my-markdown-library 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (113) hide show
  1. checksums.yaml +7 -0
  2. data/F24LS_md/ Lecture 4 - Public.md +347 -0
  3. data/F24LS_md/Lecture 1 - Introduction and Overview.md +327 -0
  4. data/F24LS_md/Lecture 10 - Development_.md +631 -0
  5. data/F24LS_md/Lecture 11 - Econometrics.md +345 -0
  6. data/F24LS_md/Lecture 12 - Finance.md +692 -0
  7. data/F24LS_md/Lecture 13 - Environmental Economics.md +299 -0
  8. data/F24LS_md/Lecture 15 - Conclusion.md +272 -0
  9. data/F24LS_md/Lecture 2 - Demand.md +349 -0
  10. data/F24LS_md/Lecture 3 - Supply.md +329 -0
  11. data/F24LS_md/Lecture 5 - Production C-D.md +291 -0
  12. data/F24LS_md/Lecture 6 - Utility and Latex.md +440 -0
  13. data/F24LS_md/Lecture 7 - Inequality.md +607 -0
  14. data/F24LS_md/Lecture 8 - Macroeconomics.md +704 -0
  15. data/F24LS_md/Lecture 8 - Macro.md +700 -0
  16. data/F24LS_md/Lecture 9 - Game Theory_.md +436 -0
  17. data/F24LS_md/summary.yaml +105 -0
  18. data/F24Lec_MD/LecNB_summary.yaml +206 -0
  19. data/F24Lec_MD/lec01/lec01.md +267 -0
  20. data/F24Lec_MD/lec02/Avocados_demand.md +425 -0
  21. data/F24Lec_MD/lec02/Demand_Steps_24.md +126 -0
  22. data/F24Lec_MD/lec02/PriceElasticity.md +83 -0
  23. data/F24Lec_MD/lec02/ScannerData_Beer.md +171 -0
  24. data/F24Lec_MD/lec02/demand-curve-Fa24.md +213 -0
  25. data/F24Lec_MD/lec03/3.0-CubicCostCurve.md +239 -0
  26. data/F24Lec_MD/lec03/3.1-Supply.md +274 -0
  27. data/F24Lec_MD/lec03/3.2-sympy.md +332 -0
  28. data/F24Lec_MD/lec03/3.3a-california-energy.md +120 -0
  29. data/F24Lec_MD/lec03/3.3b-a-really-hot-tuesday.md +121 -0
  30. data/F24Lec_MD/lec04/lec04-CSfromSurvey-closed.md +335 -0
  31. data/F24Lec_MD/lec04/lec04-CSfromSurvey.md +331 -0
  32. data/F24Lec_MD/lec04/lec04-Supply-Demand-closed.md +519 -0
  33. data/F24Lec_MD/lec04/lec04-Supply-Demand.md +514 -0
  34. data/F24Lec_MD/lec04/lec04-four-plot-24.md +34 -0
  35. data/F24Lec_MD/lec04/lec04-four-plot.md +34 -0
  36. data/F24Lec_MD/lec05/Lec5-Cobb-Douglas.md +131 -0
  37. data/F24Lec_MD/lec05/Lec5-CobbD-AER1928.md +283 -0
  38. data/F24Lec_MD/lec06/6.1-Sympy-Differentiation.md +253 -0
  39. data/F24Lec_MD/lec06/6.2-3D-utility.md +287 -0
  40. data/F24Lec_MD/lec06/6.3-QuantEcon-Optimization.md +399 -0
  41. data/F24Lec_MD/lec06/6.4-latex.md +138 -0
  42. data/F24Lec_MD/lec06/6.5-Edgeworth.md +269 -0
  43. data/F24Lec_MD/lec07/7.1-inequality.md +283 -0
  44. data/F24Lec_MD/lec07/7.2-historical-inequality.md +237 -0
  45. data/F24Lec_MD/lec08/macro-fred-api.md +313 -0
  46. data/F24Lec_MD/lec09/lecNB-prisoners-dilemma.md +88 -0
  47. data/F24Lec_MD/lec10/Lec10.2-waterguard.md +401 -0
  48. data/F24Lec_MD/lec10/lec10.1-mapping.md +199 -0
  49. data/F24Lec_MD/lec11/11.1-slr.md +305 -0
  50. data/F24Lec_MD/lec11/11.2-mlr.md +171 -0
  51. data/F24Lec_MD/lec12/Lec12-4-PersonalFinance.md +590 -0
  52. data/F24Lec_MD/lec12/lec12-1_Interest_Payments.md +267 -0
  53. data/F24Lec_MD/lec12/lec12-2-stocks-options.md +235 -0
  54. data/F24Lec_MD/lec13/Co2_ClimateChange.md +139 -0
