
522
+ out[3] += high;
523
+
524
+ a = ((uint128_t)small1[2]) * small2[0];
525
+ low = a;
526
+ high = a >> 64;
527
+ out[2] += low;
528
+ out[3] += high;
529
+
530
+ a = ((uint128_t)small1[0]) * small2[3];
531
+ low = a;
532
+ high = a >> 64;
533
+ out[3] += low;
534
+ out[4] = high;
535
+
536
+ a = ((uint128_t)small1[1]) * small2[2];
537
+ low = a;
538
+ high = a >> 64;
539
+ out[3] += low;
540
+ out[4] += high;
541
+
542
+ a = ((uint128_t)small1[2]) * small2[1];
543
+ low = a;
544
+ high = a >> 64;
545
+ out[3] += low;
546
+ out[4] += high;
547
+
548
+ a = ((uint128_t)small1[3]) * small2[0];
549
+ low = a;
550
+ high = a >> 64;
551
+ out[3] += low;
552
+ out[4] += high;
553
+
554
+ a = ((uint128_t)small1[1]) * small2[3];
555
+ low = a;
556
+ high = a >> 64;
557
+ out[4] += low;
558
+ out[5] = high;
559
+
560
+ a = ((uint128_t)small1[2]) * small2[2];
561
+ low = a;
562
+ high = a >> 64;
563
+ out[4] += low;
564
+ out[5] += high;
565
+
566
+ a = ((uint128_t)small1[3]) * small2[1];
567
+ low = a;
568
+ high = a >> 64;
569
+ out[4] += low;
570
+ out[5] += high;
571
+
572
+ a = ((uint128_t)small1[2]) * small2[3];
573
+ low = a;
574
+ high = a >> 64;
575
+ out[5] += low;
576
+ out[6] = high;
577
+
578
+ a = ((uint128_t)small1[3]) * small2[2];
579
+ low = a;
580
+ high = a >> 64;
581
+ out[5] += low;
582
+ out[6] += high;
583
+
584
+ a = ((uint128_t)small1[3]) * small2[3];
585
+ low = a;
586
+ high = a >> 64;
587
+ out[6] += low;
588
+ out[7] = high;
589
+ }
590
+
591
+ /* felem_mul sets |out| = |in1| * |in2|
592
+ * On entry:
593
+ * in1[i] < 2^109
594
+ * in2[i] < 2^109
595
+ * On exit:
596
+ * out[i] < 7 * 2^64 < 2^67 */
597
+ static void felem_mul(longfelem out, const felem in1, const felem in2) {
598
+ smallfelem small1, small2;
599
+ felem_shrink(small1, in1);
600
+ felem_shrink(small2, in2);
601
+ smallfelem_mul(out, small1, small2);
602
+ }
603
+
604
+ /* felem_small_mul sets |out| = |small1| * |in2|
605
+ * On entry:
606
+ * small1[i] < 2^64
607
+ * in2[i] < 2^109
608
+ * On exit:
609
+ * out[i] < 7 * 2^64 < 2^67 */
610
+ static void felem_small_mul(longfelem out, const smallfelem small1,
611
+ const felem in2) {
612
+ smallfelem small2;
613
+ felem_shrink(small2, in2);
614
+ smallfelem_mul(out, small1, small2);
615
+ }
616
+
617
+ #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
618
+ #define two100 (((limb)1) << 100)
619
+ #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
620
+
621
+ /* zero100 is 0 mod p */
622
+ static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4};
623
+
624
+ /* Internal function for the different flavours of felem_reduce.
625
+ * felem_reduce_ reduces the higher coefficients in[4]-in[7].
626
+ * On entry:
627
+ * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
628
+ * out[1] >= in[7] + 2^32*in[4]
629
+ * out[2] >= in[5] + 2^32*in[5]
630
+ * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
631
+ * On exit:
632
+ * out[0] <= out[0] + in[4] + 2^32*in[5]
633
+ * out[1] <= out[1] + in[5] + 2^33*in[6]
634
+ * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
635
+ * out[3] <= out[3] + 2^32*in[4] + 3*in[7] */
636
+ static void felem_reduce_(felem out, const longfelem in) {
637
+ int128_t c;
638
+ /* combine common terms from below */
639
+ c = in[4] + (in[5] << 32);
640
+ out[0] += c;
641
+ out[3] -= c;
642
+
643
+ c = in[5] - in[7];
644
+ out[1] += c;
645
+ out[2] -= c;
646
+
647
+ /* the remaining terms */
648
+ /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
649
+ out[1] -= (in[4] << 32);
650
+ out[3] += (in[4] << 32);
651
+
652
+ /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
653
+ out[2] -= (in[5] << 32);
654
+
655
+ /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
656
+ out[0] -= in[6];
657
+ out[0] -= (in[6] << 32);
658
+ out[1] += (in[6] << 33);
659
+ out[2] += (in[6] * 2);
660
+ out[3] -= (in[6] << 32);
661
+
662
+ /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
663
+ out[0] -= in[7];
664
+ out[0] -= (in[7] << 32);
665
+ out[2] += (in[7] << 33);
666
+ out[3] += (in[7] * 3);
667
+ }
668
+
669
+ /* felem_reduce converts a longfelem into an felem.
670
+ * To be called directly after felem_square or felem_mul.
671
+ * On entry:
672
+ * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
673
+ * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
674
+ * On exit:
675
+ * out[i] < 2^101 */
676
+ static void felem_reduce(felem out, const longfelem in) {
677
+ out[0] = zero100[0] + in[0];
678
+ out[1] = zero100[1] + in[1];
679
+ out[2] = zero100[2] + in[2];
680
+ out[3] = zero100[3] + in[3];
681
+
682
+ felem_reduce_(out, in);
683
+
684
+ /* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
685
+ * out[1] > 2^100 - 2^64 - 7*2^96 > 0
686
+ * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
687
+ * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
688
+ *
689
+ * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
690
+ * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
691
+ * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
692
+ * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 */
693
+ }
694
+
695
+ /* felem_reduce_zero105 converts a larger longfelem into an felem.
