my-markdown-library 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/F24LS_md/ Lecture 4 - Public.md +347 -0
- data/F24LS_md/Lecture 1 - Introduction and Overview.md +327 -0
- data/F24LS_md/Lecture 10 - Development_.md +631 -0
- data/F24LS_md/Lecture 11 - Econometrics.md +345 -0
- data/F24LS_md/Lecture 12 - Finance.md +692 -0
- data/F24LS_md/Lecture 13 - Environmental Economics.md +299 -0
- data/F24LS_md/Lecture 15 - Conclusion.md +272 -0
- data/F24LS_md/Lecture 2 - Demand.md +349 -0
- data/F24LS_md/Lecture 3 - Supply.md +329 -0
- data/F24LS_md/Lecture 5 - Production C-D.md +291 -0
- data/F24LS_md/Lecture 6 - Utility and Latex.md +440 -0
- data/F24LS_md/Lecture 7 - Inequality.md +607 -0
- data/F24LS_md/Lecture 8 - Macroeconomics.md +704 -0
- data/F24LS_md/Lecture 8 - Macro.md +700 -0
- data/F24LS_md/Lecture 9 - Game Theory_.md +436 -0
- data/F24LS_md/summary.yaml +105 -0
- data/F24Lec_MD/LecNB_summary.yaml +206 -0
- data/F24Lec_MD/lec01/lec01.md +267 -0
- data/F24Lec_MD/lec02/Avocados_demand.md +425 -0
- data/F24Lec_MD/lec02/Demand_Steps_24.md +126 -0
- data/F24Lec_MD/lec02/PriceElasticity.md +83 -0
- data/F24Lec_MD/lec02/ScannerData_Beer.md +171 -0
- data/F24Lec_MD/lec02/demand-curve-Fa24.md +213 -0
- data/F24Lec_MD/lec03/3.0-CubicCostCurve.md +239 -0
- data/F24Lec_MD/lec03/3.1-Supply.md +274 -0
- data/F24Lec_MD/lec03/3.2-sympy.md +332 -0
- data/F24Lec_MD/lec03/3.3a-california-energy.md +120 -0
- data/F24Lec_MD/lec03/3.3b-a-really-hot-tuesday.md +121 -0
- data/F24Lec_MD/lec04/lec04-CSfromSurvey-closed.md +335 -0
- data/F24Lec_MD/lec04/lec04-CSfromSurvey.md +331 -0
- data/F24Lec_MD/lec04/lec04-Supply-Demand-closed.md +519 -0
- data/F24Lec_MD/lec04/lec04-Supply-Demand.md +514 -0
- data/F24Lec_MD/lec04/lec04-four-plot-24.md +34 -0
- data/F24Lec_MD/lec04/lec04-four-plot.md +34 -0
- data/F24Lec_MD/lec05/Lec5-Cobb-Douglas.md +131 -0
- data/F24Lec_MD/lec05/Lec5-CobbD-AER1928.md +283 -0
- data/F24Lec_MD/lec06/6.1-Sympy-Differentiation.md +253 -0
- data/F24Lec_MD/lec06/6.2-3D-utility.md +287 -0
- data/F24Lec_MD/lec06/6.3-QuantEcon-Optimization.md +399 -0
- data/F24Lec_MD/lec06/6.4-latex.md +138 -0
- data/F24Lec_MD/lec06/6.5-Edgeworth.md +269 -0
- data/F24Lec_MD/lec07/7.1-inequality.md +283 -0
- data/F24Lec_MD/lec07/7.2-historical-inequality.md +237 -0
- data/F24Lec_MD/lec08/macro-fred-api.md +313 -0
- data/F24Lec_MD/lec09/lecNB-prisoners-dilemma.md +88 -0
- data/F24Lec_MD/lec10/Lec10.2-waterguard.md +401 -0
- data/F24Lec_MD/lec10/lec10.1-mapping.md +199 -0
- data/F24Lec_MD/lec11/11.1-slr.md +305 -0
- data/F24Lec_MD/lec11/11.2-mlr.md +171 -0
- data/F24Lec_MD/lec12/Lec12-4-PersonalFinance.md +590 -0
- data/F24Lec_MD/lec12/lec12-1_Interest_Payments.md +267 -0
- data/F24Lec_MD/lec12/lec12-2-stocks-options.md +235 -0
- data/F24Lec_MD/lec13/Co2_ClimateChange.md +139 -0
- data/F24Lec_MD/lec13/ConstructingMAC.md +213 -0
- data/F24Lec_MD/lec13/EmissionsTracker.md +170 -0
- data/F24Lec_MD/lec13/KuznetsHypothesis.md +219 -0
- data/F24Lec_MD/lec13/RoslingPlots.md +217 -0
- data/F24Lec_MD/lec15/vibecession.md +485 -0
- data/F24Textbook_MD/00-intro/index.md +292 -0
- data/F24Textbook_MD/01-demand/01-demand.md +152 -0
- data/F24Textbook_MD/01-demand/02-example.md +131 -0
- data/F24Textbook_MD/01-demand/03-log-log.md +284 -0
- data/F24Textbook_MD/01-demand/04-elasticity.md +248 -0
- data/F24Textbook_MD/01-demand/index.md +15 -0
- data/F24Textbook_MD/02-supply/01-supply.md +203 -0