  55. data/F24Lec_MD/lec13/ConstructingMAC.md +213 -0
  56. data/F24Lec_MD/lec13/EmissionsTracker.md +170 -0
  57. data/F24Lec_MD/lec13/KuznetsHypothesis.md +219 -0
  58. data/F24Lec_MD/lec13/RoslingPlots.md +217 -0
  59. data/F24Lec_MD/lec15/vibecession.md +485 -0
  60. data/F24Textbook_MD/00-intro/index.md +292 -0
  61. data/F24Textbook_MD/01-demand/01-demand.md +152 -0
  62. data/F24Textbook_MD/01-demand/02-example.md +131 -0
  63. data/F24Textbook_MD/01-demand/03-log-log.md +284 -0
  64. data/F24Textbook_MD/01-demand/04-elasticity.md +248 -0
  65. data/F24Textbook_MD/01-demand/index.md +15 -0
  66. data/F24Textbook_MD/02-supply/01-supply.md +203 -0
  67. data/F24Textbook_MD/02-supply/02-eep147-example.md +86 -0
  68. data/F24Textbook_MD/02-supply/03-sympy.md +138 -0
  69. data/F24Textbook_MD/02-supply/04-market-equilibria.md +204 -0
  70. data/F24Textbook_MD/02-supply/index.md +16 -0
  71. data/F24Textbook_MD/03-public/govt-intervention.md +73 -0
  72. data/F24Textbook_MD/03-public/index.md +10 -0
  73. data/F24Textbook_MD/03-public/surplus.md +351 -0
  74. data/F24Textbook_MD/03-public/taxes-subsidies.md +282 -0
  75. data/F24Textbook_MD/04-production/index.md +15 -0
  76. data/F24Textbook_MD/04-production/production.md +178 -0
  77. data/F24Textbook_MD/04-production/shifts.md +296 -0
  78. data/F24Textbook_MD/05-utility/budget-constraints.md +166 -0
  79. data/F24Textbook_MD/05-utility/index.md +15 -0
  80. data/F24Textbook_MD/05-utility/utility.md +136 -0
  81. data/F24Textbook_MD/06-inequality/historical-inequality.md +253 -0
  82. data/F24Textbook_MD/06-inequality/index.md +15 -0
  83. data/F24Textbook_MD/06-inequality/inequality.md +226 -0
  84. data/F24Textbook_MD/07-game-theory/bertrand.md +257 -0
  85. data/F24Textbook_MD/07-game-theory/cournot.md +333 -0
  86. data/F24Textbook_MD/07-game-theory/equilibria-oligopolies.md +96 -0
  87. data/F24Textbook_MD/07-game-theory/expected-utility.md +61 -0
  88. data/F24Textbook_MD/07-game-theory/index.md +19 -0
  89. data/F24Textbook_MD/07-game-theory/python-classes.md +340 -0
  90. data/F24Textbook_MD/08-development/index.md +35 -0
  91. data/F24Textbook_MD/09-macro/CentralBanks.md +101 -0
  92. data/F24Textbook_MD/09-macro/Indicators.md +77 -0
  93. data/F24Textbook_MD/09-macro/fiscal_policy.md +36 -0
  94. data/F24Textbook_MD/09-macro/index.md +14 -0
  95. data/F24Textbook_MD/09-macro/is_curve.md +76 -0
  96. data/F24Textbook_MD/09-macro/phillips_curve.md +70 -0
  97. data/F24Textbook_MD/10-finance/index.md +10 -0
  98. data/F24Textbook_MD/10-finance/options.md +178 -0
  99. data/F24Textbook_MD/10-finance/value-interest.md +60 -0
  100. data/F24Textbook_MD/11-econometrics/index.md +16 -0
  101. data/F24Textbook_MD/11-econometrics/multivariable.md +218 -0
  102. data/F24Textbook_MD/11-econometrics/reading-econ-papers.md +25 -0
  103. data/F24Textbook_MD/11-econometrics/single-variable.md +483 -0
  104. data/F24Textbook_MD/11-econometrics/statsmodels.md +58 -0
  105. data/F24Textbook_MD/12-environmental/KuznetsHypothesis-Copy1.md +187 -0
  106. data/F24Textbook_MD/12-environmental/KuznetsHypothesis.md +187 -0