696
+ * On entry:
697
+ * in[0] < 2^71
698
+ * On exit:
699
+ * out[i] < 2^106 */
700
+ static void felem_reduce_zero105(felem out, const longfelem in) {
701
+ out[0] = zero105[0] + in[0];
702
+ out[1] = zero105[1] + in[1];
703
+ out[2] = zero105[2] + in[2];
704
+ out[3] = zero105[3] + in[3];
705
+
706
+ felem_reduce_(out, in);
707
+
708
+ /* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
709
+ * out[1] > 2^105 - 2^71 - 2^103 > 0
710
+ * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
711
+ * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
712
+ *
713
+ * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
714
+ * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
715
+ * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
716
+ * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 */
717
+ }
718
+
719
+ /* subtract_u64 sets *result = *result - v and *carry to one if the
720
+ * subtraction underflowed. */
721
+ static void subtract_u64(u64 *result, u64 *carry, u64 v) {
722
+ uint128_t r = *result;
723
+ r -= v;
724
+ *carry = (r >> 64) & 1;
725
+ *result = (u64)r;
726
+ }
727
+
728
+ /* felem_contract converts |in| to its unique, minimal representation. On
729
+ * entry: in[i] < 2^109. */
730
+ static void felem_contract(smallfelem out, const felem in) {
731
+ u64 all_equal_so_far = 0, result = 0;
732
+
733
+ felem_shrink(out, in);
734
+ /* small is minimal except that the value might be > p */
735
+
736
+ all_equal_so_far--;
737
+ /* We are doing a constant time test if out >= kPrime. We need to compare
738
+ * each u64, from most-significant to least significant. For each one, if
739
+ * all words so far have been equal (m is all ones) then a non-equal
740
+ * result is the answer. Otherwise we continue. */
741
+ unsigned i;
742
+ for (i = 3; i < 4; i--) {
743
+ u64 equal;
744
+ uint128_t a = ((uint128_t)kPrime[i]) - out[i];
745
+ /* if out[i] > kPrime[i] then a will underflow and the high 64-bits
746
+ * will all be set. */
747
+ result |= all_equal_so_far & ((u64)(a >> 64));
748
+
749
+ /* if kPrime[i] == out[i] then |equal| will be all zeros and the
750
+ * decrement will make it all ones. */
751
+ equal = kPrime[i] ^ out[i];
752
+ equal--;
753
+ equal &= equal << 32;
754
+ equal &= equal << 16;
755
+ equal &= equal << 8;
756
+ equal &= equal << 4;
757
+ equal &= equal << 2;
758
+ equal &= equal << 1;
759
+ equal = ((s64)equal) >> 63;
760
+
761
+ all_equal_so_far &= equal;
762
+ }
763
+
764
+ /* if all_equal_so_far is still all ones then the two values are equal
765
+ * and so out >= kPrime is true. */
766
+ result |= all_equal_so_far;
767
+
768
+ /* if out >= kPrime then we subtract kPrime. */
769
+ u64 carry;
770
+ subtract_u64(&out[0], &carry, result & kPrime[0]);
771
+ subtract_u64(&out[1], &carry, carry);
772
+ subtract_u64(&out[2], &carry, carry);
773
+ subtract_u64(&out[3], &carry, carry);
774
+
775
+ subtract_u64(&out[1], &carry, result & kPrime[1]);
776
+ subtract_u64(&out[2], &carry, carry);
777
+ subtract_u64(&out[3], &carry, carry);
778
+
779
+ subtract_u64(&out[2], &carry, result & kPrime[2]);
780
+ subtract_u64(&out[3], &carry, carry);
781
+
782
+ subtract_u64(&out[3], &carry, result & kPrime[3]);
783
+ }
784
+
785
+ static void smallfelem_square_contract(smallfelem out, const smallfelem in) {
786
+ longfelem longtmp;
787
+ felem tmp;
788
+
789
+ smallfelem_square(longtmp, in);
790
+ felem_reduce(tmp, longtmp);
791
+ felem_contract(out, tmp);
792
+ }
793
+
794
+ static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
795
+ const smallfelem in2) {
796
+ longfelem longtmp;
797
+ felem tmp;
798
+
799
+ smallfelem_mul(longtmp, in1, in2);
800
+ felem_reduce(tmp, longtmp);
801
+ felem_contract(out, tmp);
802
+ }
803
+
804
+ /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
805
+ * otherwise.
806
+ * On entry:
807
+ * small[i] < 2^64 */
808
+ static limb smallfelem_is_zero(const smallfelem small) {
809
+ limb result;
810
+ u64 is_p;
811
+
812
+ u64 is_zero = small[0] | small[1] | small[2] | small[3];
813
+ is_zero--;
814
+ is_zero &= is_zero << 32;
815
+ is_zero &= is_zero << 16;
816
+ is_zero &= is_zero << 8;
817
+ is_zero &= is_zero << 4;
818
+ is_zero &= is_zero << 2;
819
+ is_zero &= is_zero << 1;
820
+ is_zero = ((s64)is_zero) >> 63;
821
+
822
+ is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) |
823
+ (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
824
+ is_p--;
825
+ is_p &= is_p << 32;
826
+ is_p &= is_p << 16;
827
+ is_p &= is_p << 8;
828
+ is_p &= is_p << 4;
829
+ is_p &= is_p << 2;
830
+ is_p &= is_p << 1;
831
+ is_p = ((s64)is_p) >> 63;
832
+
833
+ is_zero |= is_p;
834
+
835
+ result = is_zero;
836
+ result |= ((limb)is_zero) << 64;
837
+ return result;
838
+ }
839
+
840
+ static int smallfelem_is_zero_int(const smallfelem small) {
841
+ return (int)(smallfelem_is_zero(small) & ((limb)1));
842
+ }
843
+
844
+ /* felem_inv calculates |out| = |in|^{-1}
845
+ *
846
+ * Based on Fermat's Little Theorem:
847
+ * a^p = a (mod p)
848
+ * a^{p-1} = 1 (mod p)
849
+ * a^{p-2} = a^{-1} (mod p) */
850
+ static void felem_inv(felem out, const felem in) {
851
+ felem ftmp, ftmp2;
852
+ /* each e_I will hold |in|^{2^I - 1} */
853
+ felem e2, e4, e8, e16, e32, e64;
854
+ longfelem tmp;
855
+ unsigned i;
856
+
857
+ felem_square(tmp, in);