- data/F24Textbook_MD/02-supply/02-eep147-example.md +86 -0
- data/F24Textbook_MD/02-supply/03-sympy.md +138 -0
- data/F24Textbook_MD/02-supply/04-market-equilibria.md +204 -0
- data/F24Textbook_MD/02-supply/index.md +16 -0
- data/F24Textbook_MD/03-public/govt-intervention.md +73 -0
- data/F24Textbook_MD/03-public/index.md +10 -0
- data/F24Textbook_MD/03-public/surplus.md +351 -0
- data/F24Textbook_MD/03-public/taxes-subsidies.md +282 -0
- data/F24Textbook_MD/04-production/index.md +15 -0
- data/F24Textbook_MD/04-production/production.md +178 -0
- data/F24Textbook_MD/04-production/shifts.md +296 -0
- data/F24Textbook_MD/05-utility/budget-constraints.md +166 -0
- data/F24Textbook_MD/05-utility/index.md +15 -0
- data/F24Textbook_MD/05-utility/utility.md +136 -0
- data/F24Textbook_MD/06-inequality/historical-inequality.md +253 -0
- data/F24Textbook_MD/06-inequality/index.md +15 -0
- data/F24Textbook_MD/06-inequality/inequality.md +226 -0
- data/F24Textbook_MD/07-game-theory/bertrand.md +257 -0
- data/F24Textbook_MD/07-game-theory/cournot.md +333 -0
- data/F24Textbook_MD/07-game-theory/equilibria-oligopolies.md +96 -0
- data/F24Textbook_MD/07-game-theory/expected-utility.md +61 -0
- data/F24Textbook_MD/07-game-theory/index.md +19 -0
- data/F24Textbook_MD/07-game-theory/python-classes.md +340 -0
- data/F24Textbook_MD/08-development/index.md +35 -0
- data/F24Textbook_MD/09-macro/CentralBanks.md +101 -0
- data/F24Textbook_MD/09-macro/Indicators.md +77 -0
- data/F24Textbook_MD/09-macro/fiscal_policy.md +36 -0
- data/F24Textbook_MD/09-macro/index.md +14 -0
- data/F24Textbook_MD/09-macro/is_curve.md +76 -0
- data/F24Textbook_MD/09-macro/phillips_curve.md +70 -0
- data/F24Textbook_MD/10-finance/index.md +10 -0
- data/F24Textbook_MD/10-finance/options.md +178 -0
- data/F24Textbook_MD/10-finance/value-interest.md +60 -0
- data/F24Textbook_MD/11-econometrics/index.md +16 -0
- data/F24Textbook_MD/11-econometrics/multivariable.md +218 -0
- data/F24Textbook_MD/11-econometrics/reading-econ-papers.md +25 -0
- data/F24Textbook_MD/11-econometrics/single-variable.md +483 -0
- data/F24Textbook_MD/11-econometrics/statsmodels.md +58 -0
- data/F24Textbook_MD/12-environmental/KuznetsHypothesis-Copy1.md +187 -0
- data/F24Textbook_MD/12-environmental/KuznetsHypothesis.md +187 -0
- data/F24Textbook_MD/12-environmental/MAC.md +254 -0
- data/F24Textbook_MD/12-environmental/index.md +36 -0
- data/F24Textbook_MD/LICENSE.md +11 -0
- data/F24Textbook_MD/intro.md +26 -0
- data/F24Textbook_MD/references.md +25 -0
- data/F24Textbook_MD/summary.yaml +414 -0
- metadata +155 -0
@@ -0,0 +1,299 @@
|
|
1
|
+
---
|
2
|
+
title: "Lecture 13 - Environmental Economics"
|
3
|
+
type: slides
|
4
|
+
week: 13
|
5
|
+
source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 13 - Environmental Economics.pptx"
|
6
|
+
---
|
7
|
+
|
8
|
+
## Slide 1: Data 88E: Economic Models
|
9
|
+
|
10
|
+
- Lecture 13: Environmental Economics
|
11
|
+
|
12
|
+
## Slide 2: Announcements
|
13
|
+
|
14
|
+
- No OH next week - potentially on Zoom
|
15
|
+
- Last Lab this week!
|
16
|
+
|
17
|
+
## Slide 3: Lecture Outline
|
18
|
+
|
19
|
+
- Part 0: COP29 and Carbon Emissions
|
20
|
+
- Part I: Historical Emissions & Trends
|
21
|
+
- Part II: Introducing the Marginal Cost of Abatement Curve
|
22
|
+
- Part III: Introducing Emission Taxes and other policy instruments
|
23
|
+
- How do we make this a great learning experience?