  107. data/F24Textbook_MD/12-environmental/MAC.md +254 -0
  108. data/F24Textbook_MD/12-environmental/index.md +36 -0
  109. data/F24Textbook_MD/LICENSE.md +11 -0
  110. data/F24Textbook_MD/intro.md +26 -0
  111. data/F24Textbook_MD/references.md +25 -0
  112. data/F24Textbook_MD/summary.yaml +414 -0
  113. metadata +155 -0
@@ -0,0 +1,299 @@
1
+ ---
2
+ title: "Lecture 13 - Environmental Economics"
3
+ type: slides
4
+ week: 13
5
+ source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 13 - Environmental Economics.pptx"
6
+ ---
7
+
8
+ ## Slide 1: Data 88E: Economic Models
9
+
10
+ - Lecture 13: Environmental Economics
11
+
12
+ ## Slide 2: Announcements
13
+
14
+ - No OH next week - potentially on Zoom
15
+ - Last Lab this week!
16
+
17
+ ## Slide 3: Lecture Outline
18
+
19
+ - Part 0: COP29 and Carbon Emissions
20
+ - Part I: Historical Emissions & Trends
21
+ - Part II: Introducing the Marginal Cost of Abatement Curve
22
+ - Part III: Introducing Emission Taxes and other policy instruments
23
+ - How do we make this a great learning experience?
24
+ - Ask questions if things are unclear!
25
+
26
+ ## Slide 4: Motivation: COP29
27
+
28
+ - Suppose you’re at COP 29 (‘Conference of the Parties’) :
29
+ - You’re a top-tier economist
30
+ - Greta Thunberg walks up to you and asks:
31
+ - “What are you doing to stop global warming?”
32
+ - “How are you doing it?”
33
+ - What’s your ‘economist’ answer?
34
+
35
+ ## Slide 5: COP 29 - Baku Azerbaijan
36
+
37
+ ## Slide 6: COP 29 - the finance summit - $1T transition fund
38
+
39
+ ## Slide 7: Saudi Arabia at COP 29
40
+
41
+ ## Slide 8: Motivation - Cop 28 - Nov 2023
42
+
43
+ ## Slide 9: Part I:
44
+
45
+ Historical Emissions & Trends
46
+
47
+ - Part I:
48
+ - Historical Emissions & Trends
49
+
50
+ ## Slide 10: Historical Emissions: Mauna Loa
51
+
52
+ - Source: Trends in Atmospheric Carbon Dioxide Mauna Loa Observatory
53
+
54
+ ## Slide 11: Trends: Temperature
55
+
56
+ - Source: ShowYourStripes by Climate Scientist Ed Hawkins
57
+
58
+ ## Slide 12: Notebook 1 - Climate Change
59
+
60
+ ## Slide 13: China matters
61
+
62
+ - https://www.cnn.com/2024/11/18/climate/climate-china-solar-wind-dg/index.html
63
+
64
+ ## Slide 14: China - adding Renewable Capacity
65
+
66
+ ## Slide 15: China forecast to peak soon, but not decrease fast enough
67
+
68
+ ## Slide 16: China C02 Emissions
69
+
70
+ ## Slide 17: Notebook 2 - Emissions Tracker
71
+
72
+ ## Slide 18: Central Tenets: Environmental Amenities
73
+
74
+ - What are environmental amenities?
75
+ - Clean air, water, and stable temperatures
76
+ - Healthy soil, forests, and oceans
77
+ - Also parks, rivers, mountains, beaches!
78
+ - What do you notice about these?
79
+ - Non-rivalrous (ish): use does not reduce the amount available for others.
80
+ - Non-excludable (ish): use does not exclude a certain person or group of persons from consumption.
81
+ - What are these also known as?
82
+ - Public goods!
83
+ - Central to Environmental Economics models:
84
+ - Usage of these go unaccounted for in the current market models.