858
+ felem_reduce(ftmp, tmp); /* 2^1 */
859
+ felem_mul(tmp, in, ftmp);
860
+ felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
861
+ felem_assign(e2, ftmp);
862
+ felem_square(tmp, ftmp);
863
+ felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
864
+ felem_square(tmp, ftmp);
865
+ felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
866
+ felem_mul(tmp, ftmp, e2);
867
+ felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
868
+ felem_assign(e4, ftmp);
869
+ felem_square(tmp, ftmp);
870
+ felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
871
+ felem_square(tmp, ftmp);
872
+ felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
873
+ felem_square(tmp, ftmp);
874
+ felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
875
+ felem_square(tmp, ftmp);
876
+ felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
877
+ felem_mul(tmp, ftmp, e4);
878
+ felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
879
+ felem_assign(e8, ftmp);
880
+ for (i = 0; i < 8; i++) {
881
+ felem_square(tmp, ftmp);
882
+ felem_reduce(ftmp, tmp);
883
+ } /* 2^16 - 2^8 */
884
+ felem_mul(tmp, ftmp, e8);
885
+ felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
886
+ felem_assign(e16, ftmp);
887
+ for (i = 0; i < 16; i++) {
888
+ felem_square(tmp, ftmp);
889
+ felem_reduce(ftmp, tmp);
890
+ } /* 2^32 - 2^16 */
891
+ felem_mul(tmp, ftmp, e16);
892
+ felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
893
+ felem_assign(e32, ftmp);
894
+ for (i = 0; i < 32; i++) {
895
+ felem_square(tmp, ftmp);
896
+ felem_reduce(ftmp, tmp);
897
+ } /* 2^64 - 2^32 */
898
+ felem_assign(e64, ftmp);
899
+ felem_mul(tmp, ftmp, in);
900
+ felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
901
+ for (i = 0; i < 192; i++) {
902
+ felem_square(tmp, ftmp);
903
+ felem_reduce(ftmp, tmp);
904
+ } /* 2^256 - 2^224 + 2^192 */
905
+
906
+ felem_mul(tmp, e64, e32);
907
+ felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
908
+ for (i = 0; i < 16; i++) {
909
+ felem_square(tmp, ftmp2);
910
+ felem_reduce(ftmp2, tmp);
911
+ } /* 2^80 - 2^16 */
912
+ felem_mul(tmp, ftmp2, e16);
913
+ felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
914
+ for (i = 0; i < 8; i++) {
915
+ felem_square(tmp, ftmp2);
916
+ felem_reduce(ftmp2, tmp);
917
+ } /* 2^88 - 2^8 */
918
+ felem_mul(tmp, ftmp2, e8);
919
+ felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
920
+ for (i = 0; i < 4; i++) {
921
+ felem_square(tmp, ftmp2);
922
+ felem_reduce(ftmp2, tmp);
923
+ } /* 2^92 - 2^4 */
924
+ felem_mul(tmp, ftmp2, e4);
925
+ felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
926
+ felem_square(tmp, ftmp2);
927
+ felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
928
+ felem_square(tmp, ftmp2);
929
+ felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
930
+ felem_mul(tmp, ftmp2, e2);
931
+ felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
932
+ felem_square(tmp, ftmp2);
933
+ felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
934
+ felem_square(tmp, ftmp2);
935
+ felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
936
+ felem_mul(tmp, ftmp2, in);
937
+ felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
938
+
939
+ felem_mul(tmp, ftmp2, ftmp);
940
+ felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
941
+ }
942
+
943
+ static void smallfelem_inv_contract(smallfelem out, const smallfelem in) {
944
+ felem tmp;
945
+
946
+ smallfelem_expand(tmp, in);
947
+ felem_inv(tmp, tmp);
948
+ felem_contract(out, tmp);
949
+ }
950
+
951
+ /* Group operations
952
+ * ----------------
953
+ *
954
+ * Building on top of the field operations we have the operations on the
955
+ * elliptic curve group itself. Points on the curve are represented in Jacobian
956
+ * coordinates. */
957
+
958
+ /* point_double calculates 2*(x_in, y_in, z_in)
959
+ *
960
+ * The method is taken from:
961
+ * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
962
+ *
963
+ * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
964
+ * while x_out == y_in is not (maybe this works, but it's not tested). */
965
+ static void point_double(felem x_out, felem y_out, felem z_out,
966
+ const felem x_in, const felem y_in, const felem z_in) {
967
+ longfelem tmp, tmp2;
968
+ felem delta, gamma, beta, alpha, ftmp, ftmp2;
969
+ smallfelem small1, small2;
970
+
971
+ felem_assign(ftmp, x_in);
972
+ /* ftmp[i] < 2^106 */
973
+ felem_assign(ftmp2, x_in);
974
+ /* ftmp2[i] < 2^106 */
975
+
976
+ /* delta = z^2 */
977
+ felem_square(tmp, z_in);
978
+ felem_reduce(delta, tmp);
979
+ /* delta[i] < 2^101 */
980
+
981
+ /* gamma = y^2 */
982
+ felem_square(tmp, y_in);
983
+ felem_reduce(gamma, tmp);
984
+ /* gamma[i] < 2^101 */
985
+ felem_shrink(small1, gamma);
986
+
987
+ /* beta = x*gamma */
988
+ felem_small_mul(tmp, small1, x_in);
989
+ felem_reduce(beta, tmp);
990
+ /* beta[i] < 2^101 */
991
+
992
+ /* alpha = 3*(x-delta)*(x+delta) */
993
+ felem_diff(ftmp, delta);
994
+ /* ftmp[i] < 2^105 + 2^106 < 2^107 */
995
+ felem_sum(ftmp2, delta);
996
+ /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
997
+ felem_scalar(ftmp2, 3);
998
+ /* ftmp2[i] < 3 * 2^107 < 2^109 */
999
+ felem_mul(tmp, ftmp, ftmp2);
1000
+ felem_reduce(alpha, tmp);
1001
+ /* alpha[i] < 2^101 */
1002
+ felem_shrink(small2, alpha);