|
24
|
+
- Ask questions if things are unclear!
|
25
|
+
|
26
|
+
## Slide 4: Motivation: COP29
|
27
|
+
|
28
|
+
- Suppose you’re at COP 29 (‘Conference of the Parties’) :
|
29
|
+
- You’re a top-tier economist
|
30
|
+
- Greta Thunberg walks up to you and asks:
|
31
|
+
- “What are you doing to stop global warming?”
|
32
|
+
- “How are you doing it?”
|
33
|
+
- What’s your ‘economist’ answer?
|
34
|
+
|
35
|
+
## Slide 5: COP 29 - Baku Azerbaijan
|
36
|
+
|
37
|
+
## Slide 6: COP 29 - the finance summit - $1T transition fund
|
38
|
+
|
39
|
+
## Slide 7: Saudi Arabia at COP 29
|
40
|
+
|
41
|
+
## Slide 8: Motivation - Cop 28 - Nov 2023
|
42
|
+
|
43
|
+
## Slide 9: Part I:
|
44
|
+
|
45
|
+
Historical Emissions & Trends
|
46
|
+
|
47
|
+
- Part I:
|
48
|
+
- Historical Emissions & Trends
|
49
|
+
|
50
|
+
## Slide 10: Historical Emissions: Mauna Loa
|
51
|
+
|
52
|
+
- Source: Trends in Atmospheric Carbon Dioxide Mauna Loa Observatory
|
53
|
+
|
54
|
+
## Slide 11: Trends: Temperature
|
55
|
+
|
56
|
+
- Source: ShowYourStripes by Climate Scientist Ed Hawkins
|
57
|
+
|
58
|
+
## Slide 12: Notebook 1 - Climate Change
|
59
|
+
|
60
|
+
## Slide 13: China matters
|
61
|
+
|
62
|
+
- https://www.cnn.com/2024/11/18/climate/climate-china-solar-wind-dg/index.html
|
63
|
+
|
64
|
+
## Slide 14: China - adding Renewable Capacity
|
65
|
+
|
66
|
+
## Slide 15: China forecast to peak soon, but not decrease fast enough
|
67
|
+
|
68
|
+
## Slide 16: China C02 Emissions
|
69
|
+
|
70
|
+
## Slide 17: Notebook 2 - Emissions Tracker
|
71
|
+
|
72
|
+
## Slide 18: Central Tenets: Environmental Amenities
|
73
|
+
|
74
|
+
- What are environmental amenities?
|
75
|
+
- Clean air, water, and stable temperatures
|
76
|
+
- Healthy soil, forests, and oceans
|
77
|
+
- Also parks, rivers, mountains, beaches!
|
78
|
+
- What do you notice about these?
|
79
|
+
- Non-rivalrous (ish): use does not reduce the amount available for others.
|
80
|
+
- Non-excludable (ish): use does not exclude a certain person or group of persons from consumption.
|
81
|
+
- What are these also known as?
|
82
|
+
- Public goods!
|
83
|
+
- Central to Environmental Economics models:
|
84
|
+
- Usage of these go unaccounted for in the current market models.
|
85
|
+
|
86
|
+
## Slide 19: Trends: The Environmental Kuznets Curve Theory
|
87
|
+
|
88
|
+
- Theory:
|
89
|
+
- Economic development and environmental degradation have a downward-facing U-shape relationship.
|
90
|
+
- For example:
|
91
|
+
- Pollution, water quality, deforestation
|
92
|
+
- In our demo, we will be checking the path over different stages of
|
93
|
+
- economic development in 15 nations!
|
94
|
+
|
95
|
+
## Slide 20: Class question
|
96
|
+
|
97
|
+
- What shape do you think the relationship between economic development and environmental degradation have? Here are some ideas:
|
98
|
+
|
99
|
+
## Slide 21: (untitled)
|
100
|
+
|
101
|
+
## Slide 22: (untitled)
|
102
|
+
|
103
|
+
## Slide 23: (untitled)
|
104
|
+
|
105
|
+
## Slide 24: Notebook 3 Kuznets
|
106
|
+
|
107
|
+
## Slide 25: Trends: DATA88’s Environmental Kuznets Curve
|
108
|
+
|
109
|
+
- Question: How do national emissions change across growth in GDP per capita?
|
110
|
+
- Data Source: Gapminder Foundation
|
111
|
+
|
112
|
+
## Slide 26: (untitled)
|
113
|
+
|
114
|
+
## Slide 27: Notebook 4 Rosling
|
115
|
+
|
116
|
+
## Slide 28: Trends: DATA88’s Rösling World Emissions Plot
|
117
|
+
|
118
|
+
- Question: What happens as we add the time dimension?