85
+
86
+ ## Slide 19: Trends: The Environmental Kuznets Curve Theory
87
+
88
+ - Theory:
89
+ - Economic development and environmental degradation have a downward-facing U-shape relationship.
90
+ - For example:
91
+ - Pollution, water quality, deforestation
92
+ - In our demo, we will be checking the path over different stages of
93
+ - economic development in 15 nations!
94
+
95
+ ## Slide 20: Class question
96
+
97
+ - What shape do you think the relationship between economic development and environmental degradation have? Here are some ideas:
98
+
99
+ ## Slide 21: (untitled)
100
+
101
+ ## Slide 22: (untitled)
102
+
103
+ ## Slide 23: (untitled)
104
+
105
+ ## Slide 24: Notebook 3 Kuznets
106
+
107
+ ## Slide 25: Trends: DATA88’s Environmental Kuznets Curve
108
+
109
+ - Question: How do national emissions change across growth in GDP per capita?
110
+ - Data Source: Gapminder Foundation
111
+
112
+ ## Slide 26: (untitled)
113
+
114
+ ## Slide 27: Notebook 4 Rosling
115
+
116
+ ## Slide 28: Trends: DATA88’s Rösling World Emissions Plot
117
+
118
+ - Question: What happens as we add the time dimension?
119
+ - Data Source: Gapminder Foundation
120
+
121
+ ## Slide 29: Conclusion Part I
122
+
123
+ - We now have an overview of historical and current emissions across the world.
124
+ - We have also looked into potential trends in growth and emissions.
125
+ - We have a large share of the emissions coming from wealthier countries over a long period of time.
126
+ - Our question now is: How do we abate these emissions, asap and in the most cost-effective way?
127
+
128
+ ## Slide 30: Part II:
129
+
130
+ Introducing the Marginal Cost of Abatement Curve
131
+
132
+ - Part II:
133
+ - Introducing the Marginal Cost of Abatement Curve
134
+
135
+ ## Slide 31: MAC: Theory
136
+
137
+ - How do we build one? How do we interpret one? What are the ‘secrets’ of the curve?
138
+ - Abatement Cost ($/ton CO2)
139
+ - Abatement Potential (tons CO2)
140
+
141
+ ## Slide 32: Class question
142
+
143
+ - How would a Marginal Abatement Curve for an individual firm look like?
144
+
145
+ ## Slide 33: MAC: From the Firm’s Perspective
146
+
147
+ - Suppose a firm has 5 options to change their production to produce less GHG
148
+ - Each option has a different abatement cost and abatement potential, here’s how it would look like:
149
+
150
+ ## Slide 34: MAC: From the Industry’s Perspective
151
+
152
+ - Source: Net zero or bust: Beating the abatement cost curve for growth
153
+
154
+ ## Slide 35: MAC: From the Global Policymaker’s Perspective
155
+
156
+ - Negative?
157
+ - Source: A revolutionary tool for cutting emissions, ten years on | McKinsey & Company (2017)
158
+
159
+ ## Slide 36: MAC: Key Areas of Abatement
160
+
161
+ - Source: A cost curve for greenhouse gas reduction | McKinsey (2007)
162
+
163
+ ## Slide 37: Class question
164
+
165
+ - How do you think the MAC is affected by oil prices? What would change, and how?
166
+
167
+ ## Slide 38: MAC: Affected by High Energy Prices
168
+
169
+ - Source: A cost curve for greenhouse gas reduction | McKinsey (2007)
170
+
171
+ ## Slide 39: MAC: Dynamic vs. Static Costs Assessment
172
+
173
+ - The McKinsey MAC considers only static costs!
174
+ - Static Costs:
175
+ - The fixed costs of a new intervention, unchanged over a lifetime of an investment.
176
+ - Dynamic Costs:
177
+ - Cost considering potential cost-reduction from increased efficiency, learning-by-doing, and other positive spillovers.
178
+
179
+ ## Slide 40: MAC: Dynamic Costs, Illustrated
180
+
181
+ - Source: Inside Clean Energy: What Happens When Solar Power Gets Much, Much Cheaper?
182
+ - Source: Solar Panel Cost Trends (Tons of Charts)
183
+
184
+ ## Slide 41: MAC: Capital Intensity
185
+
186
+ - Question: How capital intensive are different technologies? Role for Government Subsidies?