1003
+
1004
+ /* x' = alpha^2 - 8*beta */
1005
+ smallfelem_square(tmp, small2);
1006
+ felem_reduce(x_out, tmp);
1007
+ felem_assign(ftmp, beta);
1008
+ felem_scalar(ftmp, 8);
1009
+ /* ftmp[i] < 8 * 2^101 = 2^104 */
1010
+ felem_diff(x_out, ftmp);
1011
+ /* x_out[i] < 2^105 + 2^101 < 2^106 */
1012
+
1013
+ /* z' = (y + z)^2 - gamma - delta */
1014
+ felem_sum(delta, gamma);
1015
+ /* delta[i] < 2^101 + 2^101 = 2^102 */
1016
+ felem_assign(ftmp, y_in);
1017
+ felem_sum(ftmp, z_in);
1018
+ /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1019
+ felem_square(tmp, ftmp);
1020
+ felem_reduce(z_out, tmp);
1021
+ felem_diff(z_out, delta);
1022
+ /* z_out[i] < 2^105 + 2^101 < 2^106 */
1023
+
1024
+ /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1025
+ felem_scalar(beta, 4);
1026
+ /* beta[i] < 4 * 2^101 = 2^103 */
1027
+ felem_diff_zero107(beta, x_out);
1028
+ /* beta[i] < 2^107 + 2^103 < 2^108 */
1029
+ felem_small_mul(tmp, small2, beta);
1030
+ /* tmp[i] < 7 * 2^64 < 2^67 */
1031
+ smallfelem_square(tmp2, small1);
1032
+ /* tmp2[i] < 7 * 2^64 */
1033
+ longfelem_scalar(tmp2, 8);
1034
+ /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1035
+ longfelem_diff(tmp, tmp2);
1036
+ /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1037
+ felem_reduce_zero105(y_out, tmp);
1038
+ /* y_out[i] < 2^106 */
1039
+ }
1040
+
1041
+ /* point_double_small is the same as point_double, except that it operates on
1042
+ * smallfelems. */
1043
+ static void point_double_small(smallfelem x_out, smallfelem y_out,
1044
+ smallfelem z_out, const smallfelem x_in,
1045
+ const smallfelem y_in, const smallfelem z_in) {
1046
+ felem felem_x_out, felem_y_out, felem_z_out;
1047
+ felem felem_x_in, felem_y_in, felem_z_in;
1048
+
1049
+ smallfelem_expand(felem_x_in, x_in);
1050
+ smallfelem_expand(felem_y_in, y_in);
1051
+ smallfelem_expand(felem_z_in, z_in);
1052
+ point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in,
1053
+ felem_z_in);
1054
+ felem_shrink(x_out, felem_x_out);
1055
+ felem_shrink(y_out, felem_y_out);
1056
+ felem_shrink(z_out, felem_z_out);
1057
+ }
1058
+
1059
+ /* copy_conditional copies in to out iff mask is all ones. */
1060
+ static void copy_conditional(felem out, const felem in, limb mask) {
1061
+ unsigned i;
1062
+ for (i = 0; i < NLIMBS; ++i) {
1063
+ const limb tmp = mask & (in[i] ^ out[i]);
1064
+ out[i] ^= tmp;
1065
+ }
1066
+ }
1067
+
1068
+ /* copy_small_conditional copies in to out iff mask is all ones. */
1069
+ static void copy_small_conditional(felem out, const smallfelem in, limb mask) {
1070
+ unsigned i;
1071
+ const u64 mask64 = mask;
1072
+ for (i = 0; i < NLIMBS; ++i) {
1073
+ out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask);
1074
+ }
1075
+ }
1076
+
1077
+ /* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1078
+ *
1079
+ * The method is taken from:
1080
+ * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1081
+ * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1082
+ *
1083
+ * This function includes a branch for checking whether the two input points
1084
+ * are equal, (while not equal to the point at infinity). This case never
1085
+ * happens during single point multiplication, so there is no timing leak for
1086
+ * ECDH or ECDSA signing. */
1087
+ static void point_add(felem x3, felem y3, felem z3, const felem x1,
1088
+ const felem y1, const felem z1, const int mixed,
1089
+ const smallfelem x2, const smallfelem y2,
1090
+ const smallfelem z2) {
1091
+ felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1092
+ longfelem tmp, tmp2;
1093
+ smallfelem small1, small2, small3, small4, small5;
1094
+ limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1095
+
1096
+ felem_shrink(small3, z1);
1097
+
1098
+ z1_is_zero = smallfelem_is_zero(small3);
1099
+ z2_is_zero = smallfelem_is_zero(z2);
1100
+
1101
+ /* ftmp = z1z1 = z1**2 */
1102
+ smallfelem_square(tmp, small3);
1103
+ felem_reduce(ftmp, tmp);
1104
+ /* ftmp[i] < 2^101 */
1105
+ felem_shrink(small1, ftmp);
1106
+
1107
+ if (!mixed) {
1108
+ /* ftmp2 = z2z2 = z2**2 */
1109
+ smallfelem_square(tmp, z2);
1110
+ felem_reduce(ftmp2, tmp);
1111
+ /* ftmp2[i] < 2^101 */
1112
+ felem_shrink(small2, ftmp2);
1113
+
1114
+ felem_shrink(small5, x1);
1115
+
1116
+ /* u1 = ftmp3 = x1*z2z2 */
1117
+ smallfelem_mul(tmp, small5, small2);
1118
+ felem_reduce(ftmp3, tmp);
1119
+ /* ftmp3[i] < 2^101 */
1120
+
1121
+ /* ftmp5 = z1 + z2 */
1122
+ felem_assign(ftmp5, z1);
1123
+ felem_small_sum(ftmp5, z2);
1124
+ /* ftmp5[i] < 2^107 */
1125
+
1126
+ /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1127
+ felem_square(tmp, ftmp5);
1128
+ felem_reduce(ftmp5, tmp);
1129
+ /* ftmp2 = z2z2 + z1z1 */
1130
+ felem_sum(ftmp2, ftmp);
1131
+ /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1132
+ felem_diff(ftmp5, ftmp2);
1133
+ /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1134
+
1135
+ /* ftmp2 = z2 * z2z2 */
1136
+ smallfelem_mul(tmp, small2, z2);
1137
+ felem_reduce(ftmp2, tmp);
1138
+
1139
+ /* s1 = ftmp2 = y1 * z2**3 */
1140
+ felem_mul(tmp, y1, ftmp2);
1141
+ felem_reduce(ftmp6, tmp);
1142
+ /* ftmp6[i] < 2^101 */
1143
+ } else {
1144
+ /* We'll assume z2 = 1 (special case z2 = 0 is handled later). */
1145
+
1146
+ /* u1 = ftmp3 = x1*z2z2 */
1147
+ felem_assign(ftmp3, x1);