|
119
|
+
- Data Source: Gapminder Foundation
|
120
|
+
|
121
|
+
## Slide 29: Conclusion Part I
|
122
|
+
|
123
|
+
- We now have an overview of historical and current emissions across the world.
|
124
|
+
- We have also looked into potential trends in growth and emissions.
|
125
|
+
- We have a large share of the emissions coming from wealthier countries over a long period of time.
|
126
|
+
- Our question now is: How do we abate these emissions, asap and in the most cost-effective way?
|
127
|
+
|
128
|
+
## Slide 30: Part II:
|
129
|
+
|
130
|
+
Introducing the Marginal Cost of Abatement Curve
|
131
|
+
|
132
|
+
- Part II:
|
133
|
+
- Introducing the Marginal Cost of Abatement Curve
|
134
|
+
|
135
|
+
## Slide 31: MAC: Theory
|
136
|
+
|
137
|
+
- How do we build one? How do we interpret one? What are the ‘secrets’ of the curve?
|
138
|
+
- Abatement Cost ($/ton CO2)
|
139
|
+
- Abatement Potential (tons CO2)
|
140
|
+
|
141
|
+
## Slide 32: Class question
|
142
|
+
|
143
|
+
- How would a Marginal Abatement Curve for an individual firm look like?
|
144
|
+
|
145
|
+
## Slide 33: MAC: From the Firm’s Perspective
|
146
|
+
|
147
|
+
- Suppose a firm has 5 options to change their production to produce less GHG
|
148
|
+
- Each option has a different abatement cost and abatement potential, here’s how it would look like:
|
149
|
+
|
150
|
+
## Slide 34: MAC: From the Industry’s Perspective
|
151
|
+
|
152
|
+
- Source: Net zero or bust: Beating the abatement cost curve for growth
|
153
|
+
|
154
|
+
## Slide 35: MAC: From the Global Policymaker’s Perspective
|
155
|
+
|
156
|
+
- Negative?
|
157
|
+
- Source: A revolutionary tool for cutting emissions, ten years on | McKinsey & Company (2017)
|
158
|
+
|
159
|
+
## Slide 36: MAC: Key Areas of Abatement
|
160
|
+
|
161
|
+
- Source: A cost curve for greenhouse gas reduction | McKinsey (2007)
|
162
|
+
|
163
|
+
## Slide 37: Class question
|
164
|
+
|
165
|
+
- How do you think the MAC is affected by oil prices? What would change, and how?
|
166
|
+
|
167
|
+
## Slide 38: MAC: Affected by High Energy Prices
|
168
|
+
|
169
|
+
- Source: A cost curve for greenhouse gas reduction | McKinsey (2007)
|
170
|
+
|
171
|
+
## Slide 39: MAC: Dynamic vs. Static Costs Assessment
|
172
|
+
|
173
|
+
- The McKinsey MAC considers only static costs!
|
174
|
+
- Static Costs:
|
175
|
+
- The fixed costs of a new intervention, unchanged over a lifetime of an investment.
|
176
|
+
- Dynamic Costs:
|
177
|
+
- Cost considering potential cost-reduction from increased efficiency, learning-by-doing, and other positive spillovers.
|
178
|
+
|
179
|
+
## Slide 40: MAC: Dynamic Costs, Illustrated
|
180
|
+
|
181
|
+
- Source: Inside Clean Energy: What Happens When Solar Power Gets Much, Much Cheaper?
|
182
|
+
- Source: Solar Panel Cost Trends (Tons of Charts)
|
183
|
+
|
184
|
+
## Slide 41: MAC: Capital Intensity
|
185
|
+
|
186
|
+
- Question: How capital intensive are different technologies? Role for Government Subsidies?
|
187
|
+
- Source: A cost curve for greenhouse gas reduction | McKinsey (2007)
|
188
|
+
- Green New Deal - Build Back Better?
|
189
|
+
|
190
|
+
## Slide 42: MAC: DATA88’s MAC for Methane
|
191
|
+
|
192
|
+
- Data Source: Methane Tracker – Data Tools - IEA
|
193
|
+
- Methane Facts
|
194
|
+
- 80x more potent in the first 20 years than CO2
|
195
|
+
- 28 times more powerful when average over 100 years
|
196
|
+
- Responsible for 25% of today’s warming
|
197
|
+
- Source: Methane facts and information (NatGeo)
|
198
|
+
|
199
|
+
## Slide 43: Notebook 5 Constructing MAC
|
200
|
+
|
201
|
+
## Slide 44: MAC: Environmental Defense Fund’s MAC 2.0
|
202
|
+
|
203
|
+
- Source: A revamped cost curve for reaching net-zero emissions | Environmental Defense Fund
|
204
|
+
- Discover: Interactive MAC 2.0
|
205
|
+
- How is MAC 2.0 different?