187
+ - Source: A cost curve for greenhouse gas reduction | McKinsey (2007)
188
+ - Green New Deal - Build Back Better?
189
+
190
+ ## Slide 42: MAC: DATA88’s MAC for Methane
191
+
192
+ - Data Source: Methane Tracker – Data Tools - IEA
193
+ - Methane Facts
194
+ - 80x more potent in the first 20 years than CO2
195
+ - 28 times more powerful when average over 100 years
196
+ - Responsible for 25% of today’s warming
197
+ - Source: Methane facts and information (NatGeo)
198
+
199
+ ## Slide 43: Notebook 5 Constructing MAC
200
+
201
+ ## Slide 44: MAC: Environmental Defense Fund’s MAC 2.0
202
+
203
+ - Source: A revamped cost curve for reaching net-zero emissions | Environmental Defense Fund
204
+ - Discover: Interactive MAC 2.0
205
+ - How is MAC 2.0 different?
206
+ - Path-Dependent
207
+ - Tech-Dependent
208
+ - Cross-Sector Interactions
209
+ - Diminishing Marginal Return
210
+ - Optimal timing and sequencing of actions
211
+
212
+ <details><summary>Speaker notes</summary>
213
+
214
+ You can examine the technology deployment and reductions in annual emissions at a single marginal abatement cost, such as $0 per ton, or in a range of costs, such as $0 to $60 per ton.
215
+
216
+ From the report: “explicitly incorporating path- dependent, cross-sector interactions, the diminishing returns of marginal measures, and considering measures that become cost-effective when other measures are deployed at scale.”
217
+
218
+ </details>
219
+
220
+ ## Slide 45: Conclusion Part II
221
+
222
+ - We asked: What are the most cost-effective ways of reducing greenhouse gas emissions?
223
+ - We answered this by sorting it by marginal abatement costs (the cost of reducing the next ton of CO2 / Methane).
224
+ - We observed that the cost of the carbon matters (a lot!).
225
+ - Now we need to ask ourselves: How can we use economic policy & theory to drive this reduction? To do so, we need to construct a cost of carbon.
226
+
227
+ ## Slide 46: Part III:
228
+
229
+ Policy: Introducing Emission Taxes vs. Cap-and-trade
230
+
231
+ - Part III:
232
+ - Policy: Introducing Emission Taxes vs. Cap-and-trade
233
+
234
+ ## Slide 47: Class question
235
+
236
+ - Philosophical question:
237
+ - What’s your way of reducing something that is deemed bad?
238
+ - Economic answer:
239
+ - Taxes (You want to do something ‘bad’ - pay up!)
240
+ - Carbon Tax, Methane Tax, Alcohol Tax, Tax my Strada Coffee Cup?
241
+ - Quotas (You can only do ‘this much bad’)
242
+ - Cap and trade on carbon, methane, sulfuric dioxide
243
+
244
+ ## Slide 48: Policy: Tax policy using MAC
245
+
246
+ - Set a tax
247
+ - Abate this
248
+ - Question: Who profits in this deal?
249
+
250
+ ## Slide 49: Policy: C&T MAC curve
251
+
252
+ - Get a price
253
+ - Opportunities to trade?
254
+ - Set a cap
255
+ - Question: Who profits in this deal?
256
+
257
+ ## Slide 50: Policy: How C&T works at firm-level
258
+
259
+ ## Slide 51: Policy: Cap & Trade vs. Command-and-Control
260
+
261
+ - How to implement? How has this worked in the past? Connection to MAC?
262
+ - Marginal cost of abatement
263
+
264
+ ## Slide 52: Policy: Carbon Tax vs. C&T Illustrated
265
+
266
+ - Amount of pollution
267
+ - Cost of Emission
268
+ - Regulator sets amount of emission permits
269
+ - Companies trade permits to get to efficient point
270
+ - Amount of pollution
271
+
272
+ ## Slide 53: Policy: Global Coverage of Tax & Cap-and-Trade (ETS)
273
+
274
+ - Source: Carbon Pricing Dashboard (World Bank)
275
+
276
+ ## Slide 54: Policy: Real world examples of Cap-and-Trade
277
+
278
+ ## Slide 55: PM 2.5 Regulation - Nationally and in California
279
+
280
+ ## Slide 56: Pm 2.5 violations - nationally
281
+
282
+ ## Slide 57: Conclusion Part III
283
+
284
+ - We asked how we can reduce something bad - like pollution!