1148
+ /* ftmp3[i] < 2^106 */
1149
+
1150
+ /* ftmp5 = 2z1z2 */
1151
+ felem_assign(ftmp5, z1);
1152
+ felem_scalar(ftmp5, 2);
1153
+ /* ftmp5[i] < 2*2^106 = 2^107 */
1154
+
1155
+ /* s1 = ftmp2 = y1 * z2**3 */
1156
+ felem_assign(ftmp6, y1);
1157
+ /* ftmp6[i] < 2^106 */
1158
+ }
1159
+
1160
+ /* u2 = x2*z1z1 */
1161
+ smallfelem_mul(tmp, x2, small1);
1162
+ felem_reduce(ftmp4, tmp);
1163
+
1164
+ /* h = ftmp4 = u2 - u1 */
1165
+ felem_diff_zero107(ftmp4, ftmp3);
1166
+ /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1167
+ felem_shrink(small4, ftmp4);
1168
+
1169
+ x_equal = smallfelem_is_zero(small4);
1170
+
1171
+ /* z_out = ftmp5 * h */
1172
+ felem_small_mul(tmp, small4, ftmp5);
1173
+ felem_reduce(z_out, tmp);
1174
+ /* z_out[i] < 2^101 */
1175
+
1176
+ /* ftmp = z1 * z1z1 */
1177
+ smallfelem_mul(tmp, small1, small3);
1178
+ felem_reduce(ftmp, tmp);
1179
+
1180
+ /* s2 = tmp = y2 * z1**3 */
1181
+ felem_small_mul(tmp, y2, ftmp);
1182
+ felem_reduce(ftmp5, tmp);
1183
+
1184
+ /* r = ftmp5 = (s2 - s1)*2 */
1185
+ felem_diff_zero107(ftmp5, ftmp6);
1186
+ /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1187
+ felem_scalar(ftmp5, 2);
1188
+ /* ftmp5[i] < 2^109 */
1189
+ felem_shrink(small1, ftmp5);
1190
+ y_equal = smallfelem_is_zero(small1);
1191
+
1192
+ if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1193
+ point_double(x3, y3, z3, x1, y1, z1);
1194
+ return;
1195
+ }
1196
+
1197
+ /* I = ftmp = (2h)**2 */
1198
+ felem_assign(ftmp, ftmp4);
1199
+ felem_scalar(ftmp, 2);
1200
+ /* ftmp[i] < 2*2^108 = 2^109 */
1201
+ felem_square(tmp, ftmp);
1202
+ felem_reduce(ftmp, tmp);
1203
+
1204
+ /* J = ftmp2 = h * I */
1205
+ felem_mul(tmp, ftmp4, ftmp);
1206
+ felem_reduce(ftmp2, tmp);
1207
+
1208
+ /* V = ftmp4 = U1 * I */
1209
+ felem_mul(tmp, ftmp3, ftmp);
1210
+ felem_reduce(ftmp4, tmp);
1211
+
1212
+ /* x_out = r**2 - J - 2V */
1213
+ smallfelem_square(tmp, small1);
1214
+ felem_reduce(x_out, tmp);
1215
+ felem_assign(ftmp3, ftmp4);
1216
+ felem_scalar(ftmp4, 2);
1217
+ felem_sum(ftmp4, ftmp2);
1218
+ /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1219
+ felem_diff(x_out, ftmp4);
1220
+ /* x_out[i] < 2^105 + 2^101 */
1221
+
1222
+ /* y_out = r(V-x_out) - 2 * s1 * J */
1223
+ felem_diff_zero107(ftmp3, x_out);
1224
+ /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1225
+ felem_small_mul(tmp, small1, ftmp3);
1226
+ felem_mul(tmp2, ftmp6, ftmp2);
1227
+ longfelem_scalar(tmp2, 2);
1228
+ /* tmp2[i] < 2*2^67 = 2^68 */
1229
+ longfelem_diff(tmp, tmp2);
1230
+ /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1231
+ felem_reduce_zero105(y_out, tmp);
1232
+ /* y_out[i] < 2^106 */
1233
+
1234
+ copy_small_conditional(x_out, x2, z1_is_zero);
1235
+ copy_conditional(x_out, x1, z2_is_zero);
1236
+ copy_small_conditional(y_out, y2, z1_is_zero);
1237
+ copy_conditional(y_out, y1, z2_is_zero);
1238
+ copy_small_conditional(z_out, z2, z1_is_zero);
1239
+ copy_conditional(z_out, z1, z2_is_zero);
1240
+ felem_assign(x3, x_out);
1241
+ felem_assign(y3, y_out);
1242
+ felem_assign(z3, z_out);
1243
+ }
1244
+
1245
+ /* point_add_small is the same as point_add, except that it operates on
1246
+ * smallfelems. */
1247
+ static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1248
+ smallfelem x1, smallfelem y1, smallfelem z1,
1249
+ smallfelem x2, smallfelem y2, smallfelem z2) {
1250
+ felem felem_x3, felem_y3, felem_z3;
1251
+ felem felem_x1, felem_y1, felem_z1;
1252
+ smallfelem_expand(felem_x1, x1);
1253
+ smallfelem_expand(felem_y1, y1);
1254
+ smallfelem_expand(felem_z1, z1);
1255
+ point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2,
1256
+ y2, z2);
1257
+ felem_shrink(x3, felem_x3);
1258
+ felem_shrink(y3, felem_y3);
1259
+ felem_shrink(z3, felem_z3);
1260
+ }
1261
+
1262
+ /* Base point pre computation
1263
+ * --------------------------
1264
+ *
1265
+ * Two different sorts of precomputed tables are used in the following code.
1266
+ * Each contain various points on the curve, where each point is three field
1267
+ * elements (x, y, z).
1268
+ *
1269
+ * For the base point table, z is usually 1 (0 for the point at infinity).
1270
+ * This table has 2 * 16 elements, starting with the following:
1271
+ * index | bits | point
1272
+ * ------+---------+------------------------------
1273
+ * 0 | 0 0 0 0 | 0G
1274
+ * 1 | 0 0 0 1 | 1G
1275
+ * 2 | 0 0 1 0 | 2^64G
1276
+ * 3 | 0 0 1 1 | (2^64 + 1)G
1277
+ * 4 | 0 1 0 0 | 2^128G
1278
+ * 5 | 0 1 0 1 | (2^128 + 1)G
1279
+ * 6 | 0 1 1 0 | (2^128 + 2^64)G
1280
+ * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1281
+ * 8 | 1 0 0 0 | 2^192G
1282
+ * 9 | 1 0 0 1 | (2^192 + 1)G
1283
+ * 10 | 1 0 1 0 | (2^192 + 2^64)G
1284
+ * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1285
+ * 12 | 1 1 0 0 | (2^192 + 2^128)G
1286
+ * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1287
+ * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1288
+ * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1289
+ * followed by a copy of this with each element multiplied by 2^32.
1290
+ *
1291
+ * The reason for this is so that we can clock bits into four different
1292
+ * locations when doing simple scalar multiplies against the base point,
1293
+ * and then another four locations using the second 16 elements.