|
206
|
+
- Path-Dependent
|
207
|
+
- Tech-Dependent
|
208
|
+
- Cross-Sector Interactions
|
209
|
+
- Diminishing Marginal Return
|
210
|
+
- Optimal timing and sequencing of actions
|
211
|
+
|
212
|
+
<details><summary>Speaker notes</summary>
|
213
|
+
|
214
|
+
You can examine the technology deployment and reductions in annual emissions at a single marginal abatement cost, such as $0 per ton, or in a range of costs, such as $0 to $60 per ton.
|
215
|
+
|
216
|
+
From the report: “explicitly incorporating path- dependent, cross-sector interactions, the diminishing returns of marginal measures, and considering measures that become cost-effective when other measures are deployed at scale.”
|
217
|
+
|
218
|
+
</details>
|
219
|
+
|
220
|
+
## Slide 45: Conclusion Part II
|
221
|
+
|
222
|
+
- We asked: What are the most cost-effective ways of reducing greenhouse gas emissions?
|
223
|
+
- We answered this by sorting it by marginal abatement costs (the cost of reducing the next ton of CO2 / Methane).
|
224
|
+
- We observed that the cost of the carbon matters (a lot!).
|
225
|
+
- Now we need to ask ourselves: How can we use economic policy & theory to drive this reduction? To do so, we need to construct a cost of carbon.
|
226
|
+
|
227
|
+
## Slide 46: Part III:
|
228
|
+
|
229
|
+
Policy: Introducing Emission Taxes vs. Cap-and-trade
|
230
|
+
|
231
|
+
- Part III:
|
232
|
+
- Policy: Introducing Emission Taxes vs. Cap-and-trade
|
233
|
+
|
234
|
+
## Slide 47: Class question
|
235
|
+
|
236
|
+
- Philosophical question:
|
237
|
+
- What’s your way of reducing something that is deemed bad?
|
238
|
+
- Economic answer:
|
239
|
+
- Taxes (You want to do something ‘bad’ - pay up!)
|
240
|
+
- Carbon Tax, Methane Tax, Alcohol Tax, Tax my Strada Coffee Cup?
|
241
|
+
- Quotas (You can only do ‘this much bad’)
|
242
|
+
- Cap and trade on carbon, methane, sulfuric dioxide
|
243
|
+
|
244
|
+
## Slide 48: Policy: Tax policy using MAC
|
245
|
+
|
246
|
+
- Set a tax
|
247
|
+
- Abate this
|
248
|
+
- Question: Who profits in this deal?
|
249
|
+
|
250
|
+
## Slide 49: Policy: C&T MAC curve
|
251
|
+
|
252
|
+
- Get a price
|
253
|
+
- Opportunities to trade?
|
254
|
+
- Set a cap
|
255
|
+
- Question: Who profits in this deal?
|
256
|
+
|
257
|
+
## Slide 50: Policy: How C&T works at firm-level
|
258
|
+
|
259
|
+
## Slide 51: Policy: Cap & Trade vs. Command-and-Control
|
260
|
+
|
261
|
+
- How to implement? How has this worked in the past? Connection to MAC?
|
262
|
+
- Marginal cost of abatement
|
263
|
+
|
264
|
+
## Slide 52: Policy: Carbon Tax vs. C&T Illustrated
|
265
|
+
|
266
|
+
- Amount of pollution
|
267
|
+
- Cost of Emission
|
268
|
+
- Regulator sets amount of emission permits
|
269
|
+
- Companies trade permits to get to efficient point
|
270
|
+
- Amount of pollution
|
271
|
+
|
272
|
+
## Slide 53: Policy: Global Coverage of Tax & Cap-and-Trade (ETS)
|
273
|
+
|
274
|
+
- Source: Carbon Pricing Dashboard (World Bank)
|
275
|
+
|
276
|
+
## Slide 54: Policy: Real world examples of Cap-and-Trade
|
277
|
+
|
278
|
+
## Slide 55: PM 2.5 Regulation - Nationally and in California
|
279
|
+
|
280
|
+
## Slide 56: Pm 2.5 violations - nationally
|
281
|
+
|
282
|
+
## Slide 57: Conclusion Part III
|
283
|
+
|
284
|
+
- We asked how we can reduce something bad - like pollution!
|
285
|
+
- We gave an economist answer (I’m sure there’s other ways of doing this) that taxes and/or cap&trade can work.
|
286
|
+
- We showed how we can intuitively predict / shape policy outcomes by using the MAC.
|
287
|
+
- Conclusion
|
288
|
+
- Overall, we’ve looked at historical emissions in time and space. We then looked at the most cost-effective ways of reducing them, and the policy tools we have to do so. This is only the tip of the iceberg of environmental economics, but I hope you’ve enjoyed this lecture!