285
+ - We gave an economist answer (I’m sure there’s other ways of doing this) that taxes and/or cap&trade can work.
286
+ - We showed how we can intuitively predict / shape policy outcomes by using the MAC.
287
+ - Conclusion
288
+ - Overall, we’ve looked at historical emissions in time and space. We then looked at the most cost-effective ways of reducing them, and the policy tools we have to do so. This is only the tip of the iceberg of environmental economics, but I hope you’ve enjoyed this lecture!
289
+
290
+ ## Slide 58: What’s next - check out these awesome classes!
291
+
292
+ - ESPM88: Data Science in Ecology and the Environment
293
+ - ER131: Data, Environment, and Society
294
+ - ENVECON C1: Introduction to Environmental Economics & Policy
295
+ - ENVECON C101: Environmental Economics
296
+ - ENVECON C102: Natural Resource Economics
297
+ - Data Science Domain Emphasis
298
+ - Environment, Resource Management, and Society
299
+
@@ -0,0 +1,272 @@
1
+ ---
2
+ title: "Lecture 15 - Conclusion"
3
+ type: slides
4
+ week: 15
5
+ source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 15 - Conclusion.pptx"
6
+ ---
7
+
8
+ ## Slide 1: Data 88E: Economic Models
9
+
10
+ - Lecture 14: Conclusion & Guest Lecture
11
+
12
+ ## Slide 2: Course Evaluation
13
+
14
+ - You have an evaluation in your inbox
15
+ - This course needs your support
16
+ - I am a Unit 18 lecturer - (American Federation of Teachers)
17
+ - Both this class and my teaching job depend on you
18
+ - Please fill it out! - I’ll give some time at the break
19
+
20
+ ## Slide 3: Our Team
21
+
22
+ - Bennett Somerville
23
+ - Computer Science
24
+ - Justin Wang
25
+ - Data Science &
26
+ - Economics
27
+
28
+ ## Slide 4: Course Staff / Involvement
29
+
30
+ - If you are interested in an ASE position for next Fall
31
+ - Email ericvd@berkeley.edu
32
+
33
+ ## Slide 5: Guest Speaker - Peter Grinde Hollevik
34
+
35
+ - Took Data 88E
36
+ - Became part of the team
37
+ - Part of the Survive Lockdown team
38
+ - Became TA for Econ 148
39
+ - Tryna figure out grad school options
40
+
41
+ ## Slide 6: Why of the class
42
+
43
+ - Is Python coding a tool that Economics Students should know?
44
+ - Would it make sense to have coding skills for learning in more advanced classes?
45
+ - Macro
46
+ - Labor
47
+ - Development
48
+ - Finance
49
+ - Can it motivate students when they get to Econometrics?
50
+ - To think like data scientist?
51
+ - To prepare data for Econometric analysis?
52
+ - Is it a skill in the job market - ability to work with data?
53
+
54
+ ## Slide 7: Three goals of Data 88E
55
+
56
+ - Connect data science with economics
57
+ - Prepare students for further coursework and research
58
+ - Showcase economic subdomains
59
+ - Replicates economics papers using data science
60
+ - Surveys core concepts from upper-division coursework
61
+ - Learn to use LaTeX and open source data science tools
62
+ - Be able to adequately read economics literature
63
+ - Examine economics concepts through real-world data
64
+ - Utilize data science tools and techniques to conduct analysis
65
+ - Motivate econometrics through a data science perspective
66
+
67
+ ## Slide 8: Why Economics & Data Science?