1294
+ *
1295
+ * Tables for other points have table[i] = iG for i in 0 .. 16. */
1296
+
1297
+ /* g_pre_comp is the table of precomputed base points */
1298
+ static const smallfelem g_pre_comp[2][16][3] = {
1299
+ {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
1300
+ {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1301
+ 0x6b17d1f2e12c4247},
1302
+ {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1303
+ 0x4fe342e2fe1a7f9b},
1304
+ {1, 0, 0, 0}},
1305
+ {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1306
+ 0x0fa822bc2811aaa5},
1307
+ {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1308
+ 0xbff44ae8f5dba80d},
1309
+ {1, 0, 0, 0}},
1310
+ {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1311
+ 0x300a4bbc89d6726f},
1312
+ {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1313
+ 0x72aac7e0d09b4644},
1314
+ {1, 0, 0, 0}},
1315
+ {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1316
+ 0x447d739beedb5e67},
1317
+ {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1318
+ 0x2d4825ab834131ee},
1319
+ {1, 0, 0, 0}},
1320
+ {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1321
+ 0xef9519328a9c72ff},
1322
+ {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1323
+ 0x611e9fc37dbb2c9b},
1324
+ {1, 0, 0, 0}},
1325
+ {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1326
+ 0x550663797b51f5d8},
1327
+ {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1328
+ 0x157164848aecb851},
1329
+ {1, 0, 0, 0}},
1330
+ {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1331
+ 0xeb5d7745b21141ea},
1332
+ {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1333
+ 0xeafd72ebdbecc17b},
1334
+ {1, 0, 0, 0}},
1335
+ {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1336
+ 0xa6d39677a7849276},
1337
+ {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1338
+ 0x674f84749b0b8816},
1339
+ {1, 0, 0, 0}},
1340
+ {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1341
+ 0x4e769e7672c9ddad},
1342
+ {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1343
+ 0x42b99082de830663},
1344
+ {1, 0, 0, 0}},
1345
+ {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1346
+ 0x78878ef61c6ce04d},
1347
+ {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1348
+ 0xb6cb3f5d7b72c321},
1349
+ {1, 0, 0, 0}},
1350
+ {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1351
+ 0x0c88bc4d716b1287},
1352
+ {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1353
+ 0xdd5ddea3f3901dc6},
1354
+ {1, 0, 0, 0}},
1355
+ {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1356
+ 0x68f344af6b317466},
1357
+ {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1358
+ 0x31b9c405f8540a20},
1359
+ {1, 0, 0, 0}},
1360
+ {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1361
+ 0x4052bf4b6f461db9},
1362
+ {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1363
+ 0xfecf4d5190b0fc61},
1364
+ {1, 0, 0, 0}},
1365
+ {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1366
+ 0x1eddbae2c802e41a},
1367
+ {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1368
+ 0x43104d86560ebcfc},
1369
+ {1, 0, 0, 0}},
1370
+ {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1371
+ 0xb48e26b484f7a21c},
1372
+ {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1373
+ 0xfac015404d4d3dab},
1374
+ {1, 0, 0, 0}}},
1375
+ {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
1376
+ {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1377
+ 0x7fe36b40af22af89},
1378
+ {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1379
+ 0xe697d45825b63624},
1380
+ {1, 0, 0, 0}},
1381
+ {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1382
+ 0x4a5b506612a677a6},
1383
+ {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1384
+ 0xeb13461ceac089f1},
1385
+ {1, 0, 0, 0}},
1386
+ {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1387
+ 0x0781b8291c6a220a},
1388
+ {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1389
+ 0x690cde8df0151593},
1390
+ {1, 0, 0, 0}},
1391
+ {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1392
+ 0x8a535f566ec73617},
1393
+ {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1394
+ 0x0455c08468b08bd7},
1395
+ {1, 0, 0, 0}},
1396
+ {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1397
+ 0x06bada7ab77f8276},
1398
+ {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1399
+ 0x5b476dfd0e6cb18a},
1400
+ {1, 0, 0, 0}},
1401
+ {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1402
+ 0x3e29864e8a2ec908},
1403
+ {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1404
+ 0x239b90ea3dc31e7e},
1405
+ {1, 0, 0, 0}},
1406
+ {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1407
+ 0x820f4dd949f72ff7},
1408
+ {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1409
+ 0x140406ec783a05ec},
1410
+ {1, 0, 0, 0}},
1411
+ {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1412
+ 0x68f6b8542783dfee},
1413
+ {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1414
+ 0xcbe1feba92e40ce6},
1415
+ {1, 0, 0, 0}},
1416
+ {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1417
+ 0xd0b2f94d2f420109},
1418
+ {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1419
+ 0x971459828b0719e5},
1420
+ {1, 0, 0, 0}},
1421
+ {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1422
+ 0x961610004a866aba},
1423
+ {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1424
+ 0x7acb9fadcee75e44},
1425
+ {1, 0, 0, 0}},
1426
+ {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1427
+ 0x24eb9acca333bf5b},
1428
+ {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1429
+ 0x69f891c5acd079cc},
1430
+ {1, 0, 0, 0}},
1431
+ {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1432
+ 0xe51f547c5972a107},
1433
+ {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1434
+ 0x1c309a2b25bb1387},
1435
+ {1, 0, 0, 0}},
1436
+ {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1437
+ 0x20b87b8aa2c4e503},
1438
+ {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1439
+ 0xf5c6fa49919776be},
1440
+ {1, 0, 0, 0}},
1441
+ {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1442
+ 0x1ed7d1b9332010b9},
1443
+ {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1444
+ 0x3a2b03f03217257a},
1445
+ {1, 0, 0, 0}},
1446
+ {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1447
+ 0x15fee545c78dd9f6},
1448
+ {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1449
+ 0x4ab5b6b2b8753f81},
1450
+ {1, 0, 0, 0}}}};
1451
+
1452
+ /* select_point selects the |idx|th point from a precomputation table and
1453
+ * copies it to out. */
1454
+ static void select_point(const u64 idx, unsigned int size,
1455
+ const smallfelem pre_comp[16][3], smallfelem out[3]) {
1456
+ unsigned i, j;
1457
+ u64 *outlimbs = &out[0][0];
1458
+ memset(outlimbs, 0, 3 * sizeof(smallfelem));
1459
+
1460
+ for (i = 0; i < size; i++) {
1461
+ const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1462
+ u64 mask = i ^ idx;
1463
+ mask |= mask >> 4;
1464
+ mask |= mask >> 2;
1465
+ mask |= mask >> 1;
1466
+ mask &= 1;
1467
+ mask--;
1468
+ for (j = 0; j < NLIMBS * 3; j++) {
1469
+ outlimbs[j] |= inlimbs[j] & mask;
1470
+ }
1471
+ }
1472
+ }
1473
+
1474
+ /* get_bit returns the |i|th bit in |in| */
1475
+ static char get_bit(const felem_bytearray in, int i) {
1476
+ if (i < 0 || i >= 256) {
1477
+ return 0;
1478
+ }
1479
+ return (in[i >> 3] >> (i & 7)) & 1;
1480
+ }
1481
+
1482
+ /* Interleaved point multiplication using precomputed point multiples: The
1483
+ * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1484
+ * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1485
+ * generator, using certain (large) precomputed multiples in g_pre_comp.