|
289
|
+
|
290
|
+
## Slide 58: What’s next - check out these awesome classes!
|
291
|
+
|
292
|
+
- ESPM88: Data Science in Ecology and the Environment
|
293
|
+
- ER131: Data, Environment, and Society
|
294
|
+
- ENVECON C1: Introduction to Environmental Economics & Policy
|
295
|
+
- ENVECON C101: Environmental Economics
|
296
|
+
- ENVECON C102: Natural Resource Economics
|
297
|
+
- Data Science Domain Emphasis
|
298
|
+
- Environment, Resource Management, and Society
|
299
|
+
|
@@ -0,0 +1,272 @@
|
|
1
|
+
---
|
2
|
+
title: "Lecture 15 - Conclusion"
|
3
|
+
type: slides
|
4
|
+
week: 15
|
5
|
+
source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 15 - Conclusion.pptx"
|
6
|
+
---
|
7
|
+
|
8
|
+
## Slide 1: Data 88E: Economic Models
|
9
|
+
|
10
|
+
- Lecture 14: Conclusion & Guest Lecture
|
11
|
+
|
12
|
+
## Slide 2: Course Evaluation
|
13
|
+
|
14
|
+
- You have an evaluation in your inbox
|
15
|
+
- This course needs your support
|
16
|
+
- I am a Unit 18 lecturer - (American Federation of Teachers)
|
17
|
+
- Both this class and my teaching job depend on you
|
18
|
+
- Please fill it out! - I’ll give some time at the break
|
19
|
+
|
20
|
+
## Slide 3: Our Team
|
21
|
+
|
22
|
+
- Bennett Somerville
|
23
|
+
- Computer Science
|
24
|
+
- Justin Wang
|
25
|
+
- Data Science &
|
26
|
+
- Economics
|
27
|
+
|
28
|
+
## Slide 4: Course Staff / Involvement
|
29
|
+
|
30
|
+
- If you are interested in an ASE position for next Fall
|
31
|
+
- Email ericvd@berkeley.edu
|
32
|
+
|
33
|
+
## Slide 5: Guest Speaker - Peter Grinde Hollevik
|
34
|
+
|
35
|
+
- Took Data 88E
|
36
|
+
- Became part of the team
|
37
|
+
- Part of the Survive Lockdown team
|
38
|
+
- Became TA for Econ 148
|
39
|
+
- Tryna figure out grad school options
|
40
|
+
|
41
|
+
## Slide 6: Why of the class
|
42
|
+
|
43
|
+
- Is Python coding a tool that Economics Students should know?
|
44
|
+
- Would it make sense to have coding skills for learning in more advanced classes?
|
45
|
+
- Macro
|
46
|
+
- Labor
|
47
|
+
- Development
|
48
|
+
- Finance
|
49
|
+
- Can it motivate students when they get to Econometrics?
|
50
|
+
- To think like data scientist?
|
51
|
+
- To prepare data for Econometric analysis?
|
52
|
+
- Is it a skill in the job market - ability to work with data?
|
53
|
+
|
54
|
+
## Slide 7: Three goals of Data 88E
|
55
|
+
|
56
|
+
- Connect data science with economics
|
57
|
+
- Prepare students for further coursework and research
|
58
|
+
- Showcase economic subdomains
|
59
|
+
- Replicates economics papers using data science
|
60
|
+
- Surveys core concepts from upper-division coursework
|
61
|
+
- Learn to use LaTeX and open source data science tools
|
62
|
+
- Be able to adequately read economics literature
|
63
|
+
- Examine economics concepts through real-world data
|
64
|
+
- Utilize data science tools and techniques to conduct analysis
|
65
|
+
- Motivate econometrics through a data science perspective
|
66
|
+
|
67
|
+
## Slide 8: Why Economics & Data Science?
|
68
|
+
|
69
|
+
- “If Economics continues to be the major it is now, and Data Science emerges as an alternative, a good chunk of people who are currently going into economics will realize that it makes much more sense to become a Data Science major, with a minor in economics - and I would say they’re making the right choice!” - Steven Levitt
|
70
|
+
- “The Data Science tools may well turn out to be in the first half of the 2000s the equivalent of a fine chancery hand was in Oxford or Cambridge in the 1400s, just as a facility with the document formats and commands of the Microsoft office at the end of the 1900s: practical, general skills that make you of immense value to most if not nearly all organizations.” - Brad DeLong
|
71
|
+
- “I think Econometrics could use a lot of the techniques that are common in Data Science, such as bootstrapping…techniques for data-driven procedures and there’s a lot of really creative ideas in terms of presenting data …” - David Card
|
72
|
+
- “I write Jupyter Notebooks, I write Python, try my models out in Python, and it’s very empowering…I think the students at Berkeley are lucky.. The things you have now! ” - Thomas Sargent
|
73
|
+
- “During the pandemic, you could track comfort with social interactions using Open Table reservations. I don't have to tell you all how closely you can track rents in pricey Bay Area neighborhoods using tools like Zillow, Apartments.com, and Apartment List. These types of housing data inform the Federal Reserve's understanding of inflation. I am confident your generation will transform our capability to use high-frequency, real-time data, applying your unique perspectives to deepen our understanding of how our economy is evolving.” - Lisa Cook