68
+
69
+ - “If Economics continues to be the major it is now, and Data Science emerges as an alternative, a good chunk of people who are currently going into economics will realize that it makes much more sense to become a Data Science major, with a minor in economics - and I would say they’re making the right choice!” - Steven Levitt
70
+ - “The Data Science tools may well turn out to be in the first half of the 2000s the equivalent of a fine chancery hand was in Oxford or Cambridge in the 1400s, just as a facility with the document formats and commands of the Microsoft office at the end of the 1900s: practical, general skills that make you of immense value to most if not nearly all organizations.” - Brad DeLong
71
+ - “I think Econometrics could use a lot of the techniques that are common in Data Science, such as bootstrapping…techniques for data-driven procedures and there’s a lot of really creative ideas in terms of presenting data …” - David Card
72
+ - “I write Jupyter Notebooks, I write Python, try my models out in Python, and it’s very empowering…I think the students at Berkeley are lucky.. The things you have now! ” - Thomas Sargent
73
+ - “During the pandemic, you could track comfort with social interactions using Open Table reservations. I don't have to tell you all how closely you can track rents in pricey Bay Area neighborhoods using tools like Zillow, Apartments.com, and Apartment List. These types of housing data inform the Federal Reserve's understanding of inflation. I am confident your generation will transform our capability to use high-frequency, real-time data, applying your unique perspectives to deepen our understanding of how our economy is evolving.” - Lisa Cook
74
+
75
+ ## Slide 9: Match them up
76
+
77
+ - Tom Sargent
78
+ - David Card
79
+ - Lisa Cook
80
+ - Steven Levitt
81
+ - Brad DeLong
82
+ - Berkeley Undergrad
83
+ - Berkeley PHD
84
+ - Berkeley Prof
85
+ - Federal Reserve Governor
86
+ - U Chicago Prof
87
+ - Nobel Prize
88
+
89
+ ## Slide 10: What did we learn?
90
+
91
+ - Fundamentals:
92
+ - How to use Python to solve Economic Questions
93
+ - Demand Theory from
94
+ - 1 ) a survey
95
+ - 2) a cloud of data
96
+ - Taking Logs to transform the data
97
+ - Supply Theory from a Cost function
98
+ - Supply and Demand solved via Symbolic Python
99
+ - Externalities, Taxation, Surpluses and plotting them
100
+ - Price Controls
101
+ - Free Trade
102
+
103
+ ## Slide 11: What did we learn?
104
+
105
+ - Upper-Division Concepts
106
+ - Production
107
+ - Cobb Douglas Estimation
108
+ - Macroeconomics time series
109
+ - Latex for Mathematical Equations
110
+ - Utility / Consumer Choice
111
+ - Measures of Inequality
112
+ - Randomized Trials in International Development
113
+
114
+ ## Slide 12: What did we learn?
115
+
116
+ - Special Topics:
117
+ - Game Theory
118
+ - Prisoner’s and Iterated Prisoner’s Dilemma
119
+ - Nash Equilibria
120
+ - Oligopoly
121
+ - Cournot & Bertrand Competition
122
+ - Econometrics
123
+ - Regression (Simple & Multivariate)
124
+ - Reading Tables
125
+ - Environmental
126
+ - Marginal Cost of Abatement
127
+ - Finance
128
+ - Personal Finance
129
+ - Stocks and Yahoo Finance API
130
+
131
+ ## Slide 13: How did we do it?
132
+
133
+ ## Slide 14: Who is doing this well?
134
+
135
+ - Raj Chetty - Harvard Big Data
136
+ - Sargent and Stachursky - QuantEcon
137
+
138
+ ## Slide 15: Across the Pacific!
139
+
140
+ - Tetsu Haruyama
141
+ - University of Kobe
142
+ - https://py4etrics.github.io/
143
+ - NUS Singapore
144
+ - Major in Data Science and Economics
145
+ - Link
146
+
147
+ ## Slide 16: Real-world Applications
148
+
149
+ - You may be new to the intersection between Data Science & Economics, but you are among few people in the world with such knowledge. With knowledge comes opportunities - make decisions about your future with very careful thought! (maybe analyze a dataset or two to figure it out!)
150
+ - Economics Datasets to check out:
151
+ - FRED - API for Economics Datasets
152
+ - Yahoo API for Finance Applications
153
+ - Awesome Public Economics Datasets GitHub repo
154
+ - Harvard Dataverse
155
+ - OECD Data
156
+ - World Bank Data
157
+
158
+ ## Slide 17: Make a Github - put some projects there!
159
+
160
+ ## Slide 18: Other Classes!
161
+
162
+ - Help us build notebook based learning into more classes
163
+ - And especially Econ classes
164
+ - As you take other classes consider whether they might have notebooks in Jupyter or R for assignments or projects
165
+ - Let us know if you have any ideas! ericvd@berkeley.edu
166
+ - International Students!