1486
+ * Output point (X, Y, Z) is stored in x_out, y_out, z_out. */
1487
+ static void batch_mul(felem x_out, felem y_out, felem z_out,
1488
+ const felem_bytearray scalars[],
1489
+ const unsigned num_points, const u8 *g_scalar,
1490
+ const int mixed, const smallfelem pre_comp[][17][3]) {
1491
+ int i, skip;
1492
+ unsigned num, gen_mul = (g_scalar != NULL);
1493
+ felem nq[3], ftmp;
1494
+ smallfelem tmp[3];
1495
+ u64 bits;
1496
+ u8 sign, digit;
1497
+
1498
+ /* set nq to the point at infinity */
1499
+ memset(nq, 0, 3 * sizeof(felem));
1500
+
1501
+ /* Loop over all scalars msb-to-lsb, interleaving additions of multiples
1502
+ * of the generator (two in each of the last 32 rounds) and additions of
1503
+ * other points multiples (every 5th round). */
1504
+
1505
+ skip = 1; /* save two point operations in the first
1506
+ * round */
1507
+ for (i = (num_points ? 255 : 31); i >= 0; --i) {
1508
+ /* double */
1509
+ if (!skip) {
1510
+ point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1511
+ }
1512
+
1513
+ /* add multiples of the generator */
1514
+ if (gen_mul && i <= 31) {
1515
+ /* first, look 32 bits upwards */
1516
+ bits = get_bit(g_scalar, i + 224) << 3;
1517
+ bits |= get_bit(g_scalar, i + 160) << 2;
1518
+ bits |= get_bit(g_scalar, i + 96) << 1;
1519
+ bits |= get_bit(g_scalar, i + 32);
1520
+ /* select the point to add, in constant time */
1521
+ select_point(bits, 16, g_pre_comp[1], tmp);
1522
+
1523
+ if (!skip) {
1524
+ /* Arg 1 below is for "mixed" */
1525
+ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1],
1526
+ tmp[2]);
1527
+ } else {
1528
+ smallfelem_expand(nq[0], tmp[0]);
1529
+ smallfelem_expand(nq[1], tmp[1]);
1530
+ smallfelem_expand(nq[2], tmp[2]);
1531
+ skip = 0;
1532
+ }
1533
+
1534
+ /* second, look at the current position */
1535
+ bits = get_bit(g_scalar, i + 192) << 3;
1536
+ bits |= get_bit(g_scalar, i + 128) << 2;
1537
+ bits |= get_bit(g_scalar, i + 64) << 1;
1538
+ bits |= get_bit(g_scalar, i);
1539
+ /* select the point to add, in constant time */
1540
+ select_point(bits, 16, g_pre_comp[0], tmp);
1541
+ /* Arg 1 below is for "mixed" */
1542
+ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1],
1543
+ tmp[2]);
1544
+ }
1545
+
1546
+ /* do other additions every 5 doublings */
1547
+ if (num_points && (i % 5 == 0)) {
1548
+ /* loop over all scalars */
1549
+ for (num = 0; num < num_points; ++num) {
1550
+ bits = get_bit(scalars[num], i + 4) << 5;
1551
+ bits |= get_bit(scalars[num], i + 3) << 4;
1552
+ bits |= get_bit(scalars[num], i + 2) << 3;
1553
+ bits |= get_bit(scalars[num], i + 1) << 2;
1554
+ bits |= get_bit(scalars[num], i) << 1;
1555
+ bits |= get_bit(scalars[num], i - 1);
1556
+ ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1557
+
1558
+ /* select the point to add or subtract, in constant time. */
1559
+ select_point(digit, 17, pre_comp[num], tmp);
1560
+ smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1561
+ * point */
1562
+ copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1));
1563
+ felem_contract(tmp[1], ftmp);
1564
+
1565
+ if (!skip) {
1566
+ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0],
1567
+ tmp[1], tmp[2]);
1568
+ } else {
1569
+ smallfelem_expand(nq[0], tmp[0]);
1570
+ smallfelem_expand(nq[1], tmp[1]);
1571
+ smallfelem_expand(nq[2], tmp[2]);
1572
+ skip = 0;
1573
+ }
1574
+ }
1575
+ }
1576
+ }
1577
+ felem_assign(x_out, nq[0]);
1578
+ felem_assign(y_out, nq[1]);
1579
+ felem_assign(z_out, nq[2]);
1580
+ }
1581
+
1582
+ /******************************************************************************/
1583
+ /*
1584
+ * OPENSSL EC_METHOD FUNCTIONS
1585
+ */
1586
+
1587
+ /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1588
+ * (X/Z^2, Y/Z^3). */
1589
+ int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1590
+ const EC_POINT *point,
1591
+ BIGNUM *x, BIGNUM *y,
1592
+ BN_CTX *ctx) {
1593
+ felem z1, z2, x_in, y_in;
1594
+ smallfelem x_out, y_out;
1595
+ longfelem tmp;
1596
+
1597
+ if (EC_POINT_is_at_infinity(group, point)) {
1598
+ OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
1599
+ return 0;
1600
+ }
1601
+ if (!BN_to_felem(x_in, &point->X) ||
1602
+ !BN_to_felem(y_in, &point->Y) ||
1603
+ !BN_to_felem(z1, &point->Z)) {
1604
+ return 0;
1605
+ }
1606
+ felem_inv(z2, z1);
1607
+ felem_square(tmp, z2);
1608
+ felem_reduce(z1, tmp);
1609
+ felem_mul(tmp, x_in, z1);
1610
+ felem_reduce(x_in, tmp);
1611
+ felem_contract(x_out, x_in);
1612
+ if (x != NULL && !smallfelem_to_BN(x, x_out)) {
1613
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1614
+ return 0;
1615
+ }
1616
+ felem_mul(tmp, z1, z2);
1617
+ felem_reduce(z1, tmp);
1618
+ felem_mul(tmp, y_in, z1);
1619
+ felem_reduce(y_in, tmp);
1620
+ felem_contract(y_out, y_in);
1621
+ if (y != NULL && !smallfelem_to_BN(y, y_out)) {
1622
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1623
+ return 0;
1624
+ }
1625
+ return 1;
1626
+ }
1627
+
1628
+ /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1629
+ static void make_points_affine(size_t num, smallfelem points[][3],
1630
+ smallfelem tmp_smallfelems[]) {
1631
+ /* Runs in constant time, unless an input is the point at infinity (which
1632
+ * normally shouldn't happen). */
1633
+ ec_GFp_nistp_points_make_affine_internal(
1634
+ num, points, sizeof(smallfelem), tmp_smallfelems,
1635
+ (void (*)(void *))smallfelem_one,
1636
+ (int (*)(const void *))smallfelem_is_zero_int,
1637
+ (void (*)(void *, const void *))smallfelem_assign,
1638