|
74
|
+
|
75
|
+
## Slide 9: Match them up
|
76
|
+
|
77
|
+
- Tom Sargent
|
78
|
+
- David Card
|
79
|
+
- Lisa Cook
|
80
|
+
- Steven Levitt
|
81
|
+
- Brad DeLong
|
82
|
+
- Berkeley Undergrad
|
83
|
+
- Berkeley PHD
|
84
|
+
- Berkeley Prof
|
85
|
+
- Federal Reserve Governor
|
86
|
+
- U Chicago Prof
|
87
|
+
- Nobel Prize
|
88
|
+
|
89
|
+
## Slide 10: What did we learn?
|
90
|
+
|
91
|
+
- Fundamentals:
|
92
|
+
- How to use Python to solve Economic Questions
|
93
|
+
- Demand Theory from
|
94
|
+
- 1 ) a survey
|
95
|
+
- 2) a cloud of data
|
96
|
+
- Taking Logs to transform the data
|
97
|
+
- Supply Theory from a Cost function
|
98
|
+
- Supply and Demand solved via Symbolic Python
|
99
|
+
- Externalities, Taxation, Surpluses and plotting them
|
100
|
+
- Price Controls
|
101
|
+
- Free Trade
|
102
|
+
|
103
|
+
## Slide 11: What did we learn?
|
104
|
+
|
105
|
+
- Upper-Division Concepts
|
106
|
+
- Production
|
107
|
+
- Cobb Douglas Estimation
|
108
|
+
- Macroeconomics time series
|
109
|
+
- Latex for Mathematical Equations
|
110
|
+
- Utility / Consumer Choice
|
111
|
+
- Measures of Inequality
|
112
|
+
- Randomized Trials in International Development
|
113
|
+
|
114
|
+
## Slide 12: What did we learn?
|
115
|
+
|
116
|
+
- Special Topics:
|
117
|
+
- Game Theory
|
118
|
+
- Prisoner’s and Iterated Prisoner’s Dilemma
|
119
|
+
- Nash Equilibria
|
120
|
+
- Oligopoly
|
121
|
+
- Cournot & Bertrand Competition
|
122
|
+
- Econometrics
|
123
|
+
- Regression (Simple & Multivariate)
|
124
|
+
- Reading Tables
|
125
|
+
- Environmental
|
126
|
+
- Marginal Cost of Abatement
|
127
|
+
- Finance
|
128
|
+
- Personal Finance
|
129
|
+
- Stocks and Yahoo Finance API
|
130
|
+
|
131
|
+
## Slide 13: How did we do it?
|
132
|
+
|
133
|
+
## Slide 14: Who is doing this well?
|
134
|
+
|
135
|
+
- Raj Chetty - Harvard Big Data
|
136
|
+
- Sargent and Stachursky - QuantEcon
|
137
|
+
|
138
|
+
## Slide 15: Across the Pacific!
|
139
|
+
|
140
|
+
- Tetsu Haruyama
|
141
|
+
- University of Kobe
|
142
|
+
- https://py4etrics.github.io/
|
143
|
+
- NUS Singapore
|
144
|
+
- Major in Data Science and Economics
|
145
|
+
- Link
|
146
|
+
|
147
|
+
## Slide 16: Real-world Applications
|
148
|
+
|
149
|
+
- You may be new to the intersection between Data Science & Economics, but you are among few people in the world with such knowledge. With knowledge comes opportunities - make decisions about your future with very careful thought! (maybe analyze a dataset or two to figure it out!)
|
150
|
+
- Economics Datasets to check out:
|
151
|
+
- FRED - API for Economics Datasets
|
152
|
+
- Yahoo API for Finance Applications
|
153
|
+
- Awesome Public Economics Datasets GitHub repo
|
154
|
+
- Harvard Dataverse
|
155
|
+
- OECD Data
|
156
|
+
- World Bank Data
|
157
|
+
|
158
|
+
## Slide 17: Make a Github - put some projects there!
|
159
|
+
|
160
|
+
## Slide 18: Other Classes!
|
161
|
+
|
162
|
+
- Help us build notebook based learning into more classes
|
163
|
+
- And especially Econ classes
|
164
|
+
- As you take other classes consider whether they might have notebooks in Jupyter or R for assignments or projects
|
165
|
+
- Let us know if you have any ideas! ericvd@berkeley.edu
|
166
|
+
- International Students!
|
167
|
+
- Would love to know about similar classes or instructors
|
168
|
+
- Berlin - Munich
|
169
|
+
- Mexico - Monterrey
|
170
|
+
|
171
|
+
## Slide 19: Data Science for Economists
|
172
|
+
|
173
|
+
- https://www.econ148.org/sp24/
|
174
|
+
- Release 0.3 next semester
|
175
|
+
- Much more Data 88E
|
176
|
+
- Pandas Pandas Pandas
|
177
|
+
- Time Series
|
178
|
+
- Intro to ML
|
179
|
+
|
180
|
+
## Slide 20: Thanks for joining us!
|
181
|
+
|
182
|
+
- Help the world think of new applications!