167
+ - Would love to know about similar classes or instructors
168
+ - Berlin - Munich
169
+ - Mexico - Monterrey
170
+
171
+ ## Slide 19: Data Science for Economists
172
+
173
+ - https://www.econ148.org/sp24/
174
+ - Release 0.3 next semester
175
+ - Much more Data 88E
176
+ - Pandas Pandas Pandas
177
+ - Time Series
178
+ - Intro to ML
179
+
180
+ ## Slide 20: Thanks for joining us!
181
+
182
+ - Help the world think of new applications!
183
+ - Go and build a notebook on a topic you are interested in!
184
+ - Share the notebook on Github, online, with a documented data source!
185
+
186
+ ## Slide 21: Development
187
+
188
+ - Econ 172 Case Studies in Developmental Economics
189
+ - Taught by Ted Miguel
190
+ - Offered in the Spring
191
+ - Econ 171 Development Economics
192
+ - Taught by Benjamin Faber in the Spring
193
+ - Taught by Marco Gonzalez-Navarro in the Fall
194
+
195
+ ## Slide 22: Finance
196
+
197
+ - Econ 136 Financial Economics
198
+ - Offered in Spring and Fall
199
+ - Econ 138 Behavioural Economics
200
+ - Offered in the Spring
201
+ - Econ 139 Intermediate Financial Economics
202
+ - Econ 144 Financial Econometrics
203
+
204
+ ## Slide 23: Macroeconomics
205
+
206
+ - Econ 134 Macroeconomic Policy from the Great Depression to Today
207
+ - Taught by Yuriy Gorodnichenko in the Spring
208
+ - Taught by Emi Nakamura in the Fall
209
+ - Econ 162 The Chinese Economy
210
+ - Offered in the Fall
211
+ - Econ 181 International Trade
212
+ - Offered in the Fall
213
+ - Taught by Thibault Fally
214
+ - Econ 182 International Monetary Economics
215
+ - Taught by Maurice Obstfeld in the Fall
216
+
217
+ ## Slide 24: Inequality
218
+
219
+ - Econ 133 Global Inequality and Growth
220
+ - Offered in the Spring
221
+ - Taught by Gabriel Zucman
222
+ - 2018 “Prize for the Best Young Economist in France”
223
+ - Econ 131 Public Economics
224
+ - Offered in the Spring
225
+ - Taught by Emmanuel Saez
226
+ - John Bates Clark Medal Winner
227
+
228
+ ## Slide 25: Game Theory
229
+
230
+ - Econ 110 Game Theory
231
+ - Offered in the Fall
232
+ - Currently taught by Robert L Powell
233
+ - Econ 119 Psychology and Economics
234
+ - Offered in the Fall
235
+ - Currently taught by Dan Acland
236
+ - Philosophy 141
237
+ - Stat 155
238
+
239
+ ## Slide 26: Econometrics
240
+
241
+ - ECON 140: Economic Statistics and Econometrics
242
+ - ECON 141: Econometric Analysis ( with Linear Algebra)
243
+ - ECON 142: Applied Econometrics and Public Policy -
244
+ - ECON 143: Econometrics: Advanced Methods and Applications ( New)
245
+ - ECON 144: Financial Econometrics
246
+ - Lots of other upper division econ courses use econometrics
247
+
248
+ ## Slide 27: Environmental Economics
249
+
250
+ - Envecon C1: Introduction to Environmental Economics & Policy
251
+ - Envecon 100: Intermediate Microeconomics with Applications to Sustainability
252
+ - Envecon C101: Environmental Economics
253
+ - Envecon 102 - Natural Resource Economics
254
+ - Econ 184: International Environmental Economics
255
+ - Data Science Domain Emphasis
256
+ - Environment, Resource Management, and Society
257
+
258
+ ## Slide 28: Take a sec and fill out the course evaluation form!
259
+
260
+ - course-evaluations.berkeley.edu
261
+
262
+ ## Slide 29: (untitled)
263
+
264
+ ## Slide 30: Vibecession
265
+
266
+ - FRED data
267
+ - Consumer Sentiment
268
+ - As predicted by indicators
269
+ - Link
270
+
271
+ ## Slide 31: Kyla Vibecession
272
+