+ (void (*)(void *, const void *))smallfelem_square_contract,
1639
+ (void (*)(void *, const void *, const void *))smallfelem_mul_contract,
1640
+ (void (*)(void *, const void *))smallfelem_inv_contract,
1641
+ /* nothing to contract */
1642
+ (void (*)(void *, const void *))smallfelem_assign);
1643
+ }
1644
+
1645
+ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
1646
+ const BIGNUM *g_scalar, const EC_POINT *p_,
1647
+ const BIGNUM *p_scalar_, BN_CTX *ctx) {
1648
+ /* TODO: This function used to take |points| and |scalars| as arrays of
1649
+ * |num| elements. The code below should be simplified to work in terms of |p|
1650
+ * and |p_scalar|. */
1651
+ size_t num = p_ != NULL ? 1 : 0;
1652
+ const EC_POINT **points = p_ != NULL ? &p_ : NULL;
1653
+ BIGNUM const *const *scalars = p_ != NULL ? &p_scalar_ : NULL;
1654
+
1655
+ int ret = 0;
1656
+ int j;
1657
+ int mixed = 0;
1658
+ BN_CTX *new_ctx = NULL;
1659
+ BIGNUM *x, *y, *z;
1660
+ felem_bytearray g_secret;
1661
+ felem_bytearray *secrets = NULL;
1662
+ smallfelem(*pre_comp)[17][3] = NULL;
1663
+ smallfelem *tmp_smallfelems = NULL;
1664
+ felem_bytearray tmp;
1665
+ unsigned i, num_bytes;
1666
+ size_t num_points = num;
1667
+ smallfelem x_in, y_in, z_in;
1668
+ felem x_out, y_out, z_out;
1669
+ const EC_POINT *p = NULL;
1670
+ const BIGNUM *p_scalar = NULL;
1671
+
1672
+ if (ctx == NULL) {
1673
+ ctx = new_ctx = BN_CTX_new();
1674
+ if (ctx == NULL) {
1675
+ return 0;
1676
+ }
1677
+ }
1678
+
1679
+ BN_CTX_start(ctx);
1680
+ if ((x = BN_CTX_get(ctx)) == NULL ||
1681
+ (y = BN_CTX_get(ctx)) == NULL ||
1682
+ (z = BN_CTX_get(ctx)) == NULL) {
1683
+ goto err;
1684
+ }
1685
+
1686
+ if (num_points > 0) {
1687
+ if (num_points >= 3) {
1688
+ /* unless we precompute multiples for just one or two points,
1689
+ * converting those into affine form is time well spent */
1690
+ mixed = 1;
1691
+ }
1692
+ secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1693
+ pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem));
1694
+ if (mixed) {
1695
+ tmp_smallfelems =
1696
+ OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
1697
+ }
1698
+ if (secrets == NULL || pre_comp == NULL ||
1699
+ (mixed && tmp_smallfelems == NULL)) {
1700
+ OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
1701
+ goto err;
1702
+ }
1703
+
1704
+ /* we treat NULL scalars as 0, and NULL points as points at infinity,
1705
+ * i.e., they contribute nothing to the linear combination. */
1706
+ memset(secrets, 0, num_points * sizeof(felem_bytearray));
1707
+ memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
1708
+ for (i = 0; i < num_points; ++i) {
1709
+ if (i == num) {
1710
+ /* we didn't have a valid precomputation, so we pick the generator. */
1711
+ p = EC_GROUP_get0_generator(group);
1712
+ p_scalar = g_scalar;
1713
+ } else {
1714
+ /* the i^th point */
1715
+ p = points[i];
1716
+ p_scalar = scalars[i];
1717
+ }
1718
+ if (p_scalar != NULL && p != NULL) {
1719
+ assert(BN_cmp(p_scalar, EC_GROUP_get0_order(group)) < 0);
1720
+ num_bytes = BN_bn2bin(p_scalar, tmp);
1721
+ flip_endian(secrets[i], tmp, num_bytes);
1722
+
1723
+ /* precompute multiples */
1724
+ if (!BN_to_felem(x_out, &p->X) ||
1725
+ !BN_to_felem(y_out, &p->Y) ||
1726
+ !BN_to_felem(z_out, &p->Z)) {
1727
+ goto err;
1728
+ }
1729
+ felem_shrink(pre_comp[i][1][0], x_out);
1730
+ felem_shrink(pre_comp[i][1][1], y_out);
1731
+ felem_shrink(pre_comp[i][1][2], z_out);
1732
+ for (j = 2; j <= 16; ++j) {
1733
+ if (j & 1) {
1734
+ point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
1735
+ pre_comp[i][j][2], pre_comp[i][1][0],
1736
+ pre_comp[i][1][1], pre_comp[i][1][2],
1737
+ pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
1738
+ pre_comp[i][j - 1][2]);
1739
+ } else {
1740
+ point_double_small(pre_comp[i][j][0], pre_comp[i][j][1],
1741
+ pre_comp[i][j][2], pre_comp[i][j / 2][0],
1742
+ pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
1743
+ }
1744
+ }
1745
+ }
1746
+ }
1747
+ if (mixed) {
1748
+ make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
1749
+ }
1750
+ }
1751
+
1752
+ if (g_scalar != NULL) {
1753
+ memset(g_secret, 0, sizeof(g_secret));
1754
+ assert(BN_cmp(g_scalar, EC_GROUP_get0_order(group)) < 0);
1755
+ num_bytes = BN_bn2bin(g_scalar, tmp);
1756
+ flip_endian(g_secret, tmp, num_bytes);
1757
+ }
1758
+ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
1759
+ num_points, g_scalar != NULL ? g_secret : NULL, mixed,
1760
+ (const smallfelem(*)[17][3])pre_comp);
1761
+
1762
+ /* reduce the output to its unique minimal representation */
1763
+ felem_contract(x_in, x_out);
1764
+ felem_contract(y_in, y_out);
1765
+ felem_contract(z_in, z_out);
1766
+ if (!smallfelem_to_BN(x, x_in) ||
1767
+ !smallfelem_to_BN(y, y_in) ||
1768
+ !smallfelem_to_BN(z, z_in)) {
1769
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1770
+ goto err;
1771
+ }
1772
+ ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1773
+
1774
+ err:
1775
+ BN_CTX_end(ctx);
1776
+ BN_CTX_free(new_ctx);
1777
+ OPENSSL_free(secrets);
1778
+ OPENSSL_free(pre_comp);
1779
+ OPENSSL_free(tmp_smallfelems);
1780
+ return ret;
1781
+ }
1782
+
1783
+ const EC_METHOD EC_GFp_nistp256_method = {
1784
+ ec_GFp_nistp256_point_get_affine_coordinates,
1785
+ ec_GFp_nistp256_points_mul,
1786
+ ec_GFp_nistp256_points_mul,
1787
+ ec_GFp_simple_field_mul,
1788
+ ec_GFp_simple_field_sqr,
1789
+ NULL /* field_encode */,
1790
+ NULL /* field_decode */,
1791
+ NULL /* field_set_to_one */,
1792
+ };
1793
+
1794
+ #endif /* 64_BIT && !WINDOWS */