|
183
|
+
- Go and build a notebook on a topic you are interested in!
|
184
|
+
- Share the notebook on Github, online, with a documented data source!
|
185
|
+
|
186
|
+
## Slide 21: Development
|
187
|
+
|
188
|
+
- Econ 172 Case Studies in Developmental Economics
|
189
|
+
- Taught by Ted Miguel
|
190
|
+
- Offered in the Spring
|
191
|
+
- Econ 171 Development Economics
|
192
|
+
- Taught by Benjamin Faber in the Spring
|
193
|
+
- Taught by Marco Gonzalez-Navarro in the Fall
|
194
|
+
|
195
|
+
## Slide 22: Finance
|
196
|
+
|
197
|
+
- Econ 136 Financial Economics
|
198
|
+
- Offered in Spring and Fall
|
199
|
+
- Econ 138 Behavioural Economics
|
200
|
+
- Offered in the Spring
|
201
|
+
- Econ 139 Intermediate Financial Economics
|
202
|
+
- Econ 144 Financial Econometrics
|
203
|
+
|
204
|
+
## Slide 23: Macroeconomics
|
205
|
+
|
206
|
+
- Econ 134 Macroeconomic Policy from the Great Depression to Today
|
207
|
+
- Taught by Yuriy Gorodnichenko in the Spring
|
208
|
+
- Taught by Emi Nakamura in the Fall
|
209
|
+
- Econ 162 The Chinese Economy
|
210
|
+
- Offered in the Fall
|
211
|
+
- Econ 181 International Trade
|
212
|
+
- Offered in the Fall
|
213
|
+
- Taught by Thibault Fally
|
214
|
+
- Econ 182 International Monetary Economics
|
215
|
+
- Taught by Maurice Obstfeld in the Fall
|
216
|
+
|
217
|
+
## Slide 24: Inequality
|
218
|
+
|
219
|
+
- Econ 133 Global Inequality and Growth
|
220
|
+
- Offered in the Spring
|
221
|
+
- Taught by Gabriel Zucman
|
222
|
+
- 2018 “Prize for the Best Young Economist in France”
|
223
|
+
- Econ 131 Public Economics
|
224
|
+
- Offered in the Spring
|
225
|
+
- Taught by Emmanuel Saez
|
226
|
+
- John Bates Clark Medal Winner
|
227
|
+
|
228
|
+
## Slide 25: Game Theory
|
229
|
+
|
230
|
+
- Econ 110 Game Theory
|
231
|
+
- Offered in the Fall
|
232
|
+
- Currently taught by Robert L Powell
|
233
|
+
- Econ 119 Psychology and Economics
|
234
|
+
- Offered in the Fall
|
235
|
+
- Currently taught by Dan Acland
|
236
|
+
- Philosophy 141
|
237
|
+
- Stat 155
|
238
|
+
|
239
|
+
## Slide 26: Econometrics
|
240
|
+
|
241
|
+
- ECON 140: Economic Statistics and Econometrics
|
242
|
+
- ECON 141: Econometric Analysis ( with Linear Algebra)
|
243
|
+
- ECON 142: Applied Econometrics and Public Policy -
|
244
|
+
- ECON 143: Econometrics: Advanced Methods and Applications ( New)
|
245
|
+
- ECON 144: Financial Econometrics
|
246
|
+
- Lots of other upper division econ courses use econometrics
|
247
|
+
|
248
|
+
## Slide 27: Environmental Economics
|
249
|
+
|
250
|
+
- Envecon C1: Introduction to Environmental Economics & Policy
|
251
|
+
- Envecon 100: Intermediate Microeconomics with Applications to Sustainability
|
252
|
+
- Envecon C101: Environmental Economics
|
253
|
+
- Envecon 102 - Natural Resource Economics
|
254
|
+
- Econ 184: International Environmental Economics
|
255
|
+
- Data Science Domain Emphasis
|
256
|
+
- Environment, Resource Management, and Society
|
257
|
+
|
258
|
+
## Slide 28: Take a sec and fill out the course evaluation form!
|
259
|
+
|
260
|
+
- course-evaluations.berkeley.edu
|
261
|
+
|
262
|
+
## Slide 29: (untitled)
|
263
|
+
|
264
|
+
## Slide 30: Vibecession
|
265
|
+
|
266
|
+
- FRED data
|
267
|
+
- Consumer Sentiment
|
268
|
+
- As predicted by indicators
|
269
|
+
- Link
|
270
|
+
|
271
|
+
## Slide 31: Kyla Vibecession
|
272
|
+
|